1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
|
------------------------------------------------------------------------------
-- --
-- GNAT LIBRARY COMPONENTS --
-- --
-- ADA.CONTAINERS.RED_BLACK_TREES.GENERIC_BOUNDED_OPERATIONS --
-- --
-- B o d y --
-- --
-- Copyright (C) 2004-2018, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- This unit was originally developed by Matthew J Heaney. --
------------------------------------------------------------------------------
-- The references in this file to "CLR" refer to the following book, from
-- which several of the algorithms here were adapted:
-- Introduction to Algorithms
-- by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest
-- Publisher: The MIT Press (June 18, 1990)
-- ISBN: 0262031418
with System; use type System.Address;
package body Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations is
pragma Warnings (Off, "variable ""Busy*"" is not referenced");
pragma Warnings (Off, "variable ""Lock*"" is not referenced");
-- See comment in Ada.Containers.Helpers
-----------------------
-- Local Subprograms --
-----------------------
procedure Delete_Fixup (Tree : in out Tree_Type'Class; Node : Count_Type);
procedure Delete_Swap (Tree : in out Tree_Type'Class; Z, Y : Count_Type);
procedure Left_Rotate (Tree : in out Tree_Type'Class; X : Count_Type);
procedure Right_Rotate (Tree : in out Tree_Type'Class; Y : Count_Type);
----------------
-- Clear_Tree --
----------------
procedure Clear_Tree (Tree : in out Tree_Type'Class) is
begin
TC_Check (Tree.TC);
Tree.First := 0;
Tree.Last := 0;
Tree.Root := 0;
Tree.Length := 0;
Tree.Free := -1;
end Clear_Tree;
------------------
-- Delete_Fixup --
------------------
procedure Delete_Fixup
(Tree : in out Tree_Type'Class;
Node : Count_Type)
is
-- CLR p. 274
X : Count_Type;
W : Count_Type;
N : Nodes_Type renames Tree.Nodes;
begin
X := Node;
while X /= Tree.Root and then Color (N (X)) = Black loop
if X = Left (N (Parent (N (X)))) then
W := Right (N (Parent (N (X))));
if Color (N (W)) = Red then
Set_Color (N (W), Black);
Set_Color (N (Parent (N (X))), Red);
Left_Rotate (Tree, Parent (N (X)));
W := Right (N (Parent (N (X))));
end if;
if (Left (N (W)) = 0 or else Color (N (Left (N (W)))) = Black)
and then
(Right (N (W)) = 0 or else Color (N (Right (N (W)))) = Black)
then
Set_Color (N (W), Red);
X := Parent (N (X));
else
if Right (N (W)) = 0
or else Color (N (Right (N (W)))) = Black
then
-- As a condition for setting the color of the left child to
-- black, the left child access value must be non-null. A
-- truth table analysis shows that if we arrive here, that
-- condition holds, so there's no need for an explicit test.
-- The assertion is here to document what we know is true.
pragma Assert (Left (N (W)) /= 0);
Set_Color (N (Left (N (W))), Black);
Set_Color (N (W), Red);
Right_Rotate (Tree, W);
W := Right (N (Parent (N (X))));
end if;
Set_Color (N (W), Color (N (Parent (N (X)))));
Set_Color (N (Parent (N (X))), Black);
Set_Color (N (Right (N (W))), Black);
Left_Rotate (Tree, Parent (N (X)));
X := Tree.Root;
end if;
else
pragma Assert (X = Right (N (Parent (N (X)))));
W := Left (N (Parent (N (X))));
if Color (N (W)) = Red then
Set_Color (N (W), Black);
Set_Color (N (Parent (N (X))), Red);
Right_Rotate (Tree, Parent (N (X)));
W := Left (N (Parent (N (X))));
end if;
if (Left (N (W)) = 0 or else Color (N (Left (N (W)))) = Black)
and then
(Right (N (W)) = 0 or else Color (N (Right (N (W)))) = Black)
then
Set_Color (N (W), Red);
X := Parent (N (X));
else
if Left (N (W)) = 0
or else Color (N (Left (N (W)))) = Black
then
-- As a condition for setting the color of the right child
-- to black, the right child access value must be non-null.
-- A truth table analysis shows that if we arrive here, that
-- condition holds, so there's no need for an explicit test.
