1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
|
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- S Y S T E M . I M G _ R E A L --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with System.Img_LLU; use System.Img_LLU;
with System.Img_Uns; use System.Img_Uns;
with System.Powten_Table; use System.Powten_Table;
with System.Unsigned_Types; use System.Unsigned_Types;
with System.Float_Control;
package body System.Img_Real is
-- The following defines the maximum number of digits that we can convert
-- accurately. This is limited by the precision of Long_Long_Float, and
-- also by the number of digits we can hold in Long_Long_Unsigned, which
-- is the integer type we use as an intermediate for the result.
-- We assume that in practice, the limitation will come from the digits
-- value, rather than the integer value. This is true for typical IEEE
-- implementations, and at worst, the only loss is for some precision
-- in very high precision floating-point output.
-- Note that in the following, the "-2" accounts for the sign and one
-- extra digits, since we need the maximum number of 9's that can be
-- supported, e.g. for the normal 64 bit case, Long_Long_Integer'Width
-- is 21, since the maximum value (approx 1.6 * 10**19) has 20 digits,
-- but the maximum number of 9's that can be supported is 19.
Maxdigs : constant :=
Natural'Min
(Long_Long_Unsigned'Width - 2, Long_Long_Float'Digits);
Unsdigs : constant := Unsigned'Width - 2;
-- Number of digits that can be converted using type Unsigned
-- See above for the explanation of the -2.
Maxscaling : constant := 5000;
-- Max decimal scaling required during conversion of floating-point
-- numbers to decimal. This is used to defend against infinite
-- looping in the conversion, as can be caused by erroneous executions.
-- The largest exponent used on any current system is 2**16383, which
-- is approximately 10**4932, and the highest number of decimal digits
-- is about 35 for 128-bit floating-point formats, so 5000 leaves
-- enough room for scaling such values
function Is_Negative (V : Long_Long_Float) return Boolean;
pragma Import (Intrinsic, Is_Negative);
--------------------------
-- Image_Floating_Point --
--------------------------
procedure Image_Floating_Point
(V : Long_Long_Float;
S : in out String;
P : out Natural;
Digs : Natural)
is
pragma Assert (S'First = 1);
begin
-- Decide whether a blank should be prepended before the call to
-- Set_Image_Real. We generate a blank for positive values, and
-- also for positive zeroes. For negative zeroes, we generate a
-- space only if Signed_Zeroes is True (the RM only permits the
-- output of -0.0 on targets where this is the case). We can of
-- course still see a -0.0 on a target where Signed_Zeroes is
-- False (since this attribute refers to the proper handling of
-- negative zeroes, not to their existence). We do not generate
-- a blank for positive infinity, since we output an explicit +.
if (not Is_Negative (V) and then V <= Long_Long_Float'Last)
or else (not Long_Long_Float'Signed_Zeros and then V = -0.0)
then
S (1) := ' ';
P := 1;
else
P := 0;
end if;
Set_Image_Real (V, S, P, 1, Digs - 1, 3);
end Image_Floating_Point;
--------------------------------
-- Image_Ordinary_Fixed_Point --
--------------------------------
procedure Image_Ordinary_Fixed_Point
(V : Long_Long_Float;
S : in out String;
P : out Natural;
Aft : Natural)
is
pragma Assert (S'First = 1);
begin
-- Output space at start if non-negative
if V >= 0.0 then
S (1) := ' ';
P := 1;
else
P := 0;
end if;
Set_Image_Real (V, S, P, 1, Aft, 0);
end Image_Ordinary_Fixed_Point;
--------------------
-- Set_Image_Real --
--------------------
procedure Set_Image_Real
(V : Long_Long_Float;
S : out String;
P : in out Natural;
Fore : Natural;
Aft : Natural;
Exp : Natural)
is
NFrac : constant Natural := Natural'Max (Aft, 1);
Sign : Character;
X : Long_Long_Float;
Scale : Integer;
Expon : Integer;
Field_Max : constant := 255;
-- This should be the same value as Ada.[Wide_]Text_IO.Field'Last.
-- It is not worth dragging in Ada.Text_IO to pick up this value,
-- since it really should never be necessary to change it.
Digs : String (1 .. 2 * Field_Max + 16);
-- Array used to hold digits of converted integer value. This is a
-- large enough buffer to accommodate ludicrous values of Fore and Aft.
