| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 
 | /* Loop manipulation code for GNU compiler.
   Copyright (C) 2002-2018 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "cfganal.h"
#include "cfgloop.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "tree-ssa-loop-manip.h"
#include "dumpfile.h"
static void copy_loops_to (struct loop **, int,
			   struct loop *);
static void loop_redirect_edge (edge, basic_block);
static void remove_bbs (basic_block *, int);
static bool rpe_enum_p (const_basic_block, const void *);
static int find_path (edge, basic_block **);
static void fix_loop_placements (struct loop *, bool *);
static bool fix_bb_placement (basic_block);
static void fix_bb_placements (basic_block, bool *, bitmap);
/* Checks whether basic block BB is dominated by DATA.  */
static bool
rpe_enum_p (const_basic_block bb, const void *data)
{
  return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
}
/* Remove basic blocks BBS.  NBBS is the number of the basic blocks.  */
static void
remove_bbs (basic_block *bbs, int nbbs)
{
  int i;
  for (i = 0; i < nbbs; i++)
    delete_basic_block (bbs[i]);
}
/* Find path -- i.e. the basic blocks dominated by edge E and put them
   into array BBS, that will be allocated large enough to contain them.
   E->dest must have exactly one predecessor for this to work (it is
   easy to achieve and we do not put it here because we do not want to
   alter anything by this function).  The number of basic blocks in the
   path is returned.  */
static int
find_path (edge e, basic_block **bbs)
{
  gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
  /* Find bbs in the path.  */
  *bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
  return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
			     n_basic_blocks_for_fn (cfun), e->dest);
}
/* Fix placement of basic block BB inside loop hierarchy --
   Let L be a loop to that BB belongs.  Then every successor of BB must either
     1) belong to some superloop of loop L, or
     2) be a header of loop K such that K->outer is superloop of L
   Returns true if we had to move BB into other loop to enforce this condition,
   false if the placement of BB was already correct (provided that placements
   of its successors are correct).  */
static bool
fix_bb_placement (basic_block bb)
{
  edge e;
  edge_iterator ei;
  struct loop *loop = current_loops->tree_root, *act;
  FOR_EACH_EDGE (e, ei, bb->succs)
    {
      if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
	continue;
      act = e->dest->loop_father;
      if (act->header == e->dest)
	act = loop_outer (act);
      if (flow_loop_nested_p (loop, act))
	loop = act;
    }
  if (loop == bb->loop_father)
    return false;
  remove_bb_from_loops (bb);
  add_bb_to_loop (bb, loop);
  return true;
}
/* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
   of LOOP to that leads at least one exit edge of LOOP, and set it
   as the immediate superloop of LOOP.  Return true if the immediate superloop
   of LOOP changed.
   IRRED_INVALIDATED is set to true if a change in the loop structures might
   invalidate the information about irreducible regions.  */
static bool
fix_loop_placement (struct loop *loop, bool *irred_invalidated)
{
  unsigned i;
  edge e;
  vec<edge> exits = get_loop_exit_edges (loop);
  struct loop *father = current_loops->tree_root, *act;
  bool ret = false;
  FOR_EACH_VEC_ELT (exits, i, e)
    {
      act = find_common_loop (loop, e->dest->loop_father);
      if (flow_loop_nested_p (father, act))
	father = act;
    }
  if (father != loop_outer (loop))
    {
      for (act = loop_outer (loop); act != father; act = loop_outer (act))
	act->num_nodes -= loop->num_nodes;
      flow_loop_tree_node_remove (loop);
      flow_loop_tree_node_add (father, loop);
      /* The exit edges of LOOP no longer exits its original immediate
	 superloops; remove them from the appropriate exit lists.  */
      FOR_EACH_VEC_ELT (exits, i, e)
	{
	  /* We may need to recompute irreducible loops.  */
	  if (e->flags & EDGE_IRREDUCIBLE_LOOP)
	    *irred_invalidated = true;
	  rescan_loop_exit (e, false, false);
	}
      ret = true;
    }
  exits.release ();
  return ret;
}
/* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
   enforce condition stated in description of fix_bb_placement. We
   start from basic block FROM that had some of its successors removed, so that
   his placement no longer has to be correct, and iteratively fix placement of
   its predecessors that may change if placement of FROM changed.  Also fix
   placement of subloops of FROM->loop_father, that might also be altered due
   to this change; the condition for them is similar, except that instead of
   successors we consider edges coming out of the loops.
   If the changes may invalidate the information about irreducible regions,
   IRRED_INVALIDATED is set to true.  
   If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
   changed loop_father are collected there. */
static void
fix_bb_placements (basic_block from,
		   bool *irred_invalidated,
		   bitmap loop_closed_ssa_invalidated)
{
  basic_block *queue, *qtop, *qbeg, *qend;
  struct loop *base_loop, *target_loop;
  edge e;
  /* We pass through blocks back-reachable from FROM, testing whether some
     of their successors moved to outer loop.  It may be necessary to
     iterate several times, but it is finite, as we stop unless we move
     the basic block up the loop structure.  The whole story is a bit
     more complicated due to presence of subloops, those are moved using
     fix_loop_placement.  */
  base_loop = from->loop_father;
  /* If we are already in the outermost loop, the basic blocks cannot be moved
     outside of it.  If FROM is the header of the base loop, it cannot be moved
     outside of it, either.  In both cases, we can end now.  */
  if (base_loop == current_loops->tree_root
      || from == base_loop->header)
    return;
  auto_sbitmap in_queue (last_basic_block_for_fn (cfun));
  bitmap_clear (in_queue);
  bitmap_set_bit (in_queue, from->index);
  /* Prevent us from going out of the base_loop.  */
  bitmap_set_bit (in_queue, base_loop->header->index);
  queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
  qtop = queue + base_loop->num_nodes + 1;
  qbeg = queue;
  qend = queue + 1;
  *qbeg = from;
  while (qbeg != qend)
    {
      edge_iterator ei;
      from = *qbeg;
      qbeg++;
      if (qbeg == qtop)
	qbeg = queue;
      bitmap_clear_bit (in_queue, from->index);
      if (from->loop_father->header == from)
	{
	  /* Subloop header, maybe move the loop upward.  */
	  if (!fix_loop_placement (from->loop_father, irred_invalidated))
	    continue;
	  target_loop = loop_outer (from->loop_father);
	  if (loop_closed_ssa_invalidated)
	    {
	      basic_block *bbs = get_loop_body (from->loop_father);
	      for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
		bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
	      free (bbs);
	    }
	}
      else
	{
	  /* Ordinary basic block.  */
	  if (!fix_bb_placement (from))
	    continue;
	  target_loop = from->loop_father;
	  if (loop_closed_ssa_invalidated)
	    bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