-- The assertion is here to document what we know is true.
pragma Assert (Right (N (W)) /= 0);
Set_Color (N (Right (N (W))), Black);
Set_Color (N (W), Red);
Left_Rotate (Tree, W);
W := Left (N (Parent (N (X))));
end if;
Set_Color (N (W), Color (N (Parent (N (X)))));
Set_Color (N (Parent (N (X))), Black);
Set_Color (N (Left (N (W))), Black);
Right_Rotate (Tree, Parent (N (X)));
X := Tree.Root;
end if;
end if;
end loop;
Set_Color (N (X), Black);
end Delete_Fixup;
---------------------------
-- Delete_Node_Sans_Free --
---------------------------
procedure Delete_Node_Sans_Free
(Tree : in out Tree_Type'Class;
Node : Count_Type)
is
-- CLR p. 273
X, Y : Count_Type;
Z : constant Count_Type := Node;
N : Nodes_Type renames Tree.Nodes;
begin
TC_Check (Tree.TC);
-- If node is not present, return (exception will be raised in caller)
if Z = 0 then
return;
end if;
pragma Assert (Tree.Length > 0);
pragma Assert (Tree.Root /= 0);
pragma Assert (Tree.First /= 0);
pragma Assert (Tree.Last /= 0);
pragma Assert (Parent (N (Tree.Root)) = 0);
pragma Assert ((Tree.Length > 1)
or else (Tree.First = Tree.Last
and then Tree.First = Tree.Root));
pragma Assert ((Left (N (Node)) = 0)
or else (Parent (N (Left (N (Node)))) = Node));
pragma Assert ((Right (N (Node)) = 0)
or else (Parent (N (Right (N (Node)))) = Node));
pragma Assert (((Parent (N (Node)) = 0) and then (Tree.Root = Node))
or else ((Parent (N (Node)) /= 0) and then
((Left (N (Parent (N (Node)))) = Node)
or else
(Right (N (Parent (N (Node)))) = Node))));
if Left (N (Z)) = 0 then
if Right (N (Z)) = 0 then
if Z = Tree.First then
Tree.First := Parent (N (Z));
end if;
if Z = Tree.Last then
Tree.Last := Parent (N (Z));
end if;
if Color (N (Z)) = Black then
Delete_Fixup (Tree, Z);
end if;
pragma Assert (Left (N (Z)) = 0);
pragma Assert (Right (N (Z)) = 0);
if Z = Tree.Root then
pragma Assert (Tree.Length = 1);
pragma Assert (Parent (N (Z)) = 0);
Tree.Root := 0;
elsif Z = Left (N (Parent (N (Z)))) then
Set_Left (N (Parent (N (Z))), 0);
else
pragma Assert (Z = Right (N (Parent (N (Z)))));
Set_Right (N (Parent (N (Z))), 0);
end if;
else
pragma Assert (Z /= Tree.Last);
X := Right (N (Z));
if Z = Tree.First then
Tree.First := Min (Tree, X);
end if;
if Z = Tree.Root then
Tree.Root := X;
elsif Z = Left (N (Parent (N (Z)))) then
Set_Left (N (Parent (N (Z))), X);
else
pragma Assert (Z = Right (N (Parent (N (Z)))));
Set_Right (N (Parent (N (Z))), X);
end if;
Set_Parent (N (X), Parent (N (Z)));
if Color (N (Z)) = Black then
Delete_Fixup (Tree, X);
end if;
end if;
elsif Right (N (Z)) = 0 then
pragma Assert (Z /= Tree.First);
X := Left (N (Z));
if Z = Tree.Last then
Tree.Last := Max (Tree, X);
end if;
if Z = Tree.Root then
Tree.Root := X;
elsif Z = Left (N (Parent (N (Z)))) then
Set_Left (N (Parent (N (Z))), X);
else
pragma Assert (Z = Right (N (Parent (N (Z)))));
Set_Right (N (Parent (N (Z))), X);
end if;
Set_Parent (N (X), Parent (N (Z)));
if Color (N (Z)) = Black then
Delete_Fixup (Tree, X);
end if;
else
pragma Assert (Z /= Tree.First);
pragma Assert (Z /= Tree.Last);
Y := Next (Tree, Z);
pragma Assert (Left (N (Y)) = 0);
X := Right (N (Y));
if X = 0 then
if Y = Left (N (Parent (N (Y)))) then
