1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759
|
/* Subroutines for insn-output.c for SPARC.
Copyright (C) 1987-2018 Free Software Foundation, Inc.
Contributed by Michael Tiemann (tiemann@cygnus.com)
64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
at Cygnus Support.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#define IN_TARGET_CODE 1
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "memmodel.h"
#include "gimple.h"
#include "df.h"
#include "tm_p.h"
#include "stringpool.h"
#include "attribs.h"
#include "expmed.h"
#include "optabs.h"
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "diagnostic-core.h"
#include "alias.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "calls.h"
#include "varasm.h"
#include "output.h"
#include "insn-attr.h"
#include "explow.h"
#include "expr.h"
#include "debug.h"
#include "cfgrtl.h"
#include "common/common-target.h"
#include "gimplify.h"
#include "langhooks.h"
#include "reload.h"
#include "params.h"
#include "tree-pass.h"
#include "context.h"
#include "builtins.h"
#include "tree-vector-builder.h"
/* This file should be included last. */
#include "target-def.h"
/* Processor costs */
struct processor_costs {
/* Integer load */
const int int_load;
/* Integer signed load */
const int int_sload;
/* Integer zeroed load */
const int int_zload;
/* Float load */
const int float_load;
/* fmov, fneg, fabs */
const int float_move;
/* fadd, fsub */
const int float_plusminus;
/* fcmp */
const int float_cmp;
/* fmov, fmovr */
const int float_cmove;
/* fmul */
const int float_mul;
/* fdivs */
const int float_div_sf;
/* fdivd */
const int float_div_df;
/* fsqrts */
const int float_sqrt_sf;
/* fsqrtd */
const int float_sqrt_df;
/* umul/smul */
const int int_mul;
/* mulX */
const int int_mulX;
/* integer multiply cost for each bit set past the most
significant 3, so the formula for multiply cost becomes:
if (rs1 < 0)
highest_bit = highest_clear_bit(rs1);
else
highest_bit = highest_set_bit(rs1);
if (highest_bit < 3)
highest_bit = 3;
cost = int_mul{,X} + ((highest_bit - 3) / int_mul_bit_factor);
A value of zero indicates that the multiply costs is fixed,
and not variable. */
const int int_mul_bit_factor;
/* udiv/sdiv */
const int int_div;
/* divX */
const int int_divX;
/* movcc, movr */
const int int_cmove;
/* penalty for shifts, due to scheduling rules etc. */
const int shift_penalty;
};
static const
struct processor_costs cypress_costs = {
COSTS_N_INSNS (2), /* int load */
COSTS_N_INSNS (2), /* int signed load */
COSTS_N_INSNS (2), /* int zeroed load */
COSTS_N_INSNS (2), /* float load */
COSTS_N_INSNS (5), /* fmov, fneg, fabs */
COSTS_N_INSNS (5), /* fadd, fsub */
COSTS_N_INSNS (1), /* fcmp */
COSTS_N_INSNS (1), /* fmov, fmovr */
COSTS_N_INSNS (7), /* fmul */
COSTS_N_INSNS (37), /* fdivs */
COSTS_N_INSNS (37), /* fdivd */
COSTS_N_INSNS (63), /* fsqrts */
COSTS_N_INSNS (63), /* fsqrtd */
COSTS_N_INSNS (1), /* imul */
COSTS_N_INSNS (1), /* imulX */
0, /* imul bit factor */
COSTS_N_INSNS (1), /* idiv */
COSTS_N_INSNS (1), /* idivX */
COSTS_N_INSNS (1), /* movcc/movr */
0, /* shift penalty */
};
static const
struct processor_costs supersparc_costs = {
COSTS_N_INSNS (1), /* int load */
COSTS_N_INSNS (1), /* int signed load */
COSTS_N_INSNS (1), /* int zeroed load */
COSTS_N_INSNS (0), /* float load */
COSTS_N_INSNS (3), /* fmov, fneg, fabs */
COSTS_N_INSNS (3), /* fadd, fsub */
COSTS_N_INSNS (3), /* fcmp */
COSTS_N_INSNS (1), /* fmov, fmovr */
COSTS_N_INSNS (3), /* fmul */
COSTS_N_INSNS (6), /* fdivs */
COSTS_N_INSNS (9), /* fdivd */
COSTS_N_INSNS (12), /* fsqrts */
COSTS_N_INSNS (12), /* fsqrtd */
COSTS_N_INSNS (4), /* imul */
COSTS_N_INSNS (4), /* imulX */
0, /* imul bit factor */
COSTS_N_INSNS (4), /* idiv */
COSTS_N_INSNS (4), /* idivX */
COSTS_N_INSNS (1), /* movcc/movr */
1, /* shift penalty */
};
static const
struct processor_costs hypersparc_costs = {
COSTS_N_INSNS (1), /* int load */
COSTS_N_INSNS (1), /* int signed load */
COSTS_N_INSNS (1), /* int zeroed load */
COSTS_N_INSNS (1), /* float load */
COSTS_N_INSNS (1), /* fmov, fneg, fabs */
COSTS_N_INSNS (1), /* fadd, fsub */
COSTS_N_INSNS (1), /* fcmp */
COSTS_N_INSNS (1), /* fmov, fmovr */
COSTS_N_INSNS (1), /* fmul */
COSTS_N_INSNS (8), /* fdivs */
COSTS_N_INSNS (12), /* fdivd */
COSTS_N_INSNS (17), /* fsqrts */
COSTS_N_INSNS (17), /* fsqrtd */
COSTS_N_INSNS (17), /* imul */
COSTS_N_INSNS (17), /* imulX */
0, /* imul bit factor */
COSTS_N_INSNS (17), /* idiv */
COSTS_N_INSNS (17), /* idivX */
COSTS_N_INSNS (1), /* movcc/movr */
0, /* shift penalty */
};
static const
struct processor_costs leon_costs = {
COSTS_N_INSNS (1), /* int load */
COSTS_N_INSNS (1), /* int signed load */
COSTS_N_INSNS (1), /* int zeroed load */
COSTS_N_INSNS (1), /* float load */
COSTS_N_INSNS (1), /* fmov, fneg, fabs */
COSTS_N_INSNS (1), /* fadd, fsub */
COSTS_N_INSNS (1), /* fcmp */
COSTS_N_INSNS (1), /* fmov, fmovr */
COSTS_N_INSNS (1), /* fmul */
COSTS_N_INSNS (15), /* fdivs */
COSTS_N_INSNS (15), /* fdivd */
COSTS_N_INSNS (23), /* fsqrts */
COSTS_N_INSNS (23), /* fsqrtd */
COSTS_N_INSNS (5), /* imul */
COSTS_N_INSNS (5), /* imulX */
0, /* imul bit factor */
COSTS_N_INSNS (5), /* idiv */
COSTS_N_INSNS (5), /* idivX */
COSTS_N_INSNS (1), /* movcc/movr */
0, /* shift penalty */
};
static const
struct processor_costs leon3_costs = {
COSTS_N_INSNS (1), /* int load */
COSTS_N_INSNS (1), /* int signed load */
COSTS_N_INSNS (1), /* int zeroed load */
COSTS_N_INSNS (1), /* float load */
COSTS_N_INSNS (1), /* fmov, fneg, fabs */
COSTS_N_INSNS (1), /* fadd, fsub */
COSTS_N_INSNS (1), /* fcmp */
COSTS_N_INSNS (1), /* fmov, fmovr */
COSTS_N_INSNS (1), /* fmul */
COSTS_N_INSNS (14), /* fdivs */
COSTS_N_INSNS (15), /* fdivd */
COSTS_N_INSNS (22), /* fsqrts */
COSTS_N_INSNS (23), /* fsqrtd */
COSTS_N_INSNS (5), /* imul */
COSTS_N_INSNS (5), /* imulX */
0, /* imul bit factor */
COSTS_N_INSNS (35), /* idiv */
COSTS_N_INSNS (35), /* idivX */
COSTS_N_INSNS (1), /* movcc/movr */
0, /* shift penalty */
};
static const
struct processor_costs sparclet_costs = {
COSTS_N_INSNS (3), /* int load */
COSTS_N_INSNS (3), /* int signed load */
COSTS_N_INSNS (1), /* int zeroed load */
COSTS_N_INSNS (1), /* float load */
COSTS_N_INSNS (1), /* fmov, fneg, fabs */
COSTS_N_INSNS (1), /* fadd, fsub */
COSTS_N_INSNS (1), /* fcmp */
COSTS_N_INSNS (1), /* fmov, fmovr */
COSTS_N_INSNS (1), /* fmul */
COSTS_N_INSNS (1), /* fdivs */
COSTS_N_INSNS (1), /* fdivd */
COSTS_N_INSNS (1), /* fsqrts */
COSTS_N_INSNS (1), /* fsqrtd */
COSTS_N_INSNS (5), /* imul */
COSTS_N_INSNS (5), /* imulX */
0, /* imul bit factor */
COSTS_N_INSNS (5), /* idiv */
COSTS_N_INSNS (5), /* idivX */
COSTS_N_INSNS (1), /* movcc/movr */
0, /* shift penalty */
};
static const
struct processor_costs ultrasparc_costs = {
COSTS_N_INSNS (2), /* int load */
COSTS_N_INSNS (3), /* int signed load */
COSTS_N_INSNS (2), /* int zeroed load */
COSTS_N_INSNS (2), /* float load */
COSTS_N_INSNS (1), /* fmov, fneg, fabs */
COSTS_N_INSNS (4), /* fadd, fsub */
COSTS_N_INSNS (1), /* fcmp */
COSTS_N_INSNS (2), /* fmov, fmovr */
COSTS_N_INSNS (4), /* fmul */
COSTS_N_INSNS (13), /* fdivs */
COSTS_N_INSNS (23), /* fdivd */
COSTS_N_INSNS (13), /* fsqrts */
COSTS_N_INSNS (23), /* fsqrtd */
COSTS_N_INSNS (4), /* imul */
COSTS_N_INSNS (4), /* imulX */
2, /* imul bit factor */
COSTS_N_INSNS (37), /* idiv */
COSTS_N_INSNS (68), /* idivX */
COSTS_N_INSNS (2), /* movcc/movr */
2, /* shift penalty */
};
static const
struct processor_costs ultrasparc3_costs = {
COSTS_N_INSNS (2), /* int load */
COSTS_N_INSNS (3), /* int signed load */
COSTS_N_INSNS (3), /* int zeroed load */
COSTS_N_INSNS (2), /* float load */
COSTS_N_INSNS (3), /* fmov, fneg, fabs */
COSTS_N_INSNS (4), /* fadd, fsub */
COSTS_N_INSNS (5), /* fcmp */
COSTS_N_INSNS (3), /* fmov, fmovr */
COSTS_N_INSNS (4), /* fmul */
COSTS_N_INSNS (17), /* fdivs */
COSTS_N_INSNS (20), /* fdivd */
COSTS_N_INSNS (20), /* fsqrts */
COSTS_N_INSNS (29), /* fsqrtd */
COSTS_N_INSNS (6), /* imul */
COSTS_N_INSNS (6), /* imulX */
0, /* imul bit factor */
COSTS_N_INSNS (40), /* idiv */
COSTS_N_INSNS (71), /* idivX */
COSTS_N_INSNS (2), /* movcc/movr */
0, /* shift penalty */
};
static const
struct processor_costs niagara_costs = {
COSTS_N_INSNS (3), /* int load */
COSTS_N_INSNS (3), /* int signed load */
COSTS_N_INSNS (3), /* int zeroed load */
COSTS_N_INSNS (9), /* float load */
COSTS_N_INSNS (8), /* fmov, fneg, fabs */
COSTS_N_INSNS (8), /* fadd, fsub */
COSTS_N_INSNS (26), /* fcmp */
COSTS_N_INSNS (8), /* fmov, fmovr */
COSTS_N_INSNS (29), /* fmul */
COSTS_N_INSNS (54), /* fdivs */
COSTS_N_INSNS (83), /* fdivd */
COSTS_N_INSNS (100), /* fsqrts - not implemented in hardware */
COSTS_N_INSNS (100), /* fsqrtd - not implemented in hardware */
COSTS_N_INSNS (11), /* imul */
COSTS_N_INSNS (11), /* imulX */
0, /* imul bit factor */
COSTS_N_INSNS (72), /* idiv */
COSTS_N_INSNS (72), /* idivX */
COSTS_N_INSNS (1), /* movcc/movr */
0, /* shift penalty */
};
static const
struct processor_costs niagara2_costs = {
COSTS_N_INSNS (3), /* int load */
COSTS_N_INSNS (3), /* int signed load */
COSTS_N_INSNS (3), /* int zeroed load */
COSTS_N_INSNS (3), /* float load */
COSTS_N_INSNS (6), /* fmov, fneg, fabs */
COSTS_N_INSNS (6), /* fadd, fsub */
COSTS_N_INSNS (6), /* fcmp */
COSTS_N_INSNS (6), /* fmov, fmovr */
COSTS_N_INSNS (6), /* fmul */
COSTS_N_INSNS (19), /* fdivs */
COSTS_N_INSNS (33), /* fdivd */
COSTS_N_INSNS (19), /* fsqrts */
COSTS_N_INSNS (33), /* fsqrtd */
COSTS_N_INSNS (5), /* imul */
COSTS_N_INSNS (5), /* imulX */
0, /* imul bit factor */
COSTS_N_INSNS (26), /* idiv, average of 12 - 41 cycle range */
COSTS_N_INSNS (26), /* idivX, average of 12 - 41 cycle range */
COSTS_N_INSNS (1), /* movcc/movr */
0, /* shift penalty */
};
static const
struct processor_costs niagara3_costs = {
COSTS_N_INSNS (3), /* int load */
COSTS_N_INSNS (3), /* int signed load */
COSTS_N_INSNS (3), /* int zeroed load */
COSTS_N_INSNS (3), /* float load */
COSTS_N_INSNS (9), /* fmov, fneg, fabs */
COSTS_N_INSNS (9), /* fadd, fsub */
COSTS_N_INSNS (9), /* fcmp */
COSTS_N_INSNS (9), /* fmov, fmovr */
COSTS_N_INSNS (9), /* fmul */
COSTS_N_INSNS (23), /* fdivs */
COSTS_N_INSNS (37), /* fdivd */
COSTS_N_INSNS (23), /* fsqrts */
COSTS_N_INSNS (37), /* fsqrtd */
COSTS_N_INSNS (9), /* imul */
COSTS_N_INSNS (9), /* imulX */
0, /* imul bit factor */
COSTS_N_INSNS (31), /* idiv, average of 17 - 45 cycle range */
COSTS_N_INSNS (30), /* idivX, average of 16 - 44 cycle range */
COSTS_N_INSNS (1), /* movcc/movr */
0, /* shift penalty */
};
static const
struct processor_costs niagara4_costs = {
COSTS_N_INSNS (5), /* int load */
COSTS_N_INSNS (5), /* int signed load */
COSTS_N_INSNS (5), /* int zeroed load */
COSTS_N_INSNS (5), /* float load */
COSTS_N_INSNS (11), /* fmov, fneg, fabs */
COSTS_N_INSNS (11), /* fadd, fsub */
COSTS_N_INSNS (11), /* fcmp */
COSTS_N_INSNS (11), /* fmov, fmovr */
COSTS_N_INSNS (11), /* fmul */
COSTS_N_INSNS (24), /* fdivs */
COSTS_N_INSNS (37), /* fdivd */
COSTS_N_INSNS (24), /* fsqrts */
COSTS_N_INSNS (37), /* fsqrtd */
COSTS_N_INSNS (12), /* imul */
COSTS_N_INSNS (12), /* imulX */
0, /* imul bit factor */
COSTS_N_INSNS (50), /* idiv, average of 41 - 60 cycle range */
COSTS_N_INSNS (35), /* idivX, average of 26 - 44 cycle range */
COSTS_N_INSNS (1), /* movcc/movr */
0, /* shift penalty */
};
static const
struct processor_costs niagara7_costs = {
COSTS_N_INSNS (5), /* int load */
COSTS_N_INSNS (5), /* int signed load */
COSTS_N_INSNS (5), /* int zeroed load */
COSTS_N_INSNS (5), /* float load */
COSTS_N_INSNS (11), /* fmov, fneg, fabs */
COSTS_N_INSNS (11), /* fadd, fsub */
COSTS_N_INSNS (11), /* fcmp */
COSTS_N_INSNS (11), /* fmov, fmovr */
COSTS_N_INSNS (11), /* fmul */
COSTS_N_INSNS (24), /* fdivs */
COSTS_N_INSNS (37), /* fdivd */
COSTS_N_INSNS (24), /* fsqrts */
COSTS_N_INSNS (37), /* fsqrtd */
COSTS_N_INSNS (12), /* imul */
COSTS_N_INSNS (12), /* imulX */
0, /* imul bit factor */
COSTS_N_INSNS (51), /* idiv, average of 42 - 61 cycle range */
COSTS_N_INSNS (35), /* idivX, average of 26 - 44 cycle range */
COSTS_N_INSNS (1), /* movcc/movr */
0, /* shift penalty */
};
static const
struct processor_costs m8_costs = {
COSTS_N_INSNS (3), /* int load */
COSTS_N_INSNS (3), /* int signed load */
COSTS_N_INSNS (3), /* int zeroed load */
COSTS_N_INSNS (3), /* float load */
COSTS_N_INSNS (9), /* fmov, fneg, fabs */
COSTS_N_INSNS (9), /* fadd, fsub */
COSTS_N_INSNS (9), /* fcmp */
COSTS_N_INSNS (9), /* fmov, fmovr */
COSTS_N_INSNS (9), /* fmul */
COSTS_N_INSNS (26), /* fdivs */
COSTS_N_INSNS (30), /* fdivd */
COSTS_N_INSNS (33), /* fsqrts */
COSTS_N_INSNS (41), /* fsqrtd */
COSTS_N_INSNS (12), /* imul */
COSTS_N_INSNS (10), /* imulX */
0, /* imul bit factor */
COSTS_N_INSNS (57), /* udiv/sdiv */
COSTS_N_INSNS (30), /* udivx/sdivx */
COSTS_N_INSNS (1), /* movcc/movr */
0, /* shift penalty */
};
static const struct processor_costs *sparc_costs = &cypress_costs;
#ifdef HAVE_AS_RELAX_OPTION
/* If 'as' and 'ld' are relaxing tail call insns into branch always, use
"or %o7,%g0,X; call Y; or X,%g0,%o7" always, so that it can be optimized.
With sethi/jmp, neither 'as' nor 'ld' has an easy way how to find out if
somebody does not branch between the sethi and jmp. */
#define LEAF_SIBCALL_SLOT_RESERVED_P 1
#else
#define LEAF_SIBCALL_SLOT_RESERVED_P \
((TARGET_ARCH64 && !TARGET_CM_MEDLOW) || flag_pic)
#endif
/* Vector to say how input registers are mapped to output registers.
HARD_FRAME_POINTER_REGNUM cannot be remapped by this function to
eliminate it. You must use -fomit-frame-pointer to get that. */
char leaf_reg_remap[] =
{ 0, 1, 2, 3, 4, 5, 6, 7,
-1, -1, -1, -1, -1, -1, 14, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
8, 9, 10, 11, 12, 13, -1, 15,
32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100, 101, 102};
/* Vector, indexed by hard register number, which contains 1
for a register that is allowable in a candidate for leaf
function treatment. */
char sparc_leaf_regs[] =
{ 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1};
struct GTY(()) machine_function
{
/* Size of the frame of the function. */
HOST_WIDE_INT frame_size;
/* Size of the frame of the function minus the register window save area
and the outgoing argument area. */
HOST_WIDE_INT apparent_frame_size;
/* Register we pretend the frame pointer is allocated to. Normally, this
is %fp, but if we are in a leaf procedure, this is (%sp + offset). We
record "offset" separately as it may be too big for (reg + disp). */
rtx frame_base_reg;
HOST_WIDE_INT frame_base_offset;
/* Number of global or FP registers to be saved (as 4-byte quantities). */
int n_global_fp_regs;
/* True if the current function is leaf and uses only leaf regs,
so that the SPARC leaf function optimization can be applied.
Private version of crtl->uses_only_leaf_regs, see
sparc_expand_prologue for the rationale. */
int leaf_function_p;
/* True if the prologue saves local or in registers. */
bool save_local_in_regs_p;
/* True if the data calculated by sparc_expand_prologue are valid. */
bool prologue_data_valid_p;
};
#define sparc_frame_size cfun->machine->frame_size
#define sparc_apparent_frame_size cfun->machine->apparent_frame_size
#define sparc_frame_base_reg cfun->machine->frame_base_reg
#define sparc_frame_base_offset cfun->machine->frame_base_offset
#define sparc_n_global_fp_regs cfun->machine->n_global_fp_regs
#define sparc_leaf_function_p cfun->machine->leaf_function_p
#define sparc_save_local_in_regs_p cfun->machine->save_local_in_regs_p
#define sparc_prologue_data_valid_p cfun->machine->prologue_data_valid_p
/* 1 if the next opcode is to be specially indented. */
int sparc_indent_opcode = 0;
static void sparc_option_override (void);
static void sparc_init_modes (void);
static int function_arg_slotno (const CUMULATIVE_ARGS *, machine_mode,
const_tree, bool, bool, int *, int *);
static int supersparc_adjust_cost (rtx_insn *, int, rtx_insn *, int);
static int hypersparc_adjust_cost (rtx_insn *, int, rtx_insn *, int);
static void sparc_emit_set_const32 (rtx, rtx);
static void sparc_emit_set_const64 (rtx, rtx);
static void sparc_output_addr_vec (rtx);
static void sparc_output_addr_diff_vec (rtx);
static void sparc_output_deferred_case_vectors (void);
static bool sparc_legitimate_address_p (machine_mode, rtx, bool);
static bool sparc_legitimate_constant_p (machine_mode, rtx);
static rtx sparc_builtin_saveregs (void);
static int epilogue_renumber (rtx *, int);
static bool sparc_assemble_integer (rtx, unsigned int, int);
static int set_extends (rtx_insn *);
static void sparc_asm_function_prologue (FILE *);
static void sparc_asm_function_epilogue (FILE *);
#ifdef TARGET_SOLARIS
static void sparc_solaris_elf_asm_named_section (const char *, unsigned int,
tree) ATTRIBUTE_UNUSED;
#endif
static int sparc_adjust_cost (rtx_insn *, int, rtx_insn *, int, unsigned int);
static int sparc_issue_rate (void);
static void sparc_sched_init (FILE *, int, int);
static int sparc_use_sched_lookahead (void);
static void emit_soft_tfmode_libcall (const char *, int, rtx *);
static void emit_soft_tfmode_binop (enum rtx_code, rtx *);
static void emit_soft_tfmode_unop (enum rtx_code, rtx *);
static void emit_soft_tfmode_cvt (enum rtx_code, rtx *);
static void emit_hard_tfmode_operation (enum rtx_code, rtx *);
static bool sparc_function_ok_for_sibcall (tree, tree);
static void sparc_init_libfuncs (void);
static void sparc_init_builtins (void);
static void sparc_fpu_init_builtins (void);
static void sparc_vis_init_builtins (void);
static tree sparc_builtin_decl (unsigned, bool);
static rtx sparc_expand_builtin (tree, rtx, rtx, machine_mode, int);
static tree sparc_fold_builtin (tree, int, tree *, bool);
static void sparc_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
HOST_WIDE_INT, tree);
static bool sparc_can_output_mi_thunk (const_tree, HOST_WIDE_INT,
HOST_WIDE_INT, const_tree);
static struct machine_function * sparc_init_machine_status (void);
static bool sparc_cannot_force_const_mem (machine_mode, rtx);
static rtx sparc_tls_get_addr (void);
static rtx sparc_tls_got (void);
static int sparc_register_move_cost (machine_mode,
reg_class_t, reg_class_t);
static bool sparc_rtx_costs (rtx, machine_mode, int, int, int *, bool);
static rtx sparc_function_value (const_tree, const_tree, bool);
static rtx sparc_libcall_value (machine_mode, const_rtx);
static bool sparc_function_value_regno_p (const unsigned int);
static rtx sparc_struct_value_rtx (tree, int);
static machine_mode sparc_promote_function_mode (const_tree, machine_mode,
int *, const_tree, int);
static bool sparc_return_in_memory (const_tree, const_tree);
static bool sparc_strict_argument_naming (cumulative_args_t);
static void sparc_va_start (tree, rtx);
static tree sparc_gimplify_va_arg (tree, tree, gimple_seq *, gimple_seq *);
static bool sparc_vector_mode_supported_p (machine_mode);
static bool sparc_tls_referenced_p (rtx);
static rtx sparc_legitimize_tls_address (rtx);
static rtx sparc_legitimize_pic_address (rtx, rtx);
static rtx sparc_legitimize_address (rtx, rtx, machine_mode);
static rtx sparc_delegitimize_address (rtx);
static bool sparc_mode_dependent_address_p (const_rtx, addr_space_t);
static bool sparc_pass_by_reference (cumulative_args_t,
machine_mode, const_tree, bool);
static void sparc_function_arg_advance (cumulative_args_t,
machine_mode, const_tree, bool);
static rtx sparc_function_arg_1 (cumulative_args_t,
machine_mode, const_tree, bool, bool);
static rtx sparc_function_arg (cumulative_args_t,
machine_mode, const_tree, bool);
static rtx sparc_function_incoming_arg (cumulative_args_t,
machine_mode, const_tree, bool);
static pad_direction sparc_function_arg_padding (machine_mode, const_tree);
static unsigned int sparc_function_arg_boundary (machine_mode,
const_tree);
static int sparc_arg_partial_bytes (cumulative_args_t,
machine_mode, tree, bool);
static void sparc_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
static void sparc_file_end (void);
static bool sparc_frame_pointer_required (void);
static bool sparc_can_eliminate (const int, const int);
static rtx sparc_builtin_setjmp_frame_value (void);
static void sparc_conditional_register_usage (void);
static bool sparc_use_pseudo_pic_reg (void);
static void sparc_init_pic_reg (void);
#ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING
static const char *sparc_mangle_type (const_tree);
#endif
static void sparc_trampoline_init (rtx, tree, rtx);
static machine_mode sparc_preferred_simd_mode (scalar_mode);
static reg_class_t sparc_preferred_reload_class (rtx x, reg_class_t rclass);
static bool sparc_lra_p (void);
static bool sparc_print_operand_punct_valid_p (unsigned char);
static void sparc_print_operand (FILE *, rtx, int);
static void sparc_print_operand_address (FILE *, machine_mode, rtx);
static reg_class_t sparc_secondary_reload (bool, rtx, reg_class_t,
machine_mode,
secondary_reload_info *);
static bool sparc_secondary_memory_needed (machine_mode, reg_class_t,
reg_class_t);
static machine_mode sparc_secondary_memory_needed_mode (machine_mode);
static scalar_int_mode sparc_cstore_mode (enum insn_code icode);
static void sparc_atomic_assign_expand_fenv (tree *, tree *, tree *);
static bool sparc_fixed_condition_code_regs (unsigned int *, unsigned int *);
static unsigned int sparc_min_arithmetic_precision (void);
static unsigned int sparc_hard_regno_nregs (unsigned int, machine_mode);
static bool sparc_hard_regno_mode_ok (unsigned int, machine_mode);
static bool sparc_modes_tieable_p (machine_mode, machine_mode);
static bool sparc_can_change_mode_class (machine_mode, machine_mode,
reg_class_t);
static HOST_WIDE_INT sparc_constant_alignment (const_tree, HOST_WIDE_INT);
static bool sparc_vectorize_vec_perm_const (machine_mode, rtx, rtx, rtx,
const vec_perm_indices &);
#ifdef SUBTARGET_ATTRIBUTE_TABLE
/* Table of valid machine attributes. */
static const struct attribute_spec sparc_attribute_table[] =
{
/* { name, min_len, max_len, decl_req, type_req, fn_type_req,
do_diagnostic, handler, exclude } */
SUBTARGET_ATTRIBUTE_TABLE,
{ NULL, 0, 0, false, false, false, false, NULL, NULL }
};
#endif
/* Option handling. */
/* Parsed value. */
enum cmodel sparc_cmodel;
char sparc_hard_reg_printed[8];
/* Initialize the GCC target structure. */
/* The default is to use .half rather than .short for aligned HI objects. */
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.half\t"
#undef TARGET_ASM_UNALIGNED_HI_OP
#define TARGET_ASM_UNALIGNED_HI_OP "\t.uahalf\t"
#undef TARGET_ASM_UNALIGNED_SI_OP
#define TARGET_ASM_UNALIGNED_SI_OP "\t.uaword\t"
#undef TARGET_ASM_UNALIGNED_DI_OP
#define TARGET_ASM_UNALIGNED_DI_OP "\t.uaxword\t"
/* The target hook has to handle DI-mode values. */
#undef TARGET_ASM_INTEGER
#define TARGET_ASM_INTEGER sparc_assemble_integer
#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE sparc_asm_function_prologue
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE sparc_asm_function_epilogue
#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST sparc_adjust_cost
#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE sparc_issue_rate
#undef TARGET_SCHED_INIT
#define TARGET_SCHED_INIT sparc_sched_init
#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD sparc_use_sched_lookahead
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL sparc_function_ok_for_sibcall
#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS sparc_init_libfuncs
#undef TARGET_LEGITIMIZE_ADDRESS
#define TARGET_LEGITIMIZE_ADDRESS sparc_legitimize_address
#undef TARGET_DELEGITIMIZE_ADDRESS
#define TARGET_DELEGITIMIZE_ADDRESS sparc_delegitimize_address
#undef TARGET_MODE_DEPENDENT_ADDRESS_P
#define TARGET_MODE_DEPENDENT_ADDRESS_P sparc_mode_dependent_address_p
#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS sparc_init_builtins
#undef TARGET_BUILTIN_DECL
#define TARGET_BUILTIN_DECL sparc_builtin_decl
#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN sparc_expand_builtin
#undef TARGET_FOLD_BUILTIN
#define TARGET_FOLD_BUILTIN sparc_fold_builtin
#if TARGET_TLS
#undef TARGET_HAVE_TLS
#define TARGET_HAVE_TLS true
#endif
#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM sparc_cannot_force_const_mem
#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK sparc_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK sparc_can_output_mi_thunk
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS sparc_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST hook_int_rtx_mode_as_bool_0
#undef TARGET_REGISTER_MOVE_COST
#define TARGET_REGISTER_MOVE_COST sparc_register_move_cost
#undef TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE sparc_promote_function_mode
#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE sparc_function_value
#undef TARGET_LIBCALL_VALUE
#define TARGET_LIBCALL_VALUE sparc_libcall_value
#undef TARGET_FUNCTION_VALUE_REGNO_P
#define TARGET_FUNCTION_VALUE_REGNO_P sparc_function_value_regno_p
#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX sparc_struct_value_rtx
#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY sparc_return_in_memory
#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE sparc_pass_by_reference
#undef TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES sparc_arg_partial_bytes
#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE sparc_function_arg_advance
#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG sparc_function_arg
#undef TARGET_FUNCTION_INCOMING_ARG
#define TARGET_FUNCTION_INCOMING_ARG sparc_function_incoming_arg
#undef TARGET_FUNCTION_ARG_PADDING
#define TARGET_FUNCTION_ARG_PADDING sparc_function_arg_padding
#undef TARGET_FUNCTION_ARG_BOUNDARY
#define TARGET_FUNCTION_ARG_BOUNDARY sparc_function_arg_boundary
#undef TARGET_EXPAND_BUILTIN_SAVEREGS
#define TARGET_EXPAND_BUILTIN_SAVEREGS sparc_builtin_saveregs
#undef TARGET_STRICT_ARGUMENT_NAMING
#define TARGET_STRICT_ARGUMENT_NAMING sparc_strict_argument_naming
#undef TARGET_EXPAND_BUILTIN_VA_START
#define TARGET_EXPAND_BUILTIN_VA_START sparc_va_start
#undef TARGET_GIMPLIFY_VA_ARG_EXPR
#define TARGET_GIMPLIFY_VA_ARG_EXPR sparc_gimplify_va_arg
#undef TARGET_VECTOR_MODE_SUPPORTED_P
#define TARGET_VECTOR_MODE_SUPPORTED_P sparc_vector_mode_supported_p
#undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE
#define TARGET_VECTORIZE_PREFERRED_SIMD_MODE sparc_preferred_simd_mode
#ifdef SUBTARGET_INSERT_ATTRIBUTES
#undef TARGET_INSERT_ATTRIBUTES
#define TARGET_INSERT_ATTRIBUTES SUBTARGET_INSERT_ATTRIBUTES
#endif
#ifdef SUBTARGET_ATTRIBUTE_TABLE
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE sparc_attribute_table
#endif
#undef TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE sparc_option_override
#ifdef TARGET_THREAD_SSP_OFFSET
#undef TARGET_STACK_PROTECT_GUARD
#define TARGET_STACK_PROTECT_GUARD hook_tree_void_null
#endif
#if TARGET_GNU_TLS && defined(HAVE_AS_SPARC_UA_PCREL)
#undef TARGET_ASM_OUTPUT_DWARF_DTPREL
#define TARGET_ASM_OUTPUT_DWARF_DTPREL sparc_output_dwarf_dtprel
#endif
#undef TARGET_ASM_FILE_END
#define TARGET_ASM_FILE_END sparc_file_end
#undef TARGET_FRAME_POINTER_REQUIRED
#define TARGET_FRAME_POINTER_REQUIRED sparc_frame_pointer_required
#undef TARGET_BUILTIN_SETJMP_FRAME_VALUE
#define TARGET_BUILTIN_SETJMP_FRAME_VALUE sparc_builtin_setjmp_frame_value
#undef TARGET_CAN_ELIMINATE
#define TARGET_CAN_ELIMINATE sparc_can_eliminate
#undef TARGET_PREFERRED_RELOAD_CLASS
#define TARGET_PREFERRED_RELOAD_CLASS sparc_preferred_reload_class
#undef TARGET_SECONDARY_RELOAD
#define TARGET_SECONDARY_RELOAD sparc_secondary_reload
#undef TARGET_SECONDARY_MEMORY_NEEDED
#define TARGET_SECONDARY_MEMORY_NEEDED sparc_secondary_memory_needed
#undef TARGET_SECONDARY_MEMORY_NEEDED_MODE
#define TARGET_SECONDARY_MEMORY_NEEDED_MODE sparc_secondary_memory_needed_mode
#undef TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE sparc_conditional_register_usage
#undef TARGET_INIT_PIC_REG
#define TARGET_INIT_PIC_REG sparc_init_pic_reg
#undef TARGET_USE_PSEUDO_PIC_REG
#define TARGET_USE_PSEUDO_PIC_REG sparc_use_pseudo_pic_reg
#ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING
#undef TARGET_MANGLE_TYPE
#define TARGET_MANGLE_TYPE sparc_mangle_type
#endif
#undef TARGET_LRA_P
#define TARGET_LRA_P sparc_lra_p
#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P sparc_legitimate_address_p
#undef TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P sparc_legitimate_constant_p
#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT sparc_trampoline_init
#undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
#define TARGET_PRINT_OPERAND_PUNCT_VALID_P sparc_print_operand_punct_valid_p
#undef TARGET_PRINT_OPERAND
#define TARGET_PRINT_OPERAND sparc_print_operand
#undef TARGET_PRINT_OPERAND_ADDRESS
#define TARGET_PRINT_OPERAND_ADDRESS sparc_print_operand_address
/* The value stored by LDSTUB. */
#undef TARGET_ATOMIC_TEST_AND_SET_TRUEVAL
#define TARGET_ATOMIC_TEST_AND_SET_TRUEVAL 0xff
#undef TARGET_CSTORE_MODE
#define TARGET_CSTORE_MODE sparc_cstore_mode
#undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV
#define TARGET_ATOMIC_ASSIGN_EXPAND_FENV sparc_atomic_assign_expand_fenv
#undef TARGET_FIXED_CONDITION_CODE_REGS
#define TARGET_FIXED_CONDITION_CODE_REGS sparc_fixed_condition_code_regs
#undef TARGET_MIN_ARITHMETIC_PRECISION
#define TARGET_MIN_ARITHMETIC_PRECISION sparc_min_arithmetic_precision
#undef TARGET_CUSTOM_FUNCTION_DESCRIPTORS
#define TARGET_CUSTOM_FUNCTION_DESCRIPTORS 1
#undef TARGET_HARD_REGNO_NREGS
#define TARGET_HARD_REGNO_NREGS sparc_hard_regno_nregs
#undef TARGET_HARD_REGNO_MODE_OK
#define TARGET_HARD_REGNO_MODE_OK sparc_hard_regno_mode_ok
#undef TARGET_MODES_TIEABLE_P
#define TARGET_MODES_TIEABLE_P sparc_modes_tieable_p
#undef TARGET_CAN_CHANGE_MODE_CLASS
#define TARGET_CAN_CHANGE_MODE_CLASS sparc_can_change_mode_class
#undef TARGET_CONSTANT_ALIGNMENT
#define TARGET_CONSTANT_ALIGNMENT sparc_constant_alignment
#undef TARGET_VECTORIZE_VEC_PERM_CONST
#define TARGET_VECTORIZE_VEC_PERM_CONST sparc_vectorize_vec_perm_const
struct gcc_target targetm = TARGET_INITIALIZER;
/* Return the memory reference contained in X if any, zero otherwise. */
static rtx
mem_ref (rtx x)
{
if (GET_CODE (x) == SIGN_EXTEND || GET_CODE (x) == ZERO_EXTEND)
x = XEXP (x, 0);
if (MEM_P (x))
return x;
return NULL_RTX;
}
/* True if any of INSN's source register(s) is REG. */
static bool
insn_uses_reg_p (rtx_insn *insn, unsigned int reg)
{
extract_insn (insn);
return ((REG_P (recog_data.operand[1])
&& REGNO (recog_data.operand[1]) == reg)
|| (recog_data.n_operands == 3
&& REG_P (recog_data.operand[2])
&& REGNO (recog_data.operand[2]) == reg));
}
/* True if INSN is a floating-point division or square-root. */
static bool
div_sqrt_insn_p (rtx_insn *insn)
{
if (GET_CODE (PATTERN (insn)) != SET)
return false;
switch (get_attr_type (insn))
{
case TYPE_FPDIVS:
case TYPE_FPSQRTS:
case TYPE_FPDIVD:
case TYPE_FPSQRTD:
return true;
default:
return false;
}
}
/* True if INSN is a floating-point instruction. */
static bool
fpop_insn_p (rtx_insn *insn)
{
if (GET_CODE (PATTERN (insn)) != SET)
return false;
switch (get_attr_type (insn))
{
case TYPE_FPMOVE:
case TYPE_FPCMOVE:
case TYPE_FP:
case TYPE_FPCMP:
case TYPE_FPMUL:
case TYPE_FPDIVS:
case TYPE_FPSQRTS:
case TYPE_FPDIVD:
case TYPE_FPSQRTD:
return true;
default:
return false;
}
}
/* True if INSN is an atomic instruction. */
static bool
atomic_insn_for_leon3_p (rtx_insn *insn)
{
switch (INSN_CODE (insn))
{
case CODE_FOR_swapsi:
case CODE_FOR_ldstub:
case CODE_FOR_atomic_compare_and_swap_leon3_1:
return true;
default:
return false;
}
}
/* We use a machine specific pass to enable workarounds for errata.
