1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- G N A T . P E R F E C T _ H A S H _ G E N E R A T O R S --
-- --
-- B o d y --
-- --
-- Copyright (C) 2002-2018, AdaCore --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Ada.IO_Exceptions; use Ada.IO_Exceptions;
with Ada.Characters.Handling; use Ada.Characters.Handling;
with Ada.Directories;
with GNAT.Heap_Sort_G;
with GNAT.OS_Lib; use GNAT.OS_Lib;
with GNAT.Table;
package body GNAT.Perfect_Hash_Generators is
-- We are using the algorithm of J. Czech as described in Zbigniew J.
-- Czech, George Havas, and Bohdan S. Majewski ``An Optimal Algorithm for
-- Generating Minimal Perfect Hash Functions'', Information Processing
-- Letters, 43(1992) pp.257-264, Oct.1992
-- This minimal perfect hash function generator is based on random graphs
-- and produces a hash function of the form:
-- h (w) = (g (f1 (w)) + g (f2 (w))) mod m
-- where f1 and f2 are functions that map strings into integers, and g is
-- a function that maps integers into [0, m-1]. h can be order preserving.
-- For instance, let W = {w_0, ..., w_i, ..., w_m-1}, h can be defined
-- such that h (w_i) = i.
-- This algorithm defines two possible constructions of f1 and f2. Method
-- b) stores the hash function in less memory space at the expense of
-- greater CPU time.
-- a) fk (w) = sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n
-- size (Tk) = max (for w in W) (length (w)) * size (used char set)
-- b) fk (w) = sum (for i in 1 .. length (w)) (Tk (i) * w (i)) mod n
-- size (Tk) = max (for w in W) (length (w)) but the table lookups are
-- replaced by multiplications.
-- where Tk values are randomly generated. n is defined later on but the
-- algorithm recommends to use a value a little bit greater than 2m. Note
-- that for large values of m, the main memory space requirements comes
-- from the memory space for storing function g (>= 2m entries).
-- Random graphs are frequently used to solve difficult problems that do
-- not have polynomial solutions. This algorithm is based on a weighted
-- undirected graph. It comprises two steps: mapping and assignment.
-- In the mapping step, a graph G = (V, E) is constructed, where = {0, 1,
-- ..., n-1} and E = {(for w in W) (f1 (w), f2 (w))}. In order for the
-- assignment step to be successful, G has to be acyclic. To have a high
-- probability of generating an acyclic graph, n >= 2m. If it is not
-- acyclic, Tk have to be regenerated.
-- In the assignment step, the algorithm builds function g. As G is
-- acyclic, there is a vertex v1 with only one neighbor v2. Let w_i be
-- the word such that v1 = f1 (w_i) and v2 = f2 (w_i). Let g (v1) = 0 by
-- construction and g (v2) = (i - g (v1)) mod n (or h (i) - g (v1) mod n).
-- If word w_j is such that v2 = f1 (w_j) and v3 = f2 (w_j), g (v3) = (j -
-- g (v2)) mod (or to be general, (h (j) - g (v2)) mod n). If w_i has no
-- neighbor, then another vertex is selected. The algorithm traverses G to
-- assign values to all the vertices. It cannot assign a value to an
-- already assigned vertex as G is acyclic.
subtype Word_Id is Integer;
subtype Key_Id is Integer;
subtype Vertex_Id is Integer;
subtype Edge_Id is Integer;
subtype Table_Id is Integer;
No_Vertex : constant Vertex_Id := -1;
No_Edge : constant Edge_Id := -1;
No_Table : constant Table_Id := -1;
type Word_Type is new String_Access;
procedure Free_Word (W : in out Word_Type) renames Free;
function New_Word (S : String) return Word_Type;
procedure Resize_Word (W : in out Word_Type; Len : Natural);
-- Resize string W to have a length Len
type Key_Type is record
Edge : Edge_Id;
end record;
-- A key corresponds to an edge in the algorithm graph
type Vertex_Type is record
First : Edge_Id;
Last : Edge_Id;
end record;
-- A vertex can be involved in several edges. First and Last are the bounds
-- of an array of edges stored in a global edge table.
type Edge_Type is record
X : Vertex_Id;
Y : Vertex_Id;
Key : Key_Id;
end record;
-- An edge is a peer of vertices. In the algorithm, a key is associated to
-- an edge.
package WT is new GNAT.Table (Word_Type, Word_Id, 0, 32, 32);
package IT is new GNAT.Table (Integer, Integer, 0, 32, 32);
-- The two main tables. WT is used to store the words in their initial
-- version and in their reduced version (that is words reduced to their
-- significant characters). As an instance of GNAT.Table, WT does not
-- initialize string pointers to null. This initialization has to be done
-- manually when the table is allocated. IT is used to store several
-- tables of components containing only integers.
function Image (Int : Integer; W : Natural := 0) return String;
function Image (Str : String; W : Natural := 0) return String;
-- Return a string which includes string Str or integer Int preceded by
-- leading spaces if required by width W.
function Trim_Trailing_Nuls (Str : String) return String;
-- Return Str with trailing NUL characters removed
Output : File_Descriptor renames GNAT.OS_Lib.Standout;
-- Shortcuts
EOL : constant Character := ASCII.LF;
Max : constant := 78;
Last : Natural := 0;
Line : String (1 .. Max);
-- Use this line to provide buffered IO
procedure Add (C : Character);
procedure Add (S : String);
-- Add a character or a string in Line and update Last
procedure Put
(F : File_Descriptor;
S : String;
F1 : Natural;
L1 : Natural;
C1 : Natural;
F2 : Natural;
L2 : Natural;
C2 : Natural);
-- Write string S into file F as a element of an array of one or two
-- dimensions. Fk (resp. Lk and Ck) indicates the first (resp last and
-- current) index in the k-th dimension. If F1 = L1 the array is considered
-- as a one dimension array. This dimension is described by F2 and L2. This
-- routine takes care of all the parenthesis, spaces and commas needed to
-- format correctly the array. Moreover, the array is well indented and is
-- wrapped to fit in a 80 col line. When the line is full, the routine
-- writes it into file F. When the array is completed, the routine adds
-- semi-colon and writes the line into file F.
procedure New_Line (File : File_Descriptor);
-- Simulate Ada.Text_IO.New_Line with GNAT.OS_Lib
procedure Put (File : File_Descriptor; Str : String);
-- Simulate Ada.Text_IO.Put with GNAT.OS_Lib
procedure Put_Used_Char_Set (File : File_Descriptor; Title : String);
-- Output a title and a used character set
procedure Put_Int_Vector
(File : File_Descriptor;
Title : String;
Vector : Integer;
Length : Natural);
-- Output a title and a vector
procedure Put_Int_Matrix
(File : File_Descriptor;
Title : String;
Table : Table_Id;
Len_1 : Natural;
Len_2 : Natural);
-- Output a title and a matrix. When the matrix has only one non-empty
-- dimension (Len_2 = 0), output a vector.
procedure Put_Edges (File : File_Descriptor; Title : String);
-- Output a title and an edge table
procedure Put_Initial_Keys (File : File_Descriptor; Title : String);
-- Output a title and a key table
procedure Put_Reduced_Keys (File : File_Descriptor; Title : String);
-- Output a title and a key table
procedure Put_Vertex_Table (File : File_Descriptor; Title : String);
-- Output a title and a vertex table
function Ada_File_Base_Name (Pkg_Name : String) return String;
-- Return the base file name (i.e. without .ads/.adb extension) for an
-- Ada source file containing the named package, using the standard GNAT
-- file-naming convention. For example, if Pkg_Name is "Parent.Child", we
-- return "parent-child".
