1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
|
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- A D A . N U M E R I C S . A U X --
-- --
-- B o d y --
-- (Machine Version for x86) --
-- --
-- Copyright (C) 1998-2018, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with System.Machine_Code; use System.Machine_Code;
package body Ada.Numerics.Aux is
NL : constant String := ASCII.LF & ASCII.HT;
-----------------------
-- Local subprograms --
-----------------------
function Is_Nan (X : Double) return Boolean;
-- Return True iff X is a IEEE NaN value
function Logarithmic_Pow (X, Y : Double) return Double;
-- Implementation of X**Y using Exp and Log functions (binary base)
-- to calculate the exponentiation. This is used by Pow for values
-- for values of Y in the open interval (-0.25, 0.25)
procedure Reduce (X : in out Double; Q : out Natural);
-- Implement reduction of X by Pi/2. Q is the quadrant of the final
-- result in the range 0..3. The absolute value of X is at most Pi/4.
-- It is needed to avoid a loss of accuracy for sin near Pi and cos
-- near Pi/2 due to the use of an insufficiently precise value of Pi
-- in the range reduction.
pragma Inline (Is_Nan);
pragma Inline (Reduce);
--------------------------------
-- Basic Elementary Functions --
--------------------------------
-- This section implements a few elementary functions that are used to
-- build the more complex ones. This ordering enables better inlining.
----------
-- Atan --
----------
function Atan (X : Double) return Double is
Result : Double;
begin
Asm (Template =>
"fld1" & NL
& "fpatan",
Outputs => Double'Asm_Output ("=t", Result),
Inputs => Double'Asm_Input ("0", X));
-- The result value is NaN iff input was invalid
if not (Result = Result) then
raise Argument_Error;
end if;
return Result;
end Atan;
---------
-- Exp --
---------
function Exp (X : Double) return Double is
Result : Double;
begin
Asm (Template =>
"fldl2e " & NL
& "fmulp %%st, %%st(1)" & NL -- X * log2 (E)
& "fld %%st(0) " & NL
& "frndint " & NL -- Integer (X * Log2 (E))
& "fsubr %%st, %%st(1)" & NL -- Fraction (X * Log2 (E))
& "fxch " & NL
& "f2xm1 " & NL -- 2**(...) - 1
& "fld1 " & NL
& "faddp %%st, %%st(1)" & NL -- 2**(Fraction (X * Log2 (E)))
& "fscale " & NL -- E ** X
& "fstp %%st(1) ",
Outputs => Double'Asm_Output ("=t", Result),
Inputs => Double'Asm_Input ("0", X));
return Result;
end Exp;
------------
-- Is_Nan --
------------
function Is_Nan (X : Double) return Boolean is
begin
-- The IEEE NaN values are the only ones that do not equal themselves
return X /= X;
end Is_Nan;
---------
-- Log --
---------
function Log (X : Double) return Double is
Result : Double;
begin
Asm (Template =>
"fldln2 " & NL
& "fxch " & NL
& "fyl2x " & NL,
Outputs => Double'Asm_Output ("=t", Result),
Inputs => Double'Asm_Input ("0", X));
return Result;
end Log;
------------
-- Reduce --
------------
procedure Reduce (X : in out Double; Q : out Natural) is
Half_Pi : constant := Pi / 2.0;
Two_Over_Pi : constant := 2.0 / Pi;
HM : constant := Integer'Min (Double'Machine_Mantissa / 2, Natural'Size);
M : constant Double := 0.5 + 2.0**(1 - HM); -- Splitting constant
P1 : constant Double := Double'Leading_Part (Half_Pi, HM);
P2 : constant Double := Double'Leading_Part (Half_Pi - P1, HM);
P3 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2, HM);
P4 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3, HM);
P5 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3
- P4, HM);
P6 : constant Double := Double'Model (Half_Pi - P1 - P2 - P3 - P4 - P5);
K : Double;
R : Integer;
begin
-- For X < 2.0**HM, all products below are computed exactly.
-- Due to cancellation effects all subtractions are exact as well.
-- As no double extended floating-point number has more than 75
-- zeros after the binary point, the result will be the correctly
-- rounded result of X - K * (Pi / 2.0).