pragma Assert (Parent (N (Y)) /= Z);
Delete_Swap (Tree, Z, Y);
Set_Left (N (Parent (N (Z))), Z);
else
pragma Assert (Y = Right (N (Parent (N (Y)))));
pragma Assert (Parent (N (Y)) = Z);
Set_Parent (N (Y), Parent (N (Z)));
if Z = Tree.Root then
Tree.Root := Y;
elsif Z = Left (N (Parent (N (Z)))) then
Set_Left (N (Parent (N (Z))), Y);
else
pragma Assert (Z = Right (N (Parent (N (Z)))));
Set_Right (N (Parent (N (Z))), Y);
end if;
Set_Left (N (Y), Left (N (Z)));
Set_Parent (N (Left (N (Y))), Y);
Set_Right (N (Y), Z);
Set_Parent (N (Z), Y);
Set_Left (N (Z), 0);
Set_Right (N (Z), 0);
declare
Y_Color : constant Color_Type := Color (N (Y));
begin
Set_Color (N (Y), Color (N (Z)));
Set_Color (N (Z), Y_Color);
end;
end if;
if Color (N (Z)) = Black then
Delete_Fixup (Tree, Z);
end if;
pragma Assert (Left (N (Z)) = 0);
pragma Assert (Right (N (Z)) = 0);
if Z = Right (N (Parent (N (Z)))) then
Set_Right (N (Parent (N (Z))), 0);
else
pragma Assert (Z = Left (N (Parent (N (Z)))));
Set_Left (N (Parent (N (Z))), 0);
end if;
else
if Y = Left (N (Parent (N (Y)))) then
pragma Assert (Parent (N (Y)) /= Z);
Delete_Swap (Tree, Z, Y);
Set_Left (N (Parent (N (Z))), X);
Set_Parent (N (X), Parent (N (Z)));
else
pragma Assert (Y = Right (N (Parent (N (Y)))));
pragma Assert (Parent (N (Y)) = Z);
Set_Parent (N (Y), Parent (N (Z)));
if Z = Tree.Root then
Tree.Root := Y;
elsif Z = Left (N (Parent (N (Z)))) then
Set_Left (N (Parent (N (Z))), Y);
else
pragma Assert (Z = Right (N (Parent (N (Z)))));
Set_Right (N (Parent (N (Z))), Y);
end if;
Set_Left (N (Y), Left (N (Z)));
Set_Parent (N (Left (N (Y))), Y);
declare
Y_Color : constant Color_Type := Color (N (Y));
begin
Set_Color (N (Y), Color (N (Z)));
Set_Color (N (Z), Y_Color);
end;
end if;
if Color (N (Z)) = Black then
Delete_Fixup (Tree, X);
end if;
end if;
end if;
Tree.Length := Tree.Length - 1;
end Delete_Node_Sans_Free;
-----------------
-- Delete_Swap --
-----------------
procedure Delete_Swap
(Tree : in out Tree_Type'Class;
Z, Y : Count_Type)
is
N : Nodes_Type renames Tree.Nodes;
pragma Assert (Z /= Y);
pragma Assert (Parent (N (Y)) /= Z);
Y_Parent : constant Count_Type := Parent (N (Y));
Y_Color : constant Color_Type := Color (N (Y));
begin
Set_Parent (N (Y), Parent (N (Z)));
Set_Left (N (Y), Left (N (Z)));
Set_Right (N (Y), Right (N (Z)));
Set_Color (N (Y), Color (N (Z)));
if Tree.Root = Z then
Tree.Root := Y;
elsif Right (N (Parent (N (Y)))) = Z then
Set_Right (N (Parent (N (Y))), Y);
else
pragma Assert (Left (N (Parent (N (Y)))) = Z);
Set_Left (N (Parent (N (Y))), Y);
end if;
if Right (N (Y)) /= 0 then
Set_Parent (N (Right (N (Y))), Y);
end if;
if Left (N (Y)) /= 0 then
Set_Parent (N (Left (N (Y))), Y);
end if;
Set_Parent (N (Z), Y_Parent);
Set_Color (N (Z), Y_Color);
Set_Left (N (Z), 0);
Set_Right (N (Z), 0);
end Delete_Swap;
----------
-- Free --
----------
procedure Free (Tree : in out Tree_Type'Class; X : Count_Type) is
pragma Assert (X > 0);
pragma Assert (X <= Tree.Capacity);
N : Nodes_Type renames Tree.Nodes;
-- pragma Assert (N (X).Prev >= 0); -- node is active
-- Find a way to mark a node as active vs. inactive; we could
-- use a special value in Color_Type for this. ???
