1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
  
     | 
    
      ------------------------------------------------------------------------------
--                                                                          --
--                         GNAT LIBRARY COMPONENTS                          --
--                                                                          --
--              ADA.CONTAINERS.HASH_TABLES.GENERIC_OPERATIONS               --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 2004-2018, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- This unit was originally developed by Matthew J Heaney.                  --
------------------------------------------------------------------------------
with Ada.Containers.Prime_Numbers;
with Ada.Unchecked_Deallocation;
with System; use type System.Address;
package body Ada.Containers.Hash_Tables.Generic_Operations is
   pragma Warnings (Off, "variable ""Busy*"" is not referenced");
   pragma Warnings (Off, "variable ""Lock*"" is not referenced");
   --  See comment in Ada.Containers.Helpers
   type Buckets_Allocation is access all Buckets_Type;
   --  Used for allocation and deallocation (see New_Buckets and Free_Buckets).
   --  This is necessary because Buckets_Access has an empty storage pool.
   ------------
   -- Adjust --
   ------------
   procedure Adjust (HT : in out Hash_Table_Type) is
      Src_Buckets : constant Buckets_Access := HT.Buckets;
      N           : constant Count_Type := HT.Length;
      Src_Node    : Node_Access;
      Dst_Prev    : Node_Access;
   begin
      --  If the counts are nonzero, execution is technically erroneous, but
      --  it seems friendly to allow things like concurrent "=" on shared
      --  constants.
      Zero_Counts (HT.TC);
      HT.Buckets := null;
      HT.Length := 0;
      if N = 0 then
         return;
      end if;
      --  Technically it isn't necessary to allocate the exact same length
      --  buckets array, because our only requirement is that following
      --  assignment the source and target containers compare equal (that is,
      --  operator "=" returns True). We can satisfy this requirement with any
      --  hash table length, but we decide here to match the length of the
      --  source table. This has the benefit that when iterating, elements of
      --  the target are delivered in the exact same order as for the source.
      HT.Buckets := New_Buckets (Length => Src_Buckets'Length);
      for Src_Index in Src_Buckets'Range loop
         Src_Node := Src_Buckets (Src_Index);
         if Src_Node /= null then
            declare
               Dst_Node : constant Node_Access := Copy_Node (Src_Node);
               --  See note above
               pragma Assert (Checked_Index (HT, Dst_Node) = Src_Index);
            begin
               HT.Buckets (Src_Index) := Dst_Node;
               HT.Length := HT.Length + 1;
               Dst_Prev := Dst_Node;
            end;
            Src_Node := Next (Src_Node);
            while Src_Node /= null loop
               declare
                  Dst_Node : constant Node_Access := Copy_Node (Src_Node);
                  --  See note above
                  pragma Assert (Checked_Index (HT, Dst_Node) = Src_Index);
               begin
                  Set_Next (Node => Dst_Prev, Next => Dst_Node);
                  HT.Length := HT.Length + 1;
                  Dst_Prev := Dst_Node;
               end;
               Src_Node := Next (Src_Node);
            end loop;
         end if;
      end loop;
      pragma Assert (HT.Length = N);
   end Adjust;
   --------------
   -- Capacity --
   --------------
   function Capacity (HT : Hash_Table_Type) return Count_Type is
   begin
      if HT.Buckets = null then
         return 0;
      end if;
      return HT.Buckets'Length;
   end Capacity;
   -------------------
   -- Checked_Index --
   -------------------
   function Checked_Index
     (Hash_Table : aliased in out Hash_Table_Type;
      Buckets    : Buckets_Type;
      Node       : Node_Access) return Hash_Type
   is
      Lock : With_Lock (Hash_Table.TC'Unrestricted_Access);
   begin
      return Index (Buckets, Node);
   end Checked_Index;
   function Checked_Index
     (Hash_Table : aliased in out Hash_Table_Type;
      Node       : Node_Access) return Hash_Type
   is
   begin
      return Checked_Index (Hash_Table, Hash_Table.Buckets.all, Node);