K := X * Two_Over_Pi;
while abs K >= 2.0**HM loop
K := K * M - (K * M - K);
X :=
(((((X - K * P1) - K * P2) - K * P3) - K * P4) - K * P5) - K * P6;
K := X * Two_Over_Pi;
end loop;
-- If K is not a number (because X was not finite) raise exception
if Is_Nan (K) then
raise Constraint_Error;
end if;
-- Go through an integer temporary so as to use machine instructions
R := Integer (Double'Rounding (K));
Q := R mod 4;
K := Double (R);
X := (((((X - K * P1) - K * P2) - K * P3) - K * P4) - K * P5) - K * P6;
end Reduce;
----------
-- Sqrt --
----------
function Sqrt (X : Double) return Double is
Result : Double;
begin
if X < 0.0 then
raise Argument_Error;
end if;
Asm (Template => "fsqrt",
Outputs => Double'Asm_Output ("=t", Result),
Inputs => Double'Asm_Input ("0", X));
return Result;
end Sqrt;
--------------------------------
-- Other Elementary Functions --
--------------------------------
-- These are built using the previously implemented basic functions
----------
-- Acos --
----------
function Acos (X : Double) return Double is
Result : Double;
begin
Result := 2.0 * Atan (Sqrt ((1.0 - X) / (1.0 + X)));
-- The result value is NaN iff input was invalid
if Is_Nan (Result) then
raise Argument_Error;
end if;
return Result;
end Acos;
----------
-- Asin --
----------
function Asin (X : Double) return Double is
Result : Double;
begin
Result := Atan (X / Sqrt ((1.0 - X) * (1.0 + X)));
-- The result value is NaN iff input was invalid
if Is_Nan (Result) then
raise Argument_Error;
end if;
return Result;
end Asin;
---------
-- Cos --
---------
function Cos (X : Double) return Double is
Reduced_X : Double := abs X;
Result : Double;
Quadrant : Natural range 0 .. 3;
begin
if Reduced_X > Pi / 4.0 then
Reduce (Reduced_X, Quadrant);
case Quadrant is
when 0 =>
Asm (Template => "fcos",
Outputs => Double'Asm_Output ("=t", Result),
Inputs => Double'Asm_Input ("0", Reduced_X));
when 1 =>
Asm (Template => "fsin",
Outputs => Double'Asm_Output ("=t", Result),
Inputs => Double'Asm_Input ("0", -Reduced_X));
when 2 =>
Asm (Template => "fcos ; fchs",
Outputs => Double'Asm_Output ("=t", Result),
Inputs => Double'Asm_Input ("0", Reduced_X));
when 3 =>
Asm (Template => "fsin",
Outputs => Double'Asm_Output ("=t", Result),
Inputs => Double'Asm_Input ("0", Reduced_X));
end case;
else
Asm (Template => "fcos",
Outputs => Double'Asm_Output ("=t", Result),
Inputs => Double'Asm_Input ("0", Reduced_X));
end if;
return Result;
end Cos;
---------------------
-- Logarithmic_Pow --
---------------------
function Logarithmic_Pow (X, Y : Double) return Double is
Result : Double;
begin
Asm (Template => "" -- X : Y
& "fyl2x " & NL -- Y * Log2 (X)
& "fld %%st(0) " & NL -- Y * Log2 (X) : Y * Log2 (X)
& "frndint " & NL -- Int (...) : Y * Log2 (X)
& "fsubr %%st, %%st(1)" & NL -- Int (...) : Fract (...)
& "fxch " & NL -- Fract (...) : Int (...)
& "f2xm1 " & NL -- 2**Fract (...) - 1 : Int (...)
& "fld1 " & NL -- 1 : 2**Fract (...) - 1 : Int (...)
& "faddp %%st, %%st(1)" & NL -- 2**Fract (...) : Int (...)
& "fscale ", -- 2**(Fract (...) + Int (...))
Outputs => Double'Asm_Output ("=t", Result),
Inputs =>
(Double'Asm_Input ("0", X),
Double'Asm_Input ("u", Y)));
return Result;
end Logarithmic_Pow;
---------
-- Pow --
---------
function Pow (X, Y : Double) return Double is
type Mantissa_Type is mod 2**Double'Machine_Mantissa;
-- Modular type that can hold all bits of the mantissa of Double
-- For negative exponents, do divide at the end of the processing
Negative_Y : constant Boolean := Y < 0.0;
Abs_Y : constant Double := abs Y;
-- During this function the following invariant is kept:
-- X ** (abs Y) = Base**(Exp_High + Exp_Mid + Exp_Low) * Factor
Base : Double := X;
Exp_High : Double := Double'Floor (Abs_Y);
Exp_Mid : Double;
Exp_Low : Double;
Exp_Int : Mantissa_Type;
Factor : Double := 1.0;
begin
-- Select algorithm for calculating Pow (integer cases fall through)
if Exp_High >= 2.0**Double'Machine_Mantissa then
-- In case of Y that is IEEE infinity, just raise constraint error
if Exp_High > Double'Safe_Last then
raise Constraint_Error;
end if;
-- Large values of Y are even integers and will stay integer
-- after division by two.
loop
-- Exp_Mid and Exp_Low are zero, so
-- X**(abs Y) = Base ** Exp_High = (Base**2) ** (Exp_High / 2)
Exp_High := Exp_High / 2.0;
Base := Base * Base;
exit when Exp_High < 2.0**Double'Machine_Mantissa;
end loop;
elsif Exp_High /= Abs_Y then
Exp_Low := Abs_Y - Exp_High;
Factor := 1.0;
if Exp_Low /= 0.0 then
-- Exp_Low now is in interval (0.0, 1.0)
-- Exp_Mid := Double'Floor (Exp_Low * 4.0) / 4.0;
Exp_Mid := 0.0;
Exp_Low := Exp_Low - Exp_Mid;
if Exp_Low >= 0.5 then
Factor := Sqrt (X);
Exp_Low := Exp_Low - 0.5; -- exact
if Exp_Low >= 0.25 then
Factor := Factor * Sqrt (Factor);
Exp_Low := Exp_Low - 0.25; -- exact
end if;
elsif Exp_Low >= 0.25 then
Factor := Sqrt (Sqrt (X));
Exp_Low := Exp_Low - 0.25; -- exact
end if;
-- Exp_Low now is in interval (0.0, 0.25)
-- This means it is safe to call Logarithmic_Pow
-- for the remaining part.