	}
      FOR_EACH_EDGE (e, ei, from->succs)
	{
	  if (e->flags & EDGE_IRREDUCIBLE_LOOP)
	    *irred_invalidated = true;
	}
      /* Something has changed, insert predecessors into queue.  */
      FOR_EACH_EDGE (e, ei, from->preds)
	{
	  basic_block pred = e->src;
	  struct loop *nca;
	  if (e->flags & EDGE_IRREDUCIBLE_LOOP)
	    *irred_invalidated = true;
	  if (bitmap_bit_p (in_queue, pred->index))
	    continue;
	  /* If it is subloop, then it either was not moved, or
	     the path up the loop tree from base_loop do not contain
	     it.  */
	  nca = find_common_loop (pred->loop_father, base_loop);
	  if (pred->loop_father != base_loop
	      && (nca == base_loop
		  || nca != pred->loop_father))
	    pred = pred->loop_father->header;
	  else if (!flow_loop_nested_p (target_loop, pred->loop_father))
	    {
	      /* If PRED is already higher in the loop hierarchy than the
		 TARGET_LOOP to that we moved FROM, the change of the position
		 of FROM does not affect the position of PRED, so there is no
		 point in processing it.  */
	      continue;
	    }
	  if (bitmap_bit_p (in_queue, pred->index))
	    continue;
	  /* Schedule the basic block.  */
	  *qend = pred;
	  qend++;
	  if (qend == qtop)
	    qend = queue;
	  bitmap_set_bit (in_queue, pred->index);
	}
    }
  free (queue);
}
/* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
   and update loop structures and dominators.  Return true if we were able
   to remove the path, false otherwise (and nothing is affected then).  */
bool
remove_path (edge e, bool *irred_invalidated,
	     bitmap loop_closed_ssa_invalidated)
{
  edge ae;
  basic_block *rem_bbs, *bord_bbs, from, bb;
  vec<basic_block> dom_bbs;
  int i, nrem, n_bord_bbs;
  bool local_irred_invalidated = false;
  edge_iterator ei;
  struct loop *l, *f;
  if (! irred_invalidated)
    irred_invalidated = &local_irred_invalidated;
  if (!can_remove_branch_p (e))
    return false;
  /* Keep track of whether we need to update information about irreducible
     regions.  This is the case if the removed area is a part of the
     irreducible region, or if the set of basic blocks that belong to a loop
     that is inside an irreducible region is changed, or if such a loop is
     removed.  */
  if (e->flags & EDGE_IRREDUCIBLE_LOOP)
    *irred_invalidated = true;
  /* We need to check whether basic blocks are dominated by the edge
     e, but we only have basic block dominators.  This is easy to
     fix -- when e->dest has exactly one predecessor, this corresponds
     to blocks dominated by e->dest, if not, split the edge.  */
  if (!single_pred_p (e->dest))
    e = single_pred_edge (split_edge (e));
  /* It may happen that by removing path we remove one or more loops
     we belong to.  In this case first unloop the loops, then proceed
     normally.   We may assume that e->dest is not a header of any loop,
     as it now has exactly one predecessor.  */
  for (l = e->src->loop_father; loop_outer (l); l = f)
    {
      f = loop_outer (l);
      if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
        unloop (l, irred_invalidated, loop_closed_ssa_invalidated);
    }
  /* Identify the path.  */
  nrem = find_path (e, &rem_bbs);
  n_bord_bbs = 0;
  bord_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
  auto_sbitmap seen (last_basic_block_for_fn (cfun));
  bitmap_clear (seen);
  /* Find "border" hexes -- i.e. those with predecessor in removed path.  */
  for (i = 0; i < nrem; i++)
    bitmap_set_bit (seen, rem_bbs[i]->index);
  if (!*irred_invalidated)
    FOR_EACH_EDGE (ae, ei, e->src->succs)
      if (ae != e && ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
	  && !bitmap_bit_p (seen, ae->dest->index)
	  && ae->flags & EDGE_IRREDUCIBLE_LOOP)
	{
	  *irred_invalidated = true;
	  break;
	}
  for (i = 0; i < nrem; i++)
    {
      bb = rem_bbs[i];
      FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
	if (ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
	    && !bitmap_bit_p (seen, ae->dest->index))
	  {
	    bitmap_set_bit (seen, ae->dest->index);
	    bord_bbs[n_bord_bbs++] = ae->dest;
	    if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
	      *irred_invalidated = true;
	  }
    }
  /* Remove the path.  */
  from = e->src;
  remove_branch (e);
  dom_bbs.create (0);
  /* Cancel loops contained in the path.  */
  for (i = 0; i < nrem; i++)
    if (rem_bbs[i]->loop_father->header == rem_bbs[i])
      cancel_loop_tree (rem_bbs[i]->loop_father);
  remove_bbs (rem_bbs, nrem);
  free (rem_bbs);
  /* Find blocks whose dominators may be affected.  */
  bitmap_clear (seen);
  for (i = 0; i < n_bord_bbs; i++)
    {
      basic_block ldom;
      bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
      if (bitmap_bit_p (seen, bb->index))
	continue;
      bitmap_set_bit (seen, bb->index);
      for (ldom = first_dom_son (CDI_DOMINATORS, bb);
	   ldom;
	   ldom = next_dom_son (CDI_DOMINATORS, ldom))
	if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
	  dom_bbs.safe_push (ldom);
    }
  /* Recount dominators.  */
  iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
  dom_bbs.release ();
  free (bord_bbs);
  /* Fix placements of basic blocks inside loops and the placement of
     loops in the loop tree.  */
  fix_bb_placements (from, irred_invalidated, loop_closed_ssa_invalidated);
  fix_loop_placements (from->loop_father, irred_invalidated);
  if (local_irred_invalidated
      && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
    mark_irreducible_loops ();
  return true;
}
/* Creates place for a new LOOP in loops structure of FN.  */
void
place_new_loop (struct function *fn, struct loop *loop)
{
  loop->num = number_of_loops (fn);
  vec_safe_push (loops_for_fn (fn)->larray, loop);
}
/* Given LOOP structure with filled header and latch, find the body of the
   corresponding loop and add it to loops tree.  Insert the LOOP as a son of
   outer.  */
void
add_loop (struct loop *loop, struct loop *outer)
{
  basic_block *bbs;
  int i, n;
  struct loop *subloop;
  edge e;
  edge_iterator ei;
  /* Add it to loop structure.  */
  place_new_loop (cfun, loop);
  flow_loop_tree_node_add (outer, loop);
  /* Find its nodes.  */
  bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
  n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
  for (i = 0; i < n; i++)
    {
      if (bbs[i]->loop_father == outer)
	{
	  remove_bb_from_loops (bbs[i]);
	  add_bb_to_loop (bbs[i], loop);
	  continue;
	}
      loop->num_nodes++;
      /* If we find a direct subloop of OUTER, move it to LOOP.  */
      subloop = bbs[i]->loop_father;
      if (loop_outer (subloop) == outer
	  && subloop->header == bbs[i])
	{
	  flow_loop_tree_node_remove (subloop);
	  flow_loop_tree_node_add (loop, subloop);
	}
    }
  /* Update the information about loop exit edges.  */
  for (i = 0; i < n; i++)
    {
      FOR_EACH_EDGE (e, ei, bbs[i]->succs)
	{
	  rescan_loop_exit (e, false, false);
	}
    }
  free (bbs);
}
/* Scale profile of loop by P.  */
void
scale_loop_frequencies (struct loop *loop, profile_probability p)
{
  basic_block *bbs;
  bbs = get_loop_body (loop);
  scale_bbs_frequencies (bbs, loop->num_nodes, p);
  free (bbs);
}
/* Scale profile in LOOP by P.