----------------------------------
-- Character Position Selection --
----------------------------------
-- We reduce the maximum key size by selecting representative positions
-- in these keys. We build a matrix with one word per line. We fill the
-- remaining space of a line with ASCII.NUL. The heuristic selects the
-- position that induces the minimum number of collisions. If there are
-- collisions, select another position on the reduced key set responsible
-- of the collisions. Apply the heuristic until there is no more collision.
procedure Apply_Position_Selection;
-- Apply Position selection and build the reduced key table
procedure Parse_Position_Selection (Argument : String);
-- Parse Argument and compute the position set. Argument is list of
-- substrings separated by commas. Each substring represents a position
-- or a range of positions (like x-y).
procedure Select_Character_Set;
-- Define an optimized used character set like Character'Pos in order not
-- to allocate tables of 256 entries.
procedure Select_Char_Position;
-- Find a min char position set in order to reduce the max key length. The
-- heuristic selects the position that induces the minimum number of
-- collisions. If there are collisions, select another position on the
-- reduced key set responsible of the collisions. Apply the heuristic until
-- there is no collision.
-----------------------------
-- Random Graph Generation --
-----------------------------
procedure Random (Seed : in out Natural);
-- Simulate Ada.Discrete_Numerics.Random
procedure Generate_Mapping_Table
(Tab : Table_Id;
L1 : Natural;
L2 : Natural;
Seed : in out Natural);
-- Random generation of the tables below. T is already allocated
procedure Generate_Mapping_Tables
(Opt : Optimization;
Seed : in out Natural);
-- Generate the mapping tables T1 and T2. They are used to define fk (w) =
-- sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n. Keys, NK and Chars
-- are used to compute the matrix size.
---------------------------
-- Algorithm Computation --
---------------------------
procedure Compute_Edges_And_Vertices (Opt : Optimization);
-- Compute the edge and vertex tables. These are empty when a self loop is
-- detected (f1 (w) = f2 (w)). The edge table is sorted by X value and then
-- Y value. Keys is the key table and NK the number of keys. Chars is the
-- set of characters really used in Keys. NV is the number of vertices
-- recommended by the algorithm. T1 and T2 are the mapping tables needed to
-- compute f1 (w) and f2 (w).
function Acyclic return Boolean;
-- Return True when the graph is acyclic. Vertices is the current vertex
-- table and Edges the current edge table.
procedure Assign_Values_To_Vertices;
-- Execute the assignment step of the algorithm. Keys is the current key
-- table. Vertices and Edges represent the random graph. G is the result of
-- the assignment step such that:
-- h (w) = (g (f1 (w)) + g (f2 (w))) mod m
function Sum
(Word : Word_Type;
Table : Table_Id;
Opt : Optimization) return Natural;
-- For an optimization of CPU_Time return
-- fk (w) = sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n
-- For an optimization of Memory_Space return
-- fk (w) = sum (for i in 1 .. length (w)) (Tk (i) * w (i)) mod n
-- Here NV = n
-------------------------------
-- Internal Table Management --
-------------------------------
function Allocate (N : Natural; S : Natural := 1) return Table_Id;
-- Allocate N * S ints from IT table
----------
-- Keys --
----------
Keys : Table_Id := No_Table;
NK : Natural := 0;
-- NK : Number of Keys
function Initial (K : Key_Id) return Word_Id;
pragma Inline (Initial);
function Reduced (K : Key_Id) return Word_Id;
pragma Inline (Reduced);
function Get_Key (N : Key_Id) return Key_Type;
procedure Set_Key (N : Key_Id; Item : Key_Type);
-- Get or Set Nth element of Keys table
------------------
-- Char_Pos_Set --
------------------
Char_Pos_Set : Table_Id := No_Table;
Char_Pos_Set_Len : Natural;
-- Character Selected Position Set
function Get_Char_Pos (P : Natural) return Natural;
procedure Set_Char_Pos (P : Natural; Item : Natural);
-- Get or Set the string position of the Pth selected character
-------------------
-- Used_Char_Set --
-------------------
Used_Char_Set : Table_Id := No_Table;
Used_Char_Set_Len : Natural;
-- Used Character Set : Define a new character mapping. When all the
-- characters are not present in the keys, in order to reduce the size
-- of some tables, we redefine the character mapping.
function Get_Used_Char (C : Character) return Natural;
procedure Set_Used_Char (C : Character; Item : Natural);
------------
-- Tables --
------------
T1 : Table_Id := No_Table;
T2 : Table_Id := No_Table;
T1_Len : Natural;
T2_Len : Natural;
-- T1 : Values table to compute F1
-- T2 : Values table to compute F2
function Get_Table (T : Integer; X, Y : Natural) return Natural;
procedure Set_Table (T : Integer; X, Y : Natural; Item : Natural);
-----------
-- Graph --
-----------
G : Table_Id := No_Table;
G_Len : Natural;
-- Values table to compute G
NT : Natural := Default_Tries;
-- Number of tries running the algorithm before raising an error
function Get_Graph (N : Natural) return Integer;
procedure Set_Graph (N : Natural; Item : Integer);
-- Get or Set Nth element of graph
-----------
-- Edges --
-----------
Edge_Size : constant := 3;
Edges : Table_Id := No_Table;
Edges_Len : Natural;
-- Edges : Edge table of the random graph G
function Get_Edges (F : Natural) return Edge_Type;
procedure Set_Edges (F : Natural; Item : Edge_Type);
--------------
-- Vertices --
--------------
Vertex_Size : constant := 2;
Vertices : Table_Id := No_Table;
-- Vertex table of the random graph G
NV : Natural;
-- Number of Vertices
function Get_Vertices (F : Natural) return Vertex_Type;
procedure Set_Vertices (F : Natural; Item : Vertex_Type);
-- Comments needed ???
K2V : Float;
-- Ratio between Keys and Vertices (parameter of Czech's algorithm)
Opt : Optimization;
-- Optimization mode (memory vs CPU)
Max_Key_Len : Natural := 0;
Min_Key_Len : Natural := 0;
-- Maximum and minimum of all the word length
S : Natural;
-- Seed
function Type_Size (L : Natural) return Natural;
-- Given the last L of an unsigned integer type T, return its size
-------------
-- Acyclic --
-------------
function Acyclic return Boolean is
Marks : array (0 .. NV - 1) of Vertex_Id := (others => No_Vertex);
function Traverse (Edge : Edge_Id; Mark : Vertex_Id) return Boolean;
-- Propagate Mark from X to Y. X is already marked. Mark Y and propagate
-- it to the edges of Y except the one representing the same key. Return
-- False when Y is marked with Mark.
--------------
-- Traverse --
--------------
function Traverse (Edge : Edge_Id; Mark : Vertex_Id) return Boolean is
E : constant Edge_Type := Get_Edges (Edge);
K : constant Key_Id := E.Key;
Y : constant Vertex_Id := E.Y;
M : constant Vertex_Id := Marks (E.Y);
V : Vertex_Type;
begin
if M = Mark then
return False;
elsif M = No_Vertex then
Marks (Y) := Mark;
V := Get_Vertices (Y);
for J in V.First .. V.Last loop
-- Do not propagate to the edge representing the same key
if Get_Edges (J).Key /= K
and then not Traverse (J, Mark)
then
return False;
end if;
end loop;
end if;
return True;
end Traverse;
Edge : Edge_Type;
-- Start of processing for Acyclic
begin
-- Edges valid range is
for J in 1 .. Edges_Len - 1 loop
Edge := Get_Edges (J);
-- Mark X of E when it has not been already done
if Marks (Edge.X) = No_Vertex then
Marks (Edge.X) := Edge.X;
end if;
-- Traverse E when this has not already been done
if Marks (Edge.Y) = No_Vertex
and then not Traverse (J, Edge.X)
then
return False;
end if;
end loop;
return True;
end Acyclic;
------------------------
-- Ada_File_Base_Name --
------------------------
function Ada_File_Base_Name (Pkg_Name : String) return String is
begin
-- Convert to lower case, then replace '.' with '-'
return Result : String := To_Lower (Pkg_Name) do
for J in Result'Range loop
if Result (J) = '.' then
Result (J) := '-';
end if;
end loop;
end return;
end Ada_File_Base_Name;
---------
-- Add --
---------
procedure Add (C : Character) is
pragma Assert (C /= ASCII.NUL);
begin
Line (Last + 1) := C;
Last := Last + 1;
end Add;
---------
-- Add --
---------
procedure Add (S : String) is
Len : constant Natural := S'Length;
begin
for J in S'Range loop
pragma Assert (S (J) /= ASCII.NUL);
null;
end loop;
Line (Last + 1 .. Last + Len) := S;
Last := Last + Len;
end Add;
--------------
-- Allocate --
--------------
function Allocate (N : Natural; S : Natural := 1) return Table_Id is
L : constant Integer := IT.Last;
begin
IT.Set_Last (L + N * S);
-- Initialize, so debugging printouts don't trip over uninitialized
-- components.
