1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
|
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- S Y S T E M . R A N D O M _ N U M B E R S --
-- --
-- B o d y --
-- --
-- Copyright (C) 2007-2018, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- --
-- The implementation here is derived from a C-program for MT19937, with --
-- initialization improved 2002/1/26. As required, the following notice is --
-- copied from the original program. --
-- --
-- Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, --
-- All rights reserved. --
-- --
-- Redistribution and use in source and binary forms, with or without --
-- modification, are permitted provided that the following conditions --
-- are met: --
-- --
-- 1. Redistributions of source code must retain the above copyright --
-- notice, this list of conditions and the following disclaimer. --
-- --
-- 2. Redistributions in binary form must reproduce the above copyright --
-- notice, this list of conditions and the following disclaimer in the --
-- documentation and/or other materials provided with the distribution.--
-- --
-- 3. The names of its contributors may not be used to endorse or promote --
-- products derived from this software without specific prior written --
-- permission. --
-- --
-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS --
-- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT --
-- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR --
-- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT --
-- OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, --
-- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED --
-- TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --
-- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --
-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --
-- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --
-- --
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- --
-- This is an implementation of the Mersenne Twister, twisted generalized --
-- feedback shift register of rational normal form, with state-bit --
-- reflection and tempering. This version generates 32-bit integers with a --
-- period of 2**19937 - 1 (a Mersenne prime, hence the name). For --
-- applications requiring more than 32 bits (up to 64), we concatenate two --
-- 32-bit numbers. --
-- --
-- See http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html for --
-- details. --
-- --
-- In contrast to the original code, we do not generate random numbers in --
-- batches of N. Measurement seems to show this has very little if any --
-- effect on performance, and it may be marginally better for real-time --
-- applications with hard deadlines. --
-- --
------------------------------------------------------------------------------
with Ada.Unchecked_Conversion;
with System.Random_Seed;
with Interfaces; use Interfaces;
use Ada;
package body System.Random_Numbers with
SPARK_Mode => Off
is
Image_Numeral_Length : constant := Max_Image_Width / N;
subtype Image_String is String (1 .. Max_Image_Width);
----------------------------
-- Algorithmic Parameters --
----------------------------
Lower_Mask : constant := 2**31 - 1;
Upper_Mask : constant := 2**31;
Matrix_A : constant array (State_Val range 0 .. 1) of State_Val
:= (0, 16#9908b0df#);
-- The twist transformation is represented by a matrix of the form
--
-- [ 0 I(31) ]
-- [ _a ]
--
-- where 0 is a 31x31 block of 0s, I(31) is the 31x31 identity matrix and
-- _a is a particular bit row-vector, represented here by a 32-bit integer.
-- If integer x represents a row vector of bits (with x(0), the units bit,
-- last), then
-- x * A = [0 x(31..1)] xor Matrix_A(x(0)).
U : constant := 11;
S : constant := 7;
B_Mask : constant := 16#9d2c5680#;
T : constant := 15;
C_Mask : constant := 16#efc60000#;
L : constant := 18;
-- The tempering shifts and bit masks, in the order applied
Seed0 : constant := 5489;
-- Default seed, used to initialize the state vector when Reset not called
Seed1 : constant := 19650218;
-- Seed used to initialize the state vector when calling Reset with an
-- initialization vector.
Mult0 : constant := 1812433253;
-- Multiplier for a modified linear congruential generator used to
-- initialize the state vector when calling Reset with a single integer
-- seed.
Mult1 : constant := 1664525;
Mult2 : constant := 1566083941;
-- Multipliers for two modified linear congruential generators used to
-- initialize the state vector when calling Reset with an initialization
-- vector.