We need to have the (essentially) final form of the insn stream in order
to properly detect the various hazards. Therefore, this machine specific
pass runs as late as possible. */
/* True if INSN is a md pattern or asm statement. */
#define USEFUL_INSN_P(INSN) \
(NONDEBUG_INSN_P (INSN) \
&& GET_CODE (PATTERN (INSN)) != USE \
&& GET_CODE (PATTERN (INSN)) != CLOBBER)
static unsigned int
sparc_do_work_around_errata (void)
{
rtx_insn *insn, *next;
/* Force all instructions to be split into their final form. */
split_all_insns_noflow ();
/* Now look for specific patterns in the insn stream. */
for (insn = get_insns (); insn; insn = next)
{
bool insert_nop = false;
rtx set;
rtx_insn *jump;
rtx_sequence *seq;
/* Look into the instruction in a delay slot. */
if (NONJUMP_INSN_P (insn)
&& (seq = dyn_cast <rtx_sequence *> (PATTERN (insn))))
{
jump = seq->insn (0);
insn = seq->insn (1);
}
else if (JUMP_P (insn))
jump = insn;
else
jump = NULL;
/* Place a NOP at the branch target of an integer branch if it is a
floating-point operation or a floating-point branch. */
if (sparc_fix_gr712rc
&& jump
&& jump_to_label_p (jump)
&& get_attr_branch_type (jump) == BRANCH_TYPE_ICC)
{
rtx_insn *target = next_active_insn (JUMP_LABEL_AS_INSN (jump));
if (target
&& (fpop_insn_p (target)
|| (JUMP_P (target)
&& get_attr_branch_type (target) == BRANCH_TYPE_FCC)))
emit_insn_before (gen_nop (), target);
}
/* Insert a NOP between load instruction and atomic instruction. Insert
a NOP at branch target if there is a load in delay slot and an atomic
instruction at branch target. */
if (sparc_fix_ut700
&& NONJUMP_INSN_P (insn)
&& (set = single_set (insn)) != NULL_RTX
&& mem_ref (SET_SRC (set))
&& REG_P (SET_DEST (set)))
{
if (jump && jump_to_label_p (jump))
{
rtx_insn *target = next_active_insn (JUMP_LABEL_AS_INSN (jump));
if (target && atomic_insn_for_leon3_p (target))
emit_insn_before (gen_nop (), target);
}
next = next_active_insn (insn);
if (!next)
break;
if (atomic_insn_for_leon3_p (next))
insert_nop = true;
}
/* Look for a sequence that starts with a fdiv or fsqrt instruction and
ends with another fdiv or fsqrt instruction with no dependencies on
the former, along with an appropriate pattern in between. */
if (sparc_fix_lost_divsqrt
&& NONJUMP_INSN_P (insn)
&& div_sqrt_insn_p (insn))
{
int i;
int fp_found = 0;
rtx_insn *after;
const unsigned int dest_reg = REGNO (SET_DEST (single_set (insn)));
next = next_active_insn (insn);
if (!next)
break;
for (after = next, i = 0; i < 4; i++)
{
/* Count floating-point operations. */
if (i != 3 && fpop_insn_p (after))
{
/* If the insn uses the destination register of
the div/sqrt, then it cannot be problematic. */
if (insn_uses_reg_p (after, dest_reg))
break;
fp_found++;
}
/* Count floating-point loads. */
if (i != 3
&& (set = single_set (after)) != NULL_RTX
&& REG_P (SET_DEST (set))
&& REGNO (SET_DEST (set)) > 31)
{
/* If the insn uses the destination register of
the div/sqrt, then it cannot be problematic. */
if (REGNO (SET_DEST (set)) == dest_reg)
break;
fp_found++;
}
/* Check if this is a problematic sequence. */
if (i > 1
&& fp_found >= 2
&& div_sqrt_insn_p (after))
{
/* If this is the short version of the problematic
sequence we add two NOPs in a row to also prevent
the long version. */
if (i == 2)
emit_insn_before (gen_nop (), next);
insert_nop = true;
break;
}
/* No need to scan past a second div/sqrt. */
if (div_sqrt_insn_p (after))
break;
/* Insert NOP before branch. */
if (i < 3
&& (!NONJUMP_INSN_P (after)
|| GET_CODE (PATTERN (after)) == SEQUENCE))
{
insert_nop = true;
break;
}
after = next_active_insn (after);
if (!after)
break;
}
}
/* Look for either of these two sequences:
Sequence A:
1. store of word size or less (e.g. st / stb / sth / stf)
2. any single instruction that is not a load or store
3. any store instruction (e.g. st / stb / sth / stf / std / stdf)
Sequence B:
1. store of double word size (e.g. std / stdf)
2. any store instruction (e.g. st / stb / sth / stf / std / stdf) */
if (sparc_fix_b2bst
&& NONJUMP_INSN_P (insn)
&& (set = single_set (insn)) != NULL_RTX
&& MEM_P (SET_DEST (set)))
{
/* Sequence B begins with a double-word store. */
bool seq_b = GET_MODE_SIZE (GET_MODE (SET_DEST (set))) == 8;
rtx_insn *after;
int i;
next = next_active_insn (insn);
if (!next)
break;
for (after = next, i = 0; i < 2; i++)
{
/* Skip empty assembly statements. */
if ((GET_CODE (PATTERN (after)) == UNSPEC_VOLATILE)
|| (USEFUL_INSN_P (after)
&& (asm_noperands (PATTERN (after))>=0)
&& !strcmp (decode_asm_operands (PATTERN (after),
NULL, NULL, NULL,
NULL, NULL), "")))
after = next_active_insn (after);
if (!after)
break;
/* If the insn is a branch, then it cannot be problematic. */
if (!NONJUMP_INSN_P (after)
|| GET_CODE (PATTERN (after)) == SEQUENCE)
break;
/* Sequence B is only two instructions long. */
if (seq_b)
{
/* Add NOP if followed by a store. */
if ((set = single_set (after)) != NULL_RTX
&& MEM_P (SET_DEST (set)))
insert_nop = true;
/* Otherwise it is ok. */
break;
}
/* If the second instruction is a load or a store,
then the sequence cannot be problematic. */
if (i == 0)
{
if ((set = single_set (after)) != NULL_RTX
&& (MEM_P (SET_DEST (set)) || mem_ref (SET_SRC (set))))
break;
after = next_active_insn (after);
if (!after)
break;
}
/* Add NOP if third instruction is a store. */
if (i == 1
&& (set = single_set (after)) != NULL_RTX
&& MEM_P (SET_DEST (set)))
insert_nop = true;
}
}
/* Look for a single-word load into an odd-numbered FP register. */
else if (sparc_fix_at697f
&& NONJUMP_INSN_P (insn)
&& (set = single_set (insn)) != NULL_RTX
&& GET_MODE_SIZE (GET_MODE (SET_SRC (set))) == 4
&& mem_ref (SET_SRC (set))
&& REG_P (SET_DEST (set))
&& REGNO (SET_DEST (set)) > 31
&& REGNO (SET_DEST (set)) % 2 != 0)
{
/* The wrong dependency is on the enclosing double register. */
const unsigned int x = REGNO (SET_DEST (set)) - 1;
unsigned int src1, src2, dest;
int code;
next = next_active_insn (insn);
if (!next)
break;
/* If the insn is a branch, then it cannot be problematic. */
if (!NONJUMP_INSN_P (next) || GET_CODE (PATTERN (next)) == SEQUENCE)
continue;
extract_insn (next);
code = INSN_CODE (next);
switch (code)
{
case CODE_FOR_adddf3:
case CODE_FOR_subdf3:
case CODE_FOR_muldf3:
case CODE_FOR_divdf3:
dest = REGNO (recog_data.operand[0]);
src1 = REGNO (recog_data.operand[1]);
src2 = REGNO (recog_data.operand[2]);
if (src1 != src2)
{
/* Case [1-4]:
ld [address], %fx+1
FPOPd %f{x,y}, %f{y,x}, %f{x,y} */
if ((src1 == x || src2 == x)
&& (dest == src1 || dest == src2))
insert_nop = true;
}
else
{
/* Case 5:
ld [address], %fx+1
FPOPd %fx, %fx, %fx */
if (src1 == x
&& dest == src1
&& (code == CODE_FOR_adddf3 || code == CODE_FOR_muldf3))
insert_nop = true;
}
break;
case CODE_FOR_sqrtdf2:
dest = REGNO (recog_data.operand[0]);
src1 = REGNO (recog_data.operand[1]);
/* Case 6:
ld [address], %fx+1
fsqrtd %fx, %fx */
if (src1 == x && dest == src1)
insert_nop = true;
break;
default:
break;
}
}
/* Look for a single-word load into an integer register. */
else if (sparc_fix_ut699
&& NONJUMP_INSN_P (insn)
&& (set = single_set (insn)) != NULL_RTX
&& GET_MODE_SIZE (GET_MODE (SET_SRC (set))) <= 4
&& (mem_ref (SET_SRC (set)) != NULL_RTX
|| INSN_CODE (insn) == CODE_FOR_movsi_pic_gotdata_op)
&& REG_P (SET_DEST (set))
&& REGNO (SET_DEST (set)) < 32)
{
/* There is no problem if the second memory access has a data
dependency on the first single-cycle load. */
rtx x = SET_DEST (set);
next = next_active_insn (insn);
if (!next)
break;
/* If the insn is a branch, then it cannot be problematic. */
if (!NONJUMP_INSN_P (next) || GET_CODE (PATTERN (next)) == SEQUENCE)
continue;
/* Look for a second memory access to/from an integer register. */
if ((set = single_set (next)) != NULL_RTX)
{
rtx src = SET_SRC (set);
rtx dest = SET_DEST (set);
rtx mem;
/* LDD is affected. */
if ((mem = mem_ref (src)) != NULL_RTX
&& REG_P (dest)
&& REGNO (dest) < 32
&& !reg_mentioned_p (x, XEXP (mem, 0)))
insert_nop = true;
/* STD is *not* affected. */
else if (MEM_P (dest)
&& GET_MODE_SIZE (GET_MODE (dest)) <= 4
&& (src == CONST0_RTX (GET_MODE (dest))
|| (REG_P (src)
&& REGNO (src) < 32
&& REGNO (src) != REGNO (x)))
&& !reg_mentioned_p (x, XEXP (dest, 0)))
insert_nop = true;
/* GOT accesses uses LD. */
else if (INSN_CODE (next) == CODE_FOR_movsi_pic_gotdata_op
&& !reg_mentioned_p (x, XEXP (XEXP (src, 0), 1)))
insert_nop = true;
}
}
/* Look for a single-word load/operation into an FP register. */
else if (sparc_fix_ut699
&& NONJUMP_INSN_P (insn)
&& (set = single_set (insn)) != NULL_RTX
&& GET_MODE_SIZE (GET_MODE (SET_SRC (set))) == 4
&& REG_P (SET_DEST (set))
&& REGNO (SET_DEST (set)) > 31)
{
/* Number of instructions in the problematic window. */
const int n_insns = 4;
/* The problematic combination is with the sibling FP register. */
const unsigned int x = REGNO (SET_DEST (set));
const unsigned int y = x ^ 1;
rtx_insn *after;
int i;
next = next_active_insn (insn);
if (!next)
break;
/* If the insn is a branch, then it cannot be problematic. */
if (!NONJUMP_INSN_P (next) || GET_CODE (PATTERN (next)) == SEQUENCE)
continue;
/* Look for a second load/operation into the sibling FP register. */
if (!((set = single_set (next)) != NULL_RTX
&& GET_MODE_SIZE (GET_MODE (SET_SRC (set))) == 4
&& REG_P (SET_DEST (set))
&& REGNO (SET_DEST (set)) == y))
continue;
/* Look for a (possible) store from the FP register in the next N
instructions, but bail out if it is again modified or if there
is a store from the sibling FP register before this store. */
for (after = next, i = 0; i < n_insns; i++)
{
bool branch_p;
after = next_active_insn (after);
if (!after)
break;
/* This is a branch with an empty delay slot. */
if (!NONJUMP_INSN_P (after))
{
if (++i == n_insns)
break;
branch_p = true;
after = NULL;
}
/* This is a branch with a filled delay slot. */
else if (rtx_sequence *seq =
dyn_cast <rtx_sequence *> (PATTERN (after)))
{
if (++i == n_insns)
break;
branch_p = true;
after = seq->insn (1);
}
/* This is a regular instruction. */
else
branch_p = false;
if (after && (set = single_set (after)) != NULL_RTX)
{
const rtx src = SET_SRC (set);
const rtx dest = SET_DEST (set);
const unsigned int size = GET_MODE_SIZE (GET_MODE (dest));
/* If the FP register is again modified before the store,
then the store isn't affected. */
if (REG_P (dest)
&& (REGNO (dest) == x
|| (REGNO (dest) == y && size == 8)))
break;
if (MEM_P (dest) && REG_P (src))
{
/* If there is a store from the sibling FP register
before the store, then the store is not affected. */
if (REGNO (src) == y || (REGNO (src) == x && size == 8))
break;
/* Otherwise, the store is affected. */
if (REGNO (src) == x && size == 4)
{
insert_nop = true;
break;
}
}
}
/* If we have a branch in the first M instructions, then we
cannot see the (M+2)th instruction so we play safe. */
if (branch_p && i <= (n_insns - 2))
{
insert_nop = true;
break;
}
}
}
else
next = NEXT_INSN (insn);
if (insert_nop)
emit_insn_before (gen_nop (), next);
}
return 0;
}
namespace {
const pass_data pass_data_work_around_errata =
{
RTL_PASS, /* type */
"errata", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_MACH_DEP, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_work_around_errata : public rtl_opt_pass
{
public:
pass_work_around_errata(gcc::context *ctxt)
: rtl_opt_pass(pass_data_work_around_errata, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *)
{
return sparc_fix_at697f || sparc_fix_ut699 || sparc_fix_b2bst
|| sparc_fix_gr712rc || sparc_fix_ut700 || sparc_fix_lost_divsqrt;
}
virtual unsigned int execute (function *)
{
return sparc_do_work_around_errata ();
}
}; // class pass_work_around_errata
} // anon namespace
rtl_opt_pass *
make_pass_work_around_errata (gcc::context *ctxt)
{
return new pass_work_around_errata (ctxt);
}
/* Helpers for TARGET_DEBUG_OPTIONS. */
static void
dump_target_flag_bits (const int flags)
{
if (flags & MASK_64BIT)
fprintf (stderr, "64BIT ");
if (flags & MASK_APP_REGS)
fprintf (stderr, "APP_REGS ");
if (flags & MASK_FASTER_STRUCTS)
fprintf (stderr, "FASTER_STRUCTS ");
if (flags & MASK_FLAT)
fprintf (stderr, "FLAT ");
if (flags & MASK_FMAF)
fprintf (stderr, "FMAF ");
if (flags & MASK_FSMULD)
fprintf (stderr, "FSMULD ");
if (flags & MASK_FPU)
fprintf (stderr, "FPU ");
if (flags & MASK_HARD_QUAD)
fprintf (stderr, "HARD_QUAD ");
if (flags & MASK_POPC)
fprintf (stderr, "POPC ");
if (flags & MASK_PTR64)
fprintf (stderr, "PTR64 ");
if (flags & MASK_STACK_BIAS)
fprintf (stderr, "STACK_BIAS ");
if (flags & MASK_UNALIGNED_DOUBLES)
fprintf (stderr, "UNALIGNED_DOUBLES ");
if (flags & MASK_V8PLUS)
fprintf (stderr, "V8PLUS ");
if (flags & MASK_VIS)
fprintf (stderr, "VIS ");
if (flags & MASK_VIS2)
fprintf (stderr, "VIS2 ");
if (flags & MASK_VIS3)
fprintf (stderr, "VIS3 ");
if (flags & MASK_VIS4)
fprintf (stderr, "VIS4 ");
if (flags & MASK_VIS4B)
fprintf (stderr, "VIS4B ");
if (flags & MASK_CBCOND)
fprintf (stderr, "CBCOND ");
if (flags & MASK_DEPRECATED_V8_INSNS)
fprintf (stderr, "DEPRECATED_V8_INSNS ");
if (flags & MASK_SPARCLET)
fprintf (stderr, "SPARCLET ");
if (flags & MASK_SPARCLITE)
fprintf (stderr, "SPARCLITE ");
if (flags & MASK_V8)
fprintf (stderr, "V8 ");
if (flags & MASK_V9)
fprintf (stderr, "V9 ");
}
static void
dump_target_flags (const char *prefix, const int flags)
{
fprintf (stderr, "%s: (%08x) [ ", prefix, flags);
dump_target_flag_bits (flags);
fprintf(stderr, "]\n");
}
/* Validate and override various options, and do some machine dependent
initialization. */
static void
sparc_option_override (void)
{
static struct code_model {
const char *const name;
const enum cmodel value;
} const cmodels[] = {
{ "32", CM_32 },
{ "medlow", CM_MEDLOW },
{ "medmid", CM_MEDMID },
{ "medany", CM_MEDANY },
{ "embmedany", CM_EMBMEDANY },
{ NULL, (enum cmodel) 0 }
};
const struct code_model *cmodel;
/* Map TARGET_CPU_DEFAULT to value for -m{cpu,tune}=. */
static struct cpu_default {
const int cpu;
const enum processor_type processor;
} const cpu_default[] = {
/* There must be one entry here for each TARGET_CPU value. */
{ TARGET_CPU_sparc, PROCESSOR_CYPRESS },
{ TARGET_CPU_v8, PROCESSOR_V8 },
{ TARGET_CPU_supersparc, PROCESSOR_SUPERSPARC },
{ TARGET_CPU_hypersparc, PROCESSOR_HYPERSPARC },
{ TARGET_CPU_leon, PROCESSOR_LEON },
{ TARGET_CPU_leon3, PROCESSOR_LEON3 },
{ TARGET_CPU_leon3v7, PROCESSOR_LEON3V7 },
{ TARGET_CPU_sparclite, PROCESSOR_F930 },
{ TARGET_CPU_sparclite86x, PROCESSOR_SPARCLITE86X },
{ TARGET_CPU_sparclet, PROCESSOR_TSC701 },
{ TARGET_CPU_v9, PROCESSOR_V9 },
{ TARGET_CPU_ultrasparc, PROCESSOR_ULTRASPARC },
{ TARGET_CPU_ultrasparc3, PROCESSOR_ULTRASPARC3 },
{ TARGET_CPU_niagara, PROCESSOR_NIAGARA },
{ TARGET_CPU_niagara2, PROCESSOR_NIAGARA2 },
{ TARGET_CPU_niagara3, PROCESSOR_NIAGARA3 },
{ TARGET_CPU_niagara4, PROCESSOR_NIAGARA4 },
{ TARGET_CPU_niagara7, PROCESSOR_NIAGARA7 },
{ TARGET_CPU_m8, PROCESSOR_M8 },
{ -1, PROCESSOR_V7 }
};
const struct cpu_default *def;
/* Table of values for -m{cpu,tune}=. This must match the order of
the enum processor_type in sparc-opts.h. */
static struct cpu_table {
const char *const name;
const int disable;
const int enable;
} const cpu_table[] = {
{ "v7", MASK_ISA|MASK_FSMULD, 0 },
{ "cypress", MASK_ISA|MASK_FSMULD, 0 },
{ "v8", MASK_ISA, MASK_V8 },
/* TI TMS390Z55 supersparc */
{ "supersparc", MASK_ISA, MASK_V8 },
{ "hypersparc", MASK_ISA, MASK_V8 },
{ "leon", MASK_ISA|MASK_FSMULD, MASK_V8|MASK_LEON },
{ "leon3", MASK_ISA, MASK_V8|MASK_LEON3 },
{ "leon3v7", MASK_ISA|MASK_FSMULD, MASK_LEON3 },
{ "sparclite", MASK_ISA|MASK_FSMULD, MASK_SPARCLITE },
/* The Fujitsu MB86930 is the original sparclite chip, with no FPU. */
{ "f930", MASK_ISA|MASK_FPU, MASK_SPARCLITE },
/* The Fujitsu MB86934 is the recent sparclite chip, with an FPU. */
{ "f934", MASK_ISA|MASK_FSMULD, MASK_SPARCLITE },
{ "sparclite86x", MASK_ISA|MASK_FPU, MASK_SPARCLITE },
{ "sparclet", MASK_ISA|MASK_FSMULD, MASK_SPARCLET },
/* TEMIC sparclet */
{ "tsc701", MASK_ISA|MASK_FSMULD, MASK_SPARCLET },
{ "v9", MASK_ISA, MASK_V9 },
/* UltraSPARC I, II, IIi */
{ "ultrasparc", MASK_ISA,
/* Although insns using %y are deprecated, it is a clear win. */
MASK_V9|MASK_DEPRECATED_V8_INSNS },
/* UltraSPARC III */
/* ??? Check if %y issue still holds true. */
{ "ultrasparc3", MASK_ISA,
MASK_V9|MASK_DEPRECATED_V8_INSNS|MASK_VIS2 },
/* UltraSPARC T1 */
{ "niagara", MASK_ISA,
MASK_V9|MASK_DEPRECATED_V8_INSNS },
/* UltraSPARC T2 */
{ "niagara2", MASK_ISA,
MASK_V9|MASK_POPC|MASK_VIS2 },
/* UltraSPARC T3 */
{ "niagara3", MASK_ISA,
MASK_V9|MASK_POPC|MASK_VIS3|MASK_FMAF },
/* UltraSPARC T4 */
{ "niagara4", MASK_ISA,
MASK_V9|MASK_POPC|MASK_VIS3|MASK_FMAF|MASK_CBCOND },
/* UltraSPARC M7 */
{ "niagara7", MASK_ISA,
MASK_V9|MASK_POPC|MASK_VIS4|MASK_FMAF|MASK_CBCOND|MASK_SUBXC },
/* UltraSPARC M8 */
{ "m8", MASK_ISA,
MASK_V9|MASK_POPC|MASK_VIS4|MASK_FMAF|MASK_CBCOND|MASK_SUBXC|MASK_VIS4B }
};
const struct cpu_table *cpu;
unsigned int i;
if (sparc_debug_string != NULL)
{
const char *q;
char *p;
p = ASTRDUP (sparc_debug_string);
while ((q = strtok (p, ",")) != NULL)
{
bool invert;
int mask;
p = NULL;
if (*q == '!')