for J in L + 1 .. IT.Last loop
IT.Table (J) := -1;
end loop;
return L + 1;
end Allocate;
------------------------------
-- Apply_Position_Selection --
------------------------------
procedure Apply_Position_Selection is
begin
for J in 0 .. NK - 1 loop
declare
IW : constant String := WT.Table (Initial (J)).all;
RW : String (1 .. IW'Length) := (others => ASCII.NUL);
N : Natural := IW'First - 1;
begin
-- Select the characters of Word included in the position
-- selection.
for C in 0 .. Char_Pos_Set_Len - 1 loop
exit when IW (Get_Char_Pos (C)) = ASCII.NUL;
N := N + 1;
RW (N) := IW (Get_Char_Pos (C));
end loop;
-- Build the new table with the reduced word. Be careful
-- to deallocate the old version to avoid memory leaks.
Free_Word (WT.Table (Reduced (J)));
WT.Table (Reduced (J)) := New_Word (RW);
Set_Key (J, (Edge => No_Edge));
end;
end loop;
end Apply_Position_Selection;
-------------------------------
-- Assign_Values_To_Vertices --
-------------------------------
procedure Assign_Values_To_Vertices is
X : Vertex_Id;
procedure Assign (X : Vertex_Id);
-- Execute assignment on X's neighbors except the vertex that we are
-- coming from which is already assigned.
------------
-- Assign --
------------
procedure Assign (X : Vertex_Id) is
E : Edge_Type;
V : constant Vertex_Type := Get_Vertices (X);
begin
for J in V.First .. V.Last loop
E := Get_Edges (J);
if Get_Graph (E.Y) = -1 then
Set_Graph (E.Y, (E.Key - Get_Graph (X)) mod NK);
Assign (E.Y);
end if;
end loop;
end Assign;
-- Start of processing for Assign_Values_To_Vertices
begin
-- Value -1 denotes an uninitialized value as it is supposed to
-- be in the range 0 .. NK.
if G = No_Table then
G_Len := NV;
G := Allocate (G_Len, 1);
end if;
for J in 0 .. G_Len - 1 loop
Set_Graph (J, -1);
end loop;
for K in 0 .. NK - 1 loop
X := Get_Edges (Get_Key (K).Edge).X;
if Get_Graph (X) = -1 then
Set_Graph (X, 0);
Assign (X);
end if;
end loop;
for J in 0 .. G_Len - 1 loop
if Get_Graph (J) = -1 then
Set_Graph (J, 0);
end if;
end loop;
if Verbose then
Put_Int_Vector (Output, "Assign Values To Vertices", G, G_Len);
end if;
end Assign_Values_To_Vertices;
-------------
-- Compute --
-------------
procedure Compute (Position : String := Default_Position) is
Success : Boolean := False;
begin
if NK = 0 then
raise Program_Error with "keywords set cannot be empty";
end if;
if Verbose then
Put_Initial_Keys (Output, "Initial Key Table");
end if;
if Position'Length /= 0 then
Parse_Position_Selection (Position);
else
Select_Char_Position;
end if;
if Verbose then
Put_Int_Vector
(Output, "Char Position Set", Char_Pos_Set, Char_Pos_Set_Len);
end if;
Apply_Position_Selection;
if Verbose then
Put_Reduced_Keys (Output, "Reduced Keys Table");
end if;
Select_Character_Set;
if Verbose then
Put_Used_Char_Set (Output, "Character Position Table");
end if;
-- Perform Czech's algorithm
for J in 1 .. NT loop
Generate_Mapping_Tables (Opt, S);
Compute_Edges_And_Vertices (Opt);
-- When graph is not empty (no self-loop from previous operation) and
-- not acyclic.
if 0 < Edges_Len and then Acyclic then
Success := True;
exit;
end if;
end loop;
if not Success then
raise Too_Many_Tries;
end if;
Assign_Values_To_Vertices;
end Compute;
--------------------------------
-- Compute_Edges_And_Vertices --
--------------------------------
procedure Compute_Edges_And_Vertices (Opt : Optimization) is
X : Natural;
Y : Natural;
Key : Key_Type;
Edge : Edge_Type;
Vertex : Vertex_Type;
Not_Acyclic : Boolean := False;
procedure Move (From : Natural; To : Natural);
function Lt (L, R : Natural) return Boolean;
-- Subprograms needed for GNAT.Heap_Sort_G
--------
-- Lt --
--------
function Lt (L, R : Natural) return Boolean is
EL : constant Edge_Type := Get_Edges (L);
ER : constant Edge_Type := Get_Edges (R);
begin
return EL.X < ER.X or else (EL.X = ER.X and then EL.Y < ER.Y);
end Lt;
----------
-- Move --
----------
procedure Move (From : Natural; To : Natural) is
begin
Set_Edges (To, Get_Edges (From));
end Move;
package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
-- Start of processing for Compute_Edges_And_Vertices
begin
-- We store edges from 1 to 2 * NK and leave zero alone in order to use
-- GNAT.Heap_Sort_G.
Edges_Len := 2 * NK + 1;
if Edges = No_Table then
Edges := Allocate (Edges_Len, Edge_Size);
end if;
if Vertices = No_Table then
Vertices := Allocate (NV, Vertex_Size);
end if;
for J in 0 .. NV - 1 loop
Set_Vertices (J, (No_Vertex, No_Vertex - 1));
end loop;
-- For each w, X = f1 (w) and Y = f2 (w)
for J in 0 .. NK - 1 loop
Key := Get_Key (J);
Key.Edge := No_Edge;
Set_Key (J, Key);
X := Sum (WT.Table (Reduced (J)), T1, Opt);
Y := Sum (WT.Table (Reduced (J)), T2, Opt);
-- Discard T1 and T2 as soon as we discover a self loop
if X = Y then
Not_Acyclic := True;
exit;
end if;
-- We store (X, Y) and (Y, X) to ease assignment step
Set_Edges (2 * J + 1, (X, Y, J));
Set_Edges (2 * J + 2, (Y, X, J));
end loop;
-- Return an empty graph when self loop detected
if Not_Acyclic then
Edges_Len := 0;
else
if Verbose then
Put_Edges (Output, "Unsorted Edge Table");
Put_Int_Matrix (Output, "Function Table 1", T1,
T1_Len, T2_Len);
Put_Int_Matrix (Output, "Function Table 2", T2,
T1_Len, T2_Len);
end if;
-- Enforce consistency between edges and keys. Construct Vertices and
-- compute the list of neighbors of a vertex First .. Last as Edges
-- is sorted by X and then Y. To compute the neighbor list, sort the
-- edges.
