1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
|
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- S Y S T E M . G E N E R I C _ A R R A Y _ O P E R A T I O N S --
-- --
-- B o d y --
-- --
-- Copyright (C) 2006-2018, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Ada.Numerics; use Ada.Numerics;
package body System.Generic_Array_Operations is
function Check_Unit_Last
(Index : Integer;
Order : Positive;
First : Integer) return Integer;
pragma Inline_Always (Check_Unit_Last);
-- Compute index of last element returned by Unit_Vector or Unit_Matrix.
-- A separate function is needed to allow raising Constraint_Error before
-- declaring the function result variable. The result variable needs to be
-- declared first, to allow front-end inlining.
--------------
-- Diagonal --
--------------
function Diagonal (A : Matrix) return Vector is
N : constant Natural := Natural'Min (A'Length (1), A'Length (2));
begin
return R : Vector (A'First (1) .. A'First (1) + N - 1) do
for J in 0 .. N - 1 loop
R (R'First + J) := A (A'First (1) + J, A'First (2) + J);
end loop;
end return;
end Diagonal;
--------------------------
-- Square_Matrix_Length --
--------------------------
function Square_Matrix_Length (A : Matrix) return Natural is
begin
if A'Length (1) /= A'Length (2) then
raise Constraint_Error with "matrix is not square";
else
return A'Length (1);
end if;
end Square_Matrix_Length;
---------------------
-- Check_Unit_Last --
---------------------
function Check_Unit_Last
(Index : Integer;
Order : Positive;
First : Integer) return Integer
is
begin
-- Order the tests carefully to avoid overflow
if Index < First
or else First > Integer'Last - Order + 1
or else Index > First + (Order - 1)
then
raise Constraint_Error;
end if;
return First + (Order - 1);
end Check_Unit_Last;
---------------------
-- Back_Substitute --
---------------------
procedure Back_Substitute (M, N : in out Matrix) is
pragma Assert (M'First (1) = N'First (1)
and then
M'Last (1) = N'Last (1));
procedure Sub_Row
(M : in out Matrix;
Target : Integer;
Source : Integer;
Factor : Scalar);
-- Elementary row operation that subtracts Factor * M (Source, <>) from
-- M (Target, <>)
-------------
-- Sub_Row --
-------------
procedure Sub_Row
(M : in out Matrix;
Target : Integer;
Source : Integer;
Factor : Scalar)
is
begin
for J in M'Range (2) loop
M (Target, J) := M (Target, J) - Factor * M (Source, J);
end loop;
end Sub_Row;
-- Local declarations
Max_Col : Integer := M'Last (2);
-- Start of processing for Back_Substitute
begin
Do_Rows : for Row in reverse M'Range (1) loop
Find_Non_Zero : for Col in reverse M'First (2) .. Max_Col loop
if Is_Non_Zero (M (Row, Col)) then
-- Found first non-zero element, so subtract a multiple of this
-- element from all higher rows, to reduce all other elements
-- in this column to zero.
declare
-- We can't use a for loop, as we'd need to iterate to
-- Row - 1, but that expression will overflow if M'First
-- equals Integer'First, which is true for aggregates
-- without explicit bounds..
J : Integer := M'First (1);
begin
while J < Row loop
Sub_Row (N, J, Row, (M (J, Col) / M (Row, Col)));
Sub_Row (M, J, Row, (M (J, Col) / M (Row, Col)));
J := J + 1;
end loop;
end;
-- Avoid potential overflow in the subtraction below
exit Do_Rows when Col = M'First (2);
Max_Col := Col - 1;
exit Find_Non_Zero;
end if;
end loop Find_Non_Zero;
end loop Do_Rows;
end Back_Substitute;
-----------------------
-- Forward_Eliminate --
-----------------------
procedure Forward_Eliminate
(M : in out Matrix;
N : in out Matrix;
Det : out Scalar)
is
pragma Assert (M'First (1) = N'First (1)
and then
M'Last (1) = N'Last (1));
-- The following are variations of the elementary matrix row operations:
-- row switching, row multiplication and row addition. Because in this
-- algorithm the addition factor is always a negated value, we chose to
-- use row subtraction instead. Similarly, instead of multiplying by
-- a reciprocal, we divide.
procedure Sub_Row
(M : in out Matrix;
Target : Integer;
Source : Integer;
Factor : Scalar);
-- Subtrace Factor * M (Source, <>) from M (Target, <>)
procedure Divide_Row
(M, N : in out Matrix;
Row : Integer;
Scale : Scalar);
-- Divide M (Row) and N (Row) by Scale, and update Det
procedure Switch_Row
(M, N : in out Matrix;
Row_1 : Integer;
Row_2 : Integer);
-- Exchange M (Row_1) and N (Row_1) with M (Row_2) and N (Row_2),
-- negating Det in the process.