{
invert = true;
q++;
}
else
invert = false;
if (! strcmp (q, "all"))
mask = MASK_DEBUG_ALL;
else if (! strcmp (q, "options"))
mask = MASK_DEBUG_OPTIONS;
else
error ("unknown -mdebug-%s switch", q);
if (invert)
sparc_debug &= ~mask;
else
sparc_debug |= mask;
}
}
/* Enable the FsMULd instruction by default if not explicitly specified by
the user. It may be later disabled by the CPU (explicitly or not). */
if (TARGET_FPU && !(target_flags_explicit & MASK_FSMULD))
target_flags |= MASK_FSMULD;
if (TARGET_DEBUG_OPTIONS)
{
dump_target_flags("Initial target_flags", target_flags);
dump_target_flags("target_flags_explicit", target_flags_explicit);
}
#ifdef SUBTARGET_OVERRIDE_OPTIONS
SUBTARGET_OVERRIDE_OPTIONS;
#endif
#ifndef SPARC_BI_ARCH
/* Check for unsupported architecture size. */
if (!TARGET_64BIT != DEFAULT_ARCH32_P)
error ("%s is not supported by this configuration",
DEFAULT_ARCH32_P ? "-m64" : "-m32");
#endif
/* We force all 64bit archs to use 128 bit long double */
if (TARGET_ARCH64 && !TARGET_LONG_DOUBLE_128)
{
error ("-mlong-double-64 not allowed with -m64");
target_flags |= MASK_LONG_DOUBLE_128;
}
/* Code model selection. */
sparc_cmodel = SPARC_DEFAULT_CMODEL;
#ifdef SPARC_BI_ARCH
if (TARGET_ARCH32)
sparc_cmodel = CM_32;
#endif
if (sparc_cmodel_string != NULL)
{
if (TARGET_ARCH64)
{
for (cmodel = &cmodels[0]; cmodel->name; cmodel++)
if (strcmp (sparc_cmodel_string, cmodel->name) == 0)
break;
if (cmodel->name == NULL)
error ("bad value (%s) for -mcmodel= switch", sparc_cmodel_string);
else
sparc_cmodel = cmodel->value;
}
else
error ("-mcmodel= is not supported on 32-bit systems");
}
/* Check that -fcall-saved-REG wasn't specified for out registers. */
for (i = 8; i < 16; i++)
if (!call_used_regs [i])
{
error ("-fcall-saved-REG is not supported for out registers");
call_used_regs [i] = 1;
}
/* Set the default CPU if no -mcpu option was specified. */
if (!global_options_set.x_sparc_cpu_and_features)
{
for (def = &cpu_default[0]; def->cpu != -1; ++def)
if (def->cpu == TARGET_CPU_DEFAULT)
break;
gcc_assert (def->cpu != -1);
sparc_cpu_and_features = def->processor;
}
/* Set the default CPU if no -mtune option was specified. */
if (!global_options_set.x_sparc_cpu)
sparc_cpu = sparc_cpu_and_features;
cpu = &cpu_table[(int) sparc_cpu_and_features];
if (TARGET_DEBUG_OPTIONS)
{
fprintf (stderr, "sparc_cpu_and_features: %s\n", cpu->name);
dump_target_flags ("cpu->disable", cpu->disable);
dump_target_flags ("cpu->enable", cpu->enable);
}
target_flags &= ~cpu->disable;
target_flags |= (cpu->enable
#ifndef HAVE_AS_FMAF_HPC_VIS3
& ~(MASK_FMAF | MASK_VIS3)
#endif
#ifndef HAVE_AS_SPARC4
& ~MASK_CBCOND
#endif
#ifndef HAVE_AS_SPARC5_VIS4
& ~(MASK_VIS4 | MASK_SUBXC)
#endif
#ifndef HAVE_AS_SPARC6
& ~(MASK_VIS4B)
#endif
#ifndef HAVE_AS_LEON
& ~(MASK_LEON | MASK_LEON3)
#endif
& ~(target_flags_explicit & MASK_FEATURES)
);
/* -mvis2 implies -mvis. */
if (TARGET_VIS2)
target_flags |= MASK_VIS;
/* -mvis3 implies -mvis2 and -mvis. */
if (TARGET_VIS3)
target_flags |= MASK_VIS2 | MASK_VIS;
/* -mvis4 implies -mvis3, -mvis2 and -mvis. */
if (TARGET_VIS4)
target_flags |= MASK_VIS3 | MASK_VIS2 | MASK_VIS;
/* -mvis4b implies -mvis4, -mvis3, -mvis2 and -mvis */
if (TARGET_VIS4B)
target_flags |= MASK_VIS4 | MASK_VIS3 | MASK_VIS2 | MASK_VIS;
/* Don't allow -mvis, -mvis2, -mvis3, -mvis4, -mvis4b, -mfmaf and -mfsmuld if
FPU is disabled. */
if (!TARGET_FPU)
target_flags &= ~(MASK_VIS | MASK_VIS2 | MASK_VIS3 | MASK_VIS4
| MASK_VIS4B | MASK_FMAF | MASK_FSMULD);
/* -mvis assumes UltraSPARC+, so we are sure v9 instructions
are available; -m64 also implies v9. */
if (TARGET_VIS || TARGET_ARCH64)
{
target_flags |= MASK_V9;
target_flags &= ~(MASK_V8 | MASK_SPARCLET | MASK_SPARCLITE);
}
/* -mvis also implies -mv8plus on 32-bit. */
if (TARGET_VIS && !TARGET_ARCH64)
target_flags |= MASK_V8PLUS;
/* Use the deprecated v8 insns for sparc64 in 32-bit mode. */
if (TARGET_V9 && TARGET_ARCH32)
target_flags |= MASK_DEPRECATED_V8_INSNS;
/* V8PLUS requires V9 and makes no sense in 64-bit mode. */
if (!TARGET_V9 || TARGET_ARCH64)
target_flags &= ~MASK_V8PLUS;
/* Don't use stack biasing in 32-bit mode. */
if (TARGET_ARCH32)
target_flags &= ~MASK_STACK_BIAS;
/* Use LRA instead of reload, unless otherwise instructed. */
if (!(target_flags_explicit & MASK_LRA))
target_flags |= MASK_LRA;
/* Enable applicable errata workarounds for LEON3FT. */
if (sparc_fix_ut699 || sparc_fix_ut700 || sparc_fix_gr712rc)
{
sparc_fix_b2bst = 1;
sparc_fix_lost_divsqrt = 1;
}
/* Disable FsMULd for the UT699 since it doesn't work correctly. */
if (sparc_fix_ut699)
target_flags &= ~MASK_FSMULD;
/* Supply a default value for align_functions. */
if (align_functions == 0)
{
if (sparc_cpu == PROCESSOR_ULTRASPARC
|| sparc_cpu == PROCESSOR_ULTRASPARC3
|| sparc_cpu == PROCESSOR_NIAGARA
|| sparc_cpu == PROCESSOR_NIAGARA2
|| sparc_cpu == PROCESSOR_NIAGARA3
|| sparc_cpu == PROCESSOR_NIAGARA4)
align_functions = 32;
else if (sparc_cpu == PROCESSOR_NIAGARA7
|| sparc_cpu == PROCESSOR_M8)
align_functions = 64;
}
/* Validate PCC_STRUCT_RETURN. */
if (flag_pcc_struct_return == DEFAULT_PCC_STRUCT_RETURN)
flag_pcc_struct_return = (TARGET_ARCH64 ? 0 : 1);
/* Only use .uaxword when compiling for a 64-bit target. */
if (!TARGET_ARCH64)
targetm.asm_out.unaligned_op.di = NULL;
/* Do various machine dependent initializations. */
sparc_init_modes ();
/* Set up function hooks. */
init_machine_status = sparc_init_machine_status;
switch (sparc_cpu)
{
case PROCESSOR_V7:
case PROCESSOR_CYPRESS:
sparc_costs = &cypress_costs;
break;
case PROCESSOR_V8:
case PROCESSOR_SPARCLITE:
case PROCESSOR_SUPERSPARC:
sparc_costs = &supersparc_costs;
break;
case PROCESSOR_F930:
case PROCESSOR_F934:
case PROCESSOR_HYPERSPARC:
case PROCESSOR_SPARCLITE86X:
sparc_costs = &hypersparc_costs;
break;
case PROCESSOR_LEON:
sparc_costs = &leon_costs;
break;
case PROCESSOR_LEON3:
case PROCESSOR_LEON3V7:
sparc_costs = &leon3_costs;
break;
case PROCESSOR_SPARCLET:
case PROCESSOR_TSC701:
sparc_costs = &sparclet_costs;
break;
case PROCESSOR_V9:
case PROCESSOR_ULTRASPARC:
sparc_costs = &ultrasparc_costs;
break;
case PROCESSOR_ULTRASPARC3:
sparc_costs = &ultrasparc3_costs;
break;
case PROCESSOR_NIAGARA:
sparc_costs = &niagara_costs;
break;
case PROCESSOR_NIAGARA2:
sparc_costs = &niagara2_costs;
break;
case PROCESSOR_NIAGARA3:
sparc_costs = &niagara3_costs;
break;
case PROCESSOR_NIAGARA4:
sparc_costs = &niagara4_costs;
break;
case PROCESSOR_NIAGARA7:
sparc_costs = &niagara7_costs;
break;
case PROCESSOR_M8:
sparc_costs = &m8_costs;
break;
case PROCESSOR_NATIVE:
gcc_unreachable ();
};
if (sparc_memory_model == SMM_DEFAULT)
{
/* Choose the memory model for the operating system. */
enum sparc_memory_model_type os_default = SUBTARGET_DEFAULT_MEMORY_MODEL;
if (os_default != SMM_DEFAULT)
sparc_memory_model = os_default;
/* Choose the most relaxed model for the processor. */
else if (TARGET_V9)
sparc_memory_model = SMM_RMO;
else if (TARGET_LEON3)
sparc_memory_model = SMM_TSO;
else if (TARGET_LEON)
sparc_memory_model = SMM_SC;
else if (TARGET_V8)
sparc_memory_model = SMM_PSO;
else
sparc_memory_model = SMM_SC;
}
#ifdef TARGET_DEFAULT_LONG_DOUBLE_128
if (!(target_flags_explicit & MASK_LONG_DOUBLE_128))
target_flags |= MASK_LONG_DOUBLE_128;
#endif
if (TARGET_DEBUG_OPTIONS)
dump_target_flags ("Final target_flags", target_flags);
/* PARAM_SIMULTANEOUS_PREFETCHES is the number of prefetches that
can run at the same time. More important, it is the threshold
defining when additional prefetches will be dropped by the
hardware.
The UltraSPARC-III features a documented prefetch queue with a
size of 8. Additional prefetches issued in the cpu are
dropped.
Niagara processors are different. In these processors prefetches
are handled much like regular loads. The L1 miss buffer is 32
entries, but prefetches start getting affected when 30 entries
become occupied. That occupation could be a mix of regular loads
and prefetches though. And that buffer is shared by all threads.
Once the threshold is reached, if the core is running a single
thread the prefetch will retry. If more than one thread is
running, the prefetch will be dropped.
All this makes it very difficult to determine how many
simultaneous prefetches can be issued simultaneously, even in a
single-threaded program. Experimental results show that setting
this parameter to 32 works well when the number of threads is not
high. */
maybe_set_param_value (PARAM_SIMULTANEOUS_PREFETCHES,
((sparc_cpu == PROCESSOR_ULTRASPARC
|| sparc_cpu == PROCESSOR_NIAGARA
|| sparc_cpu == PROCESSOR_NIAGARA2
|| sparc_cpu == PROCESSOR_NIAGARA3
|| sparc_cpu == PROCESSOR_NIAGARA4)
? 2
: (sparc_cpu == PROCESSOR_ULTRASPARC3
? 8 : ((sparc_cpu == PROCESSOR_NIAGARA7
|| sparc_cpu == PROCESSOR_M8)
? 32 : 3))),
global_options.x_param_values,
global_options_set.x_param_values);
/* PARAM_L1_CACHE_LINE_SIZE is the size of the L1 cache line, in
bytes.
The Oracle SPARC Architecture (previously the UltraSPARC
Architecture) specification states that when a PREFETCH[A]
instruction is executed an implementation-specific amount of data
is prefetched, and that it is at least 64 bytes long (aligned to
at least 64 bytes).
However, this is not correct. The M7 (and implementations prior
to that) does not guarantee a 64B prefetch into a cache if the
line size is smaller. A single cache line is all that is ever
prefetched. So for the M7, where the L1D$ has 32B lines and the
L2D$ and L3 have 64B lines, a prefetch will prefetch 64B into the
L2 and L3, but only 32B are brought into the L1D$. (Assuming it
is a read_n prefetch, which is the only type which allocates to
the L1.) */
maybe_set_param_value (PARAM_L1_CACHE_LINE_SIZE,
(sparc_cpu == PROCESSOR_M8
? 64 : 32),
global_options.x_param_values,
global_options_set.x_param_values);
/* PARAM_L1_CACHE_SIZE is the size of the L1D$ (most SPARC chips use
Hardvard level-1 caches) in kilobytes. Both UltraSPARC and
Niagara processors feature a L1D$ of 16KB. */
maybe_set_param_value (PARAM_L1_CACHE_SIZE,
((sparc_cpu == PROCESSOR_ULTRASPARC
|| sparc_cpu == PROCESSOR_ULTRASPARC3
|| sparc_cpu == PROCESSOR_NIAGARA
|| sparc_cpu == PROCESSOR_NIAGARA2
|| sparc_cpu == PROCESSOR_NIAGARA3
|| sparc_cpu == PROCESSOR_NIAGARA4
|| sparc_cpu == PROCESSOR_NIAGARA7
|| sparc_cpu == PROCESSOR_M8)
? 16 : 64),
global_options.x_param_values,
global_options_set.x_param_values);
/* PARAM_L2_CACHE_SIZE is the size fo the L2 in kilobytes. Note
that 512 is the default in params.def. */
maybe_set_param_value (PARAM_L2_CACHE_SIZE,
((sparc_cpu == PROCESSOR_NIAGARA4
|| sparc_cpu == PROCESSOR_M8)
? 128 : (sparc_cpu == PROCESSOR_NIAGARA7
? 256 : 512)),
global_options.x_param_values,
global_options_set.x_param_values);
/* Disable save slot sharing for call-clobbered registers by default.
The IRA sharing algorithm works on single registers only and this
pessimizes for double floating-point registers. */
if (!global_options_set.x_flag_ira_share_save_slots)
flag_ira_share_save_slots = 0;
/* Only enable REE by default in 64-bit mode where it helps to eliminate
redundant 32-to-64-bit extensions. */
if (!global_options_set.x_flag_ree && TARGET_ARCH32)
flag_ree = 0;
}
/* Miscellaneous utilities. */
/* Nonzero if CODE, a comparison, is suitable for use in v9 conditional move
or branch on register contents instructions. */
int
v9_regcmp_p (enum rtx_code code)
{
return (code == EQ || code == NE || code == GE || code == LT
|| code == LE || code == GT);
}
/* Nonzero if OP is a floating point constant which can
be loaded into an integer register using a single
sethi instruction. */
int
fp_sethi_p (rtx op)
{
if (GET_CODE (op) == CONST_DOUBLE)
{
long i;
REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (op), i);
return !SPARC_SIMM13_P (i) && SPARC_SETHI_P (i);
}
return 0;
}
/* Nonzero if OP is a floating point constant which can
be loaded into an integer register using a single
mov instruction. */
int
fp_mov_p (rtx op)
{
if (GET_CODE (op) == CONST_DOUBLE)
{
long i;
REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (op), i);
return SPARC_SIMM13_P (i);
}
return 0;
}
/* Nonzero if OP is a floating point constant which can
be loaded into an integer register using a high/losum
instruction sequence. */
int
fp_high_losum_p (rtx op)
{
/* The constraints calling this should only be in
SFmode move insns, so any constant which cannot
be moved using a single insn will do. */
if (GET_CODE (op) == CONST_DOUBLE)
{
long i;
REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (op), i);
return !SPARC_SIMM13_P (i) && !SPARC_SETHI_P (i);
}
return 0;
}
/* Return true if the address of LABEL can be loaded by means of the
mov{si,di}_pic_label_ref patterns in PIC mode. */
static bool
can_use_mov_pic_label_ref (rtx label)
{
/* VxWorks does not impose a fixed gap between segments; the run-time
gap can be different from the object-file gap. We therefore can't
assume X - _GLOBAL_OFFSET_TABLE_ is a link-time constant unless we
are absolutely sure that X is in the same segment as the GOT.
Unfortunately, the flexibility of linker scripts means that we
can't be sure of that in general, so assume that GOT-relative
accesses are never valid on VxWorks. */
if (TARGET_VXWORKS_RTP)
return false;
/* Similarly, if the label is non-local, it might end up being placed
in a different section than the current one; now mov_pic_label_ref
requires the label and the code to be in the same section. */
if (LABEL_REF_NONLOCAL_P (label))
return false;
/* Finally, if we are reordering basic blocks and partition into hot
and cold sections, this might happen for any label. */
if (flag_reorder_blocks_and_partition)
return false;
return true;
}
/* Expand a move instruction. Return true if all work is done. */
bool
sparc_expand_move (machine_mode mode, rtx *operands)
{
/* Handle sets of MEM first. */
if (GET_CODE (operands[0]) == MEM)
{
/* 0 is a register (or a pair of registers) on SPARC. */
if (register_or_zero_operand (operands[1], mode))
return false;
if (!reload_in_progress)
{
operands[0] = validize_mem (operands[0]);
operands[1] = force_reg (mode, operands[1]);
}
}
/* Fix up TLS cases. */
if (TARGET_HAVE_TLS
&& CONSTANT_P (operands[1])
&& sparc_tls_referenced_p (operands [1]))
{
operands[1] = sparc_legitimize_tls_address (operands[1]);
return false;
}
/* Fix up PIC cases. */
if (flag_pic && CONSTANT_P (operands[1]))
{
if (pic_address_needs_scratch (operands[1]))
operands[1] = sparc_legitimize_pic_address (operands[1], NULL_RTX);
/* We cannot use the mov{si,di}_pic_label_ref patterns in all cases. */
if ((GET_CODE (operands[1]) == LABEL_REF
&& can_use_mov_pic_label_ref (operands[1]))
|| (GET_CODE (operands[1]) == CONST
&& GET_CODE (XEXP (operands[1], 0)) == PLUS
&& GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == LABEL_REF
&& GET_CODE (XEXP (XEXP (operands[1], 0), 1)) == CONST_INT
&& can_use_mov_pic_label_ref (XEXP (XEXP (operands[1], 0), 0))))
{
if (mode == SImode)
{
emit_insn (gen_movsi_pic_label_ref (operands[0], operands[1]));
return true;
}
if (mode == DImode)
{
emit_insn (gen_movdi_pic_label_ref (operands[0], operands[1]));
return true;
}
}
if (symbolic_operand (operands[1], mode))
{
operands[1]
= sparc_legitimize_pic_address (operands[1],
reload_in_progress
? operands[0] : NULL_RTX);
return false;
}
}
/* If we are trying to toss an integer constant into FP registers,
or loading a FP or vector constant, force it into memory. */
if (CONSTANT_P (operands[1])
&& REG_P (operands[0])
&& (SPARC_FP_REG_P (REGNO (operands[0]))
|| SCALAR_FLOAT_MODE_P (mode)
|| VECTOR_MODE_P (mode)))
{
/* emit_group_store will send such bogosity to us when it is
not storing directly into memory. So fix this up to avoid
crashes in output_constant_pool. */
if (operands [1] == const0_rtx)
operands[1] = CONST0_RTX (mode);
/* We can clear or set to all-ones FP registers if TARGET_VIS, and
always other regs. */
if ((TARGET_VIS || REGNO (operands[0]) < SPARC_FIRST_FP_REG)
&& (const_zero_operand (operands[1], mode)
|| const_all_ones_operand (operands[1], mode)))
return false;
if (REGNO (operands[0]) < SPARC_FIRST_FP_REG
/* We are able to build any SF constant in integer registers
with at most 2 instructions. */
&& (mode == SFmode
/* And any DF constant in integer registers if needed. */
|| (mode == DFmode && !can_create_pseudo_p ())))
return false;
operands[1] = force_const_mem (mode, operands[1]);
if (!reload_in_progress)
operands[1] = validize_mem (operands[1]);
return false;
}
/* Accept non-constants and valid constants unmodified. */
if (!CONSTANT_P (operands[1])
|| GET_CODE (operands[1]) == HIGH
|| input_operand (operands[1], mode))
return false;
switch (mode)
{
case E_QImode:
/* All QImode constants require only one insn, so proceed. */
break;
case E_HImode:
case E_SImode:
sparc_emit_set_const32 (operands[0], operands[1]);
return true;
case E_DImode:
/* input_operand should have filtered out 32-bit mode. */
sparc_emit_set_const64 (operands[0], operands[1]);
return true;
case E_TImode:
{
rtx high, low;
/* TImode isn't available in 32-bit mode. */
split_double (operands[1], &high, &low);
emit_insn (gen_movdi (operand_subword (operands[0], 0, 0, TImode),
high));
emit_insn (gen_movdi (operand_subword (operands[0], 1, 0, TImode),
low));
}
return true;
default:
gcc_unreachable ();
}
return false;
}
/* Load OP1, a 32-bit constant, into OP0, a register.
We know it can't be done in one insn when we get
here, the move expander guarantees this. */
static void
sparc_emit_set_const32 (rtx op0, rtx op1)
{
machine_mode mode = GET_MODE (op0);
rtx temp = op0;
if (can_create_pseudo_p ())
temp = gen_reg_rtx (mode);
if (GET_CODE (op1) == CONST_INT)
{
gcc_assert (!small_int_operand (op1, mode)
&& !const_high_operand (op1, mode));
/* Emit them as real moves instead of a HIGH/LO_SUM,
this way CSE can see everything and reuse intermediate
values if it wants. */
emit_insn (gen_rtx_SET (temp, GEN_INT (INTVAL (op1)
& ~(HOST_WIDE_INT) 0x3ff)));
emit_insn (gen_rtx_SET (op0,
gen_rtx_IOR (mode, temp,
GEN_INT (INTVAL (op1) & 0x3ff))));
}
else
{
/* A symbol, emit in the traditional way. */
emit_insn (gen_rtx_SET (temp, gen_rtx_HIGH (mode, op1)));
emit_insn (gen_rtx_SET (op0, gen_rtx_LO_SUM (mode, temp, op1)));
}
}
/* Load OP1, a symbolic 64-bit constant, into OP0, a DImode register.
If TEMP is nonzero, we are forbidden to use any other scratch
registers. Otherwise, we are allowed to generate them as needed.
Note that TEMP may have TImode if the code model is TARGET_CM_MEDANY
or TARGET_CM_EMBMEDANY (see the reload_indi and reload_outdi patterns). */
void
sparc_emit_set_symbolic_const64 (rtx op0, rtx op1, rtx temp)
{
rtx cst, temp1, temp2, temp3, temp4, temp5;
rtx ti_temp = 0;
/* Deal with too large offsets. */
if (GET_CODE (op1) == CONST
&& GET_CODE (XEXP (op1, 0)) == PLUS
&& CONST_INT_P (cst = XEXP (XEXP (op1, 0), 1))
&& trunc_int_for_mode (INTVAL (cst), SImode) != INTVAL (cst))
{
gcc_assert (!temp);
temp1 = gen_reg_rtx (DImode);
temp2 = gen_reg_rtx (DImode);
sparc_emit_set_const64 (temp2, cst);
sparc_emit_set_symbolic_const64 (temp1, XEXP (XEXP (op1, 0), 0),
NULL_RTX);
emit_insn (gen_rtx_SET (op0, gen_rtx_PLUS (DImode, temp1, temp2)));
return;
}
if (temp && GET_MODE (temp) == TImode)
{
ti_temp = temp;
temp = gen_rtx_REG (DImode, REGNO (temp));
}
/* SPARC-V9 code-model support. */
switch (sparc_cmodel)
{
case CM_MEDLOW:
/* The range spanned by all instructions in the object is less
than 2^31 bytes (2GB) and the distance from any instruction
to the location of the label _GLOBAL_OFFSET_TABLE_ is less
than 2^31 bytes (2GB).
The executable must be in the low 4TB of the virtual address
space.
sethi %hi(symbol), %temp1
or %temp1, %lo(symbol), %reg */
if (temp)
temp1 = temp; /* op0 is allowed. */
else
temp1 = gen_reg_rtx (DImode);
emit_insn (gen_rtx_SET (temp1, gen_rtx_HIGH (DImode, op1)));
emit_insn (gen_rtx_SET (op0, gen_rtx_LO_SUM (DImode, temp1, op1)));
break;
case CM_MEDMID:
/* The range spanned by all instructions in the object is less
than 2^31 bytes (2GB) and the distance from any instruction
to the location of the label _GLOBAL_OFFSET_TABLE_ is less
than 2^31 bytes (2GB).
The executable must be in the low 16TB of the virtual address
space.
sethi %h44(symbol), %temp1
or %temp1, %m44(symbol), %temp2
sllx %temp2, 12, %temp3
or %temp3, %l44(symbol), %reg */
if (temp)
{
temp1 = op0;
temp2 = op0;
temp3 = temp; /* op0 is allowed. */
}
else
{
temp1 = gen_reg_rtx (DImode);
temp2 = gen_reg_rtx (DImode);
temp3 = gen_reg_rtx (DImode);
}
emit_insn (gen_seth44 (temp1, op1));
emit_insn (gen_setm44 (temp2, temp1, op1));
emit_insn (gen_rtx_SET (temp3,
gen_rtx_ASHIFT (DImode, temp2, GEN_INT (12))));
emit_insn (gen_setl44 (op0, temp3, op1));
break;
case CM_MEDANY:
/* The range spanned by all instructions in the object is less
than 2^31 bytes (2GB) and the distance from any instruction
to the location of the label _GLOBAL_OFFSET_TABLE_ is less
than 2^31 bytes (2GB).
The executable can be placed anywhere in the virtual address
space.
sethi %hh(symbol), %temp1
sethi %lm(symbol), %temp2
or %temp1, %hm(symbol), %temp3
sllx %temp3, 32, %temp4
or %temp4, %temp2, %temp5
or %temp5, %lo(symbol), %reg */
if (temp)
{
/* It is possible that one of the registers we got for operands[2]
might coincide with that of operands[0] (which is why we made
it TImode). Pick the other one to use as our scratch. */
if (rtx_equal_p (temp, op0))
{
gcc_assert (ti_temp);
temp = gen_rtx_REG (DImode, REGNO (temp) + 1);
}
temp1 = op0;
temp2 = temp; /* op0 is _not_ allowed, see above. */
temp3 = op0;
temp4 = op0;
temp5 = op0;
}
else
{
temp1 = gen_reg_rtx (DImode);
temp2 = gen_reg_rtx (DImode);
temp3 = gen_reg_rtx (DImode);
temp4 = gen_reg_rtx (DImode);
temp5 = gen_reg_rtx (DImode);
}
emit_insn (gen_sethh (temp1, op1));
emit_insn (gen_setlm (temp2, op1));
emit_insn (gen_sethm (temp3, temp1, op1));
emit_insn (gen_rtx_SET (temp4,
gen_rtx_ASHIFT (DImode, temp3, GEN_INT (32))));
emit_insn (gen_rtx_SET (temp5, gen_rtx_PLUS (DImode, temp4, temp2)));
emit_insn (gen_setlo (op0, temp5, op1));
break;
case CM_EMBMEDANY:
/* Old old old backwards compatibility kruft here.
Essentially it is MEDLOW with a fixed 64-bit
virtual base added to all data segment addresses.
Text-segment stuff is computed like MEDANY, we can't
reuse the code above because the relocation knobs
look different.
Data segment: sethi %hi(symbol), %temp1
add %temp1, EMBMEDANY_BASE_REG, %temp2
or %temp2, %lo(symbol), %reg */
if (data_segment_operand (op1, GET_MODE (op1)))
{
if (temp)
{
temp1 = temp; /* op0 is allowed. */
temp2 = op0;
}
else
{
temp1 = gen_reg_rtx (DImode);
temp2 = gen_reg_rtx (DImode);
}
emit_insn (gen_embmedany_sethi (temp1, op1));
emit_insn (gen_embmedany_brsum (temp2, temp1));
emit_insn (gen_embmedany_losum (op0, temp2, op1));
}
/* Text segment: sethi %uhi(symbol), %temp1
sethi %hi(symbol), %temp2
or %temp1, %ulo(symbol), %temp3
sllx %temp3, 32, %temp4
or %temp4, %temp2, %temp5
or %temp5, %lo(symbol), %reg */
else
{
if (temp)
{
/* It is possible that one of the registers we got for operands[2]
might coincide with that of operands[0] (which is why we made
it TImode). Pick the other one to use as our scratch. */
if (rtx_equal_p (temp, op0))
{
gcc_assert (ti_temp);
temp = gen_rtx_REG (DImode, REGNO (temp) + 1);
}
temp1 = op0;
temp2 = temp; /* op0 is _not_ allowed, see above. */
temp3 = op0;
temp4 = op0;
temp5 = op0;
}
else
{
temp1 = gen_reg_rtx (DImode);
temp2 = gen_reg_rtx (DImode);
temp3 = gen_reg_rtx (DImode);
temp4 = gen_reg_rtx (DImode);
temp5 = gen_reg_rtx (DImode);
}
emit_insn (gen_embmedany_textuhi (temp1, op1));
emit_insn (gen_embmedany_texthi (temp2, op1));
emit_insn (gen_embmedany_textulo (temp3, temp1, op1));
emit_insn (gen_rtx_SET (temp4,
gen_rtx_ASHIFT (DImode, temp3, GEN_INT (32))));
emit_insn (gen_rtx_SET (temp5, gen_rtx_PLUS (DImode, temp4, temp2)));
emit_insn (gen_embmedany_textlo (op0, temp5, op1));
}
break;
default:
gcc_unreachable ();
}
}
/* These avoid problems when cross compiling. If we do not
go through all this hair then the optimizer will see
invalid REG_EQUAL notes or in some cases none at all. */
static rtx gen_safe_HIGH64 (rtx, HOST_WIDE_INT);
static rtx gen_safe_SET64 (rtx, HOST_WIDE_INT);
static rtx gen_safe_OR64 (rtx, HOST_WIDE_INT);
static rtx gen_safe_XOR64 (rtx, HOST_WIDE_INT);
/* The optimizer is not to assume anything about exactly
which bits are set for a HIGH, they are unspecified.
Unfortunately this leads to many missed optimizations
during CSE. We mask out the non-HIGH bits, and matches
a plain movdi, to alleviate this problem. */
static rtx
gen_safe_HIGH64 (rtx dest, HOST_WIDE_INT val)
{
return gen_rtx_SET (dest, GEN_INT (val & ~(HOST_WIDE_INT)0x3ff));
}
static rtx
gen_safe_SET64 (rtx dest, HOST_WIDE_INT val)
{
return gen_rtx_SET (dest, GEN_INT (val));
}
static rtx
gen_safe_OR64 (rtx src, HOST_WIDE_INT val)
{
return gen_rtx_IOR (DImode, src, GEN_INT (val));
}
static rtx
gen_safe_XOR64 (rtx src, HOST_WIDE_INT val)
{
return gen_rtx_XOR (DImode, src, GEN_INT (val));
}
/* Worker routines for 64-bit constant formation on arch64.
One of the key things to be doing in these emissions is
to create as many temp REGs as possible. This makes it
possible for half-built constants to be used later when
such values are similar to something required later on.