Factor := Factor * Logarithmic_Pow (X, Exp_Low);
end if;
elsif X = 0.0 then
return 0.0;
end if;
-- Exp_High is non-zero integer smaller than 2**Double'Machine_Mantissa
Exp_Int := Mantissa_Type (Exp_High);
-- Standard way for processing integer powers > 0
while Exp_Int > 1 loop
if (Exp_Int and 1) = 1 then
-- Base**Y = Base**(Exp_Int - 1) * Exp_Int for Exp_Int > 0
Factor := Factor * Base;
end if;
-- Exp_Int is even and Exp_Int > 0, so
-- Base**Y = (Base**2)**(Exp_Int / 2)
Base := Base * Base;
Exp_Int := Exp_Int / 2;
end loop;
-- Exp_Int = 1 or Exp_Int = 0
if Exp_Int = 1 then
Factor := Base * Factor;
end if;
if Negative_Y then
Factor := 1.0 / Factor;
end if;
return Factor;
end Pow;
---------
-- Sin --
---------
function Sin (X : Double) return Double is
Reduced_X : Double := X;
Result : Double;
Quadrant : Natural range 0 .. 3;
begin
if abs X > Pi / 4.0 then
Reduce (Reduced_X, Quadrant);
case Quadrant is
when 0 =>
Asm (Template => "fsin",
Outputs => Double'Asm_Output ("=t", Result),
Inputs => Double'Asm_Input ("0", Reduced_X));
when 1 =>
Asm (Template => "fcos",
Outputs => Double'Asm_Output ("=t", Result),
Inputs => Double'Asm_Input ("0", Reduced_X));
when 2 =>
Asm (Template => "fsin",
Outputs => Double'Asm_Output ("=t", Result),
Inputs => Double'Asm_Input ("0", -Reduced_X));
when 3 =>
Asm (Template => "fcos ; fchs",
Outputs => Double'Asm_Output ("=t", Result),
Inputs => Double'Asm_Input ("0", Reduced_X));
end case;
else
Asm (Template => "fsin",
Outputs => Double'Asm_Output ("=t", Result),
Inputs => Double'Asm_Input ("0", Reduced_X));
end if;
return Result;
end Sin;
---------
-- Tan --
---------
function Tan (X : Double) return Double is
Reduced_X : Double := X;
Result : Double;
Quadrant : Natural range 0 .. 3;
begin
if abs X > Pi / 4.0 then
Reduce (Reduced_X, Quadrant);
if Quadrant mod 2 = 0 then
Asm (Template => "fptan" & NL
& "ffree %%st(0)" & NL
& "fincstp",
Outputs => Double'Asm_Output ("=t", Result),
Inputs => Double'Asm_Input ("0", Reduced_X));
else
Asm (Template => "fsincos" & NL
& "fdivp %%st, %%st(1)" & NL
& "fchs",
Outputs => Double'Asm_Output ("=t", Result),
Inputs => Double'Asm_Input ("0", Reduced_X));
end if;
else
Asm (Template =>
"fptan " & NL
& "ffree %%st(0) " & NL
& "fincstp ",
Outputs => Double'Asm_Output ("=t", Result),
Inputs => Double'Asm_Input ("0", Reduced_X));
end if;
return Result;
end Tan;
----------
-- Sinh --
----------
function Sinh (X : Double) return Double is
begin
-- Mathematically Sinh (x) is defined to be (Exp (X) - Exp (-X)) / 2.0
if abs X < 25.0 then
return (Exp (X) - Exp (-X)) / 2.0;
else
return Exp (X) / 2.0;
end if;
end Sinh;
----------
-- Cosh --
----------
function Cosh (X : Double) return Double is
begin
-- Mathematically Cosh (X) is defined to be (Exp (X) + Exp (-X)) / 2.0
if abs X < 22.0 then
return (Exp (X) + Exp (-X)) / 2.0;
else
return Exp (X) / 2.0;
end if;
end Cosh;
----------
-- Tanh --
----------
function Tanh (X : Double) return Double is
begin
-- Return the Hyperbolic Tangent of x
-- x -x
-- e - e Sinh (X)
-- Tanh (X) is defined to be ----------- = --------
-- x -x Cosh (X)
-- e + e
if abs X > 23.0 then
return Double'Copy_Sign (1.0, X);
end if;
return 1.0 / (1.0 + Exp (-(2.0 * X))) - 1.0 / (1.0 + Exp (2.0 * X));
end Tanh;
end Ada.Numerics.Aux;
|