1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
|
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- S Y S T E M . A R I T H _ 6 4 --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Interfaces; use Interfaces;
with Ada.Unchecked_Conversion;
package body System.Arith_64 is
pragma Suppress (Overflow_Check);
pragma Suppress (Range_Check);
subtype Uns64 is Unsigned_64;
function To_Uns is new Ada.Unchecked_Conversion (Int64, Uns64);
function To_Int is new Ada.Unchecked_Conversion (Uns64, Int64);
subtype Uns32 is Unsigned_32;
-----------------------
-- Local Subprograms --
-----------------------
function "+" (A, B : Uns32) return Uns64 is (Uns64 (A) + Uns64 (B));
function "+" (A : Uns64; B : Uns32) return Uns64 is (A + Uns64 (B));
-- Length doubling additions
function "*" (A, B : Uns32) return Uns64 is (Uns64 (A) * Uns64 (B));
-- Length doubling multiplication
function "/" (A : Uns64; B : Uns32) return Uns64 is (A / Uns64 (B));
-- Length doubling division
function "&" (Hi, Lo : Uns32) return Uns64 is
(Shift_Left (Uns64 (Hi), 32) or Uns64 (Lo));
-- Concatenate hi, lo values to form 64-bit result
function "abs" (X : Int64) return Uns64 is
(if X = Int64'First then 2**63 else Uns64 (Int64'(abs X)));
-- Convert absolute value of X to unsigned. Note that we can't just use
-- the expression of the Else, because it overflows for X = Int64'First.
function "rem" (A : Uns64; B : Uns32) return Uns64 is (A rem Uns64 (B));
-- Length doubling remainder
function Le3 (X1, X2, X3 : Uns32; Y1, Y2, Y3 : Uns32) return Boolean;
-- Determines if 96 bit value X1&X2&X3 <= Y1&Y2&Y3
function Lo (A : Uns64) return Uns32 is (Uns32 (A and 16#FFFF_FFFF#));
-- Low order half of 64-bit value
function Hi (A : Uns64) return Uns32 is (Uns32 (Shift_Right (A, 32)));
-- High order half of 64-bit value
procedure Sub3 (X1, X2, X3 : in out Uns32; Y1, Y2, Y3 : Uns32);
-- Computes X1&X2&X3 := X1&X2&X3 - Y1&Y1&Y3 with mod 2**96 wrap
function To_Neg_Int (A : Uns64) return Int64 with Inline;
-- Convert to negative integer equivalent. If the input is in the range
-- 0 .. 2 ** 63, then the corresponding negative signed integer (obtained
-- by negating the given value) is returned, otherwise constraint error
-- is raised.
function To_Pos_Int (A : Uns64) return Int64 with Inline;
-- Convert to positive integer equivalent. If the input is in the range
-- 0 .. 2 ** 63-1, then the corresponding non-negative signed integer is
-- returned, otherwise constraint error is raised.
procedure Raise_Error with Inline;
pragma No_Return (Raise_Error);
-- Raise constraint error with appropriate message
--------------------------
-- Add_With_Ovflo_Check --
--------------------------
function Add_With_Ovflo_Check (X, Y : Int64) return Int64 is
R : constant Int64 := To_Int (To_Uns (X) + To_Uns (Y));
begin
if X >= 0 then
if Y < 0 or else R >= 0 then
return R;
end if;
else -- X < 0
if Y > 0 or else R < 0 then
return R;
end if;
end if;
Raise_Error;
end Add_With_Ovflo_Check;
-------------------
-- Double_Divide --
-------------------
procedure Double_Divide
(X, Y, Z : Int64;
Q, R : out Int64;
Round : Boolean)
is
Xu : constant Uns64 := abs X;
Yu : constant Uns64 := abs Y;
Yhi : constant Uns32 := Hi (Yu);
Ylo : constant Uns32 := Lo (Yu);
Zu : constant Uns64 := abs Z;
Zhi : constant Uns32 := Hi (Zu);
Zlo : constant Uns32 := Lo (Zu);
T1, T2 : Uns64;
Du, Qu, Ru : Uns64;
Den_Pos : Boolean;
begin
if Yu = 0 or else Zu = 0 then
Raise_Error;
end if;
-- Compute Y * Z. Note that if the result overflows 64 bits unsigned,
-- then the rounded result is clearly zero (since the dividend is at
-- most 2**63 - 1, the extra bit of precision is nice here).