Without doing this, the optimizer cannot see such
opportunities. */
static void sparc_emit_set_const64_quick1 (rtx, rtx,
unsigned HOST_WIDE_INT, int);
static void
sparc_emit_set_const64_quick1 (rtx op0, rtx temp,
unsigned HOST_WIDE_INT low_bits, int is_neg)
{
unsigned HOST_WIDE_INT high_bits;
if (is_neg)
high_bits = (~low_bits) & 0xffffffff;
else
high_bits = low_bits;
emit_insn (gen_safe_HIGH64 (temp, high_bits));
if (!is_neg)
{
emit_insn (gen_rtx_SET (op0, gen_safe_OR64 (temp, (high_bits & 0x3ff))));
}
else
{
/* If we are XOR'ing with -1, then we should emit a one's complement
instead. This way the combiner will notice logical operations
such as ANDN later on and substitute. */
if ((low_bits & 0x3ff) == 0x3ff)
{
emit_insn (gen_rtx_SET (op0, gen_rtx_NOT (DImode, temp)));
}
else
{
emit_insn (gen_rtx_SET (op0,
gen_safe_XOR64 (temp,
(-(HOST_WIDE_INT)0x400
| (low_bits & 0x3ff)))));
}
}
}
static void sparc_emit_set_const64_quick2 (rtx, rtx, unsigned HOST_WIDE_INT,
unsigned HOST_WIDE_INT, int);
static void
sparc_emit_set_const64_quick2 (rtx op0, rtx temp,
unsigned HOST_WIDE_INT high_bits,
unsigned HOST_WIDE_INT low_immediate,
int shift_count)
{
rtx temp2 = op0;
if ((high_bits & 0xfffffc00) != 0)
{
emit_insn (gen_safe_HIGH64 (temp, high_bits));
if ((high_bits & ~0xfffffc00) != 0)
emit_insn (gen_rtx_SET (op0,
gen_safe_OR64 (temp, (high_bits & 0x3ff))));
else
temp2 = temp;
}
else
{
emit_insn (gen_safe_SET64 (temp, high_bits));
temp2 = temp;
}
/* Now shift it up into place. */
emit_insn (gen_rtx_SET (op0, gen_rtx_ASHIFT (DImode, temp2,
GEN_INT (shift_count))));
/* If there is a low immediate part piece, finish up by
putting that in as well. */
if (low_immediate != 0)
emit_insn (gen_rtx_SET (op0, gen_safe_OR64 (op0, low_immediate)));
}
static void sparc_emit_set_const64_longway (rtx, rtx, unsigned HOST_WIDE_INT,
unsigned HOST_WIDE_INT);
/* Full 64-bit constant decomposition. Even though this is the
'worst' case, we still optimize a few things away. */
static void
sparc_emit_set_const64_longway (rtx op0, rtx temp,
unsigned HOST_WIDE_INT high_bits,
unsigned HOST_WIDE_INT low_bits)
{
rtx sub_temp = op0;
if (can_create_pseudo_p ())
sub_temp = gen_reg_rtx (DImode);
if ((high_bits & 0xfffffc00) != 0)
{
emit_insn (gen_safe_HIGH64 (temp, high_bits));
if ((high_bits & ~0xfffffc00) != 0)
emit_insn (gen_rtx_SET (sub_temp,
gen_safe_OR64 (temp, (high_bits & 0x3ff))));
else
sub_temp = temp;
}
else
{
emit_insn (gen_safe_SET64 (temp, high_bits));
sub_temp = temp;
}
if (can_create_pseudo_p ())
{
rtx temp2 = gen_reg_rtx (DImode);
rtx temp3 = gen_reg_rtx (DImode);
rtx temp4 = gen_reg_rtx (DImode);
emit_insn (gen_rtx_SET (temp4, gen_rtx_ASHIFT (DImode, sub_temp,
GEN_INT (32))));
emit_insn (gen_safe_HIGH64 (temp2, low_bits));
if ((low_bits & ~0xfffffc00) != 0)
{
emit_insn (gen_rtx_SET (temp3,
gen_safe_OR64 (temp2, (low_bits & 0x3ff))));
emit_insn (gen_rtx_SET (op0, gen_rtx_PLUS (DImode, temp4, temp3)));
}
else
{
emit_insn (gen_rtx_SET (op0, gen_rtx_PLUS (DImode, temp4, temp2)));
}
}
else
{
rtx low1 = GEN_INT ((low_bits >> (32 - 12)) & 0xfff);
rtx low2 = GEN_INT ((low_bits >> (32 - 12 - 12)) & 0xfff);
rtx low3 = GEN_INT ((low_bits >> (32 - 12 - 12 - 8)) & 0x0ff);
int to_shift = 12;
/* We are in the middle of reload, so this is really
painful. However we do still make an attempt to
avoid emitting truly stupid code. */
if (low1 != const0_rtx)
{
emit_insn (gen_rtx_SET (op0, gen_rtx_ASHIFT (DImode, sub_temp,
GEN_INT (to_shift))));
emit_insn (gen_rtx_SET (op0, gen_rtx_IOR (DImode, op0, low1)));
sub_temp = op0;
to_shift = 12;
}
else
{
to_shift += 12;
}
if (low2 != const0_rtx)
{
emit_insn (gen_rtx_SET (op0, gen_rtx_ASHIFT (DImode, sub_temp,
GEN_INT (to_shift))));
emit_insn (gen_rtx_SET (op0, gen_rtx_IOR (DImode, op0, low2)));
sub_temp = op0;
to_shift = 8;
}
else
{
to_shift += 8;
}
emit_insn (gen_rtx_SET (op0, gen_rtx_ASHIFT (DImode, sub_temp,
GEN_INT (to_shift))));
if (low3 != const0_rtx)
emit_insn (gen_rtx_SET (op0, gen_rtx_IOR (DImode, op0, low3)));
/* phew... */
}
}
/* Analyze a 64-bit constant for certain properties. */
static void analyze_64bit_constant (unsigned HOST_WIDE_INT,
unsigned HOST_WIDE_INT,
int *, int *, int *);
static void
analyze_64bit_constant (unsigned HOST_WIDE_INT high_bits,
unsigned HOST_WIDE_INT low_bits,
int *hbsp, int *lbsp, int *abbasp)
{
int lowest_bit_set, highest_bit_set, all_bits_between_are_set;
int i;
lowest_bit_set = highest_bit_set = -1;
i = 0;
do
{
if ((lowest_bit_set == -1)
&& ((low_bits >> i) & 1))
lowest_bit_set = i;
if ((highest_bit_set == -1)
&& ((high_bits >> (32 - i - 1)) & 1))
highest_bit_set = (64 - i - 1);
}
while (++i < 32
&& ((highest_bit_set == -1)
|| (lowest_bit_set == -1)));
if (i == 32)
{
i = 0;
do
{
if ((lowest_bit_set == -1)
&& ((high_bits >> i) & 1))
lowest_bit_set = i + 32;
if ((highest_bit_set == -1)
&& ((low_bits >> (32 - i - 1)) & 1))
highest_bit_set = 32 - i - 1;
}
while (++i < 32
&& ((highest_bit_set == -1)
|| (lowest_bit_set == -1)));
}
/* If there are no bits set this should have gone out
as one instruction! */
gcc_assert (lowest_bit_set != -1 && highest_bit_set != -1);
all_bits_between_are_set = 1;
for (i = lowest_bit_set; i <= highest_bit_set; i++)
{
if (i < 32)
{
if ((low_bits & (1 << i)) != 0)
continue;
}
else
{
if ((high_bits & (1 << (i - 32))) != 0)
continue;
}
all_bits_between_are_set = 0;
break;
}
*hbsp = highest_bit_set;
*lbsp = lowest_bit_set;
*abbasp = all_bits_between_are_set;
}
static int const64_is_2insns (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
static int
const64_is_2insns (unsigned HOST_WIDE_INT high_bits,
unsigned HOST_WIDE_INT low_bits)
{
int highest_bit_set, lowest_bit_set, all_bits_between_are_set;
if (high_bits == 0
|| high_bits == 0xffffffff)
return 1;
analyze_64bit_constant (high_bits, low_bits,
&highest_bit_set, &lowest_bit_set,
&all_bits_between_are_set);
if ((highest_bit_set == 63
|| lowest_bit_set == 0)
&& all_bits_between_are_set != 0)
return 1;
if ((highest_bit_set - lowest_bit_set) < 21)
return 1;
return 0;
}
static unsigned HOST_WIDE_INT create_simple_focus_bits (unsigned HOST_WIDE_INT,
unsigned HOST_WIDE_INT,
int, int);
static unsigned HOST_WIDE_INT
create_simple_focus_bits (unsigned HOST_WIDE_INT high_bits,
unsigned HOST_WIDE_INT low_bits,
int lowest_bit_set, int shift)
{
HOST_WIDE_INT hi, lo;
if (lowest_bit_set < 32)
{
lo = (low_bits >> lowest_bit_set) << shift;
hi = ((high_bits << (32 - lowest_bit_set)) << shift);
}
else
{
lo = 0;
hi = ((high_bits >> (lowest_bit_set - 32)) << shift);
}
gcc_assert (! (hi & lo));
return (hi | lo);
}
/* Here we are sure to be arch64 and this is an integer constant
being loaded into a register. Emit the most efficient
insn sequence possible. Detection of all the 1-insn cases
has been done already. */
static void
sparc_emit_set_const64 (rtx op0, rtx op1)
{
unsigned HOST_WIDE_INT high_bits, low_bits;
int lowest_bit_set, highest_bit_set;
int all_bits_between_are_set;
rtx temp = 0;
/* Sanity check that we know what we are working with. */
gcc_assert (TARGET_ARCH64
&& (GET_CODE (op0) == SUBREG
|| (REG_P (op0) && ! SPARC_FP_REG_P (REGNO (op0)))));
if (! can_create_pseudo_p ())
temp = op0;
if (GET_CODE (op1) != CONST_INT)
{
sparc_emit_set_symbolic_const64 (op0, op1, temp);
return;
}
if (! temp)
temp = gen_reg_rtx (DImode);
high_bits = ((INTVAL (op1) >> 32) & 0xffffffff);
low_bits = (INTVAL (op1) & 0xffffffff);
/* low_bits bits 0 --> 31
high_bits bits 32 --> 63 */
analyze_64bit_constant (high_bits, low_bits,
&highest_bit_set, &lowest_bit_set,
&all_bits_between_are_set);
/* First try for a 2-insn sequence. */
/* These situations are preferred because the optimizer can
* do more things with them:
* 1) mov -1, %reg
* sllx %reg, shift, %reg
* 2) mov -1, %reg
* srlx %reg, shift, %reg
* 3) mov some_small_const, %reg
* sllx %reg, shift, %reg
*/
if (((highest_bit_set == 63
|| lowest_bit_set == 0)
&& all_bits_between_are_set != 0)
|| ((highest_bit_set - lowest_bit_set) < 12))
{
HOST_WIDE_INT the_const = -1;
int shift = lowest_bit_set;
if ((highest_bit_set != 63
&& lowest_bit_set != 0)
|| all_bits_between_are_set == 0)
{
the_const =
create_simple_focus_bits (high_bits, low_bits,
lowest_bit_set, 0);
}
else if (lowest_bit_set == 0)
shift = -(63 - highest_bit_set);
gcc_assert (SPARC_SIMM13_P (the_const));
gcc_assert (shift != 0);
emit_insn (gen_safe_SET64 (temp, the_const));
if (shift > 0)
emit_insn (gen_rtx_SET (op0, gen_rtx_ASHIFT (DImode, temp,
GEN_INT (shift))));
else if (shift < 0)
emit_insn (gen_rtx_SET (op0, gen_rtx_LSHIFTRT (DImode, temp,
GEN_INT (-shift))));
return;
}
/* Now a range of 22 or less bits set somewhere.
* 1) sethi %hi(focus_bits), %reg
* sllx %reg, shift, %reg
* 2) sethi %hi(focus_bits), %reg
* srlx %reg, shift, %reg
*/
if ((highest_bit_set - lowest_bit_set) < 21)
{
unsigned HOST_WIDE_INT focus_bits =
create_simple_focus_bits (high_bits, low_bits,
lowest_bit_set, 10);
gcc_assert (SPARC_SETHI_P (focus_bits));
gcc_assert (lowest_bit_set != 10);
emit_insn (gen_safe_HIGH64 (temp, focus_bits));
/* If lowest_bit_set == 10 then a sethi alone could have done it. */
if (lowest_bit_set < 10)
emit_insn (gen_rtx_SET (op0,
gen_rtx_LSHIFTRT (DImode, temp,
GEN_INT (10 - lowest_bit_set))));
else if (lowest_bit_set > 10)
emit_insn (gen_rtx_SET (op0,
gen_rtx_ASHIFT (DImode, temp,
GEN_INT (lowest_bit_set - 10))));
return;
}
/* 1) sethi %hi(low_bits), %reg
* or %reg, %lo(low_bits), %reg
* 2) sethi %hi(~low_bits), %reg
* xor %reg, %lo(-0x400 | (low_bits & 0x3ff)), %reg
*/
if (high_bits == 0
|| high_bits == 0xffffffff)
{
sparc_emit_set_const64_quick1 (op0, temp, low_bits,
(high_bits == 0xffffffff));
return;
}
/* Now, try 3-insn sequences. */
/* 1) sethi %hi(high_bits), %reg
* or %reg, %lo(high_bits), %reg
* sllx %reg, 32, %reg
*/
if (low_bits == 0)
{
sparc_emit_set_const64_quick2 (op0, temp, high_bits, 0, 32);
return;
}
/* We may be able to do something quick
when the constant is negated, so try that. */
if (const64_is_2insns ((~high_bits) & 0xffffffff,
(~low_bits) & 0xfffffc00))
{
/* NOTE: The trailing bits get XOR'd so we need the
non-negated bits, not the negated ones. */
unsigned HOST_WIDE_INT trailing_bits = low_bits & 0x3ff;
if ((((~high_bits) & 0xffffffff) == 0
&& ((~low_bits) & 0x80000000) == 0)
|| (((~high_bits) & 0xffffffff) == 0xffffffff
&& ((~low_bits) & 0x80000000) != 0))
{
unsigned HOST_WIDE_INT fast_int = (~low_bits & 0xffffffff);
if ((SPARC_SETHI_P (fast_int)
&& (~high_bits & 0xffffffff) == 0)
|| SPARC_SIMM13_P (fast_int))
emit_insn (gen_safe_SET64 (temp, fast_int));
else
sparc_emit_set_const64 (temp, GEN_INT (fast_int));
}
else
{
rtx negated_const;
negated_const = GEN_INT (((~low_bits) & 0xfffffc00) |
(((HOST_WIDE_INT)((~high_bits) & 0xffffffff))<<32));
sparc_emit_set_const64 (temp, negated_const);
}
/* If we are XOR'ing with -1, then we should emit a one's complement
instead. This way the combiner will notice logical operations
such as ANDN later on and substitute. */
if (trailing_bits == 0x3ff)
{
emit_insn (gen_rtx_SET (op0, gen_rtx_NOT (DImode, temp)));
}
else
{
emit_insn (gen_rtx_SET (op0,
gen_safe_XOR64 (temp,
(-0x400 | trailing_bits))));
}
return;
}
/* 1) sethi %hi(xxx), %reg
* or %reg, %lo(xxx), %reg
* sllx %reg, yyy, %reg
*
* ??? This is just a generalized version of the low_bits==0
* thing above, FIXME...
*/
if ((highest_bit_set - lowest_bit_set) < 32)
{
unsigned HOST_WIDE_INT focus_bits =
create_simple_focus_bits (high_bits, low_bits,
lowest_bit_set, 0);
/* We can't get here in this state. */
gcc_assert (highest_bit_set >= 32 && lowest_bit_set < 32);
/* So what we know is that the set bits straddle the
middle of the 64-bit word. */
sparc_emit_set_const64_quick2 (op0, temp,
focus_bits, 0,
lowest_bit_set);
return;
}
/* 1) sethi %hi(high_bits), %reg
* or %reg, %lo(high_bits), %reg
* sllx %reg, 32, %reg
* or %reg, low_bits, %reg
*/
if (SPARC_SIMM13_P (low_bits) && ((int)low_bits > 0))
{
sparc_emit_set_const64_quick2 (op0, temp, high_bits, low_bits, 32);
return;
}
/* The easiest way when all else fails, is full decomposition. */
sparc_emit_set_const64_longway (op0, temp, high_bits, low_bits);
}
/* Implement TARGET_FIXED_CONDITION_CODE_REGS. */
static bool
sparc_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2)
{
*p1 = SPARC_ICC_REG;
*p2 = SPARC_FCC_REG;
return true;
}
/* Implement TARGET_MIN_ARITHMETIC_PRECISION. */
static unsigned int
sparc_min_arithmetic_precision (void)
{
return 32;
}
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
return the mode to be used for the comparison. For floating-point,
CCFP[E]mode is used. CCNZmode should be used when the first operand
is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
processing is needed. */
machine_mode
select_cc_mode (enum rtx_code op, rtx x, rtx y)
{
if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
{
switch (op)
{
case EQ:
case NE:
case UNORDERED:
case ORDERED:
case UNLT:
case UNLE:
case UNGT:
case UNGE:
case UNEQ:
case LTGT:
return CCFPmode;
case LT:
case LE:
case GT:
case GE:
return CCFPEmode;
default:
gcc_unreachable ();
}
}
else if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
|| GET_CODE (x) == NEG || GET_CODE (x) == ASHIFT)
&& y == const0_rtx)
{
if (TARGET_ARCH64 && GET_MODE (x) == DImode)
return CCXNZmode;
else
return CCNZmode;
}
else
{
/* This is for the cmp<mode>_sne pattern. */
if (GET_CODE (x) == NOT && y == constm1_rtx)
{
if (TARGET_ARCH64 && GET_MODE (x) == DImode)
return CCXCmode;
else
return CCCmode;
}
/* This is for the [u]addvdi4_sp32 and [u]subvdi4_sp32 patterns. */
if (!TARGET_ARCH64 && GET_MODE (x) == DImode)
{
if (GET_CODE (y) == UNSPEC
&& (XINT (y, 1) == UNSPEC_ADDV
|| XINT (y, 1) == UNSPEC_SUBV
|| XINT (y, 1) == UNSPEC_NEGV))
return CCVmode;
else
return CCCmode;
}
if (TARGET_ARCH64 && GET_MODE (x) == DImode)
return CCXmode;
else
return CCmode;
}
}
/* Emit the compare insn and return the CC reg for a CODE comparison
with operands X and Y. */
static rtx
gen_compare_reg_1 (enum rtx_code code, rtx x, rtx y)
{
machine_mode mode;
rtx cc_reg;
if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
return x;
mode = SELECT_CC_MODE (code, x, y);
/* ??? We don't have movcc patterns so we cannot generate pseudo regs for the
fcc regs (cse can't tell they're really call clobbered regs and will
remove a duplicate comparison even if there is an intervening function
call - it will then try to reload the cc reg via an int reg which is why
we need the movcc patterns). It is possible to provide the movcc
patterns by using the ldxfsr/stxfsr v9 insns. I tried it: you need two
registers (say %g1,%g5) and it takes about 6 insns. A better fix would be
to tell cse that CCFPE mode registers (even pseudos) are call
clobbered. */
/* ??? This is an experiment. Rather than making changes to cse which may
or may not be easy/clean, we do our own cse. This is possible because
we will generate hard registers. Cse knows they're call clobbered (it
doesn't know the same thing about pseudos). If we guess wrong, no big
deal, but if we win, great! */
if (TARGET_V9 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
#if 1 /* experiment */
{
int reg;
/* We cycle through the registers to ensure they're all exercised. */
static int next_fcc_reg = 0;
/* Previous x,y for each fcc reg. */
static rtx prev_args[4][2];
/* Scan prev_args for x,y. */
for (reg = 0; reg < 4; reg++)
if (prev_args[reg][0] == x && prev_args[reg][1] == y)
break;
if (reg == 4)
{
reg = next_fcc_reg;
prev_args[reg][0] = x;
prev_args[reg][1] = y;
next_fcc_reg = (next_fcc_reg + 1) & 3;
}
cc_reg = gen_rtx_REG (mode, reg + SPARC_FIRST_V9_FCC_REG);
}
#else
cc_reg = gen_reg_rtx (mode);
#endif /* ! experiment */
else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
cc_reg = gen_rtx_REG (mode, SPARC_FCC_REG);
else
cc_reg = gen_rtx_REG (mode, SPARC_ICC_REG);
/* We shouldn't get there for TFmode if !TARGET_HARD_QUAD. If we do, this
will only result in an unrecognizable insn so no point in asserting. */
emit_insn (gen_rtx_SET (cc_reg, gen_rtx_COMPARE (mode, x, y)));
return cc_reg;
}
/* Emit the compare insn and return the CC reg for the comparison in CMP. */
rtx
gen_compare_reg (rtx cmp)
{
return gen_compare_reg_1 (GET_CODE (cmp), XEXP (cmp, 0), XEXP (cmp, 1));
}
/* This function is used for v9 only.
DEST is the target of the Scc insn.
CODE is the code for an Scc's comparison.
X and Y are the values we compare.
This function is needed to turn
(set (reg:SI 110)
(gt (reg:CCX 100 %icc)
(const_int 0)))
into
(set (reg:SI 110)
(gt:DI (reg:CCX 100 %icc)
(const_int 0)))
IE: The instruction recognizer needs to see the mode of the comparison to
find the right instruction. We could use "gt:DI" right in the
define_expand, but leaving it out allows us to handle DI, SI, etc. */
static int
gen_v9_scc (rtx dest, enum rtx_code compare_code, rtx x, rtx y)
{
if (! TARGET_ARCH64
&& (GET_MODE (x) == DImode
|| GET_MODE (dest) == DImode))
return 0;
/* Try to use the movrCC insns. */
if (TARGET_ARCH64
&& GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
&& y == const0_rtx
&& v9_regcmp_p (compare_code))
{
rtx op0 = x;
rtx temp;
/* Special case for op0 != 0. This can be done with one instruction if
dest == x. */
if (compare_code == NE
&& GET_MODE (dest) == DImode
&& rtx_equal_p (op0, dest))
{
emit_insn (gen_rtx_SET (dest,
gen_rtx_IF_THEN_ELSE (DImode,
gen_rtx_fmt_ee (compare_code, DImode,
op0, const0_rtx),
const1_rtx,
dest)));
return 1;
}
if (reg_overlap_mentioned_p (dest, op0))
{
/* Handle the case where dest == x.
We "early clobber" the result. */
op0 = gen_reg_rtx (GET_MODE (x));
emit_move_insn (op0, x);
}
emit_insn (gen_rtx_SET (dest, const0_rtx));
if (GET_MODE (op0) != DImode)
{
temp = gen_reg_rtx (DImode);
convert_move (temp, op0, 0);
}
else
temp = op0;
emit_insn (gen_rtx_SET (dest,
gen_rtx_IF_THEN_ELSE (GET_MODE (dest),
gen_rtx_fmt_ee (compare_code, DImode,
temp, const0_rtx),
const1_rtx,
dest)));
return 1;
}
else
{
x = gen_compare_reg_1 (compare_code, x, y);
y = const0_rtx;
emit_insn (gen_rtx_SET (dest, const0_rtx));
emit_insn (gen_rtx_SET (dest,
gen_rtx_IF_THEN_ELSE (GET_MODE (dest),
gen_rtx_fmt_ee (compare_code,
GET_MODE (x), x, y),
const1_rtx, dest)));
return 1;
}
}
/* Emit an scc insn. For seq, sne, sgeu, and sltu, we can do this
without jumps using the addx/subx instructions. */
bool
emit_scc_insn (rtx operands[])
{
rtx tem, x, y;
enum rtx_code code;
machine_mode mode;
/* The quad-word fp compare library routines all return nonzero to indicate
true, which is different from the equivalent libgcc routines, so we must
handle them specially here. */
if (GET_MODE (operands[2]) == TFmode && ! TARGET_HARD_QUAD)
{
operands[1] = sparc_emit_float_lib_cmp (operands[2], operands[3],
GET_CODE (operands[1]));
operands[2] = XEXP (operands[1], 0);
operands[3] = XEXP (operands[1], 1);
}
code = GET_CODE (operands[1]);
x = operands[2];
y = operands[3];
mode = GET_MODE (x);
/* For seq/sne on v9 we use the same code as v8 (the addx/subx method has
more applications). The exception to this is "reg != 0" which can
be done in one instruction on v9 (so we do it). */
if ((code == EQ || code == NE) && (mode == SImode || mode == DImode))
{
if (y != const0_rtx)
x = force_reg (mode, gen_rtx_XOR (mode, x, y));
rtx pat = gen_rtx_SET (operands[0],
gen_rtx_fmt_ee (code, GET_MODE (operands[0]),
x, const0_rtx));
/* If we can use addx/subx or addxc, add a clobber for CC. */
if (mode == SImode || (code == NE && TARGET_VIS3))
{
rtx clobber
= gen_rtx_CLOBBER (VOIDmode,
gen_rtx_REG (mode == SImode ? CCmode : CCXmode,
SPARC_ICC_REG));
pat = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, pat, clobber));
}
emit_insn (pat);
return true;
}
/* We can do LTU in DImode using the addxc instruction with VIS3. */
if (TARGET_ARCH64
&& mode == DImode
&& !((code == LTU || code == GTU) && TARGET_VIS3)
&& gen_v9_scc (operands[0], code, x, y))
return true;
/* We can do LTU and GEU using the addx/subx instructions too. And
for GTU/LEU, if both operands are registers swap them and fall
back to the easy case. */
if (code == GTU || code == LEU)
{
if ((GET_CODE (x) == REG || GET_CODE (x) == SUBREG)
&& (GET_CODE (y) == REG || GET_CODE (y) == SUBREG))
{
tem = x;
x = y;
y = tem;
code = swap_condition (code);
}
}
if (code == LTU || code == GEU)
{
emit_insn (gen_rtx_SET (operands[0],
gen_rtx_fmt_ee (code, GET_MODE (operands[0]),
gen_compare_reg_1 (code, x, y),
const0_rtx)));
return true;
}
/* All the posibilities to use addx/subx based sequences has been
exhausted, try for a 3 instruction sequence using v9 conditional
moves. */
if (TARGET_V9 && gen_v9_scc (operands[0], code, x, y))
return true;
/* Nope, do branches. */
return false;
}
/* Emit a conditional jump insn for the v9 architecture using comparison code
CODE and jump target LABEL.
This function exists to take advantage of the v9 brxx insns. */
static void
emit_v9_brxx_insn (enum rtx_code code, rtx op0, rtx label)
{
emit_jump_insn (gen_rtx_SET (pc_rtx,
gen_rtx_IF_THEN_ELSE (VOIDmode,
gen_rtx_fmt_ee (code, GET_MODE (op0),
op0, const0_rtx),
gen_rtx_LABEL_REF (VOIDmode, label),
pc_rtx)));
}
/* Emit a conditional jump insn for the UA2011 architecture using
comparison code CODE and jump target LABEL. This function exists
to take advantage of the UA2011 Compare and Branch insns. */
static void
emit_cbcond_insn (enum rtx_code code, rtx op0, rtx op1, rtx label)
{
rtx if_then_else;
if_then_else = gen_rtx_IF_THEN_ELSE (VOIDmode,
gen_rtx_fmt_ee(code, GET_MODE(op0),
op0, op1),
gen_rtx_LABEL_REF (VOIDmode, label),
pc_rtx);
emit_jump_insn (gen_rtx_SET (pc_rtx, if_then_else));
}
void
emit_conditional_branch_insn (rtx operands[])
{
/* The quad-word fp compare library routines all return nonzero to indicate
true, which is different from the equivalent libgcc routines, so we must
handle them specially here. */
if (GET_MODE (operands[1]) == TFmode && ! TARGET_HARD_QUAD)
{
operands[0] = sparc_emit_float_lib_cmp (operands[1], operands[2],
GET_CODE (operands[0]));
operands[1] = XEXP (operands[0], 0);
operands[2] = XEXP (operands[0], 1);
}
/* If we can tell early on that the comparison is against a constant
that won't fit in the 5-bit signed immediate field of a cbcond,
use one of the other v9 conditional branch sequences. */
if (TARGET_CBCOND
&& GET_CODE (operands[1]) == REG
&& (GET_MODE (operands[1]) == SImode
|| (TARGET_ARCH64 && GET_MODE (operands[1]) == DImode))
&& (GET_CODE (operands[2]) != CONST_INT
|| SPARC_SIMM5_P (INTVAL (operands[2]))))
{
emit_cbcond_insn (GET_CODE (operands[0]), operands[1], operands[2], operands[3]);
return;
}
if (TARGET_ARCH64 && operands[2] == const0_rtx
&& GET_CODE (operands[1]) == REG
&& GET_MODE (operands[1]) == DImode)
{
emit_v9_brxx_insn (GET_CODE (operands[0]), operands[1], operands[3]);
return;
}
operands[1] = gen_compare_reg (operands[0]);
operands[2] = const0_rtx;
operands[0] = gen_rtx_fmt_ee (GET_CODE (operands[0]), VOIDmode,
operands[1], operands[2]);
emit_jump_insn (gen_cbranchcc4 (operands[0], operands[1], operands[2],
operands[3]));
}
/* Generate a DFmode part of a hard TFmode register.
REG is the TFmode hard register, LOW is 1 for the
low 64bit of the register and 0 otherwise.
*/
rtx
gen_df_reg (rtx reg, int low)
{
int regno = REGNO (reg);
if ((WORDS_BIG_ENDIAN == 0) ^ (low != 0))
regno += (TARGET_ARCH64 && SPARC_INT_REG_P (regno)) ? 1 : 2;
return gen_rtx_REG (DFmode, regno);
}
/* Generate a call to FUNC with OPERANDS. Operand 0 is the return value.
Unlike normal calls, TFmode operands are passed by reference. It is
assumed that no more than 3 operands are required. */
static void
emit_soft_tfmode_libcall (const char *func_name, int nargs, rtx *operands)
{
rtx ret_slot = NULL, arg[3], func_sym;
int i;
/* We only expect to be called for conversions, unary, and binary ops. */
gcc_assert (nargs == 2 || nargs == 3);
for (i = 0; i < nargs; ++i)
{
rtx this_arg = operands[i];
rtx this_slot;
/* TFmode arguments and return values are passed by reference. */
if (GET_MODE (this_arg) == TFmode)
{
int force_stack_temp;
force_stack_temp = 0;
if (TARGET_BUGGY_QP_LIB && i == 0)
force_stack_temp = 1;
if (GET_CODE (this_arg) == MEM
&& ! force_stack_temp)
{
tree expr = MEM_EXPR (this_arg);
if (expr)
mark_addressable (expr);
this_arg = XEXP (this_arg, 0);
}
else if (CONSTANT_P (this_arg)
&& ! force_stack_temp)
{
this_slot = force_const_mem (TFmode, this_arg);
this_arg = XEXP (this_slot, 0);
}
else
{
this_slot = assign_stack_temp (TFmode, GET_MODE_SIZE (TFmode));
/* Operand 0 is the return value. We'll copy it out later. */
if (i > 0)
emit_move_insn (this_slot, this_arg);
else
ret_slot = this_slot;
this_arg = XEXP (this_slot, 0);
}
}
arg[i] = this_arg;
}
func_sym = gen_rtx_SYMBOL_REF (Pmode, func_name);
if (GET_MODE (operands[0]) == TFmode)
{
if (nargs == 2)
emit_library_call (func_sym, LCT_NORMAL, VOIDmode,
arg[0], GET_MODE (arg[0]),
arg[1], GET_MODE (arg[1]));
else
emit_library_call (func_sym, LCT_NORMAL, VOIDmode,
arg[0], GET_MODE (arg[0]),
arg[1], GET_MODE (arg[1]),
arg[2], GET_MODE (arg[2]));
if (ret_slot)
emit_move_insn (operands[0], ret_slot);
}
else
{
rtx ret;
gcc_assert (nargs == 2);
ret = emit_library_call_value (func_sym, operands[0], LCT_NORMAL,
GET_MODE (operands[0]),
arg[1], GET_MODE (arg[1]));
if (ret != operands[0])
emit_move_insn (operands[0], ret);
}
}
/* Expand soft-float TFmode calls to sparc abi routines. */
static void
emit_soft_tfmode_binop (enum rtx_code code, rtx *operands)
{
const char *func;
switch (code)
{
case PLUS:
func = "_Qp_add";
break;
case MINUS:
func = "_Qp_sub";
break;
case MULT:
func = "_Qp_mul";
break;
case DIV:
func = "_Qp_div";
break;
default:
gcc_unreachable ();
}
emit_soft_tfmode_libcall (func, 3, operands);
}
static void
emit_soft_tfmode_unop (enum rtx_code code, rtx *operands)
{
const char *func;
gcc_assert (code == SQRT);
func = "_Qp_sqrt";
emit_soft_tfmode_libcall (func, 2, operands);
}
static void
emit_soft_tfmode_cvt (enum rtx_code code, rtx *operands)
{
const char *func;
switch (code)
{
case FLOAT_EXTEND:
switch (GET_MODE (operands[1]))
{
case E_SFmode:
func = "_Qp_stoq";
break;
case E_DFmode:
func = "_Qp_dtoq";
break;
default:
gcc_unreachable ();
}
break;
case FLOAT_TRUNCATE:
switch (GET_MODE (operands[0]))
{
case E_SFmode:
func = "_Qp_qtos";
break;
case E_DFmode:
func = "_Qp_qtod";
break;
default:
gcc_unreachable ();
}
break;
case FLOAT:
switch (GET_MODE (operands[1]))
{
case E_SImode:
func = "_Qp_itoq";
if (TARGET_ARCH64)
operands[1] = gen_rtx_SIGN_EXTEND (DImode, operands[1]);
break;
case E_DImode:
func = "_Qp_xtoq";
break;
default:
gcc_unreachable ();
}
break;
case UNSIGNED_FLOAT:
switch (GET_MODE (operands[1]))
{
case E_SImode:
func = "_Qp_uitoq";
if (TARGET_ARCH64)
operands[1] = gen_rtx_ZERO_EXTEND (DImode, operands[1]);
break;
case E_DImode:
func = "_Qp_uxtoq";
break;
default:
gcc_unreachable ();
}
break;
case FIX:
switch (GET_MODE (operands[0]))
{
case E_SImode:
func = "_Qp_qtoi";
break;
case E_DImode:
func = "_Qp_qtox";
break;
default:
gcc_unreachable ();
}
break;
case UNSIGNED_FIX:
switch (GET_MODE (operands[0]))
{
case E_SImode:
func = "_Qp_qtoui";
break;
case E_DImode:
func = "_Qp_qtoux";
break;
default:
gcc_unreachable ();
}
break;
default:
gcc_unreachable ();
}
emit_soft_tfmode_libcall (func, 2, operands);
}
/* Expand a hard-float tfmode operation. All arguments must be in
registers. */
static void
emit_hard_tfmode_operation (enum rtx_code code, rtx *operands)
{
rtx op, dest;
if (GET_RTX_CLASS (code) == RTX_UNARY)
{
operands[1] = force_reg (GET_MODE (operands[1]), operands[1]);
op = gen_rtx_fmt_e (code, GET_MODE (operands[0]), operands[1]);
}
else
{
operands[1] = force_reg (GET_MODE (operands[1]), operands[1]);
operands[2] = force_reg (GET_MODE (operands[2]), operands[2]);
op = gen_rtx_fmt_ee (code, GET_MODE (operands[0]),
operands[1], operands[2]);
}
if (register_operand (operands[0], VOIDmode))
dest = operands[0];
else
dest = gen_reg_rtx (GET_MODE (operands[0]));
emit_insn (gen_rtx_SET (dest, op));
if (dest != operands[0])
emit_move_insn (operands[0], dest);
}
void
emit_tfmode_binop (enum rtx_code code, rtx *operands)
{
if (TARGET_HARD_QUAD)
emit_hard_tfmode_operation (code, operands);
else
emit_soft_tfmode_binop (code, operands);
}
void
emit_tfmode_unop (enum rtx_code code, rtx *operands)
{
if (TARGET_HARD_QUAD)
emit_hard_tfmode_operation (code, operands);
else
emit_soft_tfmode_unop (code, operands);
}
void
emit_tfmode_cvt (enum rtx_code code, rtx *operands)
{
if (TARGET_HARD_QUAD)
emit_hard_tfmode_operation (code, operands);
else
emit_soft_tfmode_cvt (code, operands);
}
/* Return nonzero if a branch/jump/call instruction will be emitting
nop into its delay slot. */
int
empty_delay_slot (rtx_insn *insn)
{
rtx seq;
/* If no previous instruction (should not happen), return true. */
if (PREV_INSN (insn) == NULL)
return 1;
seq = NEXT_INSN (PREV_INSN (insn));
if (GET_CODE (PATTERN (seq)) == SEQUENCE)
return 0;
return 1;
}
/* Return nonzero if we should emit a nop after a cbcond instruction.