Sorting.Sort (Edges_Len - 1);
if Verbose then
Put_Edges (Output, "Sorted Edge Table");
Put_Int_Matrix (Output, "Function Table 1", T1,
T1_Len, T2_Len);
Put_Int_Matrix (Output, "Function Table 2", T2,
T1_Len, T2_Len);
end if;
-- Edges valid range is 1 .. 2 * NK
for E in 1 .. Edges_Len - 1 loop
Edge := Get_Edges (E);
Key := Get_Key (Edge.Key);
if Key.Edge = No_Edge then
Key.Edge := E;
Set_Key (Edge.Key, Key);
end if;
Vertex := Get_Vertices (Edge.X);
if Vertex.First = No_Edge then
Vertex.First := E;
end if;
Vertex.Last := E;
Set_Vertices (Edge.X, Vertex);
end loop;
if Verbose then
Put_Reduced_Keys (Output, "Key Table");
Put_Edges (Output, "Edge Table");
Put_Vertex_Table (Output, "Vertex Table");
end if;
end if;
end Compute_Edges_And_Vertices;
------------
-- Define --
------------
procedure Define
(Name : Table_Name;
Item_Size : out Natural;
Length_1 : out Natural;
Length_2 : out Natural)
is
begin
case Name is
when Character_Position =>
Item_Size := 8;
Length_1 := Char_Pos_Set_Len;
Length_2 := 0;
when Used_Character_Set =>
Item_Size := 8;
Length_1 := 256;
Length_2 := 0;
when Function_Table_1
| Function_Table_2
=>
Item_Size := Type_Size (NV);
Length_1 := T1_Len;
Length_2 := T2_Len;
when Graph_Table =>
Item_Size := Type_Size (NK);
Length_1 := NV;
Length_2 := 0;
end case;
end Define;
--------------
-- Finalize --
--------------
procedure Finalize is
begin
if Verbose then
Put (Output, "Finalize");
New_Line (Output);
end if;
-- Deallocate all the WT components (both initial and reduced ones) to
-- avoid memory leaks.
for W in 0 .. WT.Last loop
-- Note: WT.Table (NK) is a temporary variable, do not free it since
-- this would cause a double free.
if W /= NK then
Free_Word (WT.Table (W));
end if;
end loop;
WT.Release;
IT.Release;
-- Reset all variables for next usage
Keys := No_Table;
Char_Pos_Set := No_Table;
Char_Pos_Set_Len := 0;
Used_Char_Set := No_Table;
Used_Char_Set_Len := 0;
T1 := No_Table;
T2 := No_Table;
T1_Len := 0;
T2_Len := 0;
G := No_Table;
G_Len := 0;
Edges := No_Table;
Edges_Len := 0;
Vertices := No_Table;
NV := 0;
NK := 0;
Max_Key_Len := 0;
Min_Key_Len := 0;
end Finalize;
----------------------------
-- Generate_Mapping_Table --
----------------------------
procedure Generate_Mapping_Table
(Tab : Integer;
L1 : Natural;
L2 : Natural;
Seed : in out Natural)
is
begin
for J in 0 .. L1 - 1 loop
for K in 0 .. L2 - 1 loop
Random (Seed);
Set_Table (Tab, J, K, Seed mod NV);
end loop;
end loop;
end Generate_Mapping_Table;
-----------------------------
-- Generate_Mapping_Tables --
-----------------------------
procedure Generate_Mapping_Tables
(Opt : Optimization;
Seed : in out Natural)
is
begin
-- If T1 and T2 are already allocated no need to do it twice. Reuse them
-- as their size has not changed.
if T1 = No_Table and then T2 = No_Table then
declare
Used_Char_Last : Natural := 0;
Used_Char : Natural;
begin
if Opt = CPU_Time then
for P in reverse Character'Range loop
Used_Char := Get_Used_Char (P);
if Used_Char /= 0 then
Used_Char_Last := Used_Char;
exit;
end if;
end loop;
end if;
T1_Len := Char_Pos_Set_Len;
T2_Len := Used_Char_Last + 1;
T1 := Allocate (T1_Len * T2_Len);
T2 := Allocate (T1_Len * T2_Len);
end;
end if;
Generate_Mapping_Table (T1, T1_Len, T2_Len, Seed);
Generate_Mapping_Table (T2, T1_Len, T2_Len, Seed);
if Verbose then
Put_Used_Char_Set (Output, "Used Character Set");
Put_Int_Matrix (Output, "Function Table 1", T1,
T1_Len, T2_Len);
Put_Int_Matrix (Output, "Function Table 2", T2,
T1_Len, T2_Len);
end if;
end Generate_Mapping_Tables;
------------------
-- Get_Char_Pos --
------------------
function Get_Char_Pos (P : Natural) return Natural is
N : constant Natural := Char_Pos_Set + P;
begin
return IT.Table (N);
end Get_Char_Pos;
---------------
-- Get_Edges --
---------------
function Get_Edges (F : Natural) return Edge_Type is
N : constant Natural := Edges + (F * Edge_Size);
E : Edge_Type;
begin
E.X := IT.Table (N);
E.Y := IT.Table (N + 1);
E.Key := IT.Table (N + 2);
return E;
end Get_Edges;
---------------
-- Get_Graph --
---------------
function Get_Graph (N : Natural) return Integer is
begin
return IT.Table (G + N);
end Get_Graph;
-------------
-- Get_Key --
-------------
function Get_Key (N : Key_Id) return Key_Type is
K : Key_Type;
begin
K.Edge := IT.Table (Keys + N);
return K;
end Get_Key;
---------------
-- Get_Table --
---------------
function Get_Table (T : Integer; X, Y : Natural) return Natural is
N : constant Natural := T + (Y * T1_Len) + X;
begin
return IT.Table (N);
end Get_Table;
-------------------
-- Get_Used_Char --
-------------------
function Get_Used_Char (C : Character) return Natural is
N : constant Natural := Used_Char_Set + Character'Pos (C);
begin
return IT.Table (N);
end Get_Used_Char;
------------------
-- Get_Vertices --
------------------
function Get_Vertices (F : Natural) return Vertex_Type is
N : constant Natural := Vertices + (F * Vertex_Size);
V : Vertex_Type;
begin
V.First := IT.Table (N);
V.Last := IT.Table (N + 1);
return V;
end Get_Vertices;
-----------
-- Image --
-----------
function Image (Int : Integer; W : Natural := 0) return String is
B : String (1 .. 32);
L : Natural := 0;
procedure Img (V : Natural);
-- Compute image of V into B, starting at B (L), incrementing L
---------
-- Img --
---------
procedure Img (V : Natural) is
begin
if V > 9 then
Img (V / 10);
end if;
L := L + 1;
B (L) := Character'Val ((V mod 10) + Character'Pos ('0'));
end Img;
-- Start of processing for Image
begin
if Int < 0 then
L := L + 1;
B (L) := '-';
Img (-Int);
else
Img (Int);
end if;
return Image (B (1 .. L), W);
end Image;
-----------
-- Image --
-----------
function Image (Str : String; W : Natural := 0) return String is
Len : constant Natural := Str'Length;
Max : Natural := Len;
begin
if Max < W then
Max := W;
end if;
declare
Buf : String (1 .. Max) := (1 .. Max => ' ');
begin
for J in 0 .. Len - 1 loop
Buf (Max - Len + 1 + J) := Str (Str'First + J);
end loop;
return Buf;
end;
end Image;
-------------
-- Initial --
-------------
function Initial (K : Key_Id) return Word_Id is
begin
return K;
end Initial;
----------------
-- Initialize --
----------------
procedure Initialize
(Seed : Natural;
K_To_V : Float := Default_K_To_V;
Optim : Optimization := Memory_Space;
Tries : Positive := Default_Tries)
is
begin
if Verbose then
Put (Output, "Initialize");
New_Line (Output);
end if;
-- Deallocate the part of the table concerning the reduced words.
-- Initial words are already present in the table. We may have reduced
-- words already there because a previous computation failed. We are
-- currently retrying and the reduced words have to be deallocated.
for W in Reduced (0) .. WT.Last loop
Free_Word (WT.Table (W));
end loop;
IT.Init;
-- Initialize of computation variables
Keys := No_Table;
Char_Pos_Set := No_Table;
Char_Pos_Set_Len := 0;
Used_Char_Set := No_Table;
Used_Char_Set_Len := 0;
T1 := No_Table;
T2 := No_Table;
T1_Len := 0;
T2_Len := 0;
G := No_Table;
G_Len := 0;
Edges := No_Table;
Edges_Len := 0;
Vertices := No_Table;
NV := 0;
S := Seed;
K2V := K_To_V;
Opt := Optim;
NT := Tries;
if K2V <= 2.0 then
raise Program_Error with "K to V ratio cannot be lower than 2.0";
end if;
-- Do not accept a value of K2V too close to 2.0 such that once
-- rounded up, NV = 2 * NK because the algorithm would not converge.