begin
-- The set container actually contains two data structures: a list for
-- the "active" nodes that contain elements that have been inserted
-- onto the tree, and another for the "inactive" nodes of the free
-- store.
--
-- We desire that merely declaring an object should have only minimal
-- cost; specially, we want to avoid having to initialize the free
-- store (to fill in the links), especially if the capacity is large.
--
-- The head of the free list is indicated by Container.Free. If its
-- value is non-negative, then the free store has been initialized
-- in the "normal" way: Container.Free points to the head of the list
-- of free (inactive) nodes, and the value 0 means the free list is
-- empty. Each node on the free list has been initialized to point
-- to the next free node (via its Parent component), and the value 0
-- means that this is the last free node.
--
-- If Container.Free is negative, then the links on the free store
-- have not been initialized. In this case the link values are
-- implied: the free store comprises the components of the node array
-- started with the absolute value of Container.Free, and continuing
-- until the end of the array (Nodes'Last).
--
-- ???
-- It might be possible to perform an optimization here. Suppose that
-- the free store can be represented as having two parts: one
-- comprising the non-contiguous inactive nodes linked together
-- in the normal way, and the other comprising the contiguous
-- inactive nodes (that are not linked together, at the end of the
-- nodes array). This would allow us to never have to initialize
-- the free store, except in a lazy way as nodes become inactive.
-- When an element is deleted from the list container, its node
-- becomes inactive, and so we set its Prev component to a negative
-- value, to indicate that it is now inactive. This provides a useful
-- way to detect a dangling cursor reference.
-- The comment above is incorrect; we need some other way to
-- indicate a node is inactive, for example by using a special
-- Color_Type value. ???
-- N (X).Prev := -1; -- Node is deallocated (not on active list)
if Tree.Free >= 0 then
-- The free store has previously been initialized. All we need to
-- do here is link the newly-free'd node onto the free list.
Set_Parent (N (X), Tree.Free);
Tree.Free := X;
elsif X + 1 = abs Tree.Free then
-- The free store has not been initialized, and the node becoming
-- inactive immediately precedes the start of the free store. All
-- we need to do is move the start of the free store back by one.
Tree.Free := Tree.Free + 1;
else
-- The free store has not been initialized, and the node becoming
-- inactive does not immediately precede the free store. Here we
-- first initialize the free store (meaning the links are given
-- values in the traditional way), and then link the newly-free'd
-- node onto the head of the free store.
-- ???
-- See the comments above for an optimization opportunity. If the
-- next link for a node on the free store is negative, then this
-- means the remaining nodes on the free store are physically
-- contiguous, starting as the absolute value of that index value.
Tree.Free := abs Tree.Free;
if Tree.Free > Tree.Capacity then
Tree.Free := 0;
else
for I in Tree.Free .. Tree.Capacity - 1 loop
Set_Parent (N (I), I + 1);
end loop;
Set_Parent (N (Tree.Capacity), 0);
end if;
Set_Parent (N (X), Tree.Free);
Tree.Free := X;
end if;
end Free;
-----------------------
-- Generic_Allocate --
-----------------------
procedure Generic_Allocate
(Tree : in out Tree_Type'Class;
Node : out Count_Type)
is
N : Nodes_Type renames Tree.Nodes;
begin
if Tree.Free >= 0 then
Node := Tree.Free;
-- We always perform the assignment first, before we
-- change container state, in order to defend against
-- exceptions duration assignment.
Set_Element (N (Node));
Tree.Free := Parent (N (Node));
else
-- A negative free store value means that the links of the nodes
-- in the free store have not been initialized. In this case, the
-- nodes are physically contiguous in the array, starting at the
-- index that is the absolute value of the Container.Free, and
-- continuing until the end of the array (Nodes'Last).