The cbcond instruction does not have a delay slot, however there is
a severe performance penalty if a control transfer appears right
after a cbcond. Therefore we emit a nop when we detect this
situation. */
int
emit_cbcond_nop (rtx_insn *insn)
{
rtx next = next_active_insn (insn);
if (!next)
return 1;
if (NONJUMP_INSN_P (next)
&& GET_CODE (PATTERN (next)) == SEQUENCE)
next = XVECEXP (PATTERN (next), 0, 0);
else if (CALL_P (next)
&& GET_CODE (PATTERN (next)) == PARALLEL)
{
rtx delay = XVECEXP (PATTERN (next), 0, 1);
if (GET_CODE (delay) == RETURN)
{
/* It's a sibling call. Do not emit the nop if we're going
to emit something other than the jump itself as the first
instruction of the sibcall sequence. */
if (sparc_leaf_function_p || TARGET_FLAT)
return 0;
}
}
if (NONJUMP_INSN_P (next))
return 0;
return 1;
}
/* Return nonzero if TRIAL can go into the call delay slot. */
int
eligible_for_call_delay (rtx_insn *trial)
{
rtx pat;
if (get_attr_in_branch_delay (trial) == IN_BRANCH_DELAY_FALSE)
return 0;
/* Binutils allows
call __tls_get_addr, %tgd_call (foo)
add %l7, %o0, %o0, %tgd_add (foo)
while Sun as/ld does not. */
if (TARGET_GNU_TLS || !TARGET_TLS)
return 1;
pat = PATTERN (trial);
/* We must reject tgd_add{32|64}, i.e.
(set (reg) (plus (reg) (unspec [(reg) (symbol_ref)] UNSPEC_TLSGD)))
and tldm_add{32|64}, i.e.
(set (reg) (plus (reg) (unspec [(reg) (symbol_ref)] UNSPEC_TLSLDM)))
for Sun as/ld. */
if (GET_CODE (pat) == SET
&& GET_CODE (SET_SRC (pat)) == PLUS)
{
rtx unspec = XEXP (SET_SRC (pat), 1);
if (GET_CODE (unspec) == UNSPEC
&& (XINT (unspec, 1) == UNSPEC_TLSGD
|| XINT (unspec, 1) == UNSPEC_TLSLDM))
return 0;
}
return 1;
}
/* Return nonzero if TRIAL, an insn, can be combined with a 'restore'
instruction. RETURN_P is true if the v9 variant 'return' is to be
considered in the test too.
TRIAL must be a SET whose destination is a REG appropriate for the
'restore' instruction or, if RETURN_P is true, for the 'return'
instruction. */
static int
eligible_for_restore_insn (rtx trial, bool return_p)
{
rtx pat = PATTERN (trial);
rtx src = SET_SRC (pat);
bool src_is_freg = false;
rtx src_reg;
/* Since we now can do moves between float and integer registers when
VIS3 is enabled, we have to catch this case. We can allow such
moves when doing a 'return' however. */
src_reg = src;
if (GET_CODE (src_reg) == SUBREG)
src_reg = SUBREG_REG (src_reg);
if (GET_CODE (src_reg) == REG
&& SPARC_FP_REG_P (REGNO (src_reg)))
src_is_freg = true;
/* The 'restore src,%g0,dest' pattern for word mode and below. */
if (GET_MODE_CLASS (GET_MODE (src)) != MODE_FLOAT
&& arith_operand (src, GET_MODE (src))
&& ! src_is_freg)
{
if (TARGET_ARCH64)
return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode);
else
return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (SImode);
}
/* The 'restore src,%g0,dest' pattern for double-word mode. */
else if (GET_MODE_CLASS (GET_MODE (src)) != MODE_FLOAT
&& arith_double_operand (src, GET_MODE (src))
&& ! src_is_freg)
return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode);
/* The 'restore src,%g0,dest' pattern for float if no FPU. */
else if (! TARGET_FPU && register_operand (src, SFmode))
return 1;
/* The 'restore src,%g0,dest' pattern for double if no FPU. */
else if (! TARGET_FPU && TARGET_ARCH64 && register_operand (src, DFmode))
return 1;
/* If we have the 'return' instruction, anything that does not use
local or output registers and can go into a delay slot wins. */
else if (return_p && TARGET_V9 && !epilogue_renumber (&pat, 1))
return 1;
/* The 'restore src1,src2,dest' pattern for SImode. */
else if (GET_CODE (src) == PLUS
&& register_operand (XEXP (src, 0), SImode)
&& arith_operand (XEXP (src, 1), SImode))
return 1;
/* The 'restore src1,src2,dest' pattern for DImode. */
else if (GET_CODE (src) == PLUS
&& register_operand (XEXP (src, 0), DImode)
&& arith_double_operand (XEXP (src, 1), DImode))
return 1;
/* The 'restore src1,%lo(src2),dest' pattern. */
else if (GET_CODE (src) == LO_SUM
&& ! TARGET_CM_MEDMID
&& ((register_operand (XEXP (src, 0), SImode)
&& immediate_operand (XEXP (src, 1), SImode))
|| (TARGET_ARCH64
&& register_operand (XEXP (src, 0), DImode)
&& immediate_operand (XEXP (src, 1), DImode))))
return 1;
/* The 'restore src,src,dest' pattern. */
else if (GET_CODE (src) == ASHIFT
&& (register_operand (XEXP (src, 0), SImode)
|| register_operand (XEXP (src, 0), DImode))
&& XEXP (src, 1) == const1_rtx)
return 1;
return 0;
}
/* Return nonzero if TRIAL can go into the function return's delay slot. */
int
eligible_for_return_delay (rtx_insn *trial)
{
int regno;
rtx pat;
/* If the function uses __builtin_eh_return, the eh_return machinery
occupies the delay slot. */
if (crtl->calls_eh_return)
return 0;
if (get_attr_in_branch_delay (trial) == IN_BRANCH_DELAY_FALSE)
return 0;
/* In the case of a leaf or flat function, anything can go into the slot. */
if (sparc_leaf_function_p || TARGET_FLAT)
return 1;
if (!NONJUMP_INSN_P (trial))
return 0;
pat = PATTERN (trial);
if (GET_CODE (pat) == PARALLEL)
{
int i;
if (! TARGET_V9)
return 0;
for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
{
rtx expr = XVECEXP (pat, 0, i);
if (GET_CODE (expr) != SET)
return 0;
if (GET_CODE (SET_DEST (expr)) != REG)
return 0;
regno = REGNO (SET_DEST (expr));
if (regno >= 8 && regno < 24)
return 0;
}
return !epilogue_renumber (&pat, 1);
}
if (GET_CODE (pat) != SET)
return 0;
if (GET_CODE (SET_DEST (pat)) != REG)
return 0;
regno = REGNO (SET_DEST (pat));
/* Otherwise, only operations which can be done in tandem with
a `restore' or `return' insn can go into the delay slot. */
if (regno >= 8 && regno < 24)
return 0;
/* If this instruction sets up floating point register and we have a return
instruction, it can probably go in. But restore will not work
with FP_REGS. */
if (! SPARC_INT_REG_P (regno))
return TARGET_V9 && !epilogue_renumber (&pat, 1);
return eligible_for_restore_insn (trial, true);
}
/* Return nonzero if TRIAL can go into the sibling call's delay slot. */
int
eligible_for_sibcall_delay (rtx_insn *trial)
{
rtx pat;
if (get_attr_in_branch_delay (trial) == IN_BRANCH_DELAY_FALSE)
return 0;
if (!NONJUMP_INSN_P (trial))
return 0;
pat = PATTERN (trial);
if (sparc_leaf_function_p || TARGET_FLAT)
{
/* If the tail call is done using the call instruction,
we have to restore %o7 in the delay slot. */
if (LEAF_SIBCALL_SLOT_RESERVED_P)
return 0;
/* %g1 is used to build the function address */
if (reg_mentioned_p (gen_rtx_REG (Pmode, 1), pat))
return 0;
return 1;
}
if (GET_CODE (pat) != SET)
return 0;
/* Otherwise, only operations which can be done in tandem with
a `restore' insn can go into the delay slot. */
if (GET_CODE (SET_DEST (pat)) != REG
|| (REGNO (SET_DEST (pat)) >= 8 && REGNO (SET_DEST (pat)) < 24)
|| ! SPARC_INT_REG_P (REGNO (SET_DEST (pat))))
return 0;
/* If it mentions %o7, it can't go in, because sibcall will clobber it
in most cases. */
if (reg_mentioned_p (gen_rtx_REG (Pmode, 15), pat))
return 0;
return eligible_for_restore_insn (trial, false);
}
/* Determine if it's legal to put X into the constant pool. This
is not possible if X contains the address of a symbol that is
not constant (TLS) or not known at final link time (PIC). */
static bool
sparc_cannot_force_const_mem (machine_mode mode, rtx x)
{
switch (GET_CODE (x))
{
case CONST_INT:
case CONST_WIDE_INT:
case CONST_DOUBLE:
case CONST_VECTOR:
/* Accept all non-symbolic constants. */
return false;
case LABEL_REF:
/* Labels are OK iff we are non-PIC. */
return flag_pic != 0;
case SYMBOL_REF:
/* 'Naked' TLS symbol references are never OK,
non-TLS symbols are OK iff we are non-PIC. */
if (SYMBOL_REF_TLS_MODEL (x))
return true;
else
return flag_pic != 0;
case CONST:
return sparc_cannot_force_const_mem (mode, XEXP (x, 0));
case PLUS:
case MINUS:
return sparc_cannot_force_const_mem (mode, XEXP (x, 0))
|| sparc_cannot_force_const_mem (mode, XEXP (x, 1));
case UNSPEC:
return true;
default:
gcc_unreachable ();
}
}
/* Global Offset Table support. */
static GTY(()) rtx got_helper_rtx = NULL_RTX;
static GTY(()) rtx got_register_rtx = NULL_RTX;
static GTY(()) rtx got_symbol_rtx = NULL_RTX;
/* Return the SYMBOL_REF for the Global Offset Table. */
static rtx
sparc_got (void)
{
if (!got_symbol_rtx)
got_symbol_rtx = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
return got_symbol_rtx;
}
#ifdef HAVE_GAS_HIDDEN
# define USE_HIDDEN_LINKONCE 1
#else
# define USE_HIDDEN_LINKONCE 0
#endif
static void
get_pc_thunk_name (char name[32], unsigned int regno)
{
const char *reg_name = reg_names[regno];
/* Skip the leading '%' as that cannot be used in a
symbol name. */
reg_name += 1;
if (USE_HIDDEN_LINKONCE)
sprintf (name, "__sparc_get_pc_thunk.%s", reg_name);
else
ASM_GENERATE_INTERNAL_LABEL (name, "LADDPC", regno);
}
/* Wrapper around the load_pcrel_sym{si,di} patterns. */
static rtx
gen_load_pcrel_sym (rtx op0, rtx op1, rtx op2)
{
int orig_flag_pic = flag_pic;
rtx insn;
/* The load_pcrel_sym{si,di} patterns require absolute addressing. */
flag_pic = 0;
if (TARGET_ARCH64)
insn = gen_load_pcrel_symdi (op0, op1, op2, GEN_INT (REGNO (op0)));
else
insn = gen_load_pcrel_symsi (op0, op1, op2, GEN_INT (REGNO (op0)));
flag_pic = orig_flag_pic;
return insn;
}
/* Emit code to load the GOT register. */
void
load_got_register (void)
{
if (!got_register_rtx)
got_register_rtx = gen_rtx_REG (Pmode, GLOBAL_OFFSET_TABLE_REGNUM);
if (TARGET_VXWORKS_RTP)
emit_insn (gen_vxworks_load_got ());
else
{
/* The GOT symbol is subject to a PC-relative relocation so we need a
helper function to add the PC value and thus get the final value. */
if (!got_helper_rtx)
{
char name[32];
get_pc_thunk_name (name, GLOBAL_OFFSET_TABLE_REGNUM);
got_helper_rtx = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name));
}
emit_insn (gen_load_pcrel_sym (got_register_rtx, sparc_got (),
got_helper_rtx));
}
}
/* Ensure that we are not using patterns that are not OK with PIC. */
int
check_pic (int i)
{
rtx op;
switch (flag_pic)
{
case 1:
op = recog_data.operand[i];
gcc_assert (GET_CODE (op) != SYMBOL_REF
&& (GET_CODE (op) != CONST
|| (GET_CODE (XEXP (op, 0)) == MINUS
&& XEXP (XEXP (op, 0), 0) == sparc_got ()
&& GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST)));
/* fallthrough */
case 2:
default:
return 1;
}
}
/* Return true if X is an address which needs a temporary register when
reloaded while generating PIC code. */
int
pic_address_needs_scratch (rtx x)
{
/* An address which is a symbolic plus a non SMALL_INT needs a temp reg. */
if (GET_CODE (x) == CONST
&& GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& !SMALL_INT (XEXP (XEXP (x, 0), 1)))
return 1;
return 0;
}
/* Determine if a given RTX is a valid constant. We already know this
satisfies CONSTANT_P. */
static bool
sparc_legitimate_constant_p (machine_mode mode, rtx x)
{
switch (GET_CODE (x))
{
case CONST:
case SYMBOL_REF:
if (sparc_tls_referenced_p (x))
return false;
break;
case CONST_DOUBLE:
/* Floating point constants are generally not ok.
The only exception is 0.0 and all-ones in VIS. */
if (TARGET_VIS
&& SCALAR_FLOAT_MODE_P (mode)
&& (const_zero_operand (x, mode)
|| const_all_ones_operand (x, mode)))
return true;
return false;
case CONST_VECTOR:
/* Vector constants are generally not ok.
The only exception is 0 or -1 in VIS. */
if (TARGET_VIS
&& (const_zero_operand (x, mode)
|| const_all_ones_operand (x, mode)))
return true;
return false;
default:
break;
}
return true;
}
/* Determine if a given RTX is a valid constant address. */
bool
constant_address_p (rtx x)
{
switch (GET_CODE (x))
{
case LABEL_REF:
case CONST_INT:
case HIGH:
return true;
case CONST:
if (flag_pic && pic_address_needs_scratch (x))
return false;
return sparc_legitimate_constant_p (Pmode, x);
case SYMBOL_REF:
return !flag_pic && sparc_legitimate_constant_p (Pmode, x);
default:
return false;
}
}
/* Nonzero if the constant value X is a legitimate general operand
when generating PIC code. It is given that flag_pic is on and
that X satisfies CONSTANT_P. */
bool
legitimate_pic_operand_p (rtx x)
{
if (pic_address_needs_scratch (x))
return false;
if (sparc_tls_referenced_p (x))
return false;
return true;
}
/* Return true if X is a representation of the PIC register. */
static bool
sparc_pic_register_p (rtx x)
{
if (!REG_P (x) || !pic_offset_table_rtx)
return false;
if (x == pic_offset_table_rtx)
return true;
if (!HARD_REGISTER_P (pic_offset_table_rtx)
&& (HARD_REGISTER_P (x) || lra_in_progress)
&& ORIGINAL_REGNO (x) == REGNO (pic_offset_table_rtx))
return true;
return false;
}
#define RTX_OK_FOR_OFFSET_P(X, MODE) \
(CONST_INT_P (X) \
&& INTVAL (X) >= -0x1000 \
&& INTVAL (X) <= (0x1000 - GET_MODE_SIZE (MODE)))
#define RTX_OK_FOR_OLO10_P(X, MODE) \
(CONST_INT_P (X) \
&& INTVAL (X) >= -0x1000 \
&& INTVAL (X) <= (0xc00 - GET_MODE_SIZE (MODE)))
/* Handle the TARGET_LEGITIMATE_ADDRESS_P target hook.
On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
ordinarily. This changes a bit when generating PIC. */
static bool
sparc_legitimate_address_p (machine_mode mode, rtx addr, bool strict)
{
rtx rs1 = NULL, rs2 = NULL, imm1 = NULL;
if (REG_P (addr) || GET_CODE (addr) == SUBREG)
rs1 = addr;
else if (GET_CODE (addr) == PLUS)
{
rs1 = XEXP (addr, 0);
rs2 = XEXP (addr, 1);
/* Canonicalize. REG comes first, if there are no regs,
LO_SUM comes first. */
if (!REG_P (rs1)
&& GET_CODE (rs1) != SUBREG
&& (REG_P (rs2)
|| GET_CODE (rs2) == SUBREG
|| (GET_CODE (rs2) == LO_SUM && GET_CODE (rs1) != LO_SUM)))
{
rs1 = XEXP (addr, 1);
rs2 = XEXP (addr, 0);
}
if ((flag_pic == 1
&& sparc_pic_register_p (rs1)
&& !REG_P (rs2)
&& GET_CODE (rs2) != SUBREG
&& GET_CODE (rs2) != LO_SUM
&& GET_CODE (rs2) != MEM
&& !(GET_CODE (rs2) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (rs2))
&& (! symbolic_operand (rs2, VOIDmode) || mode == Pmode)
&& (GET_CODE (rs2) != CONST_INT || SMALL_INT (rs2)))
|| ((REG_P (rs1)
|| GET_CODE (rs1) == SUBREG)
&& RTX_OK_FOR_OFFSET_P (rs2, mode)))
{
imm1 = rs2;
rs2 = NULL;
}
else if ((REG_P (rs1) || GET_CODE (rs1) == SUBREG)
&& (REG_P (rs2) || GET_CODE (rs2) == SUBREG))
{
/* We prohibit REG + REG for TFmode when there are no quad move insns
and we consequently need to split. We do this because REG+REG
is not an offsettable address. If we get the situation in reload
where source and destination of a movtf pattern are both MEMs with
REG+REG address, then only one of them gets converted to an
offsettable address. */
if (mode == TFmode
&& ! (TARGET_ARCH64 && TARGET_HARD_QUAD))
return 0;
/* Likewise for TImode, but in all cases. */
if (mode == TImode)
return 0;
/* We prohibit REG + REG on ARCH32 if not optimizing for
DFmode/DImode because then mem_min_alignment is likely to be zero
after reload and the forced split would lack a matching splitter
pattern. */
if (TARGET_ARCH32 && !optimize
&& (mode == DFmode || mode == DImode))
return 0;
}
else if (USE_AS_OFFSETABLE_LO10
&& GET_CODE (rs1) == LO_SUM
&& TARGET_ARCH64
&& ! TARGET_CM_MEDMID
&& RTX_OK_FOR_OLO10_P (rs2, mode))
{
rs2 = NULL;
imm1 = XEXP (rs1, 1);
rs1 = XEXP (rs1, 0);
if (!CONSTANT_P (imm1)
|| (GET_CODE (rs1) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (rs1)))
return 0;
}
}
else if (GET_CODE (addr) == LO_SUM)
{
rs1 = XEXP (addr, 0);
imm1 = XEXP (addr, 1);
if (!CONSTANT_P (imm1)
|| (GET_CODE (rs1) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (rs1)))
return 0;
/* We can't allow TFmode in 32-bit mode, because an offset greater
than the alignment (8) may cause the LO_SUM to overflow. */
if (mode == TFmode && TARGET_ARCH32)
return 0;
/* During reload, accept the HIGH+LO_SUM construct generated by
sparc_legitimize_reload_address. */
if (reload_in_progress
&& GET_CODE (rs1) == HIGH
&& XEXP (rs1, 0) == imm1)
return 1;
}
else if (GET_CODE (addr) == CONST_INT && SMALL_INT (addr))
return 1;
else
return 0;
if (GET_CODE (rs1) == SUBREG)
rs1 = SUBREG_REG (rs1);
if (!REG_P (rs1))
return 0;
if (rs2)
{
if (GET_CODE (rs2) == SUBREG)
rs2 = SUBREG_REG (rs2);
if (!REG_P (rs2))
return 0;
}
if (strict)
{
if (!REGNO_OK_FOR_BASE_P (REGNO (rs1))
|| (rs2 && !REGNO_OK_FOR_BASE_P (REGNO (rs2))))
return 0;
}
else
{
if ((! SPARC_INT_REG_P (REGNO (rs1))
&& REGNO (rs1) != FRAME_POINTER_REGNUM
&& REGNO (rs1) < FIRST_PSEUDO_REGISTER)
|| (rs2
&& (! SPARC_INT_REG_P (REGNO (rs2))
&& REGNO (rs2) != FRAME_POINTER_REGNUM
&& REGNO (rs2) < FIRST_PSEUDO_REGISTER)))
return 0;
}
return 1;
}
/* Return the SYMBOL_REF for the tls_get_addr function. */
static GTY(()) rtx sparc_tls_symbol = NULL_RTX;
static rtx
sparc_tls_get_addr (void)
{
if (!sparc_tls_symbol)
sparc_tls_symbol = gen_rtx_SYMBOL_REF (Pmode, "__tls_get_addr");
return sparc_tls_symbol;
}
/* Return the Global Offset Table to be used in TLS mode. */
static rtx
sparc_tls_got (void)
{
/* In PIC mode, this is just the PIC offset table. */
if (flag_pic)
{
crtl->uses_pic_offset_table = 1;
return pic_offset_table_rtx;
}
/* In non-PIC mode, Sun as (unlike GNU as) emits PC-relative relocations for
the GOT symbol with the 32-bit ABI, so we reload the GOT register. */
if (TARGET_SUN_TLS && TARGET_ARCH32)
{
load_got_register ();
return got_register_rtx;
}
/* In all other cases, we load a new pseudo with the GOT symbol. */
return copy_to_reg (sparc_got ());
}
/* Return true if X contains a thread-local symbol. */
static bool
sparc_tls_referenced_p (rtx x)
{
if (!TARGET_HAVE_TLS)
return false;
if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS)
x = XEXP (XEXP (x, 0), 0);
if (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x))
return true;
/* That's all we handle in sparc_legitimize_tls_address for now. */
return false;
}
/* ADDR contains a thread-local SYMBOL_REF. Generate code to compute
this (thread-local) address. */
static rtx
sparc_legitimize_tls_address (rtx addr)
{
rtx temp1, temp2, temp3, ret, o0, got;
rtx_insn *insn;
gcc_assert (can_create_pseudo_p ());
if (GET_CODE (addr) == SYMBOL_REF)
/* Although the various sethi/or sequences generate SImode values, many of
them can be transformed by the linker when relaxing and, if relaxing to
local-exec, will become a sethi/xor pair, which is signed and therefore
a full DImode value in 64-bit mode. Thus we must use Pmode, lest these
values be spilled onto the stack in 64-bit mode. */
switch (SYMBOL_REF_TLS_MODEL (addr))
{
case TLS_MODEL_GLOBAL_DYNAMIC:
start_sequence ();
temp1 = gen_reg_rtx (Pmode);
temp2 = gen_reg_rtx (Pmode);
ret = gen_reg_rtx (Pmode);
o0 = gen_rtx_REG (Pmode, 8);
got = sparc_tls_got ();
if (TARGET_ARCH32)
{
emit_insn (gen_tgd_hi22si (temp1, addr));
emit_insn (gen_tgd_lo10si (temp2, temp1, addr));
emit_insn (gen_tgd_addsi (o0, got, temp2, addr));
insn = emit_call_insn (gen_tgd_callsi (o0, sparc_tls_get_addr (),
addr, const1_rtx));
}
else
{
emit_insn (gen_tgd_hi22di (temp1, addr));
emit_insn (gen_tgd_lo10di (temp2, temp1, addr));
emit_insn (gen_tgd_adddi (o0, got, temp2, addr));
insn = emit_call_insn (gen_tgd_calldi (o0, sparc_tls_get_addr (),
addr, const1_rtx));
}
use_reg (&CALL_INSN_FUNCTION_USAGE (insn), o0);
RTL_CONST_CALL_P (insn) = 1;
insn = get_insns ();
end_sequence ();
emit_libcall_block (insn, ret, o0, addr);
break;
case TLS_MODEL_LOCAL_DYNAMIC:
start_sequence ();
temp1 = gen_reg_rtx (Pmode);
temp2 = gen_reg_rtx (Pmode);
temp3 = gen_reg_rtx (Pmode);
ret = gen_reg_rtx (Pmode);
o0 = gen_rtx_REG (Pmode, 8);
got = sparc_tls_got ();
if (TARGET_ARCH32)
{
emit_insn (gen_tldm_hi22si (temp1));
emit_insn (gen_tldm_lo10si (temp2, temp1));
emit_insn (gen_tldm_addsi (o0, got, temp2));
insn = emit_call_insn (gen_tldm_callsi (o0, sparc_tls_get_addr (),
const1_rtx));
}
else
{
emit_insn (gen_tldm_hi22di (temp1));
emit_insn (gen_tldm_lo10di (temp2, temp1));
emit_insn (gen_tldm_adddi (o0, got, temp2));
insn = emit_call_insn (gen_tldm_calldi (o0, sparc_tls_get_addr (),
const1_rtx));
}
use_reg (&CALL_INSN_FUNCTION_USAGE (insn), o0);
RTL_CONST_CALL_P (insn) = 1;
insn = get_insns ();
end_sequence ();
/* Attach a unique REG_EQUAL, to allow the RTL optimizers to
share the LD_BASE result with other LD model accesses. */
emit_libcall_block (insn, temp3, o0,
gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
UNSPEC_TLSLD_BASE));
temp1 = gen_reg_rtx (Pmode);
temp2 = gen_reg_rtx (Pmode);
if (TARGET_ARCH32)
{
emit_insn (gen_tldo_hix22si (temp1, addr));
emit_insn (gen_tldo_lox10si (temp2, temp1, addr));
emit_insn (gen_tldo_addsi (ret, temp3, temp2, addr));
}
else
{
emit_insn (gen_tldo_hix22di (temp1, addr));
emit_insn (gen_tldo_lox10di (temp2, temp1, addr));
emit_insn (gen_tldo_adddi (ret, temp3, temp2, addr));
}
break;
case TLS_MODEL_INITIAL_EXEC:
temp1 = gen_reg_rtx (Pmode);
temp2 = gen_reg_rtx (Pmode);
temp3 = gen_reg_rtx (Pmode);
got = sparc_tls_got ();
if (TARGET_ARCH32)
{
emit_insn (gen_tie_hi22si (temp1, addr));
emit_insn (gen_tie_lo10si (temp2, temp1, addr));
emit_insn (gen_tie_ld32 (temp3, got, temp2, addr));
}
else
{
emit_insn (gen_tie_hi22di (temp1, addr));
emit_insn (gen_tie_lo10di (temp2, temp1, addr));
emit_insn (gen_tie_ld64 (temp3, got, temp2, addr));
}
if (TARGET_SUN_TLS)
{
ret = gen_reg_rtx (Pmode);
if (TARGET_ARCH32)
emit_insn (gen_tie_addsi (ret, gen_rtx_REG (Pmode, 7),
temp3, addr));
else
emit_insn (gen_tie_adddi (ret, gen_rtx_REG (Pmode, 7),
temp3, addr));
}
else
ret = gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, 7), temp3);
break;
case TLS_MODEL_LOCAL_EXEC:
temp1 = gen_reg_rtx (Pmode);
temp2 = gen_reg_rtx (Pmode);
if (TARGET_ARCH32)
{
emit_insn (gen_tle_hix22si (temp1, addr));
emit_insn (gen_tle_lox10si (temp2, temp1, addr));
}
else
{
emit_insn (gen_tle_hix22di (temp1, addr));
emit_insn (gen_tle_lox10di (temp2, temp1, addr));
}
ret = gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, 7), temp2);
break;
default:
gcc_unreachable ();
}
else if (GET_CODE (addr) == CONST)
{
rtx base, offset;
gcc_assert (GET_CODE (XEXP (addr, 0)) == PLUS);
base = sparc_legitimize_tls_address (XEXP (XEXP (addr, 0), 0));
offset = XEXP (XEXP (addr, 0), 1);
base = force_operand (base, NULL_RTX);
if (!(GET_CODE (offset) == CONST_INT && SMALL_INT (offset)))
offset = force_reg (Pmode, offset);
ret = gen_rtx_PLUS (Pmode, base, offset);
}
else
gcc_unreachable (); /* for now ... */
return ret;
}
/* Legitimize PIC addresses. If the address is already position-independent,
we return ORIG. Newly generated position-independent addresses go into a
reg. This is REG if nonzero, otherwise we allocate register(s) as
necessary. */
static rtx
sparc_legitimize_pic_address (rtx orig, rtx reg)
{
if (GET_CODE (orig) == SYMBOL_REF
/* See the comment in sparc_expand_move. */
|| (GET_CODE (orig) == LABEL_REF && !can_use_mov_pic_label_ref (orig)))
{
bool gotdata_op = false;
rtx pic_ref, address;
rtx_insn *insn;
if (!reg)
{
gcc_assert (can_create_pseudo_p ());
reg = gen_reg_rtx (Pmode);
}
if (flag_pic == 2)
{
/* If not during reload, allocate another temp reg here for loading
in the address, so that these instructions can be optimized
properly. */
rtx temp_reg = can_create_pseudo_p () ? gen_reg_rtx (Pmode) : reg;
/* Must put the SYMBOL_REF inside an UNSPEC here so that cse
won't get confused into thinking that these two instructions
are loading in the true address of the symbol. If in the
future a PIC rtx exists, that should be used instead. */
if (TARGET_ARCH64)
{
emit_insn (gen_movdi_high_pic (temp_reg, orig));
emit_insn (gen_movdi_lo_sum_pic (temp_reg, temp_reg, orig));
}
else
{
emit_insn (gen_movsi_high_pic (temp_reg, orig));
emit_insn (gen_movsi_lo_sum_pic (temp_reg, temp_reg, orig));
}
address = temp_reg;
gotdata_op = true;
}
else
address = orig;
crtl->uses_pic_offset_table = 1;
if (gotdata_op)
{
if (TARGET_ARCH64)
insn = emit_insn (gen_movdi_pic_gotdata_op (reg,
pic_offset_table_rtx,
address, orig));
else
insn = emit_insn (gen_movsi_pic_gotdata_op (reg,
pic_offset_table_rtx,
address, orig));
}
else
{
pic_ref
= gen_const_mem (Pmode,
gen_rtx_PLUS (Pmode,
pic_offset_table_rtx, address));
insn = emit_move_insn (reg, pic_ref);
}
/* Put a REG_EQUAL note on this insn, so that it can be optimized
by loop. */
set_unique_reg_note (insn, REG_EQUAL, orig);
return reg;
}
else if (GET_CODE (orig) == CONST)
{
rtx base, offset;
if (GET_CODE (XEXP (orig, 0)) == PLUS
&& sparc_pic_register_p (XEXP (XEXP (orig, 0), 0)))
return orig;
if (!reg)
{
gcc_assert (can_create_pseudo_p ());
reg = gen_reg_rtx (Pmode);
}
gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
base = sparc_legitimize_pic_address (XEXP (XEXP (orig, 0), 0), reg);
offset = sparc_legitimize_pic_address (XEXP (XEXP (orig, 0), 1),
base == reg ? NULL_RTX : reg);
if (GET_CODE (offset) == CONST_INT)
{
if (SMALL_INT (offset))
return plus_constant (Pmode, base, INTVAL (offset));
else if (can_create_pseudo_p ())
offset = force_reg (Pmode, offset);
else
/* If we reach here, then something is seriously wrong. */
gcc_unreachable ();
}
return gen_rtx_PLUS (Pmode, base, offset);
}
else if (GET_CODE (orig) == LABEL_REF)
/* ??? We ought to be checking that the register is live instead, in case
it is eliminated. */
crtl->uses_pic_offset_table = 1;
return orig;
}
/* Try machine-dependent ways of modifying an illegitimate address X
to be legitimate. If we find one, return the new, valid address.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE is the mode of the operand pointed to by X.