NV := Natural (Float (NK) * K2V);
if NV <= 2 * NK then
NV := 2 * NK + 1;
end if;
Keys := Allocate (NK);
-- Resize initial words to have all of them at the same size
-- (so the size of the largest one).
for K in 0 .. NK - 1 loop
Resize_Word (WT.Table (Initial (K)), Max_Key_Len);
end loop;
-- Allocated the table to store the reduced words. As WT is a
-- GNAT.Table (using C memory management), pointers have to be
-- explicitly initialized to null.
WT.Set_Last (Reduced (NK - 1));
-- Note: Reduced (0) = NK + 1
WT.Table (NK) := null;
for W in 0 .. NK - 1 loop
WT.Table (Reduced (W)) := null;
end loop;
end Initialize;
------------
-- Insert --
------------
procedure Insert (Value : String) is
Len : constant Natural := Value'Length;
begin
if Verbose then
Put (Output, "Inserting """ & Value & """");
New_Line (Output);
end if;
for J in Value'Range loop
pragma Assert (Value (J) /= ASCII.NUL);
null;
end loop;
WT.Set_Last (NK);
WT.Table (NK) := New_Word (Value);
NK := NK + 1;
if Max_Key_Len < Len then
Max_Key_Len := Len;
end if;
if Min_Key_Len = 0 or else Len < Min_Key_Len then
Min_Key_Len := Len;
end if;
end Insert;
--------------
-- New_Line --
--------------
procedure New_Line (File : File_Descriptor) is
begin
if Write (File, EOL'Address, 1) /= 1 then
raise Program_Error;
end if;
end New_Line;
--------------
-- New_Word --
--------------
function New_Word (S : String) return Word_Type is
begin
return new String'(S);
end New_Word;
------------------------------
-- Parse_Position_Selection --
------------------------------
procedure Parse_Position_Selection (Argument : String) is
N : Natural := Argument'First;
L : constant Natural := Argument'Last;
M : constant Natural := Max_Key_Len;
T : array (1 .. M) of Boolean := (others => False);
function Parse_Index return Natural;
-- Parse argument starting at index N to find an index
-----------------
-- Parse_Index --
-----------------
function Parse_Index return Natural is
C : Character := Argument (N);
V : Natural := 0;
begin
if C = '$' then
N := N + 1;
return M;
end if;
if C not in '0' .. '9' then
raise Program_Error with "cannot read position argument";
end if;
while C in '0' .. '9' loop
V := V * 10 + (Character'Pos (C) - Character'Pos ('0'));
N := N + 1;
exit when L < N;
C := Argument (N);
end loop;
return V;
end Parse_Index;
-- Start of processing for Parse_Position_Selection
begin
-- Empty specification means all the positions
if L < N then
Char_Pos_Set_Len := M;
Char_Pos_Set := Allocate (Char_Pos_Set_Len);
for C in 0 .. Char_Pos_Set_Len - 1 loop
Set_Char_Pos (C, C + 1);
end loop;
else
loop
declare
First, Last : Natural;
begin
First := Parse_Index;
Last := First;
-- Detect a range
if N <= L and then Argument (N) = '-' then
N := N + 1;
Last := Parse_Index;
end if;
-- Include the positions in the selection
for J in First .. Last loop
T (J) := True;
end loop;
end;
exit when L < N;
if Argument (N) /= ',' then
raise Program_Error with "cannot read position argument";
end if;
N := N + 1;
end loop;
-- Compute position selection length
N := 0;
for J in T'Range loop
if T (J) then
N := N + 1;
end if;
end loop;
-- Fill position selection
Char_Pos_Set_Len := N;
Char_Pos_Set := Allocate (Char_Pos_Set_Len);
N := 0;
for J in T'Range loop
if T (J) then
Set_Char_Pos (N, J);
N := N + 1;
end if;
end loop;
end if;
end Parse_Position_Selection;
-------------
-- Produce --
-------------
procedure Produce
(Pkg_Name : String := Default_Pkg_Name;
Use_Stdout : Boolean := False)
is
File : File_Descriptor := Standout;
Status : Boolean;
-- For call to Close
function Array_Img (N, T, R1 : String; R2 : String := "") return String;
-- Return string "N : constant array (R1[, R2]) of T;"
function Range_Img (F, L : Natural; T : String := "") return String;
-- Return string "[T range ]F .. L"
function Type_Img (L : Natural) return String;
-- Return the larger unsigned type T such that T'Last < L
---------------
-- Array_Img --
---------------
function Array_Img
(N, T, R1 : String;
R2 : String := "") return String
is
begin
Last := 0;
Add (" ");
Add (N);
Add (" : constant array (");
Add (R1);
if R2 /= "" then
Add (", ");
Add (R2);
end if;
Add (") of ");
Add (T);
Add (" :=");
return Line (1 .. Last);
end Array_Img;
---------------
-- Range_Img --
---------------
function Range_Img (F, L : Natural; T : String := "") return String is
FI : constant String := Image (F);
FL : constant Natural := FI'Length;
LI : constant String := Image (L);
LL : constant Natural := LI'Length;
TL : constant Natural := T'Length;
RI : String (1 .. TL + 7 + FL + 4 + LL);
Len : Natural := 0;
begin
if TL /= 0 then
RI (Len + 1 .. Len + TL) := T;
Len := Len + TL;
RI (Len + 1 .. Len + 7) := " range ";
Len := Len + 7;
end if;
RI (Len + 1 .. Len + FL) := FI;
Len := Len + FL;
RI (Len + 1 .. Len + 4) := " .. ";
Len := Len + 4;
RI (Len + 1 .. Len + LL) := LI;
Len := Len + LL;
return RI (1 .. Len);
end Range_Img;
--------------
-- Type_Img --
--------------
function Type_Img (L : Natural) return String is
S : constant String := Image (Type_Size (L));
U : String := "Unsigned_ ";
N : Natural := 9;
begin
for J in S'Range loop
N := N + 1;
U (N) := S (J);
end loop;
return U (1 .. N);
end Type_Img;
F : Natural;
L : Natural;
P : Natural;
FName : String := Ada_File_Base_Name (Pkg_Name) & ".ads";
-- Initially, the name of the spec file, then modified to be the name of
-- the body file. Not used if Use_Stdout is True.