-----------------------
-- Local Subprograms --
-----------------------
procedure Init (Gen : Generator; Initiator : Unsigned_32);
-- Perform a default initialization of the state of Gen. The resulting
-- state is identical for identical values of Initiator.
procedure Insert_Image
(S : in out Image_String;
Index : Integer;
V : State_Val);
-- Insert image of V into S, in the Index'th 11-character substring
function Extract_Value (S : String; Index : Integer) return State_Val;
-- Treat S as a sequence of 11-character decimal numerals and return
-- the result of converting numeral #Index (numbering from 0)
function To_Unsigned is
new Unchecked_Conversion (Integer_32, Unsigned_32);
function To_Unsigned is
new Unchecked_Conversion (Integer_64, Unsigned_64);
------------
-- Random --
------------
function Random (Gen : Generator) return Unsigned_32 is
G : Generator renames Gen.Writable.Self.all;
Y : State_Val;
I : Integer; -- should avoid use of identifier I ???
begin
I := G.I;
if I < N - M then
Y := (G.S (I) and Upper_Mask) or (G.S (I + 1) and Lower_Mask);
Y := G.S (I + M) xor Shift_Right (Y, 1) xor Matrix_A (Y and 1);
I := I + 1;
elsif I < N - 1 then
Y := (G.S (I) and Upper_Mask) or (G.S (I + 1) and Lower_Mask);
Y := G.S (I + (M - N))
xor Shift_Right (Y, 1)
xor Matrix_A (Y and 1);
I := I + 1;
elsif I = N - 1 then
Y := (G.S (I) and Upper_Mask) or (G.S (0) and Lower_Mask);
Y := G.S (M - 1) xor Shift_Right (Y, 1) xor Matrix_A (Y and 1);
I := 0;
else
Init (G, Seed0);
return Random (Gen);
end if;
G.S (G.I) := Y;
G.I := I;
Y := Y xor Shift_Right (Y, U);
Y := Y xor (Shift_Left (Y, S) and B_Mask);
Y := Y xor (Shift_Left (Y, T) and C_Mask);
Y := Y xor Shift_Right (Y, L);
return Y;
end Random;
generic
type Unsigned is mod <>;
type Real is digits <>;
with function Random (G : Generator) return Unsigned is <>;
function Random_Float_Template (Gen : Generator) return Real;
pragma Inline (Random_Float_Template);
-- Template for a random-number generator implementation that delivers
-- values of type Real in the range [0 .. 1], using values from Gen,
-- assuming that Unsigned is large enough to hold the bits of a mantissa
-- for type Real.
---------------------------
-- Random_Float_Template --
---------------------------
function Random_Float_Template (Gen : Generator) return Real is
pragma Compile_Time_Error
(Unsigned'Last <= 2**(Real'Machine_Mantissa - 1),
"insufficiently large modular type used to hold mantissa");
begin
-- This code generates random floating-point numbers from unsigned
-- integers. Assuming that Real'Machine_Radix = 2, it can deliver all
-- machine values of type Real (as implied by Real'Machine_Mantissa and
-- Real'Machine_Emin), which is not true of the standard method (to
-- which we fall back for nonbinary radix): computing Real(<random
-- integer>) / (<max random integer>+1). To do so, we first extract an
-- (M-1)-bit significand (where M is Real'Machine_Mantissa), and then
-- decide on a normalized exponent by repeated coin flips, decrementing
-- from 0 as long as we flip heads (1 bits). This process yields the
-- proper geometric distribution for the exponent: in a uniformly
-- distributed set of floating-point numbers, 1/2 of them will be in
-- (0.5, 1], 1/4 will be in (0.25, 0.5], and so forth. It makes a
-- further adjustment at binade boundaries (see comments below) to give
-- the effect of selecting a uniformly distributed real deviate in
-- [0..1] and then rounding to the nearest representable floating-point
-- number. The algorithm attempts to be stingy with random integers. In
-- the worst case, it can consume roughly -Real'Machine_Emin/32 32-bit
-- integers, but this case occurs with probability around
-- 2**Machine_Emin, and the expected number of calls to integer-valued
-- Random is 1. For another discussion of the issues addressed by this
-- process, see Allen Downey's unpublished paper at
-- http://allendowney.com/research/rand/downey07randfloat.pdf.