-------------
-- Sub_Row --
-------------
procedure Sub_Row
(M : in out Matrix;
Target : Integer;
Source : Integer;
Factor : Scalar)
is
begin
for J in M'Range (2) loop
M (Target, J) := M (Target, J) - Factor * M (Source, J);
end loop;
end Sub_Row;
----------------
-- Divide_Row --
----------------
procedure Divide_Row
(M, N : in out Matrix;
Row : Integer;
Scale : Scalar)
is
begin
Det := Det * Scale;
for J in M'Range (2) loop
M (Row, J) := M (Row, J) / Scale;
end loop;
for J in N'Range (2) loop
N (Row - M'First (1) + N'First (1), J) :=
N (Row - M'First (1) + N'First (1), J) / Scale;
end loop;
end Divide_Row;
----------------
-- Switch_Row --
----------------
procedure Switch_Row
(M, N : in out Matrix;
Row_1 : Integer;
Row_2 : Integer)
is
procedure Swap (X, Y : in out Scalar);
-- Exchange the values of X and Y
----------
-- Swap --
----------
procedure Swap (X, Y : in out Scalar) is
T : constant Scalar := X;
begin
X := Y;
Y := T;
end Swap;
-- Start of processing for Switch_Row
begin
if Row_1 /= Row_2 then
Det := Zero - Det;
for J in M'Range (2) loop
Swap (M (Row_1, J), M (Row_2, J));
end loop;
for J in N'Range (2) loop
Swap (N (Row_1 - M'First (1) + N'First (1), J),
N (Row_2 - M'First (1) + N'First (1), J));
end loop;
end if;
end Switch_Row;
-- Local declarations
Row : Integer := M'First (1);
-- Start of processing for Forward_Eliminate
begin
Det := One;
for J in M'Range (2) loop
declare
Max_Row : Integer := Row;
Max_Abs : Real'Base := 0.0;
begin
-- Find best pivot in column J, starting in row Row
for K in Row .. M'Last (1) loop
declare
New_Abs : constant Real'Base := abs M (K, J);
begin
if Max_Abs < New_Abs then
Max_Abs := New_Abs;
Max_Row := K;
end if;
end;
end loop;
if Max_Abs > 0.0 then
Switch_Row (M, N, Row, Max_Row);
-- The temporaries below are necessary to force a copy of the
-- value and avoid improper aliasing.
declare
Scale : constant Scalar := M (Row, J);
begin
Divide_Row (M, N, Row, Scale);
end;
for U in Row + 1 .. M'Last (1) loop
declare
Factor : constant Scalar := M (U, J);
begin
Sub_Row (N, U, Row, Factor);
Sub_Row (M, U, Row, Factor);
end;
end loop;
exit when Row >= M'Last (1);
Row := Row + 1;
else
-- Set zero (note that we do not have literals)
Det := Zero;
end if;
end;
end loop;
end Forward_Eliminate;
-------------------
-- Inner_Product --
-------------------
function Inner_Product
(Left : Left_Vector;
Right : Right_Vector) return Result_Scalar
is
R : Result_Scalar := Zero;
begin
if Left'Length /= Right'Length then
raise Constraint_Error with
"vectors are of different length in inner product";
end if;
for J in Left'Range loop
R := R + Left (J) * Right (J - Left'First + Right'First);
end loop;
return R;
end Inner_Product;
-------------
-- L2_Norm --
-------------
function L2_Norm (X : X_Vector) return Result_Real'Base is
Sum : Result_Real'Base := 0.0;
begin
for J in X'Range loop
Sum := Sum + Result_Real'Base (abs X (J))**2;
end loop;
return Sqrt (Sum);
end L2_Norm;
----------------------------------
-- Matrix_Elementwise_Operation --
----------------------------------
function Matrix_Elementwise_Operation (X : X_Matrix) return Result_Matrix is
begin
return R : Result_Matrix (X'Range (1), X'Range (2)) do
for J in R'Range (1) loop
for K in R'Range (2) loop
R (J, K) := Operation (X (J, K));
end loop;
end loop;
end return;
end Matrix_Elementwise_Operation;
----------------------------------
-- Vector_Elementwise_Operation --
----------------------------------
function Vector_Elementwise_Operation (X : X_Vector) return Result_Vector is
begin
return R : Result_Vector (X'Range) do
for J in R'Range loop
R (J) := Operation (X (J));
end loop;
end return;
end Vector_Elementwise_Operation;
-----------------------------------------
-- Matrix_Matrix_Elementwise_Operation --
-----------------------------------------
function Matrix_Matrix_Elementwise_Operation
(Left : Left_Matrix;
Right : Right_Matrix) return Result_Matrix
is
begin
return R : Result_Matrix (Left'Range (1), Left'Range (2)) do
if Left'Length (1) /= Right'Length (1)
or else
Left'Length (2) /= Right'Length (2)
then
raise Constraint_Error with
"matrices are of different dimension in elementwise operation";