-- Start of processing for Produce
begin
if Verbose and then not Use_Stdout then
Put (Output,
"Producing " & Ada.Directories.Current_Directory & "/" & FName);
New_Line (Output);
end if;
if not Use_Stdout then
File := Create_File (FName, Binary);
if File = Invalid_FD then
raise Program_Error with "cannot create: " & FName;
end if;
end if;
Put (File, "package ");
Put (File, Pkg_Name);
Put (File, " is");
New_Line (File);
Put (File, " function Hash (S : String) return Natural;");
New_Line (File);
Put (File, "end ");
Put (File, Pkg_Name);
Put (File, ";");
New_Line (File);
if not Use_Stdout then
Close (File, Status);
if not Status then
raise Device_Error;
end if;
end if;
if not Use_Stdout then
-- Set to body file name
FName (FName'Last) := 'b';
File := Create_File (FName, Binary);
if File = Invalid_FD then
raise Program_Error with "cannot create: " & FName;
end if;
end if;
Put (File, "with Interfaces; use Interfaces;");
New_Line (File);
New_Line (File);
Put (File, "package body ");
Put (File, Pkg_Name);
Put (File, " is");
New_Line (File);
New_Line (File);
if Opt = CPU_Time then
Put (File, Array_Img ("C", Type_Img (256), "Character"));
New_Line (File);
F := Character'Pos (Character'First);
L := Character'Pos (Character'Last);
for J in Character'Range loop
P := Get_Used_Char (J);
Put (File, Image (P), 1, 0, 1, F, L, Character'Pos (J));
end loop;
New_Line (File);
end if;
F := 0;
L := Char_Pos_Set_Len - 1;
Put (File, Array_Img ("P", "Natural", Range_Img (F, L)));
New_Line (File);
for J in F .. L loop
Put (File, Image (Get_Char_Pos (J)), 1, 0, 1, F, L, J);
end loop;
New_Line (File);
case Opt is
when CPU_Time =>
Put_Int_Matrix
(File,
Array_Img ("T1", Type_Img (NV),
Range_Img (0, T1_Len - 1),
Range_Img (0, T2_Len - 1, Type_Img (256))),
T1, T1_Len, T2_Len);
when Memory_Space =>
Put_Int_Matrix
(File,
Array_Img ("T1", Type_Img (NV),
Range_Img (0, T1_Len - 1)),
T1, T1_Len, 0);
end case;
New_Line (File);
case Opt is
when CPU_Time =>
Put_Int_Matrix
(File,
Array_Img ("T2", Type_Img (NV),
Range_Img (0, T1_Len - 1),
Range_Img (0, T2_Len - 1, Type_Img (256))),
T2, T1_Len, T2_Len);
when Memory_Space =>
Put_Int_Matrix
(File,
Array_Img ("T2", Type_Img (NV),
Range_Img (0, T1_Len - 1)),
T2, T1_Len, 0);
end case;
New_Line (File);
Put_Int_Vector
(File,
Array_Img ("G", Type_Img (NK),
Range_Img (0, G_Len - 1)),
G, G_Len);
New_Line (File);
Put (File, " function Hash (S : String) return Natural is");
New_Line (File);
Put (File, " F : constant Natural := S'First - 1;");
New_Line (File);
Put (File, " L : constant Natural := S'Length;");
New_Line (File);
Put (File, " F1, F2 : Natural := 0;");
New_Line (File);
Put (File, " J : ");
case Opt is
when CPU_Time =>
Put (File, Type_Img (256));
when Memory_Space =>
Put (File, "Natural");
end case;
Put (File, ";");
New_Line (File);
Put (File, " begin");
New_Line (File);
Put (File, " for K in P'Range loop");
New_Line (File);
Put (File, " exit when L < P (K);");
New_Line (File);
Put (File, " J := ");
case Opt is
when CPU_Time =>
Put (File, "C");
when Memory_Space =>
Put (File, "Character'Pos");
end case;
Put (File, " (S (P (K) + F));");
New_Line (File);
Put (File, " F1 := (F1 + Natural (T1 (K");
if Opt = CPU_Time then
Put (File, ", J");
end if;
Put (File, "))");
if Opt = Memory_Space then
Put (File, " * J");
end if;
Put (File, ") mod ");
Put (File, Image (NV));
Put (File, ";");
New_Line (File);
Put (File, " F2 := (F2 + Natural (T2 (K");
if Opt = CPU_Time then
Put (File, ", J");
end if;
Put (File, "))");
if Opt = Memory_Space then
Put (File, " * J");
end if;
Put (File, ") mod ");
Put (File, Image (NV));
Put (File, ";");
New_Line (File);
Put (File, " end loop;");
New_Line (File);
Put (File,
" return (Natural (G (F1)) + Natural (G (F2))) mod ");
Put (File, Image (NK));
Put (File, ";");
New_Line (File);
Put (File, " end Hash;");
New_Line (File);
New_Line (File);
Put (File, "end ");
Put (File, Pkg_Name);
Put (File, ";");
New_Line (File);
if not Use_Stdout then
Close (File, Status);
if not Status then
raise Device_Error;
end if;
end if;
end Produce;
---------
-- Put --
---------
procedure Put (File : File_Descriptor; Str : String) is
Len : constant Natural := Str'Length;
begin
for J in Str'Range loop
pragma Assert (Str (J) /= ASCII.NUL);
null;
end loop;
if Write (File, Str'Address, Len) /= Len then
raise Program_Error;
end if;
end Put;
---------
-- Put --
---------
procedure Put
(F : File_Descriptor;
S : String;
F1 : Natural;
L1 : Natural;
C1 : Natural;
F2 : Natural;
L2 : Natural;
C2 : Natural)
is
Len : constant Natural := S'Length;
procedure Flush;
-- Write current line, followed by LF
-----------
-- Flush --
-----------
procedure Flush is
begin
Put (F, Line (1 .. Last));
New_Line (F);
Last := 0;
end Flush;
-- Start of processing for Put
begin
if C1 = F1 and then C2 = F2 then
Last := 0;
end if;
if Last + Len + 3 >= Max then
Flush;
end if;
if Last = 0 then
Add (" ");
if F1 <= L1 then
if C1 = F1 and then C2 = F2 then
Add ('(');
if F1 = L1 then
Add ("0 .. 0 => ");
end if;
else
Add (' ');
end if;
end if;
end if;
if C2 = F2 then
Add ('(');
if F2 = L2 then
Add ("0 .. 0 => ");
end if;
else
Add (' ');
end if;
Add (S);
if C2 = L2 then
Add (')');
if F1 > L1 then
Add (';');
Flush;
elsif C1 /= L1 then
Add (',');
Flush;
else
Add (')');
Add (';');
Flush;
end if;
else
Add (',');
end if;
end Put;
---------------
-- Put_Edges --
---------------
procedure Put_Edges (File : File_Descriptor; Title : String) is
E : Edge_Type;
F1 : constant Natural := 1;
L1 : constant Natural := Edges_Len - 1;
M : constant Natural := Max / 5;
begin
Put (File, Title);
New_Line (File);
-- Edges valid range is 1 .. Edge_Len - 1
for J in F1 .. L1 loop
E := Get_Edges (J);
Put (File, Image (J, M), F1, L1, J, 1, 4, 1);
Put (File, Image (E.X, M), F1, L1, J, 1, 4, 2);
Put (File, Image (E.Y, M), F1, L1, J, 1, 4, 3);
Put (File, Image (E.Key, M), F1, L1, J, 1, 4, 4);
end loop;
end Put_Edges;
----------------------
-- Put_Initial_Keys --
----------------------
procedure Put_Initial_Keys (File : File_Descriptor; Title : String) is
F1 : constant Natural := 0;
L1 : constant Natural := NK - 1;
M : constant Natural := Max / 5;
K : Key_Type;
begin
Put (File, Title);
New_Line (File);
for J in F1 .. L1 loop
K := Get_Key (J);
Put (File, Image (J, M), F1, L1, J, 1, 3, 1);
Put (File, Image (K.Edge, M), F1, L1, J, 1, 3, 2);
Put (File, Trim_Trailing_Nuls (WT.Table (Initial (J)).all),
F1, L1, J, 1, 3, 3);
end loop;
end Put_Initial_Keys;
--------------------
-- Put_Int_Matrix --
--------------------
procedure Put_Int_Matrix
(File : File_Descriptor;
Title : String;
Table : Integer;
Len_1 : Natural;
Len_2 : Natural)
is
F1 : constant Integer := 0;
L1 : constant Integer := Len_1 - 1;
F2 : constant Integer := 0;
L2 : constant Integer := Len_2 - 1;
Ix : Natural;
begin
Put (File, Title);
New_Line (File);
if Len_2 = 0 then
for J in F1 .. L1 loop
Ix := IT.Table (Table + J);
Put (File, Image (Ix), 1, 0, 1, F1, L1, J);
end loop;
else
for J in F1 .. L1 loop
for K in F2 .. L2 loop
Ix := IT.Table (Table + J + K * Len_1);
Put (File, Image (Ix), F1, L1, J, F2, L2, K);
end loop;
end loop;
end if;
end Put_Int_Matrix;
--------------------
-- Put_Int_Vector --
--------------------
procedure Put_Int_Vector
(File : File_Descriptor;
Title : String;
Vector : Integer;
Length : Natural)
is
F2 : constant Natural := 0;
L2 : constant Natural := Length - 1;
begin
Put (File, Title);
New_Line (File);
for J in F2 .. L2 loop