Ndigs : Natural;
-- Number of digits stored in Digs (and also subscript of last digit)
procedure Adjust_Scale (S : Natural);
-- Adjusts the value in X by multiplying or dividing by a power of
-- ten so that it is in the range 10**(S-1) <= X < 10**S. Includes
-- adding 0.5 to round the result, readjusting if the rounding causes
-- the result to wander out of the range. Scale is adjusted to reflect
-- the power of ten used to divide the result (i.e. one is added to
-- the scale value for each division by 10.0, or one is subtracted
-- for each multiplication by 10.0).
procedure Convert_Integer;
-- Takes the value in X, outputs integer digits into Digs. On return,
-- Ndigs is set to the number of digits stored. The digits are stored
-- in Digs (1 .. Ndigs),
procedure Set (C : Character);
-- Sets character C in output buffer
procedure Set_Blanks_And_Sign (N : Integer);
-- Sets leading blanks and minus sign if needed. N is the number of
-- positions to be filled (a minus sign is output even if N is zero
-- or negative, but for a positive value, if N is non-positive, then
-- the call has no effect).
procedure Set_Digs (S, E : Natural);
-- Set digits S through E from Digs buffer. No effect if S > E
procedure Set_Special_Fill (N : Natural);
-- After outputting +Inf, -Inf or NaN, this routine fills out the
-- rest of the field with * characters. The argument is the number
-- of characters output so far (either 3 or 4)
procedure Set_Zeros (N : Integer);
-- Set N zeros, no effect if N is negative
pragma Inline (Set);
pragma Inline (Set_Digs);
pragma Inline (Set_Zeros);
------------------
-- Adjust_Scale --
------------------
procedure Adjust_Scale (S : Natural) is
Lo : Natural;
Hi : Natural;
Mid : Natural;
XP : Long_Long_Float;
begin
-- Cases where scaling up is required
if X < Powten (S - 1) then
-- What we are looking for is a power of ten to multiply X by
-- so that the result lies within the required range.
loop
XP := X * Powten (Maxpow);
exit when XP >= Powten (S - 1) or else Scale < -Maxscaling;
X := XP;
Scale := Scale - Maxpow;
end loop;
-- The following exception is only raised in case of erroneous
-- execution, where a number was considered valid but still
-- fails to scale up. One situation where this can happen is
-- when a system which is supposed to be IEEE-compliant, but
-- has been reconfigured to flush denormals to zero.
if Scale < -Maxscaling then
raise Constraint_Error;
end if;
-- Here we know that we must multiply by at least 10**1 and that
-- 10**Maxpow takes us too far: binary search to find right one.
-- Because of roundoff errors, it is possible for the value
-- of XP to be just outside of the interval when Lo >= Hi. In
-- that case we adjust explicitly by a factor of 10. This
-- can only happen with a value that is very close to an
-- exact power of 10.
Lo := 1;
Hi := Maxpow;
loop
Mid := (Lo + Hi) / 2;
XP := X * Powten (Mid);
if XP < Powten (S - 1) then
if Lo >= Hi then
Mid := Mid + 1;
XP := XP * 10.0;
exit;
else
Lo := Mid + 1;
end if;
elsif XP >= Powten (S) then
if Lo >= Hi then
Mid := Mid - 1;
XP := XP / 10.0;
exit;
else
Hi := Mid - 1;
end if;
else
exit;
end if;
end loop;
X := XP;
Scale := Scale - Mid;
-- Cases where scaling down is required
elsif X >= Powten (S) then
-- What we are looking for is a power of ten to divide X by
-- so that the result lies within the required range.
loop
XP := X / Powten (Maxpow);
exit when XP < Powten (S) or else Scale > Maxscaling;
X := XP;
Scale := Scale + Maxpow;
end loop;
-- The following exception is only raised in case of erroneous
-- execution, where a number was considered valid but still
-- fails to scale up. One situation where this can happen is
-- when a system which is supposed to be IEEE-compliant, but
-- has been reconfigured to flush denormals to zero.
if Scale > Maxscaling then
raise Constraint_Error;
end if;
-- Here we know that we must divide by at least 10**1 and that
-- 10**Maxpow takes us too far, binary search to find right one.