On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
static rtx
sparc_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
machine_mode mode)
{
rtx orig_x = x;
if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == MULT)
x = gen_rtx_PLUS (Pmode, XEXP (x, 1),
force_operand (XEXP (x, 0), NULL_RTX));
if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == MULT)
x = gen_rtx_PLUS (Pmode, XEXP (x, 0),
force_operand (XEXP (x, 1), NULL_RTX));
if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == PLUS)
x = gen_rtx_PLUS (Pmode, force_operand (XEXP (x, 0), NULL_RTX),
XEXP (x, 1));
if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == PLUS)
x = gen_rtx_PLUS (Pmode, XEXP (x, 0),
force_operand (XEXP (x, 1), NULL_RTX));
if (x != orig_x && sparc_legitimate_address_p (mode, x, FALSE))
return x;
if (sparc_tls_referenced_p (x))
x = sparc_legitimize_tls_address (x);
else if (flag_pic)
x = sparc_legitimize_pic_address (x, NULL_RTX);
else if (GET_CODE (x) == PLUS && CONSTANT_ADDRESS_P (XEXP (x, 1)))
x = gen_rtx_PLUS (Pmode, XEXP (x, 0),
copy_to_mode_reg (Pmode, XEXP (x, 1)));
else if (GET_CODE (x) == PLUS && CONSTANT_ADDRESS_P (XEXP (x, 0)))
x = gen_rtx_PLUS (Pmode, XEXP (x, 1),
copy_to_mode_reg (Pmode, XEXP (x, 0)));
else if (GET_CODE (x) == SYMBOL_REF
|| GET_CODE (x) == CONST
|| GET_CODE (x) == LABEL_REF)
x = copy_to_suggested_reg (x, NULL_RTX, Pmode);
return x;
}
/* Delegitimize an address that was legitimized by the above function. */
static rtx
sparc_delegitimize_address (rtx x)
{
x = delegitimize_mem_from_attrs (x);
if (GET_CODE (x) == LO_SUM && GET_CODE (XEXP (x, 1)) == UNSPEC)
switch (XINT (XEXP (x, 1), 1))
{
case UNSPEC_MOVE_PIC:
case UNSPEC_TLSLE:
x = XVECEXP (XEXP (x, 1), 0, 0);
gcc_assert (GET_CODE (x) == SYMBOL_REF);
break;
default:
break;
}
/* This is generated by mov{si,di}_pic_label_ref in PIC mode. */
if (GET_CODE (x) == MINUS
&& sparc_pic_register_p (XEXP (x, 0))
&& GET_CODE (XEXP (x, 1)) == LO_SUM
&& GET_CODE (XEXP (XEXP (x, 1), 1)) == UNSPEC
&& XINT (XEXP (XEXP (x, 1), 1), 1) == UNSPEC_MOVE_PIC_LABEL)
{
x = XVECEXP (XEXP (XEXP (x, 1), 1), 0, 0);
gcc_assert (GET_CODE (x) == LABEL_REF
|| (GET_CODE (x) == CONST
&& GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT));
}
return x;
}
/* SPARC implementation of LEGITIMIZE_RELOAD_ADDRESS. Returns a value to
replace the input X, or the original X if no replacement is called for.
The output parameter *WIN is 1 if the calling macro should goto WIN,
0 if it should not.
For SPARC, we wish to handle addresses by splitting them into
HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference.
This cuts the number of extra insns by one.
Do nothing when generating PIC code and the address is a symbolic
operand or requires a scratch register. */
rtx
sparc_legitimize_reload_address (rtx x, machine_mode mode,
int opnum, int type,
int ind_levels ATTRIBUTE_UNUSED, int *win)
{
/* Decompose SImode constants into HIGH+LO_SUM. */
if (CONSTANT_P (x)
&& (mode != TFmode || TARGET_ARCH64)
&& GET_MODE (x) == SImode
&& GET_CODE (x) != LO_SUM
&& GET_CODE (x) != HIGH
&& sparc_cmodel <= CM_MEDLOW
&& !(flag_pic
&& (symbolic_operand (x, Pmode) || pic_address_needs_scratch (x))))
{
x = gen_rtx_LO_SUM (GET_MODE (x), gen_rtx_HIGH (GET_MODE (x), x), x);
push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
opnum, (enum reload_type)type);
*win = 1;
return x;
}
/* We have to recognize what we have already generated above. */
if (GET_CODE (x) == LO_SUM && GET_CODE (XEXP (x, 0)) == HIGH)
{
push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
opnum, (enum reload_type)type);
*win = 1;
return x;
}
*win = 0;
return x;
}
/* Return true if ADDR (a legitimate address expression)
has an effect that depends on the machine mode it is used for.
In PIC mode,
(mem:HI [%l7+a])
is not equivalent to
(mem:QI [%l7+a]) (mem:QI [%l7+a+1])
because [%l7+a+1] is interpreted as the address of (a+1). */
static bool
sparc_mode_dependent_address_p (const_rtx addr,
addr_space_t as ATTRIBUTE_UNUSED)
{
if (GET_CODE (addr) == PLUS
&& sparc_pic_register_p (XEXP (addr, 0))
&& symbolic_operand (XEXP (addr, 1), VOIDmode))
return true;
return false;
}
/* Emit a call instruction with the pattern given by PAT. ADDR is the
address of the call target. */
void
sparc_emit_call_insn (rtx pat, rtx addr)
{
rtx_insn *insn;
insn = emit_call_insn (pat);
/* The PIC register is live on entry to VxWorks PIC PLT entries. */
if (TARGET_VXWORKS_RTP
&& flag_pic
&& GET_CODE (addr) == SYMBOL_REF
&& (SYMBOL_REF_DECL (addr)
? !targetm.binds_local_p (SYMBOL_REF_DECL (addr))
: !SYMBOL_REF_LOCAL_P (addr)))
{
use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx);
crtl->uses_pic_offset_table = 1;
}
}
/* Return 1 if RTX is a MEM which is known to be aligned to at
least a DESIRED byte boundary. */
int
mem_min_alignment (rtx mem, int desired)
{
rtx addr, base, offset;
/* If it's not a MEM we can't accept it. */
if (GET_CODE (mem) != MEM)
return 0;
/* Obviously... */
if (!TARGET_UNALIGNED_DOUBLES
&& MEM_ALIGN (mem) / BITS_PER_UNIT >= (unsigned)desired)
return 1;
/* ??? The rest of the function predates MEM_ALIGN so
there is probably a bit of redundancy. */
addr = XEXP (mem, 0);
base = offset = NULL_RTX;
if (GET_CODE (addr) == PLUS)
{
if (GET_CODE (XEXP (addr, 0)) == REG)
{
base = XEXP (addr, 0);
/* What we are saying here is that if the base
REG is aligned properly, the compiler will make
sure any REG based index upon it will be so
as well. */
if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
offset = XEXP (addr, 1);
else
offset = const0_rtx;
}
}
else if (GET_CODE (addr) == REG)
{
base = addr;
offset = const0_rtx;
}
if (base != NULL_RTX)
{
int regno = REGNO (base);
if (regno != HARD_FRAME_POINTER_REGNUM && regno != STACK_POINTER_REGNUM)
{
/* Check if the compiler has recorded some information
about the alignment of the base REG. If reload has
completed, we already matched with proper alignments.
If not running global_alloc, reload might give us
unaligned pointer to local stack though. */
if (((cfun != 0
&& REGNO_POINTER_ALIGN (regno) >= desired * BITS_PER_UNIT)
|| (optimize && reload_completed))
&& (INTVAL (offset) & (desired - 1)) == 0)
return 1;
}
else
{
if (((INTVAL (offset) - SPARC_STACK_BIAS) & (desired - 1)) == 0)
return 1;
}
}
else if (! TARGET_UNALIGNED_DOUBLES
|| CONSTANT_P (addr)
|| GET_CODE (addr) == LO_SUM)
{
/* Anything else we know is properly aligned unless TARGET_UNALIGNED_DOUBLES
is true, in which case we can only assume that an access is aligned if
it is to a constant address, or the address involves a LO_SUM. */
return 1;
}
/* An obviously unaligned address. */
return 0;
}
/* Vectors to keep interesting information about registers where it can easily
be got. We used to use the actual mode value as the bit number, but there
are more than 32 modes now. Instead we use two tables: one indexed by
hard register number, and one indexed by mode. */
/* The purpose of sparc_mode_class is to shrink the range of modes so that
they all fit (as bit numbers) in a 32-bit word (again). Each real mode is
mapped into one sparc_mode_class mode. */
enum sparc_mode_class {
H_MODE, S_MODE, D_MODE, T_MODE, O_MODE,
SF_MODE, DF_MODE, TF_MODE, OF_MODE,
CC_MODE, CCFP_MODE
};
/* Modes for single-word and smaller quantities. */
#define S_MODES \
((1 << (int) H_MODE) | (1 << (int) S_MODE) | (1 << (int) SF_MODE))
/* Modes for double-word and smaller quantities. */
#define D_MODES (S_MODES | (1 << (int) D_MODE) | (1 << (int) DF_MODE))
/* Modes for quad-word and smaller quantities. */
#define T_MODES (D_MODES | (1 << (int) T_MODE) | (1 << (int) TF_MODE))
/* Modes for 8-word and smaller quantities. */
#define O_MODES (T_MODES | (1 << (int) O_MODE) | (1 << (int) OF_MODE))
/* Modes for single-float quantities. */
#define SF_MODES ((1 << (int) S_MODE) | (1 << (int) SF_MODE))
/* Modes for double-float and smaller quantities. */
#define DF_MODES (SF_MODES | (1 << (int) D_MODE) | (1 << (int) DF_MODE))
/* Modes for quad-float and smaller quantities. */
#define TF_MODES (DF_MODES | (1 << (int) TF_MODE))
/* Modes for quad-float pairs and smaller quantities. */
#define OF_MODES (TF_MODES | (1 << (int) OF_MODE))
/* Modes for double-float only quantities. */
#define DF_MODES_NO_S ((1 << (int) D_MODE) | (1 << (int) DF_MODE))
/* Modes for quad-float and double-float only quantities. */
#define TF_MODES_NO_S (DF_MODES_NO_S | (1 << (int) TF_MODE))
/* Modes for quad-float pairs and double-float only quantities. */
#define OF_MODES_NO_S (TF_MODES_NO_S | (1 << (int) OF_MODE))
/* Modes for condition codes. */
#define CC_MODES (1 << (int) CC_MODE)
#define CCFP_MODES (1 << (int) CCFP_MODE)
/* Value is 1 if register/mode pair is acceptable on sparc.
The funny mixture of D and T modes is because integer operations
do not specially operate on tetra quantities, so non-quad-aligned
registers can hold quadword quantities (except %o4 and %i4 because
they cross fixed registers).
??? Note that, despite the settings, non-double-aligned parameter
registers can hold double-word quantities in 32-bit mode. */
/* This points to either the 32-bit or the 64-bit version. */
static const int *hard_regno_mode_classes;
static const int hard_32bit_mode_classes[] = {
S_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES,
T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES,
T_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES,
T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES,
OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES,
OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES,
OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES,
OF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
/* FP regs f32 to f63. Only the even numbered registers actually exist,
and none can hold SFmode/SImode values. */
OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0,
OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0,
OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0,
OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, TF_MODES_NO_S, 0, DF_MODES_NO_S, 0,
/* %fcc[0123] */
CCFP_MODES, CCFP_MODES, CCFP_MODES, CCFP_MODES,
/* %icc, %sfp, %gsr */
CC_MODES, 0, D_MODES
};
static const int hard_64bit_mode_classes[] = {
D_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,
O_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,
T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,
O_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,
OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES,
OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES,
OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES,
OF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
/* FP regs f32 to f63. Only the even numbered registers actually exist,
and none can hold SFmode/SImode values. */
OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0,
OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0,
OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0,
OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, TF_MODES_NO_S, 0, DF_MODES_NO_S, 0,
/* %fcc[0123] */
CCFP_MODES, CCFP_MODES, CCFP_MODES, CCFP_MODES,
/* %icc, %sfp, %gsr */
CC_MODES, 0, D_MODES
};
static int sparc_mode_class [NUM_MACHINE_MODES];
enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
static void
sparc_init_modes (void)
{
int i;
for (i = 0; i < NUM_MACHINE_MODES; i++)
{
machine_mode m = (machine_mode) i;
unsigned int size = GET_MODE_SIZE (m);
switch (GET_MODE_CLASS (m))
{
case MODE_INT:
case MODE_PARTIAL_INT:
case MODE_COMPLEX_INT:
if (size < 4)
sparc_mode_class[i] = 1 << (int) H_MODE;
else if (size == 4)
sparc_mode_class[i] = 1 << (int) S_MODE;
else if (size == 8)
sparc_mode_class[i] = 1 << (int) D_MODE;
else if (size == 16)
sparc_mode_class[i] = 1 << (int) T_MODE;
else if (size == 32)
sparc_mode_class[i] = 1 << (int) O_MODE;
else
sparc_mode_class[i] = 0;
break;
case MODE_VECTOR_INT:
if (size == 4)
sparc_mode_class[i] = 1 << (int) SF_MODE;
else if (size == 8)
sparc_mode_class[i] = 1 << (int) DF_MODE;
else
sparc_mode_class[i] = 0;
break;
case MODE_FLOAT:
case MODE_COMPLEX_FLOAT:
if (size == 4)
sparc_mode_class[i] = 1 << (int) SF_MODE;
else if (size == 8)
sparc_mode_class[i] = 1 << (int) DF_MODE;
else if (size == 16)
sparc_mode_class[i] = 1 << (int) TF_MODE;
else if (size == 32)
sparc_mode_class[i] = 1 << (int) OF_MODE;
else
sparc_mode_class[i] = 0;
break;
case MODE_CC:
if (m == CCFPmode || m == CCFPEmode)
sparc_mode_class[i] = 1 << (int) CCFP_MODE;
else
sparc_mode_class[i] = 1 << (int) CC_MODE;
break;
default:
sparc_mode_class[i] = 0;
break;
}
}
if (TARGET_ARCH64)
hard_regno_mode_classes = hard_64bit_mode_classes;
else
hard_regno_mode_classes = hard_32bit_mode_classes;
/* Initialize the array used by REGNO_REG_CLASS. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
if (i < 16 && TARGET_V8PLUS)
sparc_regno_reg_class[i] = I64_REGS;
else if (i < 32 || i == FRAME_POINTER_REGNUM)
sparc_regno_reg_class[i] = GENERAL_REGS;
else if (i < 64)
sparc_regno_reg_class[i] = FP_REGS;
else if (i < 96)
sparc_regno_reg_class[i] = EXTRA_FP_REGS;
else if (i < 100)
sparc_regno_reg_class[i] = FPCC_REGS;
else
sparc_regno_reg_class[i] = NO_REGS;
}
}
/* Return whether REGNO, a global or FP register, must be saved/restored. */
static inline bool
save_global_or_fp_reg_p (unsigned int regno,
int leaf_function ATTRIBUTE_UNUSED)
{
return !call_used_regs[regno] && df_regs_ever_live_p (regno);
}
/* Return whether the return address register (%i7) is needed. */
static inline bool
return_addr_reg_needed_p (int leaf_function)
{
/* If it is live, for example because of __builtin_return_address (0). */
if (df_regs_ever_live_p (RETURN_ADDR_REGNUM))
return true;
/* Otherwise, it is needed as save register if %o7 is clobbered. */
if (!leaf_function
/* Loading the GOT register clobbers %o7. */
|| crtl->uses_pic_offset_table
|| df_regs_ever_live_p (INCOMING_RETURN_ADDR_REGNUM))
return true;
return false;
}
/* Return whether REGNO, a local or in register, must be saved/restored. */
static bool
save_local_or_in_reg_p (unsigned int regno, int leaf_function)
{
/* General case: call-saved registers live at some point. */
if (!call_used_regs[regno] && df_regs_ever_live_p (regno))
return true;
/* Frame pointer register (%fp) if needed. */
if (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed)
return true;
/* Return address register (%i7) if needed. */
if (regno == RETURN_ADDR_REGNUM && return_addr_reg_needed_p (leaf_function))
return true;
/* GOT register (%l7) if needed. */
if (regno == GLOBAL_OFFSET_TABLE_REGNUM && got_register_rtx)
return true;
/* If the function accesses prior frames, the frame pointer and the return
address of the previous frame must be saved on the stack. */
if (crtl->accesses_prior_frames
&& (regno == HARD_FRAME_POINTER_REGNUM || regno == RETURN_ADDR_REGNUM))
return true;
return false;
}
/* Compute the frame size required by the function. This function is called
during the reload pass and also by sparc_expand_prologue. */
HOST_WIDE_INT
sparc_compute_frame_size (HOST_WIDE_INT size, int leaf_function)
{
HOST_WIDE_INT frame_size, apparent_frame_size;
int args_size, n_global_fp_regs = 0;
bool save_local_in_regs_p = false;
unsigned int i;
/* If the function allocates dynamic stack space, the dynamic offset is
computed early and contains REG_PARM_STACK_SPACE, so we need to cope. */
if (leaf_function && !cfun->calls_alloca)
args_size = 0;
else
args_size = crtl->outgoing_args_size + REG_PARM_STACK_SPACE (cfun->decl);
/* Calculate space needed for global registers. */
if (TARGET_ARCH64)
{
for (i = 0; i < 8; i++)
if (save_global_or_fp_reg_p (i, 0))
n_global_fp_regs += 2;
}
else
{
for (i = 0; i < 8; i += 2)
if (save_global_or_fp_reg_p (i, 0)
|| save_global_or_fp_reg_p (i + 1, 0))
n_global_fp_regs += 2;
}
/* In the flat window model, find out which local and in registers need to
be saved. We don't reserve space in the current frame for them as they
will be spilled into the register window save area of the caller's frame.
However, as soon as we use this register window save area, we must create
that of the current frame to make it the live one. */
if (TARGET_FLAT)
for (i = 16; i < 32; i++)
if (save_local_or_in_reg_p (i, leaf_function))
{
save_local_in_regs_p = true;
break;
}
/* Calculate space needed for FP registers. */
for (i = 32; i < (TARGET_V9 ? 96 : 64); i += 2)
if (save_global_or_fp_reg_p (i, 0) || save_global_or_fp_reg_p (i + 1, 0))
n_global_fp_regs += 2;
if (size == 0
&& n_global_fp_regs == 0
&& args_size == 0
&& !save_local_in_regs_p)
frame_size = apparent_frame_size = 0;
else
{
/* Start from the apparent frame size. */
apparent_frame_size = ROUND_UP (size, 8) + n_global_fp_regs * 4;
/* We need to add the size of the outgoing argument area. */
frame_size = apparent_frame_size + ROUND_UP (args_size, 8);
/* And that of the register window save area. */
frame_size += FIRST_PARM_OFFSET (cfun->decl);
/* Finally, bump to the appropriate alignment. */
frame_size = SPARC_STACK_ALIGN (frame_size);
}
/* Set up values for use in prologue and epilogue. */
sparc_frame_size = frame_size;
sparc_apparent_frame_size = apparent_frame_size;
sparc_n_global_fp_regs = n_global_fp_regs;
sparc_save_local_in_regs_p = save_local_in_regs_p;
return frame_size;
}
/* Implement the macro INITIAL_ELIMINATION_OFFSET, return the OFFSET. */
int
sparc_initial_elimination_offset (int to)
{
int offset;
if (to == STACK_POINTER_REGNUM)
offset = sparc_compute_frame_size (get_frame_size (), crtl->is_leaf);
else
offset = 0;
offset += SPARC_STACK_BIAS;
return offset;
}
/* Output any necessary .register pseudo-ops. */
void
sparc_output_scratch_registers (FILE *file ATTRIBUTE_UNUSED)
{
#ifdef HAVE_AS_REGISTER_PSEUDO_OP
int i;
if (TARGET_ARCH32)
return;
/* Check if %g[2367] were used without
.register being printed for them already. */
for (i = 2; i < 8; i++)
{
if (df_regs_ever_live_p (i)
&& ! sparc_hard_reg_printed [i])
{
sparc_hard_reg_printed [i] = 1;
/* %g7 is used as TLS base register, use #ignore
for it instead of #scratch. */
fprintf (file, "\t.register\t%%g%d, #%s\n", i,
i == 7 ? "ignore" : "scratch");
}
if (i == 3) i = 5;
}
#endif
}
#define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
#if PROBE_INTERVAL > 4096
#error Cannot use indexed addressing mode for stack probing
#endif
/* Emit code to probe a range of stack addresses from FIRST to FIRST+SIZE,
inclusive. These are offsets from the current stack pointer.
Note that we don't use the REG+REG addressing mode for the probes because
of the stack bias in 64-bit mode. And it doesn't really buy us anything
so the advantages of having a single code win here. */
static void
sparc_emit_probe_stack_range (HOST_WIDE_INT first, HOST_WIDE_INT size)
{
rtx g1 = gen_rtx_REG (Pmode, 1);
/* See if we have a constant small number of probes to generate. If so,
that's the easy case. */
if (size <= PROBE_INTERVAL)
{
emit_move_insn (g1, GEN_INT (first));
emit_insn (gen_rtx_SET (g1,
gen_rtx_MINUS (Pmode, stack_pointer_rtx, g1)));
emit_stack_probe (plus_constant (Pmode, g1, -size));
}
/* The run-time loop is made up of 9 insns in the generic case while the
compile-time loop is made up of 4+2*(n-2) insns for n # of intervals. */
else if (size <= 4 * PROBE_INTERVAL)
{
HOST_WIDE_INT i;
emit_move_insn (g1, GEN_INT (first + PROBE_INTERVAL));
emit_insn (gen_rtx_SET (g1,
gen_rtx_MINUS (Pmode, stack_pointer_rtx, g1)));
emit_stack_probe (g1);
/* Probe at FIRST + N * PROBE_INTERVAL for values of N from 2 until
it exceeds SIZE. If only two probes are needed, this will not
generate any code. Then probe at FIRST + SIZE. */
for (i = 2 * PROBE_INTERVAL; i < size; i += PROBE_INTERVAL)
{
emit_insn (gen_rtx_SET (g1,
plus_constant (Pmode, g1, -PROBE_INTERVAL)));
emit_stack_probe (g1);
}
emit_stack_probe (plus_constant (Pmode, g1,
(i - PROBE_INTERVAL) - size));
}
/* Otherwise, do the same as above, but in a loop. Note that we must be
extra careful with variables wrapping around because we might be at
the very top (or the very bottom) of the address space and we have
to be able to handle this case properly; in particular, we use an
equality test for the loop condition. */
else
{
HOST_WIDE_INT rounded_size;
rtx g4 = gen_rtx_REG (Pmode, 4);
emit_move_insn (g1, GEN_INT (first));
/* Step 1: round SIZE to the previous multiple of the interval. */
rounded_size = ROUND_DOWN (size, PROBE_INTERVAL);
emit_move_insn (g4, GEN_INT (rounded_size));
/* Step 2: compute initial and final value of the loop counter. */
/* TEST_ADDR = SP + FIRST. */
emit_insn (gen_rtx_SET (g1,
gen_rtx_MINUS (Pmode, stack_pointer_rtx, g1)));
/* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
emit_insn (gen_rtx_SET (g4, gen_rtx_MINUS (Pmode, g1, g4)));
/* Step 3: the loop
while (TEST_ADDR != LAST_ADDR)
{
TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
probe at TEST_ADDR
}
probes at FIRST + N * PROBE_INTERVAL for values of N from 1
until it is equal to ROUNDED_SIZE. */
if (TARGET_ARCH64)
emit_insn (gen_probe_stack_rangedi (g1, g1, g4));
else
emit_insn (gen_probe_stack_rangesi (g1, g1, g4));
/* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
that SIZE is equal to ROUNDED_SIZE. */
if (size != rounded_size)
emit_stack_probe (plus_constant (Pmode, g4, rounded_size - size));
}
/* Make sure nothing is scheduled before we are done. */
emit_insn (gen_blockage ());
}
/* Probe a range of stack addresses from REG1 to REG2 inclusive. These are
absolute addresses. */
const char *
output_probe_stack_range (rtx reg1, rtx reg2)
{
static int labelno = 0;
char loop_lab[32];
rtx xops[2];
ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno++);
/* Loop. */
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab);
/* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
xops[0] = reg1;
xops[1] = GEN_INT (-PROBE_INTERVAL);
output_asm_insn ("add\t%0, %1, %0", xops);
/* Test if TEST_ADDR == LAST_ADDR. */
xops[1] = reg2;
output_asm_insn ("cmp\t%0, %1", xops);
/* Probe at TEST_ADDR and branch. */
if (TARGET_ARCH64)
fputs ("\tbne,pt\t%xcc,", asm_out_file);
else
fputs ("\tbne\t", asm_out_file);
assemble_name_raw (asm_out_file, loop_lab);
fputc ('\n', asm_out_file);
xops[1] = GEN_INT (SPARC_STACK_BIAS);
output_asm_insn (" st\t%%g0, [%0+%1]", xops);
return "";
}
/* Emit code to save/restore registers from LOW to HIGH at BASE+OFFSET as
needed. LOW is supposed to be double-word aligned for 32-bit registers.
SAVE_P decides whether a register must be saved/restored. ACTION_TRUE
is the action to be performed if SAVE_P returns true and ACTION_FALSE
the action to be performed if it returns false. Return the new offset. */
typedef bool (*sorr_pred_t) (unsigned int, int);
typedef enum { SORR_NONE, SORR_ADVANCE, SORR_SAVE, SORR_RESTORE } sorr_act_t;
static int
emit_save_or_restore_regs (unsigned int low, unsigned int high, rtx base,
int offset, int leaf_function, sorr_pred_t save_p,
sorr_act_t action_true, sorr_act_t action_false)
{
unsigned int i;
rtx mem;
rtx_insn *insn;
if (TARGET_ARCH64 && high <= 32)
{
int fp_offset = -1;
for (i = low; i < high; i++)
{
if (save_p (i, leaf_function))
{
mem = gen_frame_mem (DImode, plus_constant (Pmode,
base, offset));
if (action_true == SORR_SAVE)
{
insn = emit_move_insn (mem, gen_rtx_REG (DImode, i));
RTX_FRAME_RELATED_P (insn) = 1;
}
else /* action_true == SORR_RESTORE */
{
/* The frame pointer must be restored last since its old
value may be used as base address for the frame. This
is problematic in 64-bit mode only because of the lack
of double-word load instruction. */
if (i == HARD_FRAME_POINTER_REGNUM)
fp_offset = offset;
else
emit_move_insn (gen_rtx_REG (DImode, i), mem);
}
offset += 8;
}
else if (action_false == SORR_ADVANCE)
offset += 8;
}
if (fp_offset >= 0)
{
mem = gen_frame_mem (DImode, plus_constant (Pmode, base, fp_offset));
emit_move_insn (hard_frame_pointer_rtx, mem);
}
}
else
{
for (i = low; i < high; i += 2)
{
bool reg0 = save_p (i, leaf_function);
bool reg1 = save_p (i + 1, leaf_function);
machine_mode mode;
int regno;
if (reg0 && reg1)
{
mode = SPARC_INT_REG_P (i) ? E_DImode : E_DFmode;
regno = i;
}
else if (reg0)
{
mode = SPARC_INT_REG_P (i) ? E_SImode : E_SFmode;
regno = i;
}
else if (reg1)
{
mode = SPARC_INT_REG_P (i) ? E_SImode : E_SFmode;
regno = i + 1;
offset += 4;
}
else
{
if (action_false == SORR_ADVANCE)
offset += 8;
continue;
}
mem = gen_frame_mem (mode, plus_constant (Pmode, base, offset));
if (action_true == SORR_SAVE)
{
insn = emit_move_insn (mem, gen_rtx_REG (mode, regno));
RTX_FRAME_RELATED_P (insn) = 1;
if (mode == DImode)
{
rtx set1, set2;
mem = gen_frame_mem (SImode, plus_constant (Pmode, base,
offset));
set1 = gen_rtx_SET (mem, gen_rtx_REG (SImode, regno));
RTX_FRAME_RELATED_P (set1) = 1;
mem
= gen_frame_mem (SImode, plus_constant (Pmode, base,
offset + 4));
set2 = gen_rtx_SET (mem, gen_rtx_REG (SImode, regno + 1));
RTX_FRAME_RELATED_P (set2) = 1;
add_reg_note (insn, REG_FRAME_RELATED_EXPR,
gen_rtx_PARALLEL (VOIDmode,
gen_rtvec (2, set1, set2)));
}
}
else /* action_true == SORR_RESTORE */
emit_move_insn (gen_rtx_REG (mode, regno), mem);
/* Bump and round down to double word
in case we already bumped by 4. */
offset = ROUND_DOWN (offset + 8, 8);
}
}
return offset;
}
/* Emit code to adjust BASE to OFFSET. Return the new base. */
static rtx
emit_adjust_base_to_offset (rtx base, int offset)
{
/* ??? This might be optimized a little as %g1 might already have a
value close enough that a single add insn will do. */
/* ??? Although, all of this is probably only a temporary fix because
if %g1 can hold a function result, then sparc_expand_epilogue will
lose (the result will be clobbered). */
rtx new_base = gen_rtx_REG (Pmode, 1);
emit_move_insn (new_base, GEN_INT (offset));
emit_insn (gen_rtx_SET (new_base, gen_rtx_PLUS (Pmode, base, new_base)));
return new_base;
}
/* Emit code to save/restore call-saved global and FP registers. */
static void
emit_save_or_restore_global_fp_regs (rtx base, int offset, sorr_act_t action)
{
if (offset < -4096 || offset + sparc_n_global_fp_regs * 4 > 4095)
{
base = emit_adjust_base_to_offset (base, offset);
offset = 0;
}
offset
= emit_save_or_restore_regs (0, 8, base, offset, 0,
save_global_or_fp_reg_p, action, SORR_NONE);
emit_save_or_restore_regs (32, TARGET_V9 ? 96 : 64, base, offset, 0,
save_global_or_fp_reg_p, action, SORR_NONE);
}
/* Emit code to save/restore call-saved local and in registers. */
static void
emit_save_or_restore_local_in_regs (rtx base, int offset, sorr_act_t action)
{
if (offset < -4096 || offset + 16 * UNITS_PER_WORD > 4095)
{
base = emit_adjust_base_to_offset (base, offset);
offset = 0;
}
emit_save_or_restore_regs (16, 32, base, offset, sparc_leaf_function_p,
save_local_or_in_reg_p, action, SORR_ADVANCE);
}
/* Emit a window_save insn. */
static rtx_insn *
emit_window_save (rtx increment)
{
rtx_insn *insn = emit_insn (gen_window_save (increment));
RTX_FRAME_RELATED_P (insn) = 1;
/* The incoming return address (%o7) is saved in %i7. */
add_reg_note (insn, REG_CFA_REGISTER,
gen_rtx_SET (gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM),
gen_rtx_REG (Pmode,
INCOMING_RETURN_ADDR_REGNUM)));
/* The window save event. */
add_reg_note (insn, REG_CFA_WINDOW_SAVE, const0_rtx);
/* The CFA is %fp, the hard frame pointer. */
add_reg_note (insn, REG_CFA_DEF_CFA,
plus_constant (Pmode, hard_frame_pointer_rtx,
INCOMING_FRAME_SP_OFFSET));
return insn;
}
/* Generate an increment for the stack pointer. */
static rtx
gen_stack_pointer_inc (rtx increment)
{
return gen_rtx_SET (stack_pointer_rtx,
gen_rtx_PLUS (Pmode,
stack_pointer_rtx,
increment));
}
/* Expand the function prologue. The prologue is responsible for reserving
storage for the frame, saving the call-saved registers and loading the
GOT register if needed. */
void
sparc_expand_prologue (void)
{
HOST_WIDE_INT size;
rtx_insn *insn;
/* Compute a snapshot of crtl->uses_only_leaf_regs. Relying
on the final value of the flag means deferring the prologue/epilogue
expansion until just before the second scheduling pass, which is too
late to emit multiple epilogues or return insns.
Of course we are making the assumption that the value of the flag
will not change between now and its final value. Of the three parts
of the formula, only the last one can reasonably vary. Let's take a
closer look, after assuming that the first two ones are set to true
(otherwise the last value is effectively silenced).