Put (File, Image (IT.Table (Vector + J)), 1, 0, 1, F2, L2, J);
end loop;
end Put_Int_Vector;
----------------------
-- Put_Reduced_Keys --
----------------------
procedure Put_Reduced_Keys (File : File_Descriptor; Title : String) is
F1 : constant Natural := 0;
L1 : constant Natural := NK - 1;
M : constant Natural := Max / 5;
K : Key_Type;
begin
Put (File, Title);
New_Line (File);
for J in F1 .. L1 loop
K := Get_Key (J);
Put (File, Image (J, M), F1, L1, J, 1, 3, 1);
Put (File, Image (K.Edge, M), F1, L1, J, 1, 3, 2);
Put (File, Trim_Trailing_Nuls (WT.Table (Reduced (J)).all),
F1, L1, J, 1, 3, 3);
end loop;
end Put_Reduced_Keys;
-----------------------
-- Put_Used_Char_Set --
-----------------------
procedure Put_Used_Char_Set (File : File_Descriptor; Title : String) is
F : constant Natural := Character'Pos (Character'First);
L : constant Natural := Character'Pos (Character'Last);
begin
Put (File, Title);
New_Line (File);
for J in Character'Range loop
Put
(File, Image (Get_Used_Char (J)), 1, 0, 1, F, L, Character'Pos (J));
end loop;
end Put_Used_Char_Set;
----------------------
-- Put_Vertex_Table --
----------------------
procedure Put_Vertex_Table (File : File_Descriptor; Title : String) is
F1 : constant Natural := 0;
L1 : constant Natural := NV - 1;
M : constant Natural := Max / 4;
V : Vertex_Type;
begin
Put (File, Title);
New_Line (File);
for J in F1 .. L1 loop
V := Get_Vertices (J);
Put (File, Image (J, M), F1, L1, J, 1, 3, 1);
Put (File, Image (V.First, M), F1, L1, J, 1, 3, 2);
Put (File, Image (V.Last, M), F1, L1, J, 1, 3, 3);
end loop;
end Put_Vertex_Table;
------------
-- Random --
------------
procedure Random (Seed : in out Natural) is
-- Park & Miller Standard Minimal using Schrage's algorithm to avoid
-- overflow: Xn+1 = 16807 * Xn mod (2 ** 31 - 1)
R : Natural;
Q : Natural;
X : Integer;
begin
R := Seed mod 127773;
Q := Seed / 127773;
X := 16807 * R - 2836 * Q;
Seed := (if X < 0 then X + 2147483647 else X);
end Random;
-------------
-- Reduced --
-------------
function Reduced (K : Key_Id) return Word_Id is
begin
return K + NK + 1;
end Reduced;
-----------------
-- Resize_Word --
-----------------
procedure Resize_Word (W : in out Word_Type; Len : Natural) is
S1 : constant String := W.all;
S2 : String (1 .. Len) := (others => ASCII.NUL);
L : constant Natural := S1'Length;
begin
if L /= Len then
Free_Word (W);
S2 (1 .. L) := S1;
W := New_Word (S2);
end if;
end Resize_Word;
--------------------------
-- Select_Char_Position --
--------------------------
procedure Select_Char_Position is
type Vertex_Table_Type is array (Natural range <>) of Vertex_Type;
procedure Build_Identical_Keys_Sets
(Table : in out Vertex_Table_Type;
Last : in out Natural;
Pos : Natural);
-- Build a list of keys subsets that are identical with the current
-- position selection plus Pos. Once this routine is called, reduced
-- words are sorted by subsets and each item (First, Last) in Sets
-- defines the range of identical keys.
-- Need comment saying exactly what Last is ???
function Count_Different_Keys
(Table : Vertex_Table_Type;
Last : Natural;
Pos : Natural) return Natural;
-- For each subset in Sets, count the number of different keys if we add
-- Pos to the current position selection.
Sel_Position : IT.Table_Type (1 .. Max_Key_Len);
Last_Sel_Pos : Natural := 0;
Max_Sel_Pos : Natural := 0;
-------------------------------
-- Build_Identical_Keys_Sets --
-------------------------------
procedure Build_Identical_Keys_Sets
(Table : in out Vertex_Table_Type;
Last : in out Natural;
Pos : Natural)
is
S : constant Vertex_Table_Type := Table (Table'First .. Last);
C : constant Natural := Pos;
-- Shortcuts (why are these not renames ???)
F : Integer;
L : Integer;
-- First and last words of a subset
Offset : Natural;
-- GNAT.Heap_Sort assumes that the first array index is 1. Offset
-- defines the translation to operate.
function Lt (L, R : Natural) return Boolean;
procedure Move (From : Natural; To : Natural);
-- Subprograms needed by GNAT.Heap_Sort_G
--------
-- Lt --
--------
function Lt (L, R : Natural) return Boolean is
C : constant Natural := Pos;
Left : Natural;
Right : Natural;
begin
if L = 0 then
Left := NK;
Right := Offset + R;
elsif R = 0 then
Left := Offset + L;
Right := NK;
else
Left := Offset + L;
Right := Offset + R;
end if;
return WT.Table (Left)(C) < WT.Table (Right)(C);
end Lt;
----------
-- Move --
----------
procedure Move (From : Natural; To : Natural) is
Target, Source : Natural;
begin
if From = 0 then
Source := NK;
Target := Offset + To;
elsif To = 0 then
Source := Offset + From;
Target := NK;
else
Source := Offset + From;
Target := Offset + To;
end if;
WT.Table (Target) := WT.Table (Source);
WT.Table (Source) := null;
end Move;
package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
-- Start of processing for Build_Identical_Key_Sets
begin
Last := 0;
-- For each subset in S, extract the new subsets we have by adding C
-- in the position selection.
for J in S'Range loop
if S (J).First = S (J).Last then
F := S (J).First;
L := S (J).Last;
Last := Last + 1;
Table (Last) := (F, L);
else
Offset := Reduced (S (J).First) - 1;
Sorting.Sort (S (J).Last - S (J).First + 1);
F := S (J).First;
L := F;
for N in S (J).First .. S (J).Last loop
-- For the last item, close the last subset
if N = S (J).Last then
Last := Last + 1;
Table (Last) := (F, N);
-- Two contiguous words are identical when they have the
-- same Cth character.
elsif WT.Table (Reduced (N))(C) =
WT.Table (Reduced (N + 1))(C)
then
L := N + 1;
-- Find a new subset of identical keys. Store the current
-- one and create a new subset.
else
Last := Last + 1;
Table (Last) := (F, L);
F := N + 1;
L := F;
end if;
end loop;
end if;
end loop;
end Build_Identical_Keys_Sets;
--------------------------
-- Count_Different_Keys --
--------------------------
function Count_Different_Keys
(Table : Vertex_Table_Type;
Last : Natural;
Pos : Natural) return Natural
is
N : array (Character) of Natural;
C : Character;
T : Natural := 0;
begin
-- For each subset, count the number of words that are still
-- different when we include Pos in the position selection. Only
-- focus on this position as the other positions already produce
-- identical keys.
for S in 1 .. Last loop
-- Count the occurrences of the different characters
N := (others => 0);
for K in Table (S).First .. Table (S).Last loop
C := WT.Table (Reduced (K))(Pos);
N (C) := N (C) + 1;
end loop;
-- Update the number of different keys. Each character used
-- denotes a different key.
for J in N'Range loop
if N (J) > 0 then
T := T + 1;
end if;
end loop;
end loop;
return T;
end Count_Different_Keys;
-- Start of processing for Select_Char_Position
begin
-- Initialize the reduced words set
for K in 0 .. NK - 1 loop
WT.Table (Reduced (K)) := New_Word (WT.Table (Initial (K)).all);
end loop;
declare
Differences : Natural;
Max_Differences : Natural := 0;
Old_Differences : Natural;
Max_Diff_Sel_Pos : Natural := 0; -- init to kill warning
Max_Diff_Sel_Pos_Idx : Natural := 0; -- init to kill warning
Same_Keys_Sets_Table : Vertex_Table_Type (1 .. NK);
Same_Keys_Sets_Last : Natural := 1;
begin
for C in Sel_Position'Range loop
Sel_Position (C) := C;
end loop;
Same_Keys_Sets_Table (1) := (0, NK - 1);
loop
-- Preserve maximum number of different keys and check later on
-- that this value is strictly incrementing. Otherwise, it means
-- that two keys are strictly identical.