   If ITERATION_BOUND is non-zero, scale even further if loop is predicted
   to iterate too many times.
   Before caling this function, preheader block profile should be already
   scaled to final count.  This is necessary because loop iterations are
   determined by comparing header edge count to latch ege count and thus
   they need to be scaled synchronously.  */
void
scale_loop_profile (struct loop *loop, profile_probability p,
		    gcov_type iteration_bound)
{
  edge e, preheader_e;
  edge_iterator ei;
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, ";; Scaling loop %i with scale ",
	       loop->num);
      p.dump (dump_file);
      fprintf (dump_file, " bounding iterations to %i\n",
	       (int)iteration_bound);
    }
  /* Scale the probabilities.  */
  scale_loop_frequencies (loop, p);
  if (iteration_bound == 0)
    return;
  gcov_type iterations = expected_loop_iterations_unbounded (loop, NULL, true);
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, ";; guessed iterations after scaling %i\n",
	       (int)iterations);
    }
  /* See if loop is predicted to iterate too many times.  */
  if (iterations <= iteration_bound)
    return;
  preheader_e = loop_preheader_edge (loop);
  /* We could handle also loops without preheaders, but bounding is
     currently used only by optimizers that have preheaders constructed.  */
  gcc_checking_assert (preheader_e);
  profile_count count_in = preheader_e->count ();
  if (count_in > profile_count::zero ()
      && loop->header->count.initialized_p ())
    {
      profile_count count_delta = profile_count::zero ();
      e = single_exit (loop);
      if (e)
	{
	  edge other_e;
	  FOR_EACH_EDGE (other_e, ei, e->src->succs)
	    if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE))
		&& e != other_e)
	      break;
	  /* Probability of exit must be 1/iterations.  */
	  count_delta = e->count ();
	  e->probability = profile_probability::always ()
				    .apply_scale (1, iteration_bound);
	  other_e->probability = e->probability.invert ();
	  /* In code below we only handle the following two updates.  */
	  if (other_e->dest != loop->header
	      && other_e->dest != loop->latch
	      && (dump_file && (dump_flags & TDF_DETAILS)))
	    {
	      fprintf (dump_file, ";; giving up on update of paths from "
		       "exit condition to latch\n");
	    }
	}
      else
        if (dump_file && (dump_flags & TDF_DETAILS))
	  fprintf (dump_file, ";; Loop has multiple exit edges; "
	      		      "giving up on exit condition update\n");
      /* Roughly speaking we want to reduce the loop body profile by the
	 difference of loop iterations.  We however can do better if
	 we look at the actual profile, if it is available.  */
      p = profile_probability::always ();
      count_in = count_in.apply_scale (iteration_bound, 1);
      p = count_in.probability_in (loop->header->count);
      if (!(p > profile_probability::never ()))
	p = profile_probability::very_unlikely ();
      if (p == profile_probability::always ()
	  || !p.initialized_p ())
	return;
      /* If latch exists, change its count, since we changed
	 probability of exit.  Theoretically we should update everything from
	 source of exit edge to latch, but for vectorizer this is enough.  */
      if (loop->latch && loop->latch != e->src)
	loop->latch->count += count_delta;
      /* Scale the probabilities.  */
      scale_loop_frequencies (loop, p);
      /* Change latch's count back.  */
      if (loop->latch && loop->latch != e->src)
	loop->latch->count -= count_delta;
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, ";; guessed iterations are now %i\n",
		 (int)expected_loop_iterations_unbounded (loop, NULL, true));
    }
}
/* Recompute dominance information for basic blocks outside LOOP.  */
static void
update_dominators_in_loop (struct loop *loop)
{
  vec<basic_block> dom_bbs = vNULL;
  basic_block *body;
  unsigned i;
  auto_sbitmap seen (last_basic_block_for_fn (cfun));
  bitmap_clear (seen);
  body = get_loop_body (loop);
  for (i = 0; i < loop->num_nodes; i++)
    bitmap_set_bit (seen, body[i]->index);
  for (i = 0; i < loop->num_nodes; i++)
    {
      basic_block ldom;
      for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
	   ldom;
	   ldom = next_dom_son (CDI_DOMINATORS, ldom))
	if (!bitmap_bit_p (seen, ldom->index))
	  {
	    bitmap_set_bit (seen, ldom->index);
	    dom_bbs.safe_push (ldom);
	  }
    }
  iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
  free (body);
  dom_bbs.release ();
}
/* Creates an if region as shown above. CONDITION is used to create
   the test for the if.