   end Checked_Index;
   -----------
   -- Clear --
   -----------
   procedure Clear (HT : in out Hash_Table_Type) is
      Index : Hash_Type := 0;
      Node  : Node_Access;
   begin
      TC_Check (HT.TC);
      while HT.Length > 0 loop
         while HT.Buckets (Index) = null loop
            Index := Index + 1;
         end loop;
         declare
            Bucket : Node_Access renames HT.Buckets (Index);
         begin
            loop
               Node := Bucket;
               Bucket := Next (Bucket);
               HT.Length := HT.Length - 1;
               Free (Node);
               exit when Bucket = null;
            end loop;
         end;
      end loop;
   end Clear;
   --------------------------
   -- Delete_Node_At_Index --
   --------------------------
   procedure Delete_Node_At_Index
     (HT   : in out Hash_Table_Type;
      Indx : Hash_Type;
      X    : in out Node_Access)
   is
      Prev : Node_Access;
      Curr : Node_Access;
   begin
      Prev := HT.Buckets (Indx);
      if Prev = X then
         HT.Buckets (Indx) := Next (Prev);
         HT.Length := HT.Length - 1;
         Free (X);
         return;
      end if;
      if Checks and then HT.Length = 1 then
         raise Program_Error with
           "attempt to delete node not in its proper hash bucket";
      end if;
      loop
         Curr := Next (Prev);
         if Checks and then Curr = null then
            raise Program_Error with
              "attempt to delete node not in its proper hash bucket";
         end if;
         if Curr = X then
            Set_Next (Node => Prev, Next => Next (Curr));
            HT.Length := HT.Length - 1;
            Free (X);
            return;
         end if;
         Prev := Curr;
      end loop;
   end Delete_Node_At_Index;
   ---------------------------
   -- Delete_Node_Sans_Free --
   ---------------------------
   procedure Delete_Node_Sans_Free
     (HT : in out Hash_Table_Type;
      X  : Node_Access)
   is
      pragma Assert (X /= null);
      Indx : Hash_Type;
      Prev : Node_Access;
      Curr : Node_Access;
   begin
      if Checks and then HT.Length = 0 then
         raise Program_Error with
           "attempt to delete node from empty hashed container";
      end if;
      Indx := Checked_Index (HT, X);
      Prev := HT.Buckets (Indx);
      if Checks and then Prev = null then
         raise Program_Error with
           "attempt to delete node from empty hash bucket";
      end if;
      if Prev = X then
         HT.Buckets (Indx) := Next (Prev);
         HT.Length := HT.Length - 1;
         return;
      end if;
      if Checks and then HT.Length = 1 then
         raise Program_Error with
           "attempt to delete node not in its proper hash bucket";
      end if;
      loop
         Curr := Next (Prev);
         if Checks and then Curr = null then
            raise Program_Error with
              "attempt to delete node not in its proper hash bucket";
         end if;
         if Curr = X then
            Set_Next (Node => Prev, Next => Next (Curr));
            HT.Length := HT.Length - 1;
            return;
         end if;
         Prev := Curr;
      end loop;
   end Delete_Node_Sans_Free;
   --------------
   -- Finalize --
   --------------
   procedure Finalize (HT : in out Hash_Table_Type) is
   begin
      Clear (HT);
      Free_Buckets (HT.Buckets);
   end Finalize;
   -----------
   -- First --
   -----------
   function First
     (HT       : Hash_Table_Type) return Node_Access
   is
      Dummy : Hash_Type;
   begin
      return First (HT, Dummy);
   end First;
   function First
     (HT       : Hash_Table_Type;
      Position : out Hash_Type) return Node_Access is
   begin
      if HT.Length = 0 then
         Position := Hash_Type'Last;
         return null;
      end if;
      Position := HT.Buckets'First;
      loop
         if HT.Buckets (Position) /= null then
            return HT.Buckets (Position);
         end if;
         Position := Position + 1;
      end loop;
   end First;
   ------------------
   -- Free_Buckets --
   ------------------
   procedure Free_Buckets (Buckets : in out Buckets_Access) is
      procedure Free is
        new Ada.Unchecked_Deallocation (Buckets_Type, Buckets_Allocation);
   begin
      --  Buckets must have been created by New_Buckets. Here, we convert back
      --  to the Buckets_Allocation type, and do the free on that.