if Real'Machine_Radix /= 2 then
return Real'Machine
(Real (Unsigned'(Random (Gen))) * 2.0**(-Unsigned'Size));
else
declare
type Bit_Count is range 0 .. 4;
subtype T is Real'Base;
Trailing_Ones : constant array (Unsigned_32 range 0 .. 15)
of Bit_Count :=
(2#00000# => 0, 2#00001# => 1, 2#00010# => 0, 2#00011# => 2,
2#00100# => 0, 2#00101# => 1, 2#00110# => 0, 2#00111# => 3,
2#01000# => 0, 2#01001# => 1, 2#01010# => 0, 2#01011# => 2,
2#01100# => 0, 2#01101# => 1, 2#01110# => 0, 2#01111# => 4);
Pow_Tab : constant array (Bit_Count range 0 .. 3) of Real
:= (0 => 2.0**(0 - T'Machine_Mantissa),
1 => 2.0**(-1 - T'Machine_Mantissa),
2 => 2.0**(-2 - T'Machine_Mantissa),
3 => 2.0**(-3 - T'Machine_Mantissa));
Extra_Bits : constant Natural :=
(Unsigned'Size - T'Machine_Mantissa + 1);
-- Random bits left over after selecting mantissa
Mantissa : Unsigned;
X : Real; -- Scaled mantissa
R : Unsigned_32; -- Supply of random bits
R_Bits : Natural; -- Number of bits left in R
K : Bit_Count; -- Next decrement to exponent
begin
Mantissa := Random (Gen) / 2**Extra_Bits;
R := Unsigned_32 (Mantissa mod 2**Extra_Bits);
R_Bits := Extra_Bits;
X := Real (2**(T'Machine_Mantissa - 1) + Mantissa); -- Exact
if Extra_Bits < 4 and then R < 2 ** Extra_Bits - 1 then
-- We got lucky and got a zero in our few extra bits
K := Trailing_Ones (R);
else
Find_Zero : loop
-- R has R_Bits unprocessed random bits, a multiple of 4.
-- X needs to be halved for each trailing one bit. The
-- process stops as soon as a 0 bit is found. If R_Bits
-- becomes zero, reload R.
-- Process 4 bits at a time for speed: the two iterations
-- on average with three tests each was still too slow,
-- probably because the branches are not predictable.
-- This loop now will only execute once 94% of the cases,
-- doing more bits at a time will not help.
while R_Bits >= 4 loop
K := Trailing_Ones (R mod 16);
exit Find_Zero when K < 4; -- Exits 94% of the time
R_Bits := R_Bits - 4;
X := X / 16.0;
R := R / 16;
end loop;
-- Do not allow us to loop endlessly even in the (very
-- unlikely) case that Random (Gen) keeps yielding all ones.
exit Find_Zero when X = 0.0;
R := Random (Gen);
R_Bits := 32;
end loop Find_Zero;
end if;
-- K has the count of trailing ones not reflected yet in X. The
-- following multiplication takes care of that, as well as the
-- correction to move the radix point to the left of the mantissa.
-- Doing it at the end avoids repeated rounding errors in the
-- exceedingly unlikely case of ever having a subnormal result.
X := X * Pow_Tab (K);
-- The smallest value in each binade is rounded to by 0.75 of
-- the span of real numbers as its next larger neighbor, and
-- 1.0 is rounded to by half of the span of real numbers as its
-- next smaller neighbor. To account for this, when we encounter
-- the smallest number in a binade, we substitute the smallest
-- value in the next larger binade with probability 1/2.