   |
   |     -------------                 -------------
   |     |  pred_bb  |                 |  pred_bb  |
   |     -------------                 -------------
   |           |                             |
   |           |                             | ENTRY_EDGE
   |           | ENTRY_EDGE                  V
   |           |             ====>     -------------
   |           |                       |  cond_bb  |
   |           |                       | CONDITION |
   |           |                       -------------
   |           V                        /         \
   |     -------------         e_false /           \ e_true
   |     |  succ_bb  |                V             V
   |     -------------         -----------       -----------
   |                           | false_bb |      | true_bb |
   |                           -----------       -----------
   |                                   \           /
   |                                    \         /
   |                                     V       V
   |                                   -------------
   |                                   |  join_bb  |
   |                                   -------------
   |                                         | exit_edge (result)
   |                                         V
   |                                    -----------
   |                                    | succ_bb |
   |                                    -----------
   |
 */
edge
create_empty_if_region_on_edge (edge entry_edge, tree condition)
{
  basic_block cond_bb, true_bb, false_bb, join_bb;
  edge e_true, e_false, exit_edge;
  gcond *cond_stmt;
  tree simple_cond;
  gimple_stmt_iterator gsi;
  cond_bb = split_edge (entry_edge);
  /* Insert condition in cond_bb.  */
  gsi = gsi_last_bb (cond_bb);
  simple_cond =
    force_gimple_operand_gsi (&gsi, condition, true, NULL,
			      false, GSI_NEW_STMT);
  cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
  gsi = gsi_last_bb (cond_bb);
  gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
  join_bb = split_edge (single_succ_edge (cond_bb));
  e_true = single_succ_edge (cond_bb);
  true_bb = split_edge (e_true);
  e_false = make_edge (cond_bb, join_bb, 0);
  false_bb = split_edge (e_false);
  e_true->flags &= ~EDGE_FALLTHRU;
  e_true->flags |= EDGE_TRUE_VALUE;
  e_false->flags &= ~EDGE_FALLTHRU;
  e_false->flags |= EDGE_FALSE_VALUE;
  set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
  set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
  set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
  set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
  exit_edge = single_succ_edge (join_bb);
  if (single_pred_p (exit_edge->dest))
    set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
  return exit_edge;
}
/* create_empty_loop_on_edge
   |
   |    - pred_bb -                   ------ pred_bb ------
   |   |           |                 | iv0 = initial_value |
   |    -----|-----                   ---------|-----------
   |         |                       ______    | entry_edge
   |         | entry_edge           /      |   |
   |         |             ====>   |      -V---V- loop_header -------------
   |         V                     |     | iv_before = phi (iv0, iv_after) |
   |    - succ_bb -                |      ---|-----------------------------
   |   |           |               |         |
   |    -----------                |      ---V--- loop_body ---------------
   |                               |     | iv_after = iv_before + stride   |
   |                               |     | if (iv_before < upper_bound)    |
   |                               |      ---|--------------\--------------
   |                               |         |               \ exit_e
   |                               |         V                \
   |                               |       - loop_latch -      V- succ_bb -
   |                               |      |              |     |           |
   |                               |       /-------------       -----------
   |                                \ ___ /
   Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
   that is used before the increment of IV. IV_BEFORE should be used for
   adding code to the body that uses the IV.  OUTER is the outer loop in
   which the new loop should be inserted.
   Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
   inserted on the loop entry edge.  This implies that this function
   should be used only when the UPPER_BOUND expression is a loop
   invariant.  */
struct loop *
create_empty_loop_on_edge (edge entry_edge,
			   tree initial_value,
			   tree stride, tree upper_bound,
			   tree iv,
			   tree *iv_before,
			   tree *iv_after,
			   struct loop *outer)
{
  basic_block loop_header, loop_latch, succ_bb, pred_bb;
  struct loop *loop;
  gimple_stmt_iterator gsi;
  gimple_seq stmts;
  gcond *cond_expr;
  tree exit_test;
  edge exit_e;
  gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
  /* Create header, latch and wire up the loop.  */
  pred_bb = entry_edge->src;
  loop_header = split_edge (entry_edge);
  loop_latch = split_edge (single_succ_edge (loop_header));
  succ_bb = single_succ (loop_latch);
  make_edge (loop_header, succ_bb, 0);
  redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
  /* Set immediate dominator information.  */
  set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
  set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
  set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
  /* Initialize a loop structure and put it in a loop hierarchy.  */
  loop = alloc_loop ();
  loop->header = loop_header;
  loop->latch = loop_latch;
  add_loop (loop, outer);
  /* TODO: Fix counts.  */
  scale_loop_frequencies (loop, profile_probability::even ());
  /* Update dominators.  */
  update_dominators_in_loop (loop);
  /* Modify edge flags.  */
  exit_e = single_exit (loop);
  exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
  single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
  /* Construct IV code in loop.  */
  initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
  if (stmts)
    {
      gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
      gsi_commit_edge_inserts ();
    }
  upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
  if (stmts)
    {
      gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
      gsi_commit_edge_inserts ();
    }
  gsi = gsi_last_bb (loop_header);
  create_iv (initial_value, stride, iv, loop, &gsi, false,
	     iv_before, iv_after);
  /* Insert loop exit condition.  */
  cond_expr = gimple_build_cond
    (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
  exit_test = gimple_cond_lhs (cond_expr);
  exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
					false, GSI_NEW_STMT);
  gimple_cond_set_lhs (cond_expr, exit_test);
  gsi = gsi_last_bb (exit_e->src);
  gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
  split_block_after_labels (loop_header);
  return loop;
}
/* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
   latch to header and update loop tree and dominators
   accordingly. Everything between them plus LATCH_EDGE destination must
   be dominated by HEADER_EDGE destination, and back-reachable from
   LATCH_EDGE source.  HEADER_EDGE is redirected to basic block SWITCH_BB,
   FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
   TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
   Returns the newly created loop.  Frequencies and counts in the new loop
   are scaled by FALSE_SCALE and in the old one by TRUE_SCALE.  */
struct loop *
loopify (edge latch_edge, edge header_edge,
	 basic_block switch_bb, edge true_edge, edge false_edge,
	 bool redirect_all_edges, profile_probability true_scale,
	 profile_probability false_scale)
{
  basic_block succ_bb = latch_edge->dest;
  basic_block pred_bb = header_edge->src;
  struct loop *loop = alloc_loop ();
  struct loop *outer = loop_outer (succ_bb->loop_father);
  profile_count cnt;
  loop->header = header_edge->dest;
  loop->latch = latch_edge->src;
  cnt = header_edge->count ();
  /* Redirect edges.  */
  loop_redirect_edge (latch_edge, loop->header);
  loop_redirect_edge (true_edge, succ_bb);
  /* During loop versioning, one of the switch_bb edge is already properly
     set. Do not redirect it again unless redirect_all_edges is true.  */
  if (redirect_all_edges)
    {
      loop_redirect_edge (header_edge, switch_bb);
      loop_redirect_edge (false_edge, loop->header);
      /* Update dominators.  */
      set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
      set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
    }
  set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
  /* Compute new loop.  */
  add_loop (loop, outer);
  /* Add switch_bb to appropriate loop.  */
  if (switch_bb->loop_father)
    remove_bb_from_loops (switch_bb);
  add_bb_to_loop (switch_bb, outer);
  /* Fix counts.  */
  if (redirect_all_edges)
    {
      switch_bb->count = cnt;
    }
  scale_loop_frequencies (loop, false_scale);
  scale_loop_frequencies (succ_bb->loop_father, true_scale);
  update_dominators_in_loop (loop);
  return loop;
}
/* Remove the latch edge of a LOOP and update loops to indicate that
   the LOOP was removed.  After this function, original loop latch will
   have no successor, which caller is expected to fix somehow.