If only_leaf_regs_used returns false, the global predicate will also
be false so the actual frame size calculated below will be positive.
As a consequence, the save_register_window insn will be emitted in
the instruction stream; now this insn explicitly references %fp
which is not a leaf register so only_leaf_regs_used will always
return false subsequently.
If only_leaf_regs_used returns true, we hope that the subsequent
optimization passes won't cause non-leaf registers to pop up. For
example, the regrename pass has special provisions to not rename to
non-leaf registers in a leaf function. */
sparc_leaf_function_p
= optimize > 0 && crtl->is_leaf && only_leaf_regs_used ();
size = sparc_compute_frame_size (get_frame_size(), sparc_leaf_function_p);
if (flag_stack_usage_info)
current_function_static_stack_size = size;
if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK
|| flag_stack_clash_protection)
{
if (crtl->is_leaf && !cfun->calls_alloca)
{
if (size > PROBE_INTERVAL && size > get_stack_check_protect ())
sparc_emit_probe_stack_range (get_stack_check_protect (),
size - get_stack_check_protect ());
}
else if (size > 0)
sparc_emit_probe_stack_range (get_stack_check_protect (), size);
}
if (size == 0)
; /* do nothing. */
else if (sparc_leaf_function_p)
{
rtx size_int_rtx = GEN_INT (-size);
if (size <= 4096)
insn = emit_insn (gen_stack_pointer_inc (size_int_rtx));
else if (size <= 8192)
{
insn = emit_insn (gen_stack_pointer_inc (GEN_INT (-4096)));
RTX_FRAME_RELATED_P (insn) = 1;
/* %sp is still the CFA register. */
insn = emit_insn (gen_stack_pointer_inc (GEN_INT (4096 - size)));
}
else
{
rtx size_rtx = gen_rtx_REG (Pmode, 1);
emit_move_insn (size_rtx, size_int_rtx);
insn = emit_insn (gen_stack_pointer_inc (size_rtx));
add_reg_note (insn, REG_FRAME_RELATED_EXPR,
gen_stack_pointer_inc (size_int_rtx));
}
RTX_FRAME_RELATED_P (insn) = 1;
}
else
{
rtx size_int_rtx = GEN_INT (-size);
if (size <= 4096)
emit_window_save (size_int_rtx);
else if (size <= 8192)
{
emit_window_save (GEN_INT (-4096));
/* %sp is not the CFA register anymore. */
emit_insn (gen_stack_pointer_inc (GEN_INT (4096 - size)));
/* Make sure no %fp-based store is issued until after the frame is
established. The offset between the frame pointer and the stack
pointer is calculated relative to the value of the stack pointer
at the end of the function prologue, and moving instructions that
access the stack via the frame pointer between the instructions
that decrement the stack pointer could result in accessing the
register window save area, which is volatile. */
emit_insn (gen_frame_blockage ());
}
else
{
rtx size_rtx = gen_rtx_REG (Pmode, 1);
emit_move_insn (size_rtx, size_int_rtx);
emit_window_save (size_rtx);
}
}
if (sparc_leaf_function_p)
{
sparc_frame_base_reg = stack_pointer_rtx;
sparc_frame_base_offset = size + SPARC_STACK_BIAS;
}
else
{
sparc_frame_base_reg = hard_frame_pointer_rtx;
sparc_frame_base_offset = SPARC_STACK_BIAS;
}
if (sparc_n_global_fp_regs > 0)
emit_save_or_restore_global_fp_regs (sparc_frame_base_reg,
sparc_frame_base_offset
- sparc_apparent_frame_size,
SORR_SAVE);
/* Advertise that the data calculated just above are now valid. */
sparc_prologue_data_valid_p = true;
}
/* Expand the function prologue. The prologue is responsible for reserving
storage for the frame, saving the call-saved registers and loading the
GOT register if needed. */
void
sparc_flat_expand_prologue (void)
{
HOST_WIDE_INT size;
rtx_insn *insn;
sparc_leaf_function_p = optimize > 0 && crtl->is_leaf;
size = sparc_compute_frame_size (get_frame_size(), sparc_leaf_function_p);
if (flag_stack_usage_info)
current_function_static_stack_size = size;
if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK
|| flag_stack_clash_protection)
{
if (crtl->is_leaf && !cfun->calls_alloca)
{
if (size > PROBE_INTERVAL && size > get_stack_check_protect ())
sparc_emit_probe_stack_range (get_stack_check_protect (),
size - get_stack_check_protect ());
}
else if (size > 0)
sparc_emit_probe_stack_range (get_stack_check_protect (), size);
}
if (sparc_save_local_in_regs_p)
emit_save_or_restore_local_in_regs (stack_pointer_rtx, SPARC_STACK_BIAS,
SORR_SAVE);
if (size == 0)
; /* do nothing. */
else
{
rtx size_int_rtx, size_rtx;
size_rtx = size_int_rtx = GEN_INT (-size);
/* We establish the frame (i.e. decrement the stack pointer) first, even
if we use a frame pointer, because we cannot clobber any call-saved
registers, including the frame pointer, if we haven't created a new
register save area, for the sake of compatibility with the ABI. */
if (size <= 4096)
insn = emit_insn (gen_stack_pointer_inc (size_int_rtx));
else if (size <= 8192 && !frame_pointer_needed)
{
insn = emit_insn (gen_stack_pointer_inc (GEN_INT (-4096)));
RTX_FRAME_RELATED_P (insn) = 1;
insn = emit_insn (gen_stack_pointer_inc (GEN_INT (4096 - size)));
}
else
{
size_rtx = gen_rtx_REG (Pmode, 1);
emit_move_insn (size_rtx, size_int_rtx);
insn = emit_insn (gen_stack_pointer_inc (size_rtx));
add_reg_note (insn, REG_CFA_ADJUST_CFA,
gen_stack_pointer_inc (size_int_rtx));
}
RTX_FRAME_RELATED_P (insn) = 1;
/* Ensure nothing is scheduled until after the frame is established. */
emit_insn (gen_blockage ());
if (frame_pointer_needed)
{
insn = emit_insn (gen_rtx_SET (hard_frame_pointer_rtx,
gen_rtx_MINUS (Pmode,
stack_pointer_rtx,
size_rtx)));
RTX_FRAME_RELATED_P (insn) = 1;
add_reg_note (insn, REG_CFA_ADJUST_CFA,
gen_rtx_SET (hard_frame_pointer_rtx,
plus_constant (Pmode, stack_pointer_rtx,
size)));
}
if (return_addr_reg_needed_p (sparc_leaf_function_p))
{
rtx o7 = gen_rtx_REG (Pmode, INCOMING_RETURN_ADDR_REGNUM);
rtx i7 = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM);
insn = emit_move_insn (i7, o7);
RTX_FRAME_RELATED_P (insn) = 1;
add_reg_note (insn, REG_CFA_REGISTER, gen_rtx_SET (i7, o7));
/* Prevent this instruction from ever being considered dead,
even if this function has no epilogue. */
emit_use (i7);
}
}
if (frame_pointer_needed)
{
sparc_frame_base_reg = hard_frame_pointer_rtx;
sparc_frame_base_offset = SPARC_STACK_BIAS;
}
else
{
sparc_frame_base_reg = stack_pointer_rtx;
sparc_frame_base_offset = size + SPARC_STACK_BIAS;
}
if (sparc_n_global_fp_regs > 0)
emit_save_or_restore_global_fp_regs (sparc_frame_base_reg,
sparc_frame_base_offset
- sparc_apparent_frame_size,
SORR_SAVE);
/* Advertise that the data calculated just above are now valid. */
sparc_prologue_data_valid_p = true;
}
/* This function generates the assembly code for function entry, which boils
down to emitting the necessary .register directives. */
static void
sparc_asm_function_prologue (FILE *file)
{
/* Check that the assumption we made in sparc_expand_prologue is valid. */
if (!TARGET_FLAT)
gcc_assert (sparc_leaf_function_p == crtl->uses_only_leaf_regs);
sparc_output_scratch_registers (file);
}
/* Expand the function epilogue, either normal or part of a sibcall.
We emit all the instructions except the return or the call. */
void
sparc_expand_epilogue (bool for_eh)
{
HOST_WIDE_INT size = sparc_frame_size;
if (cfun->calls_alloca)
emit_insn (gen_frame_blockage ());
if (sparc_n_global_fp_regs > 0)
emit_save_or_restore_global_fp_regs (sparc_frame_base_reg,
sparc_frame_base_offset
- sparc_apparent_frame_size,
SORR_RESTORE);
if (size == 0 || for_eh)
; /* do nothing. */
else if (sparc_leaf_function_p)
{
if (size <= 4096)
emit_insn (gen_stack_pointer_inc (GEN_INT (size)));
else if (size <= 8192)
{
emit_insn (gen_stack_pointer_inc (GEN_INT (4096)));
emit_insn (gen_stack_pointer_inc (GEN_INT (size - 4096)));
}
else
{
rtx reg = gen_rtx_REG (Pmode, 1);
emit_move_insn (reg, GEN_INT (size));
emit_insn (gen_stack_pointer_inc (reg));
}
}
}
/* Expand the function epilogue, either normal or part of a sibcall.
We emit all the instructions except the return or the call. */
void
sparc_flat_expand_epilogue (bool for_eh)
{
HOST_WIDE_INT size = sparc_frame_size;
if (sparc_n_global_fp_regs > 0)
emit_save_or_restore_global_fp_regs (sparc_frame_base_reg,
sparc_frame_base_offset
- sparc_apparent_frame_size,
SORR_RESTORE);
/* If we have a frame pointer, we'll need both to restore it before the
frame is destroyed and use its current value in destroying the frame.
Since we don't have an atomic way to do that in the flat window model,
we save the current value into a temporary register (%g1). */
if (frame_pointer_needed && !for_eh)
emit_move_insn (gen_rtx_REG (Pmode, 1), hard_frame_pointer_rtx);
if (return_addr_reg_needed_p (sparc_leaf_function_p))
emit_move_insn (gen_rtx_REG (Pmode, INCOMING_RETURN_ADDR_REGNUM),
gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM));
if (sparc_save_local_in_regs_p)
emit_save_or_restore_local_in_regs (sparc_frame_base_reg,
sparc_frame_base_offset,
SORR_RESTORE);
if (size == 0 || for_eh)
; /* do nothing. */
else if (frame_pointer_needed)
{
/* Make sure the frame is destroyed after everything else is done. */
emit_insn (gen_blockage ());
emit_move_insn (stack_pointer_rtx, gen_rtx_REG (Pmode, 1));
}
else
{
/* Likewise. */
emit_insn (gen_blockage ());
if (size <= 4096)
emit_insn (gen_stack_pointer_inc (GEN_INT (size)));
else if (size <= 8192)
{
emit_insn (gen_stack_pointer_inc (GEN_INT (4096)));
emit_insn (gen_stack_pointer_inc (GEN_INT (size - 4096)));
}
else
{
rtx reg = gen_rtx_REG (Pmode, 1);
emit_move_insn (reg, GEN_INT (size));
emit_insn (gen_stack_pointer_inc (reg));
}
}
}
/* Return true if it is appropriate to emit `return' instructions in the
body of a function. */
bool
sparc_can_use_return_insn_p (void)
{
return sparc_prologue_data_valid_p
&& sparc_n_global_fp_regs == 0
&& TARGET_FLAT
? (sparc_frame_size == 0 && !sparc_save_local_in_regs_p)
: (sparc_frame_size == 0 || !sparc_leaf_function_p);
}
/* This function generates the assembly code for function exit. */
static void
sparc_asm_function_epilogue (FILE *file)
{
/* If the last two instructions of a function are "call foo; dslot;"
the return address might point to the first instruction in the next
function and we have to output a dummy nop for the sake of sane
backtraces in such cases. This is pointless for sibling calls since
the return address is explicitly adjusted. */
rtx_insn *insn = get_last_insn ();
rtx last_real_insn = prev_real_insn (insn);
if (last_real_insn
&& NONJUMP_INSN_P (last_real_insn)
&& GET_CODE (PATTERN (last_real_insn)) == SEQUENCE)
last_real_insn = XVECEXP (PATTERN (last_real_insn), 0, 0);
if (last_real_insn
&& CALL_P (last_real_insn)
&& !SIBLING_CALL_P (last_real_insn))
fputs("\tnop\n", file);
sparc_output_deferred_case_vectors ();
}
/* Output a 'restore' instruction. */
static void
output_restore (rtx pat)
{
rtx operands[3];
if (! pat)
{
fputs ("\t restore\n", asm_out_file);
return;
}
gcc_assert (GET_CODE (pat) == SET);
operands[0] = SET_DEST (pat);
pat = SET_SRC (pat);
switch (GET_CODE (pat))
{
case PLUS:
operands[1] = XEXP (pat, 0);
operands[2] = XEXP (pat, 1);
output_asm_insn (" restore %r1, %2, %Y0", operands);
break;
case LO_SUM:
operands[1] = XEXP (pat, 0);
operands[2] = XEXP (pat, 1);
output_asm_insn (" restore %r1, %%lo(%a2), %Y0", operands);
break;
case ASHIFT:
operands[1] = XEXP (pat, 0);
gcc_assert (XEXP (pat, 1) == const1_rtx);
output_asm_insn (" restore %r1, %r1, %Y0", operands);
break;
default:
operands[1] = pat;
output_asm_insn (" restore %%g0, %1, %Y0", operands);
break;
}
}
/* Output a return. */
const char *
output_return (rtx_insn *insn)
{
if (crtl->calls_eh_return)
{
/* If the function uses __builtin_eh_return, the eh_return
machinery occupies the delay slot. */
gcc_assert (!final_sequence);
if (flag_delayed_branch)
{
if (!TARGET_FLAT && TARGET_V9)
fputs ("\treturn\t%i7+8\n", asm_out_file);
else
{
if (!TARGET_FLAT)
fputs ("\trestore\n", asm_out_file);
fputs ("\tjmp\t%o7+8\n", asm_out_file);
}
fputs ("\t add\t%sp, %g1, %sp\n", asm_out_file);
}
else
{
if (!TARGET_FLAT)
fputs ("\trestore\n", asm_out_file);
fputs ("\tadd\t%sp, %g1, %sp\n", asm_out_file);
fputs ("\tjmp\t%o7+8\n\t nop\n", asm_out_file);
}
}
else if (sparc_leaf_function_p || TARGET_FLAT)
{
/* This is a leaf or flat function so we don't have to bother restoring
the register window, which frees us from dealing with the convoluted
semantics of restore/return. We simply output the jump to the
return address and the insn in the delay slot (if any). */
return "jmp\t%%o7+%)%#";
}
else
{
/* This is a regular function so we have to restore the register window.
We may have a pending insn for the delay slot, which will be either
combined with the 'restore' instruction or put in the delay slot of
the 'return' instruction. */
if (final_sequence)
{
rtx_insn *delay;
rtx pat;
delay = NEXT_INSN (insn);
gcc_assert (delay);
pat = PATTERN (delay);
if (TARGET_V9 && ! epilogue_renumber (&pat, 1))
{
epilogue_renumber (&pat, 0);
return "return\t%%i7+%)%#";
}
else
{
output_asm_insn ("jmp\t%%i7+%)", NULL);
/* We're going to output the insn in the delay slot manually.
Make sure to output its source location first. */
PATTERN (delay) = gen_blockage ();
INSN_CODE (delay) = -1;
final_scan_insn (delay, asm_out_file, optimize, 0, NULL);
INSN_LOCATION (delay) = UNKNOWN_LOCATION;
output_restore (pat);
}
}
else
{
/* The delay slot is empty. */
if (TARGET_V9)
return "return\t%%i7+%)\n\t nop";
else if (flag_delayed_branch)
return "jmp\t%%i7+%)\n\t restore";
else
return "restore\n\tjmp\t%%o7+%)\n\t nop";
}
}
return "";
}
/* Output a sibling call. */
const char *
output_sibcall (rtx_insn *insn, rtx call_operand)
{
rtx operands[1];
gcc_assert (flag_delayed_branch);
operands[0] = call_operand;
if (sparc_leaf_function_p || TARGET_FLAT)
{
/* This is a leaf or flat function so we don't have to bother restoring
the register window. We simply output the jump to the function and
the insn in the delay slot (if any). */
gcc_assert (!(LEAF_SIBCALL_SLOT_RESERVED_P && final_sequence));
if (final_sequence)
output_asm_insn ("sethi\t%%hi(%a0), %%g1\n\tjmp\t%%g1 + %%lo(%a0)%#",
operands);
else
/* Use or with rs2 %%g0 instead of mov, so that as/ld can optimize
it into branch if possible. */
output_asm_insn ("or\t%%o7, %%g0, %%g1\n\tcall\t%a0, 0\n\t or\t%%g1, %%g0, %%o7",
operands);
}
else
{
/* This is a regular function so we have to restore the register window.
We may have a pending insn for the delay slot, which will be combined
with the 'restore' instruction. */
output_asm_insn ("call\t%a0, 0", operands);
if (final_sequence)
{
rtx_insn *delay;
rtx pat;
delay = NEXT_INSN (insn);
gcc_assert (delay);
pat = PATTERN (delay);
/* We're going to output the insn in the delay slot manually.
Make sure to output its source location first. */
PATTERN (delay) = gen_blockage ();
INSN_CODE (delay) = -1;
final_scan_insn (delay, asm_out_file, optimize, 0, NULL);
INSN_LOCATION (delay) = UNKNOWN_LOCATION;
output_restore (pat);
}
else
output_restore (NULL_RTX);
}
return "";
}
/* Functions for handling argument passing.
For 32-bit, the first 6 args are normally in registers and the rest are
pushed. Any arg that starts within the first 6 words is at least
partially passed in a register unless its data type forbids.
For 64-bit, the argument registers are laid out as an array of 16 elements
and arguments are added sequentially. The first 6 int args and up to the
first 16 fp args (depending on size) are passed in regs.
Slot Stack Integral Float Float in structure Double Long Double
---- ----- -------- ----- ------------------ ------ -----------
15 [SP+248] %f31 %f30,%f31 %d30
14 [SP+240] %f29 %f28,%f29 %d28 %q28
13 [SP+232] %f27 %f26,%f27 %d26
12 [SP+224] %f25 %f24,%f25 %d24 %q24
11 [SP+216] %f23 %f22,%f23 %d22
10 [SP+208] %f21 %f20,%f21 %d20 %q20
9 [SP+200] %f19 %f18,%f19 %d18
8 [SP+192] %f17 %f16,%f17 %d16 %q16
7 [SP+184] %f15 %f14,%f15 %d14
6 [SP+176] %f13 %f12,%f13 %d12 %q12
5 [SP+168] %o5 %f11 %f10,%f11 %d10
4 [SP+160] %o4 %f9 %f8,%f9 %d8 %q8
3 [SP+152] %o3 %f7 %f6,%f7 %d6
2 [SP+144] %o2 %f5 %f4,%f5 %d4 %q4
1 [SP+136] %o1 %f3 %f2,%f3 %d2
0 [SP+128] %o0 %f1 %f0,%f1 %d0 %q0
Here SP = %sp if -mno-stack-bias or %sp+stack_bias otherwise.
Integral arguments are always passed as 64-bit quantities appropriately
extended.
Passing of floating point values is handled as follows.
If a prototype is in scope:
If the value is in a named argument (i.e. not a stdarg function or a
value not part of the `...') then the value is passed in the appropriate
fp reg.
If the value is part of the `...' and is passed in one of the first 6
slots then the value is passed in the appropriate int reg.
If the value is part of the `...' and is not passed in one of the first 6
slots then the value is passed in memory.
If a prototype is not in scope:
If the value is one of the first 6 arguments the value is passed in the
appropriate integer reg and the appropriate fp reg.
If the value is not one of the first 6 arguments the value is passed in
the appropriate fp reg and in memory.
Summary of the calling conventions implemented by GCC on the SPARC:
32-bit ABI:
size argument return value
small integer <4 int. reg. int. reg.
word 4 int. reg. int. reg.
double word 8 int. reg. int. reg.
_Complex small integer <8 int. reg. int. reg.
_Complex word 8 int. reg. int. reg.
_Complex double word 16 memory int. reg.
vector integer <=8 int. reg. FP reg.
vector integer >8 memory memory
float 4 int. reg. FP reg.
double 8 int. reg. FP reg.
long double 16 memory memory
_Complex float 8 memory FP reg.
_Complex double 16 memory FP reg.
_Complex long double 32 memory FP reg.
vector float any memory memory
aggregate any memory memory
64-bit ABI:
size argument return value
small integer <8 int. reg. int. reg.
word 8 int. reg. int. reg.
double word 16 int. reg. int. reg.
_Complex small integer <16 int. reg. int. reg.
_Complex word 16 int. reg. int. reg.
_Complex double word 32 memory int. reg.
vector integer <=16 FP reg. FP reg.
vector integer 16<s<=32 memory FP reg.
vector integer >32 memory memory
float 4 FP reg. FP reg.
double 8 FP reg. FP reg.
long double 16 FP reg. FP reg.
_Complex float 8 FP reg. FP reg.
_Complex double 16 FP reg. FP reg.
_Complex long double 32 memory FP reg.
vector float <=16 FP reg. FP reg.
vector float 16<s<=32 memory FP reg.
vector float >32 memory memory
aggregate <=16 reg. reg.
aggregate 16<s<=32 memory reg.
aggregate >32 memory memory
Note #1: complex floating-point types follow the extended SPARC ABIs as
implemented by the Sun compiler.
Note #2: integral vector types follow the scalar floating-point types
conventions to match what is implemented by the Sun VIS SDK.
Note #3: floating-point vector types follow the aggregate types
conventions. */
/* Maximum number of int regs for args. */
#define SPARC_INT_ARG_MAX 6
/* Maximum number of fp regs for args. */
#define SPARC_FP_ARG_MAX 16
/* Number of words (partially) occupied for a given size in units. */
#define CEIL_NWORDS(SIZE) CEIL((SIZE), UNITS_PER_WORD)
/* Handle the INIT_CUMULATIVE_ARGS macro.
Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0. */
void
init_cumulative_args (struct sparc_args *cum, tree fntype, rtx, tree)
{
cum->words = 0;
cum->prototype_p = fntype && prototype_p (fntype);
cum->libcall_p = !fntype;
}
/* Handle promotion of pointer and integer arguments. */
static machine_mode
sparc_promote_function_mode (const_tree type, machine_mode mode,
int *punsignedp, const_tree, int)
{
if (type && POINTER_TYPE_P (type))
{
*punsignedp = POINTERS_EXTEND_UNSIGNED;
return Pmode;
}
/* Integral arguments are passed as full words, as per the ABI. */
if (GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_SIZE (mode) < UNITS_PER_WORD)
return word_mode;
return mode;
}
/* Handle the TARGET_STRICT_ARGUMENT_NAMING target hook. */
static bool
sparc_strict_argument_naming (cumulative_args_t ca ATTRIBUTE_UNUSED)
{
return TARGET_ARCH64 ? true : false;
}
/* Traverse the record TYPE recursively and call FUNC on its fields.
NAMED is true if this is for a named parameter. DATA is passed
to FUNC for each field. OFFSET is the starting position and
PACKED is true if we are inside a packed record. */
template <typename T, void Func (const_tree, HOST_WIDE_INT, bool, T*)>
static void
traverse_record_type (const_tree type, bool named, T *data,
HOST_WIDE_INT offset = 0, bool packed = false)
{
/* The ABI obviously doesn't specify how packed structures are passed.
These are passed in integer regs if possible, otherwise memory. */
if (!packed)
for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
if (TREE_CODE (field) == FIELD_DECL && DECL_PACKED (field))
{
packed = true;
break;
}
/* Walk the real fields, but skip those with no size or a zero size.
??? Fields with variable offset are handled as having zero offset. */
for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
if (TREE_CODE (field) == FIELD_DECL)
{
if (!DECL_SIZE (field) || integer_zerop (DECL_SIZE (field)))
continue;
HOST_WIDE_INT bitpos = offset;
if (TREE_CODE (DECL_FIELD_OFFSET (field)) == INTEGER_CST)
bitpos += int_bit_position (field);
tree field_type = TREE_TYPE (field);
if (TREE_CODE (field_type) == RECORD_TYPE)
traverse_record_type<T, Func> (field_type, named, data, bitpos,
packed);
else
{
const bool fp_type
= FLOAT_TYPE_P (field_type) || VECTOR_TYPE_P (field_type);
Func (field, bitpos, fp_type && named && !packed && TARGET_FPU,
data);
}
}
}
/* Handle recursive register classifying for structure layout. */
typedef struct
{
bool fp_regs; /* true if field eligible to FP registers. */
bool fp_regs_in_first_word; /* true if such field in first word. */
} classify_data_t;
/* A subroutine of function_arg_slotno. Classify the field. */
inline void
classify_registers (const_tree, HOST_WIDE_INT bitpos, bool fp,
classify_data_t *data)
{
if (fp)
{
data->fp_regs = true;
if (bitpos < BITS_PER_WORD)
data->fp_regs_in_first_word = true;
}
}
/* Compute the slot number to pass an argument in.
Return the slot number or -1 if passing on the stack.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis).
INCOMING is zero for FUNCTION_ARG, nonzero for FUNCTION_INCOMING_ARG.
*PREGNO records the register number to use if scalar type.
*PPADDING records the amount of padding needed in words. */
static int
function_arg_slotno (const struct sparc_args *cum, machine_mode mode,
const_tree type, bool named, bool incoming,
int *pregno, int *ppadding)
{
int regbase = (incoming
? SPARC_INCOMING_INT_ARG_FIRST
: SPARC_OUTGOING_INT_ARG_FIRST);
int slotno = cum->words;
enum mode_class mclass;
int regno;
*ppadding = 0;
if (type && TREE_ADDRESSABLE (type))
return -1;
if (TARGET_ARCH32
&& mode == BLKmode
&& type
&& TYPE_ALIGN (type) % PARM_BOUNDARY != 0)
return -1;
/* For SPARC64, objects requiring 16-byte alignment get it. */
if (TARGET_ARCH64
&& (type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode)) >= 128
&& (slotno & 1) != 0)
slotno++, *ppadding = 1;
mclass = GET_MODE_CLASS (mode);
if (type && TREE_CODE (type) == VECTOR_TYPE)
{
/* Vector types deserve special treatment because they are
polymorphic wrt their mode, depending upon whether VIS
instructions are enabled. */
if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
{
/* The SPARC port defines no floating-point vector modes. */
gcc_assert (mode == BLKmode);
}
else
{
/* Integral vector types should either have a vector
mode or an integral mode, because we are guaranteed
by pass_by_reference that their size is not greater
than 16 bytes and TImode is 16-byte wide. */
gcc_assert (mode != BLKmode);
/* Vector integers are handled like floats according to
the Sun VIS SDK. */
mclass = MODE_FLOAT;
}
}
switch (mclass)
{
case MODE_FLOAT:
case MODE_COMPLEX_FLOAT:
case MODE_VECTOR_INT:
if (TARGET_ARCH64 && TARGET_FPU && named)
{
/* If all arg slots are filled, then must pass on stack. */
if (slotno >= SPARC_FP_ARG_MAX)
return -1;
regno = SPARC_FP_ARG_FIRST + slotno * 2;
/* Arguments filling only one single FP register are
right-justified in the outer double FP register. */
if (GET_MODE_SIZE (mode) <= 4)
regno++;
break;
}
/* fallthrough */
case MODE_INT:
case MODE_COMPLEX_INT:
/* If all arg slots are filled, then must pass on stack. */
if (slotno >= SPARC_INT_ARG_MAX)
return -1;
regno = regbase + slotno;
break;
case MODE_RANDOM:
if (mode == VOIDmode)
/* MODE is VOIDmode when generating the actual call. */
return -1;
gcc_assert (mode == BLKmode);
if (TARGET_ARCH32
|| !type
|| (TREE_CODE (type) != RECORD_TYPE
&& TREE_CODE (type) != VECTOR_TYPE))
{
/* If all arg slots are filled, then must pass on stack. */
if (slotno >= SPARC_INT_ARG_MAX)
return -1;
regno = regbase + slotno;
}
else /* TARGET_ARCH64 && type */
{
/* If all arg slots are filled, then must pass on stack. */
if (slotno >= SPARC_FP_ARG_MAX)
return -1;
if (TREE_CODE (type) == RECORD_TYPE)
{
classify_data_t data = { false, false };
traverse_record_type<classify_data_t, classify_registers>
(type, named, &data);
if (data.fp_regs)
{
/* If all FP slots are filled except for the last one and
there is no FP field in the first word, then must pass
on stack. */
if (slotno >= SPARC_FP_ARG_MAX - 1
&& !data.fp_regs_in_first_word)
return -1;
}
else
{
/* If all int slots are filled, then must pass on stack. */
if (slotno >= SPARC_INT_ARG_MAX)
return -1;
}
}
/* PREGNO isn't set since both int and FP regs can be used. */
return slotno;
}
break;
default :
gcc_unreachable ();
}
*pregno = regno;
return slotno;
}
/* Handle recursive register counting/assigning for structure layout. */
typedef struct
{
int slotno; /* slot number of the argument. */
int regbase; /* regno of the base register. */
int intoffset; /* offset of the first pending integer field. */
int nregs; /* number of words passed in registers. */
bool stack; /* true if part of the argument is on the stack. */
rtx ret; /* return expression being built. */
} assign_data_t;
/* A subroutine of function_arg_record_value. Compute the number of integer
registers to be assigned between PARMS->intoffset and BITPOS. Return
true if at least one integer register is assigned or false otherwise. */
static bool
compute_int_layout (HOST_WIDE_INT bitpos, assign_data_t *data, int *pnregs)
{
if (data->intoffset < 0)
return false;
const int intoffset = data->intoffset;
data->intoffset = -1;
const int this_slotno = data->slotno + intoffset / BITS_PER_WORD;
const unsigned int startbit = ROUND_DOWN (intoffset, BITS_PER_WORD);
const unsigned int endbit = ROUND_UP (bitpos, BITS_PER_WORD);
int nregs = (endbit - startbit) / BITS_PER_WORD;
if (nregs > 0 && nregs > SPARC_INT_ARG_MAX - this_slotno)
{
nregs = SPARC_INT_ARG_MAX - this_slotno;
/* We need to pass this field (partly) on the stack. */
data->stack = 1;
}
if (nregs <= 0)
return false;
*pnregs = nregs;
return true;
}
/* A subroutine of function_arg_record_value. Compute the number and the mode
of the FP registers to be assigned for FIELD. Return true if at least one
FP register is assigned or false otherwise. */
static bool
compute_fp_layout (const_tree field, HOST_WIDE_INT bitpos,
assign_data_t *data,
int *pnregs, machine_mode *pmode)
{
const int this_slotno = data->slotno + bitpos / BITS_PER_WORD;
machine_mode mode = DECL_MODE (field);
int nregs, nslots;
/* Slots are counted as words while regs are counted as having the size of
the (inner) mode. */
if (TREE_CODE (TREE_TYPE (field)) == VECTOR_TYPE && mode == BLKmode)
{
mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (field)));
nregs = TYPE_VECTOR_SUBPARTS (TREE_TYPE (field));
}
else if (TREE_CODE (TREE_TYPE (field)) == COMPLEX_TYPE)
{
mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (field)));
nregs = 2;
}
else
nregs = 1;
nslots = CEIL_NWORDS (nregs * GET_MODE_SIZE (mode));
if (nslots > SPARC_FP_ARG_MAX - this_slotno)
{
nslots = SPARC_FP_ARG_MAX - this_slotno;
nregs = (nslots * UNITS_PER_WORD) / GET_MODE_SIZE (mode);
/* We need to pass this field (partly) on the stack. */
data->stack = 1;
if (nregs <= 0)
return false;
}
*pnregs = nregs;
*pmode = mode;
return true;
}
/* A subroutine of function_arg_record_value. Count the number of registers
to be assigned for FIELD and between PARMS->intoffset and BITPOS. */
inline void
count_registers (const_tree field, HOST_WIDE_INT bitpos, bool fp,
assign_data_t *data)
{
if (fp)
{
int nregs;
machine_mode mode;
if (compute_int_layout (bitpos, data, &nregs))
data->nregs += nregs;
if (compute_fp_layout (field, bitpos, data, &nregs, &mode))
data->nregs += nregs;
}
else
{
if (data->intoffset < 0)
data->intoffset = bitpos;
}
}
/* A subroutine of function_arg_record_value. Assign the bits of the
structure between PARMS->intoffset and BITPOS to integer registers. */
static void
assign_int_registers (HOST_WIDE_INT bitpos, assign_data_t *data)
{
int intoffset = data->intoffset;
machine_mode mode;
int nregs;
if (!compute_int_layout (bitpos, data, &nregs))
return;
/* If this is the trailing part of a word, only load that much into
the register. Otherwise load the whole register. Note that in
the latter case we may pick up unwanted bits. It's not a problem
at the moment but may wish to revisit. */
if (intoffset % BITS_PER_WORD != 0)
mode = smallest_int_mode_for_size (BITS_PER_WORD
- intoffset % BITS_PER_WORD);
else
mode = word_mode;
const int this_slotno = data->slotno + intoffset / BITS_PER_WORD;
unsigned int regno = data->regbase + this_slotno;
intoffset /= BITS_PER_UNIT;
do
{
rtx reg = gen_rtx_REG (mode, regno);
XVECEXP (data->ret, 0, data->stack + data->nregs)
= gen_rtx_EXPR_LIST (VOIDmode, reg, GEN_INT (intoffset));
data->nregs += 1;
mode = word_mode;
regno += 1;
intoffset = (intoffset | (UNITS_PER_WORD - 1)) + 1;
}
while (--nregs > 0);
}
/* A subroutine of function_arg_record_value. Assign FIELD at position
BITPOS to FP registers. */
static void
assign_fp_registers (const_tree field, HOST_WIDE_INT bitpos,
assign_data_t *data)
{
int nregs;
machine_mode mode;
if (!compute_fp_layout (field, bitpos, data, &nregs, &mode))
return;
const int this_slotno = data->slotno + bitpos / BITS_PER_WORD;
int regno = SPARC_FP_ARG_FIRST + this_slotno * 2;
if (GET_MODE_SIZE (mode) <= 4 && (bitpos & 32) != 0)
regno++;
int pos = bitpos / BITS_PER_UNIT;
do
{
rtx reg = gen_rtx_REG (mode, regno);
XVECEXP (data->ret, 0, data->stack + data->nregs)
= gen_rtx_EXPR_LIST (VOIDmode, reg, GEN_INT (pos));
data->nregs += 1;
regno += GET_MODE_SIZE (mode) / 4;
pos += GET_MODE_SIZE (mode);
}
while (--nregs > 0);
}
/* A subroutine of function_arg_record_value. Assign FIELD and the bits of
the structure between PARMS->intoffset and BITPOS to registers. */
inline void
assign_registers (const_tree field, HOST_WIDE_INT bitpos, bool fp,
assign_data_t *data)
{
if (fp)
{
assign_int_registers (bitpos, data);
assign_fp_registers (field, bitpos, data);
}
else
{
if (data->intoffset < 0)
data->intoffset = bitpos;
}
}
/* Used by function_arg and sparc_function_value_1 to implement the complex
conventions of the 64-bit ABI for passing and returning structures.