if Mantissa = 0 and then Unsigned_32'(Random (Gen)) mod 2 = 0 then
X := 2.0 * X;
end if;
return X;
end;
end if;
end Random_Float_Template;
------------
-- Random --
------------
function Random (Gen : Generator) return Float is
function F is new Random_Float_Template (Unsigned_32, Float);
begin
return F (Gen);
end Random;
function Random (Gen : Generator) return Long_Float is
function F is new Random_Float_Template (Unsigned_64, Long_Float);
begin
return F (Gen);
end Random;
function Random (Gen : Generator) return Unsigned_64 is
begin
return Shift_Left (Unsigned_64 (Unsigned_32'(Random (Gen))), 32)
or Unsigned_64 (Unsigned_32'(Random (Gen)));
end Random;
---------------------
-- Random_Discrete --
---------------------
function Random_Discrete
(Gen : Generator;
Min : Result_Subtype := Default_Min;
Max : Result_Subtype := Result_Subtype'Last) return Result_Subtype
is
begin
if Max = Min then
return Max;
elsif Max < Min then
raise Constraint_Error;
elsif Result_Subtype'Base'Size > 32 then
declare
-- In the 64-bit case, we have to be careful, since not all 64-bit
-- unsigned values are representable in GNAT's root_integer type.
-- Ignore different-size warnings here since GNAT's handling
-- is correct.
pragma Warnings ("Z");
function Conv_To_Unsigned is
new Unchecked_Conversion (Result_Subtype'Base, Unsigned_64);
function Conv_To_Result is
new Unchecked_Conversion (Unsigned_64, Result_Subtype'Base);
pragma Warnings ("z");
N : constant Unsigned_64 :=
Conv_To_Unsigned (Max) - Conv_To_Unsigned (Min) + 1;
X, Slop : Unsigned_64;
begin
if N = 0 then
return Conv_To_Result (Conv_To_Unsigned (Min) + Random (Gen));
else
Slop := Unsigned_64'Last rem N + 1;
loop
X := Random (Gen);
exit when Slop = N or else X <= Unsigned_64'Last - Slop;
end loop;
return Conv_To_Result (Conv_To_Unsigned (Min) + X rem N);
end if;
end;
elsif Result_Subtype'Pos (Max) - Result_Subtype'Pos (Min) =
2 ** 32 - 1
then
return Result_Subtype'Val
(Result_Subtype'Pos (Min) + Unsigned_32'Pos (Random (Gen)));
else
declare
N : constant Unsigned_32 :=
Unsigned_32 (Result_Subtype'Pos (Max) -
Result_Subtype'Pos (Min) + 1);
Slop : constant Unsigned_32 := Unsigned_32'Last rem N + 1;
X : Unsigned_32;
begin
loop
X := Random (Gen);
exit when Slop = N or else X <= Unsigned_32'Last - Slop;
end loop;
return
Result_Subtype'Val
(Result_Subtype'Pos (Min) + Unsigned_32'Pos (X rem N));
end;
end if;
end Random_Discrete;
------------------
-- Random_Float --
------------------
function Random_Float (Gen : Generator) return Result_Subtype is
begin
if Result_Subtype'Base'Digits > Float'Digits then
return Result_Subtype'Machine (Result_Subtype
(Long_Float'(Random (Gen))));
else
return Result_Subtype'Machine (Result_Subtype
(Float'(Random (Gen))));
end if;
end Random_Float;
-----------
-- Reset --
-----------
procedure Reset (Gen : Generator) is
begin
Init (Gen, Unsigned_32'Mod (Random_Seed.Get_Seed));
end Reset;
procedure Reset (Gen : Generator; Initiator : Integer_32) is
begin
Init (Gen, To_Unsigned (Initiator));
end Reset;
procedure Reset (Gen : Generator; Initiator : Unsigned_32) is
begin
Init (Gen, Initiator);
end Reset;
procedure Reset (Gen : Generator; Initiator : Integer) is
begin
-- This is probably an unnecessary precaution against future change, but
-- since the test is a static expression, no extra code is involved.