if Yhi /= 0 then
if Zhi /= 0 then
Q := 0;
R := X;
return;
else
T2 := Yhi * Zlo;
end if;
else
T2 := (if Zhi /= 0 then Ylo * Zhi else 0);
end if;
T1 := Ylo * Zlo;
T2 := T2 + Hi (T1);
if Hi (T2) /= 0 then
Q := 0;
R := X;
return;
end if;
Du := Lo (T2) & Lo (T1);
-- Set final signs (RM 4.5.5(27-30))
Den_Pos := (Y < 0) = (Z < 0);
-- Check overflow case of largest negative number divided by 1
if X = Int64'First and then Du = 1 and then not Den_Pos then
Raise_Error;
end if;
-- Perform the actual division
Qu := Xu / Du;
Ru := Xu rem Du;
-- Deal with rounding case
if Round and then Ru > (Du - Uns64'(1)) / Uns64'(2) then
Qu := Qu + Uns64'(1);
end if;
-- Case of dividend (X) sign positive
if X >= 0 then
R := To_Int (Ru);
Q := (if Den_Pos then To_Int (Qu) else -To_Int (Qu));
-- Case of dividend (X) sign negative
else
R := -To_Int (Ru);
Q := (if Den_Pos then -To_Int (Qu) else To_Int (Qu));
end if;
end Double_Divide;
---------
-- Le3 --
---------
function Le3 (X1, X2, X3 : Uns32; Y1, Y2, Y3 : Uns32) return Boolean is
begin
if X1 < Y1 then
return True;
elsif X1 > Y1 then
return False;
elsif X2 < Y2 then
return True;
elsif X2 > Y2 then
return False;
else
return X3 <= Y3;
end if;
end Le3;
-------------------------------
-- Multiply_With_Ovflo_Check --
-------------------------------
function Multiply_With_Ovflo_Check (X, Y : Int64) return Int64 is
Xu : constant Uns64 := abs X;
Xhi : constant Uns32 := Hi (Xu);
Xlo : constant Uns32 := Lo (Xu);
Yu : constant Uns64 := abs Y;
Yhi : constant Uns32 := Hi (Yu);
Ylo : constant Uns32 := Lo (Yu);
T1, T2 : Uns64;
begin
if Xhi /= 0 then
if Yhi /= 0 then
Raise_Error;
else
T2 := Xhi * Ylo;
end if;
elsif Yhi /= 0 then
T2 := Xlo * Yhi;
else -- Yhi = Xhi = 0
T2 := 0;
end if;
-- Here we have T2 set to the contribution to the upper half of the
-- result from the upper halves of the input values.
T1 := Xlo * Ylo;
T2 := T2 + Hi (T1);
if Hi (T2) /= 0 then
Raise_Error;
end if;
T2 := Lo (T2) & Lo (T1);
if X >= 0 then
if Y >= 0 then
return To_Pos_Int (T2);
else
return To_Neg_Int (T2);
end if;
else -- X < 0
if Y < 0 then
return To_Pos_Int (T2);
else
return To_Neg_Int (T2);
end if;
end if;
end Multiply_With_Ovflo_Check;
-----------------
-- Raise_Error --
-----------------
procedure Raise_Error is
begin
raise Constraint_Error with "64-bit arithmetic overflow";
end Raise_Error;
-------------------
-- Scaled_Divide --
-------------------
procedure Scaled_Divide
(X, Y, Z : Int64;
Q, R : out Int64;
Round : Boolean)
is
Xu : constant Uns64 := abs X;
Xhi : constant Uns32 := Hi (Xu);
Xlo : constant Uns32 := Lo (Xu);
Yu : constant Uns64 := abs Y;
Yhi : constant Uns32 := Hi (Yu);
Ylo : constant Uns32 := Lo (Yu);
Zu : Uns64 := abs Z;
Zhi : Uns32 := Hi (Zu);
Zlo : Uns32 := Lo (Zu);
D : array (1 .. 4) of Uns32;
-- The dividend, four digits (D(1) is high order)
Qd : array (1 .. 2) of Uns32;
-- The quotient digits, two digits (Qd(1) is high order)
S1, S2, S3 : Uns32;
-- Value to subtract, three digits (S1 is high order)
Qu : Uns64;
Ru : Uns64;
-- Unsigned quotient and remainder
Scale : Natural;
-- Scaling factor used for multiple-precision divide. Dividend and
-- Divisor are multiplied by 2 ** Scale, and the final remainder is
-- divided by the scaling factor. The reason for this scaling is to
-- allow more accurate estimation of quotient digits.