Lo := 1;
Hi := Maxpow;
loop
Mid := (Lo + Hi) / 2;
XP := X / Powten (Mid);
if XP < Powten (S - 1) then
if Lo >= Hi then
XP := XP * 10.0;
Mid := Mid - 1;
exit;
else
Hi := Mid - 1;
end if;
elsif XP >= Powten (S) then
if Lo >= Hi then
XP := XP / 10.0;
Mid := Mid + 1;
exit;
else
Lo := Mid + 1;
end if;
else
exit;
end if;
end loop;
X := XP;
Scale := Scale + Mid;
-- Here we are already scaled right
else
null;
end if;
-- Round, readjusting scale if needed. Note that if a readjustment
-- occurs, then it is never necessary to round again, because there
-- is no possibility of such a second rounding causing a change.
X := X + 0.5;
if X >= Powten (S) then
X := X / 10.0;
Scale := Scale + 1;
end if;
end Adjust_Scale;
---------------------
-- Convert_Integer --
---------------------
procedure Convert_Integer is
begin
-- Use Unsigned routine if possible, since on many machines it will
-- be significantly more efficient than the Long_Long_Unsigned one.
if X < Powten (Unsdigs) then
Ndigs := 0;
Set_Image_Unsigned
(Unsigned (Long_Long_Float'Truncation (X)),
Digs, Ndigs);
-- But if we want more digits than fit in Unsigned, we have to use
-- the Long_Long_Unsigned routine after all.
else
Ndigs := 0;
Set_Image_Long_Long_Unsigned
(Long_Long_Unsigned (Long_Long_Float'Truncation (X)),
Digs, Ndigs);
end if;
end Convert_Integer;
---------
-- Set --
---------
procedure Set (C : Character) is
begin
P := P + 1;
S (P) := C;
end Set;
-------------------------
-- Set_Blanks_And_Sign --
-------------------------
procedure Set_Blanks_And_Sign (N : Integer) is
begin
if Sign = '-' then
for J in 1 .. N - 1 loop
Set (' ');
end loop;
Set ('-');
else
for J in 1 .. N loop
Set (' ');
end loop;
end if;
end Set_Blanks_And_Sign;
--------------
-- Set_Digs --
--------------
procedure Set_Digs (S, E : Natural) is
begin
for J in S .. E loop
Set (Digs (J));
end loop;
end Set_Digs;
----------------------
-- Set_Special_Fill --
----------------------
procedure Set_Special_Fill (N : Natural) is
F : Natural;
begin
F := Fore + 1 + Aft - N;
if Exp /= 0 then
F := F + Exp + 1;
end if;
for J in 1 .. F loop
Set ('*');
end loop;
end Set_Special_Fill;
---------------
-- Set_Zeros --
---------------
procedure Set_Zeros (N : Integer) is
begin
for J in 1 .. N loop
Set ('0');
end loop;
end Set_Zeros;
-- Start of processing for Set_Image_Real
begin
-- We call the floating-point processor reset routine so that we can
-- be sure the floating-point processor is properly set for conversion
-- calls. This is notably need on Windows, where calls to the operating
-- system randomly reset the processor into 64-bit mode.
System.Float_Control.Reset;
Scale := 0;
-- Deal with invalid values first,
if not V'Valid then
-- Note that we're taking our chances here, as V might be
-- an invalid bit pattern resulting from erroneous execution
-- (caused by using uninitialized variables for example).
-- No matter what, we'll at least get reasonable behavior,
-- converting to infinity or some other value, or causing an
-- exception to be raised is fine.
-- If the following test succeeds, then we definitely have
-- an infinite value, so we print Inf.
if V > Long_Long_Float'Last then
Set ('+');
Set ('I');
Set ('n');
Set ('f');
Set_Special_Fill (4);
-- In all other cases we print NaN
elsif V < Long_Long_Float'First then
Set ('-');
Set ('I');
Set ('n');
Set ('f');
Set_Special_Fill (4);
else
Set ('N');
Set ('a');
Set ('N');
Set_Special_Fill (3);
end if;
return;
end if;
-- Positive values
if V > 0.0 then
X := V;
Sign := '+';
-- Negative values
elsif V < 0.0 then
X := -V;
Sign := '-';
-- Zero values
elsif V = 0.0 then
if Long_Long_Float'Signed_Zeros and then Is_Negative (V) then
Sign := '-';
else
Sign := '+';
end if;
Set_Blanks_And_Sign (Fore - 1);
Set ('0');
Set ('.');
Set_Zeros (NFrac);
if Exp /= 0 then
Set ('E');
Set ('+');
Set_Zeros (Natural'Max (1, Exp - 1));
end if;
return;
else
-- It should not be possible for a NaN to end up here.