   If this may cause the information about irreducible regions to become
   invalid, IRRED_INVALIDATED is set to true.  
   LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
   basic blocks that had non-trivial update on their loop_father.*/
void
unloop (struct loop *loop, bool *irred_invalidated,
	bitmap loop_closed_ssa_invalidated)
{
  basic_block *body;
  struct loop *ploop;
  unsigned i, n;
  basic_block latch = loop->latch;
  bool dummy = false;
  if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
    *irred_invalidated = true;
  /* This is relatively straightforward.  The dominators are unchanged, as
     loop header dominates loop latch, so the only thing we have to care of
     is the placement of loops and basic blocks inside the loop tree.  We
     move them all to the loop->outer, and then let fix_bb_placements do
     its work.  */
  body = get_loop_body (loop);
  n = loop->num_nodes;
  for (i = 0; i < n; i++)
    if (body[i]->loop_father == loop)
      {
	remove_bb_from_loops (body[i]);
	add_bb_to_loop (body[i], loop_outer (loop));
      }
  free (body);
  while (loop->inner)
    {
      ploop = loop->inner;
      flow_loop_tree_node_remove (ploop);
      flow_loop_tree_node_add (loop_outer (loop), ploop);
    }
  /* Remove the loop and free its data.  */
  delete_loop (loop);
  remove_edge (single_succ_edge (latch));
  /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
     there is an irreducible region inside the cancelled loop, the flags will
     be still correct.  */
  fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
}
/* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
   condition stated in description of fix_loop_placement holds for them.
   It is used in case when we removed some edges coming out of LOOP, which
   may cause the right placement of LOOP inside loop tree to change.
   IRRED_INVALIDATED is set to true if a change in the loop structures might
   invalidate the information about irreducible regions.  */
static void
fix_loop_placements (struct loop *loop, bool *irred_invalidated)
{
  struct loop *outer;
  while (loop_outer (loop))
    {
      outer = loop_outer (loop);
      if (!fix_loop_placement (loop, irred_invalidated))
	break;
      /* Changing the placement of a loop in the loop tree may alter the
	 validity of condition 2) of the description of fix_bb_placement
	 for its preheader, because the successor is the header and belongs
	 to the loop.  So call fix_bb_placements to fix up the placement
	 of the preheader and (possibly) of its predecessors.  */
      fix_bb_placements (loop_preheader_edge (loop)->src,
			 irred_invalidated, NULL);
      loop = outer;
    }
}
/* Duplicate loop bounds and other information we store about
   the loop into its duplicate.  */
void
copy_loop_info (struct loop *loop, struct loop *target)
{
  gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
  target->any_upper_bound = loop->any_upper_bound;
  target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
  target->any_likely_upper_bound = loop->any_likely_upper_bound;
  target->nb_iterations_likely_upper_bound
    = loop->nb_iterations_likely_upper_bound;
  target->any_estimate = loop->any_estimate;
  target->nb_iterations_estimate = loop->nb_iterations_estimate;
  target->estimate_state = loop->estimate_state;
  target->constraints = loop->constraints;
  target->warned_aggressive_loop_optimizations
    |= loop->warned_aggressive_loop_optimizations;
  target->in_oacc_kernels_region = loop->in_oacc_kernels_region;
}
/* Copies copy of LOOP as subloop of TARGET loop, placing newly
   created loop into loops structure.  If AFTER is non-null
   the new loop is added at AFTER->next, otherwise in front of TARGETs
   sibling list.  */
struct loop *
duplicate_loop (struct loop *loop, struct loop *target, struct loop *after)
{
  struct loop *cloop;
  cloop = alloc_loop ();
  place_new_loop (cfun, cloop);
 
  copy_loop_info (loop, cloop);
  /* Mark the new loop as copy of LOOP.  */
  set_loop_copy (loop, cloop);
  /* Add it to target.  */
  flow_loop_tree_node_add (target, cloop, after);
  return cloop;
}
/* Copies structure of subloops of LOOP into TARGET loop, placing
   newly created loops into loop tree at the end of TARGETs sibling
   list in the original order.  */
void
duplicate_subloops (struct loop *loop, struct loop *target)
{
  struct loop *aloop, *cloop, *tail;
  for (tail = target->inner; tail && tail->next; tail = tail->next)
    ;
  for (aloop = loop->inner; aloop; aloop = aloop->next)
    {
      cloop = duplicate_loop (aloop, target, tail);
      tail = cloop;
      gcc_assert(!tail->next);
      duplicate_subloops (aloop, cloop);
    }
}
/* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
   into TARGET loop, placing newly created loops into loop tree adding
   them to TARGETs sibling list at the end in order.  */
static void
copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
{
  struct loop *aloop, *tail;
  int i;
  for (tail = target->inner; tail && tail->next; tail = tail->next)
    ;
  for (i = 0; i < n; i++)
    {
      aloop = duplicate_loop (copied_loops[i], target, tail);
      tail = aloop;
      gcc_assert(!tail->next);
      duplicate_subloops (copied_loops[i], aloop);
    }
}
/* Redirects edge E to basic block DEST.  */
static void
loop_redirect_edge (edge e, basic_block dest)
{
  if (e->dest == dest)
    return;
  redirect_edge_and_branch_force (e, dest);
}
/* Check whether LOOP's body can be duplicated.  */
bool
can_duplicate_loop_p (const struct loop *loop)
{
  int ret;
  basic_block *bbs = get_loop_body (loop);
  ret = can_copy_bbs_p (bbs, loop->num_nodes);
  free (bbs);
  return ret;
}
/* Duplicates body of LOOP to given edge E NDUPL times.  Takes care of updating
   loop structure and dominators (order of inner subloops is retained).