Old_Differences := Max_Differences;
-- The first position should not exceed the minimum key length.
-- Otherwise, we may end up with an empty word once reduced.
Max_Sel_Pos :=
(if Last_Sel_Pos = 0 then Min_Key_Len else Max_Key_Len);
-- Find which position increases more the number of differences
for J in Last_Sel_Pos + 1 .. Max_Sel_Pos loop
Differences := Count_Different_Keys
(Same_Keys_Sets_Table,
Same_Keys_Sets_Last,
Sel_Position (J));
if Verbose then
Put (Output,
"Selecting position" & Sel_Position (J)'Img &
" results in" & Differences'Img &
" differences");
New_Line (Output);
end if;
if Differences > Max_Differences then
Max_Differences := Differences;
Max_Diff_Sel_Pos := Sel_Position (J);
Max_Diff_Sel_Pos_Idx := J;
end if;
end loop;
if Old_Differences = Max_Differences then
raise Program_Error with "some keys are identical";
end if;
-- Insert selected position and sort Sel_Position table
Last_Sel_Pos := Last_Sel_Pos + 1;
Sel_Position (Last_Sel_Pos + 1 .. Max_Diff_Sel_Pos_Idx) :=
Sel_Position (Last_Sel_Pos .. Max_Diff_Sel_Pos_Idx - 1);
Sel_Position (Last_Sel_Pos) := Max_Diff_Sel_Pos;
for P in 1 .. Last_Sel_Pos - 1 loop
if Max_Diff_Sel_Pos < Sel_Position (P) then
Sel_Position (P + 1 .. Last_Sel_Pos) :=
Sel_Position (P .. Last_Sel_Pos - 1);
Sel_Position (P) := Max_Diff_Sel_Pos;
exit;
end if;
end loop;
exit when Max_Differences = NK;
Build_Identical_Keys_Sets
(Same_Keys_Sets_Table,
Same_Keys_Sets_Last,
Max_Diff_Sel_Pos);
if Verbose then
Put (Output,
"Selecting position" & Max_Diff_Sel_Pos'Img &
" results in" & Max_Differences'Img &
" differences");
New_Line (Output);
Put (Output, "--");
New_Line (Output);
for J in 1 .. Same_Keys_Sets_Last loop
for K in
Same_Keys_Sets_Table (J).First ..
Same_Keys_Sets_Table (J).Last
loop
Put (Output,
Trim_Trailing_Nuls (WT.Table (Reduced (K)).all));
New_Line (Output);
end loop;
Put (Output, "--");
New_Line (Output);
end loop;
end if;
end loop;
end;
Char_Pos_Set_Len := Last_Sel_Pos;
Char_Pos_Set := Allocate (Char_Pos_Set_Len);
for C in 1 .. Last_Sel_Pos loop
Set_Char_Pos (C - 1, Sel_Position (C));
end loop;
end Select_Char_Position;
--------------------------
-- Select_Character_Set --
--------------------------
procedure Select_Character_Set is
Last : Natural := 0;
Used : array (Character) of Boolean := (others => False);
Char : Character;
begin
for J in 0 .. NK - 1 loop
for K in 0 .. Char_Pos_Set_Len - 1 loop
Char := WT.Table (Initial (J))(Get_Char_Pos (K));
exit when Char = ASCII.NUL;
Used (Char) := True;
end loop;
end loop;
Used_Char_Set_Len := 256;
Used_Char_Set := Allocate (Used_Char_Set_Len);
for J in Used'Range loop
if Used (J) then
Set_Used_Char (J, Last);
Last := Last + 1;
else
Set_Used_Char (J, 0);
end if;
end loop;
end Select_Character_Set;
------------------
-- Set_Char_Pos --
------------------
procedure Set_Char_Pos (P : Natural; Item : Natural) is
N : constant Natural := Char_Pos_Set + P;
begin
IT.Table (N) := Item;
end Set_Char_Pos;
---------------
-- Set_Edges --
---------------
procedure Set_Edges (F : Natural; Item : Edge_Type) is
N : constant Natural := Edges + (F * Edge_Size);
begin
IT.Table (N) := Item.X;
IT.Table (N + 1) := Item.Y;
IT.Table (N + 2) := Item.Key;
end Set_Edges;
---------------
-- Set_Graph --
---------------
procedure Set_Graph (N : Natural; Item : Integer) is
begin
IT.Table (G + N) := Item;
end Set_Graph;
-------------
-- Set_Key --
-------------
procedure Set_Key (N : Key_Id; Item : Key_Type) is
begin
IT.Table (Keys + N) := Item.Edge;
end Set_Key;
---------------
-- Set_Table --
---------------
procedure Set_Table (T : Integer; X, Y : Natural; Item : Natural) is
N : constant Natural := T + ((Y * T1_Len) + X);
begin
IT.Table (N) := Item;
end Set_Table;
-------------------
-- Set_Used_Char --
-------------------
procedure Set_Used_Char (C : Character; Item : Natural) is
N : constant Natural := Used_Char_Set + Character'Pos (C);
begin
IT.Table (N) := Item;
end Set_Used_Char;
------------------
-- Set_Vertices --
------------------
procedure Set_Vertices (F : Natural; Item : Vertex_Type) is
N : constant Natural := Vertices + (F * Vertex_Size);
begin
IT.Table (N) := Item.First;
IT.Table (N + 1) := Item.Last;
end Set_Vertices;
---------
-- Sum --
---------
function Sum
(Word : Word_Type;
Table : Table_Id;
Opt : Optimization) return Natural
is
S : Natural := 0;
R : Natural;
begin
case Opt is
when CPU_Time =>
for J in 0 .. T1_Len - 1 loop
exit when Word (J + 1) = ASCII.NUL;
R := Get_Table (Table, J, Get_Used_Char (Word (J + 1)));
S := (S + R) mod NV;
end loop;
when Memory_Space =>
for J in 0 .. T1_Len - 1 loop
exit when Word (J + 1) = ASCII.NUL;
R := Get_Table (Table, J, 0);
S := (S + R * Character'Pos (Word (J + 1))) mod NV;
end loop;
end case;
return S;
end Sum;
------------------------
-- Trim_Trailing_Nuls --
------------------------
function Trim_Trailing_Nuls (Str : String) return String is
begin
for J in reverse Str'Range loop
if Str (J) /= ASCII.NUL then
return Str (Str'First .. J);
end if;
end loop;
return Str;
end Trim_Trailing_Nuls;
---------------
-- Type_Size --
---------------
function Type_Size (L : Natural) return Natural is
begin
if L <= 2 ** 8 then
return 8;
elsif L <= 2 ** 16 then
return 16;
else
return 32;
end if;
end Type_Size;
-----------
-- Value --
-----------
function Value
(Name : Table_Name;
J : Natural;
K : Natural := 0) return Natural
is
begin
case Name is
when Character_Position =>
return Get_Char_Pos (J);
when Used_Character_Set =>
return Get_Used_Char (Character'Val (J));
when Function_Table_1 =>
return Get_Table (T1, J, K);
when Function_Table_2 =>
return Get_Table (T2, J, K);
when Graph_Table =>
return Get_Graph (J);
end case;
end Value;
end GNAT.Perfect_Hash_Generators;
|