end if;
for J in R'Range (1) loop
for K in R'Range (2) loop
R (J, K) :=
Operation
(Left (J, K),
Right
(J - R'First (1) + Right'First (1),
K - R'First (2) + Right'First (2)));
end loop;
end loop;
end return;
end Matrix_Matrix_Elementwise_Operation;
------------------------------------------------
-- Matrix_Matrix_Scalar_Elementwise_Operation --
------------------------------------------------
function Matrix_Matrix_Scalar_Elementwise_Operation
(X : X_Matrix;
Y : Y_Matrix;
Z : Z_Scalar) return Result_Matrix
is
begin
return R : Result_Matrix (X'Range (1), X'Range (2)) do
if X'Length (1) /= Y'Length (1)
or else
X'Length (2) /= Y'Length (2)
then
raise Constraint_Error with
"matrices are of different dimension in elementwise operation";
end if;
for J in R'Range (1) loop
for K in R'Range (2) loop
R (J, K) :=
Operation
(X (J, K),
Y (J - R'First (1) + Y'First (1),
K - R'First (2) + Y'First (2)),
Z);
end loop;
end loop;
end return;
end Matrix_Matrix_Scalar_Elementwise_Operation;
-----------------------------------------
-- Vector_Vector_Elementwise_Operation --
-----------------------------------------
function Vector_Vector_Elementwise_Operation
(Left : Left_Vector;
Right : Right_Vector) return Result_Vector
is
begin
return R : Result_Vector (Left'Range) do
if Left'Length /= Right'Length then
raise Constraint_Error with
"vectors are of different length in elementwise operation";
end if;
for J in R'Range loop
R (J) := Operation (Left (J), Right (J - R'First + Right'First));
end loop;
end return;
end Vector_Vector_Elementwise_Operation;
------------------------------------------------
-- Vector_Vector_Scalar_Elementwise_Operation --
------------------------------------------------
function Vector_Vector_Scalar_Elementwise_Operation
(X : X_Vector;
Y : Y_Vector;
Z : Z_Scalar) return Result_Vector is
begin
return R : Result_Vector (X'Range) do
if X'Length /= Y'Length then
raise Constraint_Error with
"vectors are of different length in elementwise operation";
end if;
for J in R'Range loop
R (J) := Operation (X (J), Y (J - X'First + Y'First), Z);
end loop;
end return;
end Vector_Vector_Scalar_Elementwise_Operation;
-----------------------------------------
-- Matrix_Scalar_Elementwise_Operation --
-----------------------------------------
function Matrix_Scalar_Elementwise_Operation
(Left : Left_Matrix;
Right : Right_Scalar) return Result_Matrix
is
begin
return R : Result_Matrix (Left'Range (1), Left'Range (2)) do
for J in R'Range (1) loop
for K in R'Range (2) loop
R (J, K) := Operation (Left (J, K), Right);
end loop;
end loop;
end return;
end Matrix_Scalar_Elementwise_Operation;
-----------------------------------------
-- Vector_Scalar_Elementwise_Operation --
-----------------------------------------
function Vector_Scalar_Elementwise_Operation
(Left : Left_Vector;
Right : Right_Scalar) return Result_Vector
is
begin
return R : Result_Vector (Left'Range) do
for J in R'Range loop
R (J) := Operation (Left (J), Right);
end loop;
end return;
end Vector_Scalar_Elementwise_Operation;
-----------------------------------------
-- Scalar_Matrix_Elementwise_Operation --
-----------------------------------------
function Scalar_Matrix_Elementwise_Operation
(Left : Left_Scalar;
Right : Right_Matrix) return Result_Matrix
is
begin
return R : Result_Matrix (Right'Range (1), Right'Range (2)) do
for J in R'Range (1) loop
for K in R'Range (2) loop
R (J, K) := Operation (Left, Right (J, K));
end loop;
end loop;
end return;
end Scalar_Matrix_Elementwise_Operation;
-----------------------------------------
-- Scalar_Vector_Elementwise_Operation --
-----------------------------------------
function Scalar_Vector_Elementwise_Operation
(Left : Left_Scalar;
Right : Right_Vector) return Result_Vector
is
begin
return R : Result_Vector (Right'Range) do
for J in R'Range loop
R (J) := Operation (Left, Right (J));
end loop;
end return;
end Scalar_Vector_Elementwise_Operation;
----------
-- Sqrt --
----------
function Sqrt (X : Real'Base) return Real'Base is
Root, Next : Real'Base;
begin
-- Be defensive: any comparisons with NaN values will yield False.