   E's destination must be LOOP header for this to work, i.e. it must be entry
   or latch edge of this loop; these are unique, as the loops must have
   preheaders for this function to work correctly (in case E is latch, the
   function unrolls the loop, if E is entry edge, it peels the loop).  Store
   edges created by copying ORIG edge from copies corresponding to set bits in
   WONT_EXIT bitmap (bit 0 corresponds to original LOOP body, the other copies
   are numbered in order given by control flow through them) into TO_REMOVE
   array.  Returns false if duplication is
   impossible.  */
bool
duplicate_loop_to_header_edge (struct loop *loop, edge e,
			       unsigned int ndupl, sbitmap wont_exit,
			       edge orig, vec<edge> *to_remove,
			       int flags)
{
  struct loop *target, *aloop;
  struct loop **orig_loops;
  unsigned n_orig_loops;
  basic_block header = loop->header, latch = loop->latch;
  basic_block *new_bbs, *bbs, *first_active;
  basic_block new_bb, bb, first_active_latch = NULL;
  edge ae, latch_edge;
  edge spec_edges[2], new_spec_edges[2];
  const int SE_LATCH = 0;
  const int SE_ORIG = 1;
  unsigned i, j, n;
  int is_latch = (latch == e->src);
  profile_probability *scale_step = NULL;
  profile_probability scale_main = profile_probability::always ();
  profile_probability scale_act = profile_probability::always ();
  profile_count after_exit_num = profile_count::zero (),
	        after_exit_den = profile_count::zero ();
  bool scale_after_exit = false;
  int add_irreducible_flag;
  basic_block place_after;
  bitmap bbs_to_scale = NULL;
  bitmap_iterator bi;
  gcc_assert (e->dest == loop->header);
  gcc_assert (ndupl > 0);
  if (orig)
    {
      /* Orig must be edge out of the loop.  */
      gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
      gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
    }
  n = loop->num_nodes;
  bbs = get_loop_body_in_dom_order (loop);
  gcc_assert (bbs[0] == loop->header);
  gcc_assert (bbs[n  - 1] == loop->latch);
  /* Check whether duplication is possible.  */
  if (!can_copy_bbs_p (bbs, loop->num_nodes))
    {
      free (bbs);
      return false;
    }
  new_bbs = XNEWVEC (basic_block, loop->num_nodes);
  /* In case we are doing loop peeling and the loop is in the middle of
     irreducible region, the peeled copies will be inside it too.  */
  add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
  gcc_assert (!is_latch || !add_irreducible_flag);
  /* Find edge from latch.  */
  latch_edge = loop_latch_edge (loop);
  if (flags & DLTHE_FLAG_UPDATE_FREQ)
    {
      /* Calculate coefficients by that we have to scale counts
	 of duplicated loop bodies.  */
      profile_count count_in = header->count;
      profile_count count_le = latch_edge->count ();
      profile_count count_out_orig = orig ? orig->count () : count_in - count_le;
      profile_probability prob_pass_thru = count_le.probability_in (count_in);
      profile_probability prob_pass_wont_exit =
	      (count_le + count_out_orig).probability_in (count_in);
      if (orig && orig->probability.initialized_p ()
	  && !(orig->probability == profile_probability::always ()))
	{
	  /* The blocks that are dominated by a removed exit edge ORIG have
	     frequencies scaled by this.  */
	  if (orig->count ().initialized_p ())
	    {
	      after_exit_num = orig->src->count;
	      after_exit_den = after_exit_num - orig->count ();
	      scale_after_exit = true;
	    }
	  bbs_to_scale = BITMAP_ALLOC (NULL);
	  for (i = 0; i < n; i++)
	    {
	      if (bbs[i] != orig->src
		  && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
		bitmap_set_bit (bbs_to_scale, i);
	    }
	}
      scale_step = XNEWVEC (profile_probability, ndupl);
      for (i = 1; i <= ndupl; i++)
	scale_step[i - 1] = bitmap_bit_p (wont_exit, i)
				? prob_pass_wont_exit
				: prob_pass_thru;
      /* Complete peeling is special as the probability of exit in last
	 copy becomes 1.  */
      if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
	{
	  profile_count wanted_count = e->count ();
	  gcc_assert (!is_latch);
	  /* First copy has count of incoming edge.  Each subsequent
	     count should be reduced by prob_pass_wont_exit.  Caller
	     should've managed the flags so all except for original loop
	     has won't exist set.  */
	  scale_act = wanted_count.probability_in (count_in);
	  /* Now simulate the duplication adjustments and compute header
	     frequency of the last copy.  */
	  for (i = 0; i < ndupl; i++)
	    wanted_count = wanted_count.apply_probability (scale_step [i]);
	  scale_main = wanted_count.probability_in (count_in);
	}
      /* Here we insert loop bodies inside the loop itself (for loop unrolling).
	 First iteration will be original loop followed by duplicated bodies.
	 It is necessary to scale down the original so we get right overall
	 number of iterations.  */
      else if (is_latch)
	{
	  profile_probability prob_pass_main = bitmap_bit_p (wont_exit, 0)
							? prob_pass_wont_exit
							: prob_pass_thru;
	  profile_probability p = prob_pass_main;
	  profile_count scale_main_den = count_in;
	  for (i = 0; i < ndupl; i++)
	    {
	      scale_main_den += count_in.apply_probability (p);
	      p = p * scale_step[i];
	    }
	  /* If original loop is executed COUNT_IN times, the unrolled
	     loop will account SCALE_MAIN_DEN times.  */
	  scale_main = count_in.probability_in (scale_main_den);
	  scale_act = scale_main * prob_pass_main;
	}
      else
	{
	  profile_count preheader_count = e->count ();
	  for (i = 0; i < ndupl; i++)
	    scale_main = scale_main * scale_step[i];
	  scale_act = preheader_count.probability_in (count_in);
	}
    }
  /* Loop the new bbs will belong to.  */
  target = e->src->loop_father;
  /* Original loops.  */
  n_orig_loops = 0;
  for (aloop = loop->inner; aloop; aloop = aloop->next)
    n_orig_loops++;
  orig_loops = XNEWVEC (struct loop *, n_orig_loops);
  for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
    orig_loops[i] = aloop;
  set_loop_copy (loop, target);
  first_active = XNEWVEC (basic_block, n);
  if (is_latch)
    {
      memcpy (first_active, bbs, n * sizeof (basic_block));
      first_active_latch = latch;
    }
  spec_edges[SE_ORIG] = orig;
  spec_edges[SE_LATCH] = latch_edge;
  place_after = e->src;
  for (j = 0; j < ndupl; j++)
    {
      /* Copy loops.  */
      copy_loops_to (orig_loops, n_orig_loops, target);
      /* Copy bbs.  */
      copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
		place_after, true);
      place_after = new_spec_edges[SE_LATCH]->src;
      if (flags & DLTHE_RECORD_COPY_NUMBER)
	for (i = 0; i < n; i++)
	  {
	    gcc_assert (!new_bbs[i]->aux);
	    new_bbs[i]->aux = (void *)(size_t)(j + 1);