T1, T2, T3 : Uns64;
-- Temporary values
begin
-- First do the multiplication, giving the four digit dividend
T1 := Xlo * Ylo;
D (4) := Lo (T1);
D (3) := Hi (T1);
if Yhi /= 0 then
T1 := Xlo * Yhi;
T2 := D (3) + Lo (T1);
D (3) := Lo (T2);
D (2) := Hi (T1) + Hi (T2);
if Xhi /= 0 then
T1 := Xhi * Ylo;
T2 := D (3) + Lo (T1);
D (3) := Lo (T2);
T3 := D (2) + Hi (T1);
T3 := T3 + Hi (T2);
D (2) := Lo (T3);
D (1) := Hi (T3);
T1 := (D (1) & D (2)) + Uns64'(Xhi * Yhi);
D (1) := Hi (T1);
D (2) := Lo (T1);
else
D (1) := 0;
end if;
else
if Xhi /= 0 then
T1 := Xhi * Ylo;
T2 := D (3) + Lo (T1);
D (3) := Lo (T2);
D (2) := Hi (T1) + Hi (T2);
else
D (2) := 0;
end if;
D (1) := 0;
end if;
-- Now it is time for the dreaded multiple precision division. First an
-- easy case, check for the simple case of a one digit divisor.
if Zhi = 0 then
if D (1) /= 0 or else D (2) >= Zlo then
Raise_Error;
-- Here we are dividing at most three digits by one digit
else
T1 := D (2) & D (3);
T2 := Lo (T1 rem Zlo) & D (4);
Qu := Lo (T1 / Zlo) & Lo (T2 / Zlo);
Ru := T2 rem Zlo;
end if;
-- If divisor is double digit and too large, raise error
elsif (D (1) & D (2)) >= Zu then
Raise_Error;
-- This is the complex case where we definitely have a double digit
-- divisor and a dividend of at least three digits. We use the classical
-- multiple division algorithm (see section (4.3.1) of Knuth's "The Art
-- of Computer Programming", Vol. 2 for a description (algorithm D).
else
-- First normalize the divisor so that it has the leading bit on.
-- We do this by finding the appropriate left shift amount.
Scale := 0;
if (Zhi and 16#FFFF0000#) = 0 then
Scale := 16;
Zu := Shift_Left (Zu, 16);
end if;
if (Hi (Zu) and 16#FF00_0000#) = 0 then
Scale := Scale + 8;
Zu := Shift_Left (Zu, 8);
end if;
if (Hi (Zu) and 16#F000_0000#) = 0 then
Scale := Scale + 4;
Zu := Shift_Left (Zu, 4);
end if;
if (Hi (Zu) and 16#C000_0000#) = 0 then
Scale := Scale + 2;
Zu := Shift_Left (Zu, 2);
end if;
if (Hi (Zu) and 16#8000_0000#) = 0 then
Scale := Scale + 1;
Zu := Shift_Left (Zu, 1);
end if;
Zhi := Hi (Zu);
Zlo := Lo (Zu);
-- Note that when we scale up the dividend, it still fits in four
-- digits, since we already tested for overflow, and scaling does
-- not change the invariant that (D (1) & D (2)) >= Zu.