      Free (Buckets_Allocation (Buckets));
   end Free_Buckets;
   ---------------------
   -- Free_Hash_Table --
   ---------------------
   procedure Free_Hash_Table (Buckets : in out Buckets_Access) is
      Node : Node_Access;
   begin
      if Buckets = null then
         return;
      end if;
      for J in Buckets'Range loop
         while Buckets (J) /= null loop
            Node := Buckets (J);
            Buckets (J) := Next (Node);
            Free (Node);
         end loop;
      end loop;
      Free_Buckets (Buckets);
   end Free_Hash_Table;
   -------------------
   -- Generic_Equal --
   -------------------
   function Generic_Equal
     (L, R : Hash_Table_Type) return Boolean
   is
   begin
      if L.Length /= R.Length then
         return False;
      end if;
      if L.Length = 0 then
         return True;
      end if;
      declare
         --  Per AI05-0022, the container implementation is required to detect
         --  element tampering by a generic actual subprogram.
         Lock_L : With_Lock (L.TC'Unrestricted_Access);
         Lock_R : With_Lock (R.TC'Unrestricted_Access);
         L_Index : Hash_Type;
         L_Node  : Node_Access;
         N : Count_Type;
      begin
         --  Find the first node of hash table L
         L_Index := 0;
         loop
            L_Node := L.Buckets (L_Index);
            exit when L_Node /= null;
            L_Index := L_Index + 1;
         end loop;
         --  For each node of hash table L, search for an equivalent node in
         --  hash table R.
         N := L.Length;
         loop
            if not Find (HT => R, Key => L_Node) then
               return False;
            end if;
            N := N - 1;
            L_Node := Next (L_Node);
            if L_Node = null then
               --  We have exhausted the nodes in this bucket
               if N = 0 then
                  return True;
               end if;
               --  Find the next bucket
               loop
                  L_Index := L_Index + 1;
                  L_Node := L.Buckets (L_Index);
                  exit when L_Node /= null;
               end loop;
            end if;
         end loop;
      end;
   end Generic_Equal;
   -----------------------
   -- Generic_Iteration --
   -----------------------
   procedure Generic_Iteration (HT : Hash_Table_Type) is
      procedure Wrapper (Node : Node_Access; Dummy_Pos : Hash_Type);
      -------------
      -- Wrapper --
      -------------
      procedure Wrapper (Node : Node_Access; Dummy_Pos : Hash_Type) is
      begin
         Process (Node);
      end Wrapper;
      procedure Internal_With_Pos is
        new Generic_Iteration_With_Position (Wrapper);
   --  Start of processing for Generic_Iteration
   begin
      Internal_With_Pos (HT);
   end Generic_Iteration;
   -------------------------------------
   -- Generic_Iteration_With_Position --
   -------------------------------------
   procedure Generic_Iteration_With_Position
     (HT : Hash_Table_Type)
   is
      Node : Node_Access;
   begin
      if HT.Length = 0 then
         return;
      end if;
      for Indx in HT.Buckets'Range loop
         Node := HT.Buckets (Indx);
         while Node /= null loop
            Process (Node, Indx);
            Node := Next (Node);
         end loop;
      end loop;
   end Generic_Iteration_With_Position;
   ------------------
   -- Generic_Read --
   ------------------
   procedure Generic_Read
     (Stream : not null access Root_Stream_Type'Class;
      HT     : out Hash_Table_Type)
   is
      N  : Count_Type'Base;
      NN : Hash_Type;
   begin
      Clear (HT);
      Count_Type'Base'Read (Stream, N);
      if Checks and then N < 0 then
         raise Program_Error with "stream appears to be corrupt";
      end if;
      if N = 0 then
         return;
      end if;
      --  The RM does not specify whether or how the capacity changes when a
      --  hash table is streamed in. Therefore we decide here to allocate a new
      --  buckets array only when it's necessary to preserve representation
      --  invariants.