if Integer'Size <= 32 then
Init (Gen, To_Unsigned (Integer_32 (Initiator)));
else
declare
Initiator1 : constant Unsigned_64 :=
To_Unsigned (Integer_64 (Initiator));
Init0 : constant Unsigned_32 :=
Unsigned_32 (Initiator1 mod 2 ** 32);
Init1 : constant Unsigned_32 :=
Unsigned_32 (Shift_Right (Initiator1, 32));
begin
Reset (Gen, Initialization_Vector'(Init0, Init1));
end;
end if;
end Reset;
procedure Reset (Gen : Generator; Initiator : Initialization_Vector) is
G : Generator renames Gen.Writable.Self.all;
I, J : Integer;
begin
Init (G, Seed1);
I := 1;
J := 0;
if Initiator'Length > 0 then
for K in reverse 1 .. Integer'Max (N, Initiator'Length) loop
G.S (I) :=
(G.S (I) xor ((G.S (I - 1)
xor Shift_Right (G.S (I - 1), 30)) * Mult1))
+ Initiator (J + Initiator'First) + Unsigned_32 (J);
I := I + 1;
J := J + 1;
if I >= N then
G.S (0) := G.S (N - 1);
I := 1;
end if;
if J >= Initiator'Length then
J := 0;
end if;
end loop;
end if;
for K in reverse 1 .. N - 1 loop
G.S (I) :=
(G.S (I) xor ((G.S (I - 1)
xor Shift_Right (G.S (I - 1), 30)) * Mult2))
- Unsigned_32 (I);
I := I + 1;
if I >= N then
G.S (0) := G.S (N - 1);
I := 1;
end if;
end loop;
G.S (0) := Upper_Mask;
end Reset;
procedure Reset (Gen : Generator; From_State : Generator) is
G : Generator renames Gen.Writable.Self.all;
begin
G.S := From_State.S;
G.I := From_State.I;
end Reset;
procedure Reset (Gen : Generator; From_State : State) is
G : Generator renames Gen.Writable.Self.all;
begin
G.I := 0;
G.S := From_State;
end Reset;
procedure Reset (Gen : Generator; From_Image : String) is
G : Generator renames Gen.Writable.Self.all;
begin
G.I := 0;
for J in 0 .. N - 1 loop
G.S (J) := Extract_Value (From_Image, J);
end loop;
end Reset;
----------
-- Save --
----------
procedure Save (Gen : Generator; To_State : out State) is
Gen2 : Generator;
begin
if Gen.I = N then
Init (Gen2, 5489);
To_State := Gen2.S;
else
To_State (0 .. N - 1 - Gen.I) := Gen.S (Gen.I .. N - 1);
To_State (N - Gen.I .. N - 1) := Gen.S (0 .. Gen.I - 1);
end if;
end Save;
-----------
-- Image --
-----------
function Image (Of_State : State) return String is
Result : Image_String;
begin
Result := (others => ' ');
for J in Of_State'Range loop
Insert_Image (Result, J, Of_State (J));
end loop;
return Result;
end Image;
function Image (Gen : Generator) return String is
Result : Image_String;
begin
Result := (others => ' ');
for J in 0 .. N - 1 loop
Insert_Image (Result, J, Gen.S ((J + Gen.I) mod N));
end loop;
return Result;
end Image;
-----------
-- Value --
-----------
function Value (Coded_State : String) return State is
Gen : Generator;
S : State;
begin
Reset (Gen, Coded_State);
Save (Gen, S);
return S;
end Value;
----------
-- Init --
----------
procedure Init (Gen : Generator; Initiator : Unsigned_32) is
G : Generator renames Gen.Writable.Self.all;
begin
G.S (0) := Initiator;
for I in 1 .. N - 1 loop
G.S (I) :=
(G.S (I - 1) xor Shift_Right (G.S (I - 1), 30)) * Mult0
+ Unsigned_32 (I);
end loop;
G.I := 0;
end Init;
------------------
-- Insert_Image --
------------------
procedure Insert_Image
(S : in out Image_String;
Index : Integer;
V : State_Val)
is
Value : constant String := State_Val'Image (V);
begin
S (Index * 11 + 1 .. Index * 11 + Value'Length) := Value;
end Insert_Image;
-------------------
-- Extract_Value --
-------------------
function Extract_Value (S : String; Index : Integer) return State_Val is
Start : constant Integer := S'First + Index * Image_Numeral_Length;
begin
return State_Val'Value (S (Start .. Start + Image_Numeral_Length - 1));
end Extract_Value;
end System.Random_Numbers;
|