Node := abs Tree.Free;
-- As above, we perform this assignment first, before modifying
-- any container state.
Set_Element (N (Node));
Tree.Free := Tree.Free - 1;
end if;
-- When a node is allocated from the free store, its pointer components
-- (the links to other nodes in the tree) must also be initialized (to
-- 0, the equivalent of null). This simplifies the post-allocation
-- handling of nodes inserted into terminal positions.
Set_Parent (N (Node), Parent => 0);
Set_Left (N (Node), Left => 0);
Set_Right (N (Node), Right => 0);
end Generic_Allocate;
-------------------
-- Generic_Equal --
-------------------
function Generic_Equal (Left, Right : Tree_Type'Class) return Boolean is
-- Per AI05-0022, the container implementation is required to detect
-- element tampering by a generic actual subprogram.
Lock_Left : With_Lock (Left.TC'Unrestricted_Access);
Lock_Right : With_Lock (Right.TC'Unrestricted_Access);
L_Node : Count_Type;
R_Node : Count_Type;
begin
if Left'Address = Right'Address then
return True;
end if;
if Left.Length /= Right.Length then
return False;
end if;
-- If the containers are empty, return a result immediately, so as to
-- not manipulate the tamper bits unnecessarily.
if Left.Length = 0 then
return True;
end if;
L_Node := Left.First;
R_Node := Right.First;
while L_Node /= 0 loop
if not Is_Equal (Left.Nodes (L_Node), Right.Nodes (R_Node)) then
return False;
end if;
L_Node := Next (Left, L_Node);
R_Node := Next (Right, R_Node);
end loop;
return True;
end Generic_Equal;
-----------------------
-- Generic_Iteration --
-----------------------
procedure Generic_Iteration (Tree : Tree_Type'Class) is
procedure Iterate (P : Count_Type);
-------------
-- Iterate --
-------------
procedure Iterate (P : Count_Type) is
X : Count_Type := P;
begin
while X /= 0 loop
Iterate (Left (Tree.Nodes (X)));
Process (X);
X := Right (Tree.Nodes (X));
end loop;
end Iterate;
-- Start of processing for Generic_Iteration
begin
Iterate (Tree.Root);
end Generic_Iteration;
------------------
-- Generic_Read --
------------------
procedure Generic_Read
(Stream : not null access Root_Stream_Type'Class;
Tree : in out Tree_Type'Class)
is
Len : Count_Type'Base;
Node, Last_Node : Count_Type;
N : Nodes_Type renames Tree.Nodes;
begin
Clear_Tree (Tree);
Count_Type'Base'Read (Stream, Len);
if Checks and then Len < 0 then
raise Program_Error with "bad container length (corrupt stream)";
end if;
if Len = 0 then
return;
end if;
if Checks and then Len > Tree.Capacity then
raise Constraint_Error with "length exceeds capacity";
end if;
-- Use Unconditional_Insert_With_Hint here instead ???