      if HT.Buckets = null
        or else HT.Buckets'Length < N
      then
         Free_Buckets (HT.Buckets);
         NN := Prime_Numbers.To_Prime (N);
         HT.Buckets := New_Buckets (Length => NN);
      end if;
      for J in 1 .. N loop
         declare
            Node : constant Node_Access := New_Node (Stream);
            Indx : constant Hash_Type := Checked_Index (HT, Node);
            B    : Node_Access renames HT.Buckets (Indx);
         begin
            Set_Next (Node => Node, Next => B);
            B := Node;
         end;
         HT.Length := HT.Length + 1;
      end loop;
   end Generic_Read;
   -------------------
   -- Generic_Write --
   -------------------
   procedure Generic_Write
     (Stream : not null access Root_Stream_Type'Class;
      HT     : Hash_Table_Type)
   is
      procedure Write (Node : Node_Access);
      pragma Inline (Write);
      procedure Write is new Generic_Iteration (Write);
      -----------
      -- Write --
      -----------
      procedure Write (Node : Node_Access) is
      begin
         Write (Stream, Node);
      end Write;
   begin
      --  See Generic_Read for an explanation of why we do not stream out the
      --  buckets array length too.
      Count_Type'Base'Write (Stream, HT.Length);
      Write (HT);
   end Generic_Write;
   -----------
   -- Index --
   -----------
   function Index
     (Buckets : Buckets_Type;
      Node    : Node_Access) return Hash_Type is
   begin
      return Hash_Node (Node) mod Buckets'Length;
   end Index;
   function Index
     (Hash_Table : Hash_Table_Type;
      Node       : Node_Access) return Hash_Type is
   begin
      return Index (Hash_Table.Buckets.all, Node);
   end Index;
   ----------
   -- Move --
   ----------
   procedure Move (Target, Source : in out Hash_Table_Type) is
   begin
      if Target'Address = Source'Address then
         return;
      end if;
      TC_Check (Source.TC);
      Clear (Target);
      declare
         Buckets : constant Buckets_Access := Target.Buckets;
      begin
         Target.Buckets := Source.Buckets;
         Source.Buckets := Buckets;
      end;
      Target.Length := Source.Length;
      Source.Length := 0;
   end Move;
   -----------------
   -- New_Buckets --
   -----------------
   function New_Buckets (Length : Hash_Type) return Buckets_Access is
      subtype Rng is Hash_Type range 0 .. Length - 1;
   begin
      --  Allocate in Buckets_Allocation'Storage_Pool, then convert to
      --  Buckets_Access.
      return Buckets_Access (Buckets_Allocation'(new Buckets_Type (Rng)));
   end New_Buckets;
   ----------
   -- Next --
   ----------
   function Next
     (HT            : aliased in out Hash_Table_Type;
      Node          : Node_Access;
      Position : in out Hash_Type) return Node_Access
   is
      Result : Node_Access;
      First  : Hash_Type;
   begin
      --  First, check if the node has other nodes chained to it
      Result := Next (Node);
      if Result /= null then
         return Result;
      end if;
      --  Check if we were supplied a position for Node, from which we
      --  can start iteration on the buckets.
      if Position /= Hash_Type'Last then
         First := Position + 1;
      else
         First := Checked_Index (HT, Node) + 1;
      end if;
      for Indx in First .. HT.Buckets'Last loop
         Result := HT.Buckets (Indx);
         if Result /= null then
            Position := Indx;
            return Result;
         end if;
      end loop;
      return null;
   end Next;
   function Next
     (HT            : aliased in out Hash_Table_Type;
      Node          : Node_Access) return Node_Access
   is
      Pos : Hash_Type := Hash_Type'Last;
   begin
      return Next (HT, Node, Pos);
   end Next;
   ----------------------
   -- Reserve_Capacity --
   ----------------------
   procedure Reserve_Capacity
     (HT : in out Hash_Table_Type;
      N  : Count_Type)
   is
      NN : Hash_Type;
   begin
      if HT.Buckets = null then
         if N > 0 then
            NN := Prime_Numbers.To_Prime (N);
            HT.Buckets := New_Buckets (Length => NN);
         end if;
         return;
      end if;
      if HT.Length = 0 then
         --  This is the easy case. There are no nodes, so no rehashing is
         --  necessary. All we need to do is allocate a new buckets array
         --  having a length implied by the specified capacity. (We say
         --  "implied by" because bucket arrays are always allocated with a
         --  length that corresponds to a prime number.)