	  }
      /* Note whether the blocks and edges belong to an irreducible loop.  */
      if (add_irreducible_flag)
	{
	  for (i = 0; i < n; i++)
	    new_bbs[i]->flags |= BB_DUPLICATED;
	  for (i = 0; i < n; i++)
	    {
	      edge_iterator ei;
	      new_bb = new_bbs[i];
	      if (new_bb->loop_father == target)
		new_bb->flags |= BB_IRREDUCIBLE_LOOP;
	      FOR_EACH_EDGE (ae, ei, new_bb->succs)
		if ((ae->dest->flags & BB_DUPLICATED)
		    && (ae->src->loop_father == target
			|| ae->dest->loop_father == target))
		  ae->flags |= EDGE_IRREDUCIBLE_LOOP;
	    }
	  for (i = 0; i < n; i++)
	    new_bbs[i]->flags &= ~BB_DUPLICATED;
	}
      /* Redirect the special edges.  */
      if (is_latch)
	{
	  redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
	  redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
					  loop->header);
	  set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
	  latch = loop->latch = new_bbs[n - 1];
	  e = latch_edge = new_spec_edges[SE_LATCH];
	}
      else
	{
	  redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
					  loop->header);
	  redirect_edge_and_branch_force (e, new_bbs[0]);
	  set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
	  e = new_spec_edges[SE_LATCH];
	}
      /* Record exit edge in this copy.  */
      if (orig && bitmap_bit_p (wont_exit, j + 1))
	{
	  if (to_remove)
	    to_remove->safe_push (new_spec_edges[SE_ORIG]);
	  force_edge_cold (new_spec_edges[SE_ORIG], true);
	  /* Scale the frequencies of the blocks dominated by the exit.  */
	  if (bbs_to_scale && scale_after_exit)
	    {
	      EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
		scale_bbs_frequencies_profile_count (new_bbs + i, 1, after_exit_num,
						     after_exit_den);
	    }
	}
      /* Record the first copy in the control flow order if it is not
	 the original loop (i.e. in case of peeling).  */
      if (!first_active_latch)
	{
	  memcpy (first_active, new_bbs, n * sizeof (basic_block));
	  first_active_latch = new_bbs[n - 1];
	}
      /* Set counts and frequencies.  */
      if (flags & DLTHE_FLAG_UPDATE_FREQ)
	{
	  scale_bbs_frequencies (new_bbs, n, scale_act);
	  scale_act = scale_act * scale_step[j];
	}
    }
  free (new_bbs);
  free (orig_loops);
  /* Record the exit edge in the original loop body, and update the frequencies.  */
  if (orig && bitmap_bit_p (wont_exit, 0))
    {
      if (to_remove)
	to_remove->safe_push (orig);
      force_edge_cold (orig, true);
      /* Scale the frequencies of the blocks dominated by the exit.  */
      if (bbs_to_scale && scale_after_exit)
	{
	  EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
	    scale_bbs_frequencies_profile_count (bbs + i, 1, after_exit_num,
						 after_exit_den);
	}
    }
  /* Update the original loop.  */
  if (!is_latch)
    set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
  if (flags & DLTHE_FLAG_UPDATE_FREQ)
    {
      scale_bbs_frequencies (bbs, n, scale_main);
      free (scale_step);
    }
  /* Update dominators of outer blocks if affected.  */
  for (i = 0; i < n; i++)
    {
      basic_block dominated, dom_bb;
      vec<basic_block> dom_bbs;
      unsigned j;
      bb = bbs[i];
      bb->aux = 0;
      dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
      FOR_EACH_VEC_ELT (dom_bbs, j, dominated)
	{
	  if (flow_bb_inside_loop_p (loop, dominated))
	    continue;
	  dom_bb = nearest_common_dominator (
			CDI_DOMINATORS, first_active[i], first_active_latch);
	  set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
	}
      dom_bbs.release ();
    }
  free (first_active);
  free (bbs);
  BITMAP_FREE (bbs_to_scale);
  return true;
}
/* A callback for make_forwarder block, to redirect all edges except for
   MFB_KJ_EDGE to the entry part.  E is the edge for that we should decide
   whether to redirect it.  */
edge mfb_kj_edge;
bool
mfb_keep_just (edge e)
{
  return e != mfb_kj_edge;
}
/* True when a candidate preheader BLOCK has predecessors from LOOP.  */
static bool
has_preds_from_loop (basic_block block, struct loop *loop)
{
  edge e;
  edge_iterator ei;
  FOR_EACH_EDGE (e, ei, block->preds)
    if (e->src->loop_father == loop)
      return true;
  return false;
}
/* Creates a pre-header for a LOOP.  Returns newly created block.  Unless
   CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
   entry; otherwise we also force preheader block to have only one successor.
   When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
   to be a fallthru predecessor to the loop header and to have only
   predecessors from outside of the loop.
   The function also updates dominators.  */
basic_block
create_preheader (struct loop *loop, int flags)
{
  edge e;
  basic_block dummy;
  int nentry = 0;
  bool irred = false;
  bool latch_edge_was_fallthru;
  edge one_succ_pred = NULL, single_entry = NULL;
  edge_iterator ei;
  FOR_EACH_EDGE (e, ei, loop->header->preds)
    {
      if (e->src == loop->latch)
	continue;
      irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
      nentry++;
      single_entry = e;
      if (single_succ_p (e->src))
	one_succ_pred = e;
    }
  gcc_assert (nentry);
  if (nentry == 1)
    {
      bool need_forwarder_block = false;
      /* We do not allow entry block to be the loop preheader, since we
	     cannot emit code there.  */
      if (single_entry->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
        need_forwarder_block = true;
      else
        {
          /* If we want simple preheaders, also force the preheader to have
             just a single successor.  */
          if ((flags & CP_SIMPLE_PREHEADERS)
              && !single_succ_p (single_entry->src))
            need_forwarder_block = true;
          /* If we want fallthru preheaders, also create forwarder block when
             preheader ends with a jump or has predecessors from loop.  */
          else if ((flags & CP_FALLTHRU_PREHEADERS)
                   && (JUMP_P (BB_END (single_entry->src))
                       || has_preds_from_loop (single_entry->src, loop)))
            need_forwarder_block = true;
        }
      if (! need_forwarder_block)
	return NULL;
    }
  mfb_kj_edge = loop_latch_edge (loop);
  latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
  if (nentry == 1
      && ((flags & CP_FALLTHRU_PREHEADERS) == 0
  	  || (single_entry->flags & EDGE_CROSSING) == 0))
    dummy = split_edge (single_entry);
  else
    {
      edge fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
      dummy = fallthru->src;
      loop->header = fallthru->dest;
    }
  /* Try to be clever in placing the newly created preheader.  The idea is to
     avoid breaking any "fallthruness" relationship between blocks.