if not (X > 0.0) then
if X = 0.0 then
return X;
else
raise Argument_Error;
end if;
elsif X > Real'Base'Last then
-- X is infinity, which is its own square root
return X;
end if;
-- Compute an initial estimate based on:
-- X = M * R**E and Sqrt (X) = Sqrt (M) * R**(E / 2.0),
-- where M is the mantissa, R is the radix and E the exponent.
-- By ignoring the mantissa and ignoring the case of an odd
-- exponent, we get a final error that is at most R. In other words,
-- the result has about a single bit precision.
Root := Real'Base (Real'Machine_Radix) ** (Real'Exponent (X) / 2);
-- Because of the poor initial estimate, use the Babylonian method of
-- computing the square root, as it is stable for all inputs. Every step
-- will roughly double the precision of the result. Just a few steps
-- suffice in most cases. Eight iterations should give about 2**8 bits
-- of precision.
for J in 1 .. 8 loop
Next := (Root + X / Root) / 2.0;
exit when Root = Next;
Root := Next;
end loop;
return Root;
end Sqrt;
---------------------------
-- Matrix_Matrix_Product --
---------------------------
function Matrix_Matrix_Product
(Left : Left_Matrix;
Right : Right_Matrix) return Result_Matrix
is
begin
return R : Result_Matrix (Left'Range (1), Right'Range (2)) do
if Left'Length (2) /= Right'Length (1) then
raise Constraint_Error with
"incompatible dimensions in matrix multiplication";
end if;
for J in R'Range (1) loop
for K in R'Range (2) loop
declare
S : Result_Scalar := Zero;
begin
for M in Left'Range (2) loop
S := S + Left (J, M) *
Right
(M - Left'First (2) + Right'First (1), K);
end loop;
R (J, K) := S;
end;
end loop;
end loop;
end return;
end Matrix_Matrix_Product;
----------------------------
-- Matrix_Vector_Solution --
----------------------------
function Matrix_Vector_Solution (A : Matrix; X : Vector) return Vector is
N : constant Natural := A'Length (1);
MA : Matrix := A;
MX : Matrix (A'Range (1), 1 .. 1);
R : Vector (A'Range (2));
Det : Scalar;
begin
if A'Length (2) /= N then
raise Constraint_Error with "matrix is not square";
end if;
if X'Length /= N then
raise Constraint_Error with "incompatible vector length";
end if;
for J in 0 .. MX'Length (1) - 1 loop
MX (MX'First (1) + J, 1) := X (X'First + J);
end loop;
Forward_Eliminate (MA, MX, Det);
if Det = Zero then
raise Constraint_Error with "matrix is singular";
end if;
Back_Substitute (MA, MX);
for J in 0 .. R'Length - 1 loop
R (R'First + J) := MX (MX'First (1) + J, 1);
end loop;
return R;
end Matrix_Vector_Solution;
----------------------------
-- Matrix_Matrix_Solution --
----------------------------
function Matrix_Matrix_Solution (A, X : Matrix) return Matrix is
N : constant Natural := A'Length (1);
MA : Matrix (A'Range (2), A'Range (2));
MB : Matrix (A'Range (2), X'Range (2));
Det : Scalar;
begin
if A'Length (2) /= N then
raise Constraint_Error with "matrix is not square";
end if;
if X'Length (1) /= N then
raise Constraint_Error with "matrices have unequal number of rows";
end if;
for J in 0 .. A'Length (1) - 1 loop
for K in MA'Range (2) loop
MA (MA'First (1) + J, K) := A (A'First (1) + J, K);
end loop;
for K in MB'Range (2) loop
MB (MB'First (1) + J, K) := X (X'First (1) + J, K);
end loop;
end loop;
Forward_Eliminate (MA, MB, Det);
if Det = Zero then
raise Constraint_Error with "matrix is singular";
end if;
Back_Substitute (MA, MB);
return MB;
end Matrix_Matrix_Solution;
---------------------------
-- Matrix_Vector_Product --
---------------------------
function Matrix_Vector_Product
(Left : Matrix;
Right : Right_Vector) return Result_Vector
is
begin
return R : Result_Vector (Left'Range (1)) do