Allocate (Tree, Node);
pragma Assert (Node /= 0);
Set_Color (N (Node), Black);
Tree.Root := Node;
Tree.First := Node;
Tree.Last := Node;
Tree.Length := 1;
for J in Count_Type range 2 .. Len loop
Last_Node := Node;
pragma Assert (Last_Node = Tree.Last);
Allocate (Tree, Node);
pragma Assert (Node /= 0);
Set_Color (N (Node), Red);
Set_Right (N (Last_Node), Right => Node);
Tree.Last := Node;
Set_Parent (N (Node), Parent => Last_Node);
Rebalance_For_Insert (Tree, Node);
Tree.Length := Tree.Length + 1;
end loop;
end Generic_Read;
-------------------------------
-- Generic_Reverse_Iteration --
-------------------------------
procedure Generic_Reverse_Iteration (Tree : Tree_Type'Class) is
procedure Iterate (P : Count_Type);
-------------
-- Iterate --
-------------
procedure Iterate (P : Count_Type) is
X : Count_Type := P;
begin
while X /= 0 loop
Iterate (Right (Tree.Nodes (X)));
Process (X);
X := Left (Tree.Nodes (X));
end loop;
end Iterate;
-- Start of processing for Generic_Reverse_Iteration
begin
Iterate (Tree.Root);
end Generic_Reverse_Iteration;
-------------------
-- Generic_Write --
-------------------
procedure Generic_Write
(Stream : not null access Root_Stream_Type'Class;
Tree : Tree_Type'Class)
is
procedure Process (Node : Count_Type);
pragma Inline (Process);
procedure Iterate is new Generic_Iteration (Process);
-------------
-- Process --
-------------
procedure Process (Node : Count_Type) is
begin
Write_Node (Stream, Tree.Nodes (Node));
end Process;
-- Start of processing for Generic_Write
begin
Count_Type'Base'Write (Stream, Tree.Length);
Iterate (Tree);
end Generic_Write;
-----------------
-- Left_Rotate --
-----------------
procedure Left_Rotate (Tree : in out Tree_Type'Class; X : Count_Type) is
-- CLR p. 266
N : Nodes_Type renames Tree.Nodes;
Y : constant Count_Type := Right (N (X));
pragma Assert (Y /= 0);
begin
Set_Right (N (X), Left (N (Y)));
if Left (N (Y)) /= 0 then
Set_Parent (N (Left (N (Y))), X);
end if;
Set_Parent (N (Y), Parent (N (X)));
if X = Tree.Root then
Tree.Root := Y;
elsif X = Left (N (Parent (N (X)))) then
Set_Left (N (Parent (N (X))), Y);
else
pragma Assert (X = Right (N (Parent (N (X)))));
Set_Right (N (Parent (N (X))), Y);
end if;
Set_Left (N (Y), X);
Set_Parent (N (X), Y);
end Left_Rotate;
---------
-- Max --
---------
function Max
(Tree : Tree_Type'Class;
Node : Count_Type) return Count_Type
is
-- CLR p. 248
X : Count_Type := Node;
Y : Count_Type;
begin
loop
Y := Right (Tree.Nodes (X));
if Y = 0 then
return X;
end if;
X := Y;
end loop;
end Max;
---------
-- Min --
---------
function Min
(Tree : Tree_Type'Class;
Node : Count_Type) return Count_Type
is
-- CLR p. 248
X : Count_Type := Node;
Y : Count_Type;
begin
loop
Y := Left (Tree.Nodes (X));
if Y = 0 then
return X;
end if;
X := Y;
end loop;
end Min;
----------
-- Next --
----------
function Next
(Tree : Tree_Type'Class;
Node : Count_Type) return Count_Type
is
begin
-- CLR p. 249
if Node = 0 then
return 0;
end if;
if Right (Tree.Nodes (Node)) /= 0 then
return Min (Tree, Right (Tree.Nodes (Node)));
end if;
declare
X : Count_Type := Node;
Y : Count_Type := Parent (Tree.Nodes (Node));
begin
while Y /= 0 and then X = Right (Tree.Nodes (Y)) loop
X := Y;
Y := Parent (Tree.Nodes (Y));
end loop;
return Y;
end;
end Next;
--------------
-- Previous --
--------------
function Previous
(Tree : Tree_Type'Class;
Node : Count_Type) return Count_Type
is
begin
if Node = 0 then
return 0;
end if;
if Left (Tree.Nodes (Node)) /= 0 then
return Max (Tree, Left (Tree.Nodes (Node)));
end if;
declare
X : Count_Type := Node;
Y : Count_Type := Parent (Tree.Nodes (Node));
begin
while Y /= 0 and then X = Left (Tree.Nodes (Y)) loop
X := Y;
Y := Parent (Tree.Nodes (Y));
end loop;
return Y;
end;
end Previous;
--------------------------
-- Rebalance_For_Insert --