T1 := Shift_Left (D (1) & D (2), Scale);
D (1) := Hi (T1);
T2 := Shift_Left (0 & D (3), Scale);
D (2) := Lo (T1) or Hi (T2);
T3 := Shift_Left (0 & D (4), Scale);
D (3) := Lo (T2) or Hi (T3);
D (4) := Lo (T3);
-- Loop to compute quotient digits, runs twice for Qd(1) and Qd(2)
for J in 0 .. 1 loop
-- Compute next quotient digit. We have to divide three digits by
-- two digits. We estimate the quotient by dividing the leading
-- two digits by the leading digit. Given the scaling we did above
-- which ensured the first bit of the divisor is set, this gives
-- an estimate of the quotient that is at most two too high.
Qd (J + 1) := (if D (J + 1) = Zhi
then 2 ** 32 - 1
else Lo ((D (J + 1) & D (J + 2)) / Zhi));
-- Compute amount to subtract
T1 := Qd (J + 1) * Zlo;
T2 := Qd (J + 1) * Zhi;
S3 := Lo (T1);
T1 := Hi (T1) + Lo (T2);
S2 := Lo (T1);
S1 := Hi (T1) + Hi (T2);
-- Adjust quotient digit if it was too high
loop
exit when Le3 (S1, S2, S3, D (J + 1), D (J + 2), D (J + 3));
Qd (J + 1) := Qd (J + 1) - 1;
Sub3 (S1, S2, S3, 0, Zhi, Zlo);
end loop;
-- Now subtract S1&S2&S3 from D1&D2&D3 ready for next step
Sub3 (D (J + 1), D (J + 2), D (J + 3), S1, S2, S3);
end loop;
-- The two quotient digits are now set, and the remainder of the
-- scaled division is in D3&D4. To get the remainder for the
-- original unscaled division, we rescale this dividend.
-- We rescale the divisor as well, to make the proper comparison
-- for rounding below.
Qu := Qd (1) & Qd (2);
Ru := Shift_Right (D (3) & D (4), Scale);
Zu := Shift_Right (Zu, Scale);
end if;
-- Deal with rounding case
if Round and then Ru > (Zu - Uns64'(1)) / Uns64'(2) then
Qu := Qu + Uns64 (1);
end if;
-- Set final signs (RM 4.5.5(27-30))
-- Case of dividend (X * Y) sign positive
if (X >= 0 and then Y >= 0) or else (X < 0 and then Y < 0) then
R := To_Pos_Int (Ru);
Q := (if Z > 0 then To_Pos_Int (Qu) else To_Neg_Int (Qu));
-- Case of dividend (X * Y) sign negative
else
R := To_Neg_Int (Ru);
Q := (if Z > 0 then To_Neg_Int (Qu) else To_Pos_Int (Qu));
end if;
end Scaled_Divide;
----------
-- Sub3 --
----------
procedure Sub3 (X1, X2, X3 : in out Uns32; Y1, Y2, Y3 : Uns32) is
begin
if Y3 > X3 then
if X2 = 0 then
X1 := X1 - 1;
end if;
X2 := X2 - 1;
end if;
X3 := X3 - Y3;
if Y2 > X2 then
X1 := X1 - 1;
end if;
X2 := X2 - Y2;
X1 := X1 - Y1;
end Sub3;
-------------------------------
-- Subtract_With_Ovflo_Check --
-------------------------------
function Subtract_With_Ovflo_Check (X, Y : Int64) return Int64 is
R : constant Int64 := To_Int (To_Uns (X) - To_Uns (Y));
begin
if X >= 0 then
if Y > 0 or else R >= 0 then
return R;
end if;
else -- X < 0
if Y <= 0 or else R < 0 then
return R;
end if;
end if;
Raise_Error;
end Subtract_With_Ovflo_Check;
----------------
-- To_Neg_Int --
----------------
function To_Neg_Int (A : Uns64) return Int64 is
R : constant Int64 := (if A = 2**63 then Int64'First else -To_Int (A));
-- Note that we can't just use the expression of the Else, because it
-- overflows for A = 2**63.
begin
if R <= 0 then
return R;
else
Raise_Error;
end if;
end To_Neg_Int;
----------------
-- To_Pos_Int --
----------------
function To_Pos_Int (A : Uns64) return Int64 is
R : constant Int64 := To_Int (A);
begin
if R >= 0 then
return R;
else
Raise_Error;
end if;
end To_Pos_Int;
end System.Arith_64;
|