-- Either the 'Valid test has failed, or we have some form
-- of erroneous execution. Raise Constraint_Error instead of
-- attempting to go ahead printing the value.
raise Constraint_Error;
end if;
-- X and Sign are set here, and X is known to be a valid,
-- non-zero floating-point number.
-- Case of non-zero value with Exp = 0
if Exp = 0 then
-- First step is to multiply by 10 ** Nfrac to get an integer
-- value to be output, an then add 0.5 to round the result.
declare
NF : Natural := NFrac;
begin
loop
-- If we are larger than Powten (Maxdigs) now, then
-- we have too many significant digits, and we have
-- not even finished multiplying by NFrac (NF shows
-- the number of unaccounted-for digits).
if X >= Powten (Maxdigs) then
-- In this situation, we only to generate a reasonable
-- number of significant digits, and then zeroes after.
-- So first we rescale to get:
-- 10 ** (Maxdigs - 1) <= X < 10 ** Maxdigs
-- and then convert the resulting integer
Adjust_Scale (Maxdigs);
Convert_Integer;
-- If that caused rescaling, then add zeros to the end
-- of the number to account for this scaling. Also add
-- zeroes to account for the undone multiplications
for J in 1 .. Scale + NF loop
Ndigs := Ndigs + 1;
Digs (Ndigs) := '0';
end loop;
exit;
-- If multiplication is complete, then convert the resulting
-- integer after rounding (note that X is non-negative)
elsif NF = 0 then
X := X + 0.5;
Convert_Integer;
exit;
-- Otherwise we can go ahead with the multiplication. If it
-- can be done in one step, then do it in one step.
elsif NF < Maxpow then
X := X * Powten (NF);
NF := 0;
-- If it cannot be done in one step, then do partial scaling
else
X := X * Powten (Maxpow);
NF := NF - Maxpow;
end if;
end loop;
end;
-- If number of available digits is less or equal to NFrac,
-- then we need an extra zero before the decimal point.
if Ndigs <= NFrac then
Set_Blanks_And_Sign (Fore - 1);
Set ('0');
Set ('.');
Set_Zeros (NFrac - Ndigs);
Set_Digs (1, Ndigs);
-- Normal case with some digits before the decimal point
else
Set_Blanks_And_Sign (Fore - (Ndigs - NFrac));
Set_Digs (1, Ndigs - NFrac);
Set ('.');
Set_Digs (Ndigs - NFrac + 1, Ndigs);
end if;
-- Case of non-zero value with non-zero Exp value
else
-- If NFrac is less than Maxdigs, then all the fraction digits are
-- significant, so we can scale the resulting integer accordingly.
if NFrac < Maxdigs then
Adjust_Scale (NFrac + 1);
Convert_Integer;
-- Otherwise, we get the maximum number of digits available
else
Adjust_Scale (Maxdigs);
Convert_Integer;
for J in 1 .. NFrac - Maxdigs + 1 loop
Ndigs := Ndigs + 1;
Digs (Ndigs) := '0';
Scale := Scale - 1;
end loop;
end if;
Set_Blanks_And_Sign (Fore - 1);
Set (Digs (1));
Set ('.');
Set_Digs (2, Ndigs);
-- The exponent is the scaling factor adjusted for the digits
-- that we output after the decimal point, since these were
-- included in the scaled digits that we output.
Expon := Scale + NFrac;
Set ('E');
Ndigs := 0;
if Expon >= 0 then
Set ('+');
Set_Image_Unsigned (Unsigned (Expon), Digs, Ndigs);
else
Set ('-');
Set_Image_Unsigned (Unsigned (-Expon), Digs, Ndigs);
end if;
Set_Zeros (Exp - Ndigs - 1);
Set_Digs (1, Ndigs);
end if;
end Set_Image_Real;
end System.Img_Real;
|