         if N = 0 then
            Free_Buckets (HT.Buckets);
            return;
         end if;
         if N = HT.Buckets'Length then
            return;
         end if;
         NN := Prime_Numbers.To_Prime (N);
         if NN = HT.Buckets'Length then
            return;
         end if;
         declare
            X : Buckets_Access := HT.Buckets;
            pragma Warnings (Off, X);
         begin
            HT.Buckets := New_Buckets (Length => NN);
            Free_Buckets (X);
         end;
         return;
      end if;
      if N = HT.Buckets'Length then
         return;
      end if;
      if N < HT.Buckets'Length then
         --  This is a request to contract the buckets array. The amount of
         --  contraction is bounded in order to preserve the invariant that the
         --  buckets array length is never smaller than the number of elements
         --  (the load factor is 1).
         if HT.Length >= HT.Buckets'Length then
            return;
         end if;
         NN := Prime_Numbers.To_Prime (HT.Length);
         if NN >= HT.Buckets'Length then
            return;
         end if;
      else
         NN := Prime_Numbers.To_Prime (Count_Type'Max (N, HT.Length));
         if NN = HT.Buckets'Length then -- can't expand any more
            return;
         end if;
      end if;
      TC_Check (HT.TC);
      Rehash : declare
         Dst_Buckets : Buckets_Access := New_Buckets (Length => NN);
         Src_Buckets : Buckets_Access := HT.Buckets;
         pragma Warnings (Off, Src_Buckets);
         L : Count_Type renames HT.Length;
         LL : constant Count_Type := L;
         Src_Index : Hash_Type := Src_Buckets'First;
      begin
         while L > 0 loop
            declare
               Src_Bucket : Node_Access renames Src_Buckets (Src_Index);
            begin
               while Src_Bucket /= null loop
                  declare
                     Src_Node : constant Node_Access := Src_Bucket;
                     Dst_Index : constant Hash_Type :=
                       Checked_Index (HT, Dst_Buckets.all, Src_Node);
                     Dst_Bucket : Node_Access renames Dst_Buckets (Dst_Index);
                  begin
                     Src_Bucket := Next (Src_Node);
                     Set_Next (Src_Node, Dst_Bucket);
                     Dst_Bucket := Src_Node;
                  end;
                  pragma Assert (L > 0);
                  L := L - 1;
               end loop;
            exception
               when others =>
                  --  If there's an error computing a hash value during a
                  --  rehash, then AI-302 says the nodes "become lost." The
                  --  issue is whether to actually deallocate these lost nodes,
                  --  since they might be designated by extant cursors. Here
                  --  we decide to deallocate the nodes, since it's better to
                  --  solve real problems (storage consumption) rather than
                  --  imaginary ones (the user might, or might not, dereference
                  --  a cursor designating a node that has been deallocated),
                  --  and because we have a way to vet a dangling cursor
                  --  reference anyway, and hence can actually detect the
                  --  problem.
                  for Dst_Index in Dst_Buckets'Range loop
                     declare
                        B : Node_Access renames Dst_Buckets (Dst_Index);
                        X : Node_Access;
                     begin
                        while B /= null loop
                           X := B;
                           B := Next (X);
                           Free (X);
                        end loop;
                     end;
                  end loop;
                  Free_Buckets (Dst_Buckets);
                  raise Program_Error with
                    "hash function raised exception during rehash";
            end;
            Src_Index := Src_Index + 1;
         end loop;
         HT.Buckets := Dst_Buckets;
         HT.Length := LL;
         Free_Buckets (Src_Buckets);
      end Rehash;
   end Reserve_Capacity;
end Ada.Containers.Hash_Tables.Generic_Operations;
 
     |