     The preheader was created just before the header and all incoming edges
     to the header were redirected to the preheader, except the latch edge.
     So the only problematic case is when this latch edge was a fallthru
     edge: it is not anymore after the preheader creation so we have broken
     the fallthruness.  We're therefore going to look for a better place.  */
  if (latch_edge_was_fallthru)
    {
      if (one_succ_pred)
	e = one_succ_pred;
      else
	e = EDGE_PRED (dummy, 0);
      move_block_after (dummy, e->src);
    }
  if (irred)
    {
      dummy->flags |= BB_IRREDUCIBLE_LOOP;
      single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
    }
  if (dump_file)
    fprintf (dump_file, "Created preheader block for loop %i\n",
	     loop->num);
  if (flags & CP_FALLTHRU_PREHEADERS)
    gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
                && !JUMP_P (BB_END (dummy)));
  return dummy;
}
/* Create preheaders for each loop; for meaning of FLAGS see create_preheader.  */
void
create_preheaders (int flags)
{
  struct loop *loop;
  if (!current_loops)
    return;
  FOR_EACH_LOOP (loop, 0)
    create_preheader (loop, flags);
  loops_state_set (LOOPS_HAVE_PREHEADERS);
}
/* Forces all loop latches to have only single successor.  */
void
force_single_succ_latches (void)
{
  struct loop *loop;
  edge e;
  FOR_EACH_LOOP (loop, 0)
    {
      if (loop->latch != loop->header && single_succ_p (loop->latch))
	continue;
      e = find_edge (loop->latch, loop->header);
      gcc_checking_assert (e != NULL);
      split_edge (e);
    }
  loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
}
/* This function is called from loop_version.  It splits the entry edge
   of the loop we want to version, adds the versioning condition, and
   adjust the edges to the two versions of the loop appropriately.
   e is an incoming edge. Returns the basic block containing the
   condition.
   --- edge e ---- > [second_head]
   Split it and insert new conditional expression and adjust edges.
    --- edge e ---> [cond expr] ---> [first_head]
			|
			+---------> [second_head]
  THEN_PROB is the probability of then branch of the condition.
  ELSE_PROB is the probability of else branch. Note that they may be both
  REG_BR_PROB_BASE when condition is IFN_LOOP_VECTORIZED or
  IFN_LOOP_DIST_ALIAS.  */
static basic_block
lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
			   edge e, void *cond_expr,
			   profile_probability then_prob,
			   profile_probability else_prob)
{
  basic_block new_head = NULL;
  edge e1;
  gcc_assert (e->dest == second_head);
  /* Split edge 'e'. This will create a new basic block, where we can
     insert conditional expr.  */
  new_head = split_edge (e);
  lv_add_condition_to_bb (first_head, second_head, new_head,
			  cond_expr);
  /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there.  */
  e = single_succ_edge (new_head);
  e1 = make_edge (new_head, first_head,
		  current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
  e1->probability = then_prob;
  e->probability = else_prob;
  set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
  set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
  /* Adjust loop header phi nodes.  */
  lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
  return new_head;
}
/* Main entry point for Loop Versioning transformation.
   This transformation given a condition and a loop, creates
   -if (condition) { loop_copy1 } else { loop_copy2 },
   where loop_copy1 is the loop transformed in one way, and loop_copy2
   is the loop transformed in another way (or unchanged). COND_EXPR
   may be a run time test for things that were not resolved by static
   analysis (overlapping ranges (anti-aliasing), alignment, etc.).
   If non-NULL, CONDITION_BB is set to the basic block containing the
   condition.
   THEN_PROB is the probability of the then edge of the if.  THEN_SCALE
   is the ratio by that the frequencies in the original loop should
   be scaled.  ELSE_SCALE is the ratio by that the frequencies in the
   new loop should be scaled.
   If PLACE_AFTER is true, we place the new loop after LOOP in the
   instruction stream, otherwise it is placed before LOOP.  */
struct loop *
loop_version (struct loop *loop,
	      void *cond_expr, basic_block *condition_bb,
	      profile_probability then_prob, profile_probability else_prob,
	      profile_probability then_scale, profile_probability else_scale,
	      bool place_after)
{
  basic_block first_head, second_head;
  edge entry, latch_edge, true_edge, false_edge;
  int irred_flag;
  struct loop *nloop;
  basic_block cond_bb;
  /* Record entry and latch edges for the loop */
  entry = loop_preheader_edge (loop);
  irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
  entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
  /* Note down head of loop as first_head.  */
  first_head = entry->dest;
  /* Duplicate loop.  */
  if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
					       NULL, NULL, NULL, 0))
    {
      entry->flags |= irred_flag;
      return NULL;
    }
  /* After duplication entry edge now points to new loop head block.
     Note down new head as second_head.  */
  second_head = entry->dest;
  /* Split loop entry edge and insert new block with cond expr.  */
  cond_bb =  lv_adjust_loop_entry_edge (first_head, second_head,
					entry, cond_expr, then_prob, else_prob);
  if (condition_bb)
    *condition_bb = cond_bb;
  if (!cond_bb)
    {
      entry->flags |= irred_flag;
      return NULL;
    }
  latch_edge = single_succ_edge (get_bb_copy (loop->latch));
  extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
  nloop = loopify (latch_edge,
		   single_pred_edge (get_bb_copy (loop->header)),
		   cond_bb, true_edge, false_edge,
		   false /* Do not redirect all edges.  */,
		   then_scale, else_scale);
  copy_loop_info (loop, nloop);
  /* loopify redirected latch_edge. Update its PENDING_STMTS.  */
  lv_flush_pending_stmts (latch_edge);
  /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS.  */
  extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
  lv_flush_pending_stmts (false_edge);
  /* Adjust irreducible flag.  */
  if (irred_flag)
    {
      cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
      loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
      loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
      single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
    }
  if (place_after)
    {
      basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
      unsigned i;
      after = loop->latch;
      for (i = 0; i < nloop->num_nodes; i++)
	{
	  move_block_after (bbs[i], after);
	  after = bbs[i];
	}
      free (bbs);
    }
  /* At this point condition_bb is loop preheader with two successors,
     first_head and second_head.   Make sure that loop preheader has only
     one successor.  */
  split_edge (loop_preheader_edge (loop));
  split_edge (loop_preheader_edge (nloop));
  return nloop;
}
 |