--------------------------
procedure Rebalance_For_Insert
(Tree : in out Tree_Type'Class;
Node : Count_Type)
is
-- CLR p. 268
N : Nodes_Type renames Tree.Nodes;
X : Count_Type := Node;
pragma Assert (X /= 0);
pragma Assert (Color (N (X)) = Red);
Y : Count_Type;
begin
while X /= Tree.Root and then Color (N (Parent (N (X)))) = Red loop
if Parent (N (X)) = Left (N (Parent (N (Parent (N (X)))))) then
Y := Right (N (Parent (N (Parent (N (X))))));
if Y /= 0 and then Color (N (Y)) = Red then
Set_Color (N (Parent (N (X))), Black);
Set_Color (N (Y), Black);
Set_Color (N (Parent (N (Parent (N (X))))), Red);
X := Parent (N (Parent (N (X))));
else
if X = Right (N (Parent (N (X)))) then
X := Parent (N (X));
Left_Rotate (Tree, X);
end if;
Set_Color (N (Parent (N (X))), Black);
Set_Color (N (Parent (N (Parent (N (X))))), Red);
Right_Rotate (Tree, Parent (N (Parent (N (X)))));
end if;
else
pragma Assert (Parent (N (X)) =
Right (N (Parent (N (Parent (N (X)))))));
Y := Left (N (Parent (N (Parent (N (X))))));
if Y /= 0 and then Color (N (Y)) = Red then
Set_Color (N (Parent (N (X))), Black);
Set_Color (N (Y), Black);
Set_Color (N (Parent (N (Parent (N (X))))), Red);
X := Parent (N (Parent (N (X))));
else
if X = Left (N (Parent (N (X)))) then
X := Parent (N (X));
Right_Rotate (Tree, X);
end if;
Set_Color (N (Parent (N (X))), Black);
Set_Color (N (Parent (N (Parent (N (X))))), Red);
Left_Rotate (Tree, Parent (N (Parent (N (X)))));
end if;
end if;
end loop;
Set_Color (N (Tree.Root), Black);
end Rebalance_For_Insert;
------------------
-- Right_Rotate --
------------------
procedure Right_Rotate (Tree : in out Tree_Type'Class; Y : Count_Type) is
N : Nodes_Type renames Tree.Nodes;
X : constant Count_Type := Left (N (Y));
pragma Assert (X /= 0);
begin
Set_Left (N (Y), Right (N (X)));
if Right (N (X)) /= 0 then
Set_Parent (N (Right (N (X))), Y);
end if;
Set_Parent (N (X), Parent (N (Y)));
if Y = Tree.Root then
Tree.Root := X;
elsif Y = Left (N (Parent (N (Y)))) then
Set_Left (N (Parent (N (Y))), X);
else
pragma Assert (Y = Right (N (Parent (N (Y)))));
Set_Right (N (Parent (N (Y))), X);
end if;
Set_Right (N (X), Y);
Set_Parent (N (Y), X);
end Right_Rotate;
---------
-- Vet --
---------
function Vet (Tree : Tree_Type'Class; Index : Count_Type) return Boolean is
Nodes : Nodes_Type renames Tree.Nodes;
Node : Node_Type renames Nodes (Index);
begin
if Parent (Node) = Index
or else Left (Node) = Index
or else Right (Node) = Index
then
return False;
end if;
if Tree.Length = 0
or else Tree.Root = 0
or else Tree.First = 0
or else Tree.Last = 0
then
return False;
end if;
if Parent (Nodes (Tree.Root)) /= 0 then
return False;
end if;
if Left (Nodes (Tree.First)) /= 0 then
return False;
end if;
if Right (Nodes (Tree.Last)) /= 0 then
return False;
end if;
if Tree.Length = 1 then
if Tree.First /= Tree.Last
or else Tree.First /= Tree.Root
then
return False;
end if;
if Index /= Tree.First then
return False;
end if;
if Parent (Node) /= 0
or else Left (Node) /= 0
or else Right (Node) /= 0
then
return False;
end if;
return True;
end if;
if Tree.First = Tree.Last then
return False;
end if;
if Tree.Length = 2 then
if Tree.First /= Tree.Root and then Tree.Last /= Tree.Root then
return False;
end if;
if Tree.First /= Index and then Tree.Last /= Index then
return False;
end if;
end if;
if Left (Node) /= 0 and then Parent (Nodes (Left (Node))) /= Index then
return False;
end if;
if Right (Node) /= 0 and then Parent (Nodes (Right (Node))) /= Index then
return False;
end if;
if Parent (Node) = 0 then
if Tree.Root /= Index then
return False;
end if;
elsif Left (Nodes (Parent (Node))) /= Index
and then Right (Nodes (Parent (Node))) /= Index
then
return False;
end if;
return True;
end Vet;
end Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations;
|