if Left'Length (2) /= Right'Length then
raise Constraint_Error with
"incompatible dimensions in matrix-vector multiplication";
end if;
for J in Left'Range (1) loop
declare
S : Result_Scalar := Zero;
begin
for K in Left'Range (2) loop
S := S + Left (J, K)
* Right (K - Left'First (2) + Right'First);
end loop;
R (J) := S;
end;
end loop;
end return;
end Matrix_Vector_Product;
-------------------
-- Outer_Product --
-------------------
function Outer_Product
(Left : Left_Vector;
Right : Right_Vector) return Matrix
is
begin
return R : Matrix (Left'Range, Right'Range) do
for J in R'Range (1) loop
for K in R'Range (2) loop
R (J, K) := Left (J) * Right (K);
end loop;
end loop;
end return;
end Outer_Product;
-----------------
-- Swap_Column --
-----------------
procedure Swap_Column (A : in out Matrix; Left, Right : Integer) is
Temp : Scalar;
begin
for J in A'Range (1) loop
Temp := A (J, Left);
A (J, Left) := A (J, Right);
A (J, Right) := Temp;
end loop;
end Swap_Column;
---------------
-- Transpose --
---------------
procedure Transpose (A : Matrix; R : out Matrix) is
begin
for J in R'Range (1) loop
for K in R'Range (2) loop
R (J, K) := A (K - R'First (2) + A'First (1),
J - R'First (1) + A'First (2));
end loop;
end loop;
end Transpose;
-------------------------------
-- Update_Matrix_With_Matrix --
-------------------------------
procedure Update_Matrix_With_Matrix (X : in out X_Matrix; Y : Y_Matrix) is
begin
if X'Length (1) /= Y'Length (1)
or else
X'Length (2) /= Y'Length (2)
then
raise Constraint_Error with
"matrices are of different dimension in update operation";
end if;
for J in X'Range (1) loop
for K in X'Range (2) loop
Update (X (J, K), Y (J - X'First (1) + Y'First (1),
K - X'First (2) + Y'First (2)));
end loop;
end loop;
end Update_Matrix_With_Matrix;
-------------------------------
-- Update_Vector_With_Vector --
-------------------------------
procedure Update_Vector_With_Vector (X : in out X_Vector; Y : Y_Vector) is
begin
if X'Length /= Y'Length then
raise Constraint_Error with
"vectors are of different length in update operation";
end if;
for J in X'Range loop
Update (X (J), Y (J - X'First + Y'First));
end loop;
end Update_Vector_With_Vector;
-----------------
-- Unit_Matrix --
-----------------
function Unit_Matrix
(Order : Positive;
First_1 : Integer := 1;
First_2 : Integer := 1) return Matrix
is
begin
return R : Matrix (First_1 .. Check_Unit_Last (First_1, Order, First_1),
First_2 .. Check_Unit_Last (First_2, Order, First_2))
do
R := (others => (others => Zero));
for J in 0 .. Order - 1 loop
R (First_1 + J, First_2 + J) := One;
end loop;
end return;
end Unit_Matrix;
-----------------
-- Unit_Vector --
-----------------
function Unit_Vector
(Index : Integer;
Order : Positive;
First : Integer := 1) return Vector
is
begin
return R : Vector (First .. Check_Unit_Last (Index, Order, First)) do
R := (others => Zero);
R (Index) := One;
end return;
end Unit_Vector;
---------------------------
-- Vector_Matrix_Product --
---------------------------
function Vector_Matrix_Product
(Left : Left_Vector;
Right : Matrix) return Result_Vector
is
begin
return R : Result_Vector (Right'Range (2)) do
if Left'Length /= Right'Length (1) then
raise Constraint_Error with
"incompatible dimensions in vector-matrix multiplication";
end if;
for J in Right'Range (2) loop
declare
S : Result_Scalar := Zero;
begin
for K in Right'Range (1) loop
S := S + Left (K - Right'First (1)
+ Left'First) * Right (K, J);
end loop;
R (J) := S;
end;
end loop;
end return;
end Vector_Matrix_Product;
end System.Generic_Array_Operations;
|