Return an expression valid as a return value for the FUNCTION_ARG
and TARGET_FUNCTION_VALUE.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
MODE is the argument's machine mode.
SLOTNO is the index number of the argument's slot in the parameter array.
NAMED is true if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis).
REGBASE is the regno of the base register for the parameter array. */
static rtx
function_arg_record_value (const_tree type, machine_mode mode,
int slotno, bool named, int regbase)
{
HOST_WIDE_INT typesize = int_size_in_bytes (type);
assign_data_t data;
int nregs;
data.slotno = slotno;
data.regbase = regbase;
/* Count how many registers we need. */
data.nregs = 0;
data.intoffset = 0;
data.stack = false;
traverse_record_type<assign_data_t, count_registers> (type, named, &data);
/* Take into account pending integer fields. */
if (compute_int_layout (typesize * BITS_PER_UNIT, &data, &nregs))
data.nregs += nregs;
/* Allocate the vector and handle some annoying special cases. */
nregs = data.nregs;
if (nregs == 0)
{
/* ??? Empty structure has no value? Duh? */
if (typesize <= 0)
{
/* Though there's nothing really to store, return a word register
anyway so the rest of gcc doesn't go nuts. Returning a PARALLEL
leads to breakage due to the fact that there are zero bytes to
load. */
return gen_rtx_REG (mode, regbase);
}
/* ??? C++ has structures with no fields, and yet a size. Give up
for now and pass everything back in integer registers. */
nregs = (typesize + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
if (nregs + slotno > SPARC_INT_ARG_MAX)
nregs = SPARC_INT_ARG_MAX - slotno;
}
gcc_assert (nregs > 0);
data.ret = gen_rtx_PARALLEL (mode, rtvec_alloc (data.stack + nregs));
/* If at least one field must be passed on the stack, generate
(parallel [(expr_list (nil) ...) ...]) so that all fields will
also be passed on the stack. We can't do much better because the
semantics of TARGET_ARG_PARTIAL_BYTES doesn't handle the case
of structures for which the fields passed exclusively in registers
are not at the beginning of the structure. */
if (data.stack)
XVECEXP (data.ret, 0, 0)
= gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
/* Assign the registers. */
data.nregs = 0;
data.intoffset = 0;
traverse_record_type<assign_data_t, assign_registers> (type, named, &data);
/* Assign pending integer fields. */
assign_int_registers (typesize * BITS_PER_UNIT, &data);
gcc_assert (data.nregs == nregs);
return data.ret;
}
/* Used by function_arg and sparc_function_value_1 to implement the conventions
of the 64-bit ABI for passing and returning unions.
Return an expression valid as a return value for the FUNCTION_ARG
and TARGET_FUNCTION_VALUE.
SIZE is the size in bytes of the union.
MODE is the argument's machine mode.
REGNO is the hard register the union will be passed in. */
static rtx
function_arg_union_value (int size, machine_mode mode, int slotno,
int regno)
{
int nwords = CEIL_NWORDS (size), i;
rtx regs;
/* See comment in previous function for empty structures. */
if (nwords == 0)
return gen_rtx_REG (mode, regno);
if (slotno == SPARC_INT_ARG_MAX - 1)
nwords = 1;
regs = gen_rtx_PARALLEL (mode, rtvec_alloc (nwords));
for (i = 0; i < nwords; i++)
{
/* Unions are passed left-justified. */
XVECEXP (regs, 0, i)
= gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (word_mode, regno),
GEN_INT (UNITS_PER_WORD * i));
regno++;
}
return regs;
}
/* Used by function_arg and sparc_function_value_1 to implement the conventions
for passing and returning BLKmode vectors.
Return an expression valid as a return value for the FUNCTION_ARG
and TARGET_FUNCTION_VALUE.
SIZE is the size in bytes of the vector.
REGNO is the FP hard register the vector will be passed in. */
static rtx
function_arg_vector_value (int size, int regno)
{
const int nregs = MAX (1, size / 8);
rtx regs = gen_rtx_PARALLEL (BLKmode, rtvec_alloc (nregs));
if (size < 8)
XVECEXP (regs, 0, 0)
= gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (SImode, regno),
const0_rtx);
else
for (int i = 0; i < nregs; i++)
XVECEXP (regs, 0, i)
= gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (DImode, regno + 2*i),
GEN_INT (i*8));
return regs;
}
/* Determine where to put an argument to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
NAMED is true if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis).
INCOMING_P is false for TARGET_FUNCTION_ARG, true for
TARGET_FUNCTION_INCOMING_ARG. */
static rtx
sparc_function_arg_1 (cumulative_args_t cum_v, machine_mode mode,
const_tree type, bool named, bool incoming)
{
const CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
int regbase = (incoming
? SPARC_INCOMING_INT_ARG_FIRST
: SPARC_OUTGOING_INT_ARG_FIRST);
int slotno, regno, padding;
enum mode_class mclass = GET_MODE_CLASS (mode);
slotno = function_arg_slotno (cum, mode, type, named, incoming,
®no, &padding);
if (slotno == -1)
return 0;
/* Vector types deserve special treatment because they are polymorphic wrt
their mode, depending upon whether VIS instructions are enabled. */
if (type && TREE_CODE (type) == VECTOR_TYPE)
{
HOST_WIDE_INT size = int_size_in_bytes (type);
gcc_assert ((TARGET_ARCH32 && size <= 8)
|| (TARGET_ARCH64 && size <= 16));
if (mode == BLKmode)
return function_arg_vector_value (size, SPARC_FP_ARG_FIRST + 2*slotno);
mclass = MODE_FLOAT;
}
if (TARGET_ARCH32)
return gen_rtx_REG (mode, regno);
/* Structures up to 16 bytes in size are passed in arg slots on the stack
and are promoted to registers if possible. */
if (type && TREE_CODE (type) == RECORD_TYPE)
{
HOST_WIDE_INT size = int_size_in_bytes (type);
gcc_assert (size <= 16);
return function_arg_record_value (type, mode, slotno, named, regbase);
}
/* Unions up to 16 bytes in size are passed in integer registers. */
else if (type && TREE_CODE (type) == UNION_TYPE)
{
HOST_WIDE_INT size = int_size_in_bytes (type);
gcc_assert (size <= 16);
return function_arg_union_value (size, mode, slotno, regno);
}
/* v9 fp args in reg slots beyond the int reg slots get passed in regs
but also have the slot allocated for them.
If no prototype is in scope fp values in register slots get passed
in two places, either fp regs and int regs or fp regs and memory. */
else if ((mclass == MODE_FLOAT || mclass == MODE_COMPLEX_FLOAT)
&& SPARC_FP_REG_P (regno))
{
rtx reg = gen_rtx_REG (mode, regno);
if (cum->prototype_p || cum->libcall_p)
return reg;
else
{
rtx v0, v1;
if ((regno - SPARC_FP_ARG_FIRST) < SPARC_INT_ARG_MAX * 2)
{
int intreg;
/* On incoming, we don't need to know that the value
is passed in %f0 and %i0, and it confuses other parts
causing needless spillage even on the simplest cases. */
if (incoming)
return reg;
intreg = (SPARC_OUTGOING_INT_ARG_FIRST
+ (regno - SPARC_FP_ARG_FIRST) / 2);
v0 = gen_rtx_EXPR_LIST (VOIDmode, reg, const0_rtx);
v1 = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (mode, intreg),
const0_rtx);
return gen_rtx_PARALLEL (mode, gen_rtvec (2, v0, v1));
}
else
{
v0 = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
v1 = gen_rtx_EXPR_LIST (VOIDmode, reg, const0_rtx);
return gen_rtx_PARALLEL (mode, gen_rtvec (2, v0, v1));
}
}
}
/* All other aggregate types are passed in an integer register in a mode
corresponding to the size of the type. */
else if (type && AGGREGATE_TYPE_P (type))
{
HOST_WIDE_INT size = int_size_in_bytes (type);
gcc_assert (size <= 16);
mode = int_mode_for_size (size * BITS_PER_UNIT, 0).else_blk ();
}
return gen_rtx_REG (mode, regno);
}
/* Handle the TARGET_FUNCTION_ARG target hook. */
static rtx
sparc_function_arg (cumulative_args_t cum, machine_mode mode,
const_tree type, bool named)
{
return sparc_function_arg_1 (cum, mode, type, named, false);
}
/* Handle the TARGET_FUNCTION_INCOMING_ARG target hook. */
static rtx
sparc_function_incoming_arg (cumulative_args_t cum, machine_mode mode,
const_tree type, bool named)
{
return sparc_function_arg_1 (cum, mode, type, named, true);
}
/* For sparc64, objects requiring 16 byte alignment are passed that way. */
static unsigned int
sparc_function_arg_boundary (machine_mode mode, const_tree type)
{
return ((TARGET_ARCH64
&& (GET_MODE_ALIGNMENT (mode) == 128
|| (type && TYPE_ALIGN (type) == 128)))
? 128
: PARM_BOUNDARY);
}
/* For an arg passed partly in registers and partly in memory,
this is the number of bytes of registers used.
For args passed entirely in registers or entirely in memory, zero.
Any arg that starts in the first 6 regs but won't entirely fit in them
needs partial registers on v8. On v9, structures with integer
values in arg slots 5,6 will be passed in %o5 and SP+176, and complex fp
values that begin in the last fp reg [where "last fp reg" varies with the
mode] will be split between that reg and memory. */
static int
sparc_arg_partial_bytes (cumulative_args_t cum, machine_mode mode,
tree type, bool named)
{
int slotno, regno, padding;
/* We pass false for incoming here, it doesn't matter. */
slotno = function_arg_slotno (get_cumulative_args (cum), mode, type, named,
false, ®no, &padding);
if (slotno == -1)
return 0;
if (TARGET_ARCH32)
{
if ((slotno + (mode == BLKmode
? CEIL_NWORDS (int_size_in_bytes (type))
: CEIL_NWORDS (GET_MODE_SIZE (mode))))
> SPARC_INT_ARG_MAX)
return (SPARC_INT_ARG_MAX - slotno) * UNITS_PER_WORD;
}
else
{
/* We are guaranteed by pass_by_reference that the size of the
argument is not greater than 16 bytes, so we only need to return
one word if the argument is partially passed in registers. */
if (type && AGGREGATE_TYPE_P (type))
{
int size = int_size_in_bytes (type);
if (size > UNITS_PER_WORD
&& (slotno == SPARC_INT_ARG_MAX - 1
|| slotno == SPARC_FP_ARG_MAX - 1))
return UNITS_PER_WORD;
}
else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT
|| (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
&& ! (TARGET_FPU && named)))
{
/* The complex types are passed as packed types. */
if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
&& slotno == SPARC_INT_ARG_MAX - 1)
return UNITS_PER_WORD;
}
else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
{
if ((slotno + GET_MODE_SIZE (mode) / UNITS_PER_WORD)
> SPARC_FP_ARG_MAX)
return UNITS_PER_WORD;
}
}
return 0;
}
/* Handle the TARGET_PASS_BY_REFERENCE target hook.
Specify whether to pass the argument by reference. */
static bool
sparc_pass_by_reference (cumulative_args_t cum ATTRIBUTE_UNUSED,
machine_mode mode, const_tree type,
bool named ATTRIBUTE_UNUSED)
{
if (TARGET_ARCH32)
/* Original SPARC 32-bit ABI says that structures and unions,
and quad-precision floats are passed by reference. For Pascal,
also pass arrays by reference. All other base types are passed
in registers.
Extended ABI (as implemented by the Sun compiler) says that all
complex floats are passed by reference. Pass complex integers
in registers up to 8 bytes. More generally, enforce the 2-word
cap for passing arguments in registers.
Vector ABI (as implemented by the Sun VIS SDK) says that vector
integers are passed like floats of the same size, that is in
registers up to 8 bytes. Pass all vector floats by reference
like structure and unions. */
return ((type && (AGGREGATE_TYPE_P (type) || VECTOR_FLOAT_TYPE_P (type)))
|| mode == SCmode
/* Catch CDImode, TFmode, DCmode and TCmode. */
|| GET_MODE_SIZE (mode) > 8
|| (type
&& TREE_CODE (type) == VECTOR_TYPE
&& (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 8));
else
/* Original SPARC 64-bit ABI says that structures and unions
smaller than 16 bytes are passed in registers, as well as
all other base types.
Extended ABI (as implemented by the Sun compiler) says that
complex floats are passed in registers up to 16 bytes. Pass
all complex integers in registers up to 16 bytes. More generally,
enforce the 2-word cap for passing arguments in registers.
Vector ABI (as implemented by the Sun VIS SDK) says that vector
integers are passed like floats of the same size, that is in
registers (up to 16 bytes). Pass all vector floats like structure
and unions. */
return ((type
&& (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == VECTOR_TYPE)
&& (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 16)
/* Catch CTImode and TCmode. */
|| GET_MODE_SIZE (mode) > 16);
}
/* Handle the TARGET_FUNCTION_ARG_ADVANCE hook.
Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
TYPE is null for libcalls where that information may not be available. */
static void
sparc_function_arg_advance (cumulative_args_t cum_v, machine_mode mode,
const_tree type, bool named)
{
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
int regno, padding;
/* We pass false for incoming here, it doesn't matter. */
function_arg_slotno (cum, mode, type, named, false, ®no, &padding);
/* If argument requires leading padding, add it. */
cum->words += padding;
if (TARGET_ARCH32)
cum->words += (mode == BLKmode
? CEIL_NWORDS (int_size_in_bytes (type))
: CEIL_NWORDS (GET_MODE_SIZE (mode)));
else
{
if (type && AGGREGATE_TYPE_P (type))
{
int size = int_size_in_bytes (type);
if (size <= 8)
++cum->words;
else if (size <= 16)
cum->words += 2;
else /* passed by reference */
++cum->words;
}
else
cum->words += (mode == BLKmode
? CEIL_NWORDS (int_size_in_bytes (type))
: CEIL_NWORDS (GET_MODE_SIZE (mode)));
}
}
/* Implement TARGET_FUNCTION_ARG_PADDING. For the 64-bit ABI structs
are always stored left shifted in their argument slot. */
static pad_direction
sparc_function_arg_padding (machine_mode mode, const_tree type)
{
if (TARGET_ARCH64 && type && AGGREGATE_TYPE_P (type))
return PAD_UPWARD;
/* Fall back to the default. */
return default_function_arg_padding (mode, type);
}
/* Handle the TARGET_RETURN_IN_MEMORY target hook.
Specify whether to return the return value in memory. */
static bool
sparc_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
{
if (TARGET_ARCH32)
/* Original SPARC 32-bit ABI says that structures and unions,
and quad-precision floats are returned in memory. All other
base types are returned in registers.
Extended ABI (as implemented by the Sun compiler) says that
all complex floats are returned in registers (8 FP registers
at most for '_Complex long double'). Return all complex integers
in registers (4 at most for '_Complex long long').
Vector ABI (as implemented by the Sun VIS SDK) says that vector
integers are returned like floats of the same size, that is in
registers up to 8 bytes and in memory otherwise. Return all
vector floats in memory like structure and unions; note that
they always have BLKmode like the latter. */
return (TYPE_MODE (type) == BLKmode
|| TYPE_MODE (type) == TFmode
|| (TREE_CODE (type) == VECTOR_TYPE
&& (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 8));
else
/* Original SPARC 64-bit ABI says that structures and unions
smaller than 32 bytes are returned in registers, as well as
all other base types.
Extended ABI (as implemented by the Sun compiler) says that all
complex floats are returned in registers (8 FP registers at most
for '_Complex long double'). Return all complex integers in
registers (4 at most for '_Complex TItype').
Vector ABI (as implemented by the Sun VIS SDK) says that vector
integers are returned like floats of the same size, that is in
registers. Return all vector floats like structure and unions;
note that they always have BLKmode like the latter. */
return (TYPE_MODE (type) == BLKmode
&& (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 32);
}
/* Handle the TARGET_STRUCT_VALUE target hook.
Return where to find the structure return value address. */
static rtx
sparc_struct_value_rtx (tree fndecl, int incoming)
{
if (TARGET_ARCH64)
return 0;
else
{
rtx mem;
if (incoming)
mem = gen_frame_mem (Pmode, plus_constant (Pmode, frame_pointer_rtx,
STRUCT_VALUE_OFFSET));
else
mem = gen_frame_mem (Pmode, plus_constant (Pmode, stack_pointer_rtx,
STRUCT_VALUE_OFFSET));
/* Only follow the SPARC ABI for fixed-size structure returns.
Variable size structure returns are handled per the normal
procedures in GCC. This is enabled by -mstd-struct-return */
if (incoming == 2
&& sparc_std_struct_return
&& TYPE_SIZE_UNIT (TREE_TYPE (fndecl))
&& TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (fndecl))) == INTEGER_CST)
{
/* We must check and adjust the return address, as it is optional
as to whether the return object is really provided. */
rtx ret_reg = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM);
rtx scratch = gen_reg_rtx (SImode);
rtx_code_label *endlab = gen_label_rtx ();
/* Calculate the return object size. */
tree size = TYPE_SIZE_UNIT (TREE_TYPE (fndecl));
rtx size_rtx = GEN_INT (TREE_INT_CST_LOW (size) & 0xfff);
/* Construct a temporary return value. */
rtx temp_val
= assign_stack_local (Pmode, TREE_INT_CST_LOW (size), 0);
/* Implement SPARC 32-bit psABI callee return struct checking:
Fetch the instruction where we will return to and see if
it's an unimp instruction (the most significant 10 bits
will be zero). */
emit_move_insn (scratch, gen_rtx_MEM (SImode,
plus_constant (Pmode,
ret_reg, 8)));
/* Assume the size is valid and pre-adjust. */
emit_insn (gen_add3_insn (ret_reg, ret_reg, GEN_INT (4)));
emit_cmp_and_jump_insns (scratch, size_rtx, EQ, const0_rtx, SImode,
0, endlab);
emit_insn (gen_sub3_insn (ret_reg, ret_reg, GEN_INT (4)));
/* Write the address of the memory pointed to by temp_val into
the memory pointed to by mem. */
emit_move_insn (mem, XEXP (temp_val, 0));
emit_label (endlab);
}
return mem;
}
}
/* Handle TARGET_FUNCTION_VALUE, and TARGET_LIBCALL_VALUE target hook.
For v9, function return values are subject to the same rules as arguments,
except that up to 32 bytes may be returned in registers. */
static rtx
sparc_function_value_1 (const_tree type, machine_mode mode,
bool outgoing)
{
/* Beware that the two values are swapped here wrt function_arg. */
int regbase = (outgoing
? SPARC_INCOMING_INT_ARG_FIRST
: SPARC_OUTGOING_INT_ARG_FIRST);
enum mode_class mclass = GET_MODE_CLASS (mode);
int regno;
/* Vector types deserve special treatment because they are polymorphic wrt
their mode, depending upon whether VIS instructions are enabled. */
if (type && TREE_CODE (type) == VECTOR_TYPE)
{
HOST_WIDE_INT size = int_size_in_bytes (type);
gcc_assert ((TARGET_ARCH32 && size <= 8)
|| (TARGET_ARCH64 && size <= 32));
if (mode == BLKmode)
return function_arg_vector_value (size, SPARC_FP_ARG_FIRST);
mclass = MODE_FLOAT;
}
if (TARGET_ARCH64 && type)
{
/* Structures up to 32 bytes in size are returned in registers. */
if (TREE_CODE (type) == RECORD_TYPE)
{
HOST_WIDE_INT size = int_size_in_bytes (type);
gcc_assert (size <= 32);
return function_arg_record_value (type, mode, 0, 1, regbase);
}
/* Unions up to 32 bytes in size are returned in integer registers. */
else if (TREE_CODE (type) == UNION_TYPE)
{
HOST_WIDE_INT size = int_size_in_bytes (type);
gcc_assert (size <= 32);
return function_arg_union_value (size, mode, 0, regbase);
}
/* Objects that require it are returned in FP registers. */
else if (mclass == MODE_FLOAT || mclass == MODE_COMPLEX_FLOAT)
;
/* All other aggregate types are returned in an integer register in a
mode corresponding to the size of the type. */
else if (AGGREGATE_TYPE_P (type))
{
/* All other aggregate types are passed in an integer register
in a mode corresponding to the size of the type. */
HOST_WIDE_INT size = int_size_in_bytes (type);
gcc_assert (size <= 32);
mode = int_mode_for_size (size * BITS_PER_UNIT, 0).else_blk ();
/* ??? We probably should have made the same ABI change in
3.4.0 as the one we made for unions. The latter was
required by the SCD though, while the former is not
specified, so we favored compatibility and efficiency.
Now we're stuck for aggregates larger than 16 bytes,
because OImode vanished in the meantime. Let's not
try to be unduly clever, and simply follow the ABI
for unions in that case. */
if (mode == BLKmode)
return function_arg_union_value (size, mode, 0, regbase);
else
mclass = MODE_INT;
}
/* We should only have pointer and integer types at this point. This
must match sparc_promote_function_mode. */
else if (mclass == MODE_INT && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
mode = word_mode;
}
/* We should only have pointer and integer types at this point, except with
-freg-struct-return. This must match sparc_promote_function_mode. */
else if (TARGET_ARCH32
&& !(type && AGGREGATE_TYPE_P (type))
&& mclass == MODE_INT
&& GET_MODE_SIZE (mode) < UNITS_PER_WORD)
mode = word_mode;
if ((mclass == MODE_FLOAT || mclass == MODE_COMPLEX_FLOAT) && TARGET_FPU)
regno = SPARC_FP_ARG_FIRST;
else
regno = regbase;
return gen_rtx_REG (mode, regno);
}
/* Handle TARGET_FUNCTION_VALUE.
On the SPARC, the value is found in the first "output" register, but the
called function leaves it in the first "input" register. */
static rtx
sparc_function_value (const_tree valtype,
const_tree fn_decl_or_type ATTRIBUTE_UNUSED,
bool outgoing)
{
return sparc_function_value_1 (valtype, TYPE_MODE (valtype), outgoing);
}
/* Handle TARGET_LIBCALL_VALUE. */
static rtx
sparc_libcall_value (machine_mode mode,
const_rtx fun ATTRIBUTE_UNUSED)
{
return sparc_function_value_1 (NULL_TREE, mode, false);
}
/* Handle FUNCTION_VALUE_REGNO_P.
On the SPARC, the first "output" reg is used for integer values, and the
first floating point register is used for floating point values. */
static bool
sparc_function_value_regno_p (const unsigned int regno)
{
return (regno == 8 || (TARGET_FPU && regno == 32));
}
/* Do what is necessary for `va_start'. We look at the current function
to determine if stdarg or varargs is used and return the address of
the first unnamed parameter. */
static rtx
sparc_builtin_saveregs (void)
{
int first_reg = crtl->args.info.words;
rtx address;
int regno;
for (regno = first_reg; regno < SPARC_INT_ARG_MAX; regno++)
emit_move_insn (gen_rtx_MEM (word_mode,
gen_rtx_PLUS (Pmode,
frame_pointer_rtx,
GEN_INT (FIRST_PARM_OFFSET (0)
+ (UNITS_PER_WORD
* regno)))),
gen_rtx_REG (word_mode,
SPARC_INCOMING_INT_ARG_FIRST + regno));
address = gen_rtx_PLUS (Pmode,
frame_pointer_rtx,
GEN_INT (FIRST_PARM_OFFSET (0)
+ UNITS_PER_WORD * first_reg));
return address;
}
/* Implement `va_start' for stdarg. */
static void
sparc_va_start (tree valist, rtx nextarg)
{
nextarg = expand_builtin_saveregs ();
std_expand_builtin_va_start (valist, nextarg);
}
/* Implement `va_arg' for stdarg. */
static tree
sparc_gimplify_va_arg (tree valist, tree type, gimple_seq *pre_p,
gimple_seq *post_p)
{
HOST_WIDE_INT size, rsize, align;
tree addr, incr;
bool indirect;
tree ptrtype = build_pointer_type (type);
if (pass_by_reference (NULL, TYPE_MODE (type), type, false))
{
indirect = true;
size = rsize = UNITS_PER_WORD;
align = 0;
}
else
{
indirect = false;
size = int_size_in_bytes (type);
rsize = ROUND_UP (size, UNITS_PER_WORD);
align = 0;
if (TARGET_ARCH64)
{
/* For SPARC64, objects requiring 16-byte alignment get it. */
if (TYPE_ALIGN (type) >= 2 * (unsigned) BITS_PER_WORD)
align = 2 * UNITS_PER_WORD;
/* SPARC-V9 ABI states that structures up to 16 bytes in size
are left-justified in their slots. */
if (AGGREGATE_TYPE_P (type))
{
if (size == 0)
size = rsize = UNITS_PER_WORD;
else
size = rsize;
}
}
}
incr = valist;
if (align)
{
incr = fold_build_pointer_plus_hwi (incr, align - 1);
incr = fold_convert (sizetype, incr);
incr = fold_build2 (BIT_AND_EXPR, sizetype, incr,
size_int (-align));
incr = fold_convert (ptr_type_node, incr);
}
gimplify_expr (&incr, pre_p, post_p, is_gimple_val, fb_rvalue);
addr = incr;
if (BYTES_BIG_ENDIAN && size < rsize)
addr = fold_build_pointer_plus_hwi (incr, rsize - size);
if (indirect)
{
addr = fold_convert (build_pointer_type (ptrtype), addr);
addr = build_va_arg_indirect_ref (addr);
}
/* If the address isn't aligned properly for the type, we need a temporary.
FIXME: This is inefficient, usually we can do this in registers. */
else if (align == 0 && TYPE_ALIGN (type) > BITS_PER_WORD)
{
tree tmp = create_tmp_var (type, "va_arg_tmp");
tree dest_addr = build_fold_addr_expr (tmp);
tree copy = build_call_expr (builtin_decl_implicit (BUILT_IN_MEMCPY),
3, dest_addr, addr, size_int (rsize));
TREE_ADDRESSABLE (tmp) = 1;
gimplify_and_add (copy, pre_p);
addr = dest_addr;
}
else
addr = fold_convert (ptrtype, addr);
incr = fold_build_pointer_plus_hwi (incr, rsize);
gimplify_assign (valist, incr, post_p);
return build_va_arg_indirect_ref (addr);
}
/* Implement the TARGET_VECTOR_MODE_SUPPORTED_P target hook.
Specify whether the vector mode is supported by the hardware. */
static bool
sparc_vector_mode_supported_p (machine_mode mode)
{
return TARGET_VIS && VECTOR_MODE_P (mode) ? true : false;
}
/* Implement the TARGET_VECTORIZE_PREFERRED_SIMD_MODE target hook. */
static machine_mode
sparc_preferred_simd_mode (scalar_mode mode)
{
if (TARGET_VIS)
switch (mode)
{
case E_SImode:
return V2SImode;
case E_HImode:
return V4HImode;
case E_QImode:
return V8QImode;
default:;
}
return word_mode;
}
/* Return the string to output an unconditional branch to LABEL, which is
the operand number of the label.
DEST is the destination insn (i.e. the label), INSN is the source. */
const char *
output_ubranch (rtx dest, rtx_insn *insn)
{
static char string[64];
bool v9_form = false;
int delta;
char *p;
/* Even if we are trying to use cbcond for this, evaluate
whether we can use V9 branches as our backup plan. */
delta = 5000000;
if (INSN_ADDRESSES_SET_P ())
delta = (INSN_ADDRESSES (INSN_UID (dest))
- INSN_ADDRESSES (INSN_UID (insn)));
/* Leave some instructions for "slop". */
if (TARGET_V9 && delta >= -260000 && delta < 260000)
v9_form = true;
if (TARGET_CBCOND)
{
bool emit_nop = emit_cbcond_nop (insn);
bool far = false;
const char *rval;
if (delta < -500 || delta > 500)
far = true;
if (far)
{
if (v9_form)
rval = "ba,a,pt\t%%xcc, %l0";
else
rval = "b,a\t%l0";
}
else
{
if (emit_nop)
rval = "cwbe\t%%g0, %%g0, %l0\n\tnop";
else
rval = "cwbe\t%%g0, %%g0, %l0";
}
return rval;
}
if (v9_form)
strcpy (string, "ba%*,pt\t%%xcc, ");
else
strcpy (string, "b%*\t");
p = strchr (string, '\0');
*p++ = '%';
*p++ = 'l';
*p++ = '0';
*p++ = '%';
*p++ = '(';
*p = '\0';
return string;
}
/* Return the string to output a conditional branch to LABEL, which is
the operand number of the label. OP is the conditional expression.
XEXP (OP, 0) is assumed to be a condition code register (integer or
floating point) and its mode specifies what kind of comparison we made.
DEST is the destination insn (i.e. the label), INSN is the source.
REVERSED is nonzero if we should reverse the sense of the comparison.
ANNUL is nonzero if we should generate an annulling branch. */
const char *
output_cbranch (rtx op, rtx dest, int label, int reversed, int annul,
rtx_insn *insn)
{
static char string[64];
enum rtx_code code = GET_CODE (op);
rtx cc_reg = XEXP (op, 0);
machine_mode mode = GET_MODE (cc_reg);
const char *labelno, *branch;
int spaces = 8, far;
char *p;
/* v9 branches are limited to +-1MB. If it is too far away,
change
bne,pt %xcc, .LC30
to
be,pn %xcc, .+12
nop
ba .LC30
and
fbne,a,pn %fcc2, .LC29
to
fbe,pt %fcc2, .+16
nop
ba .LC29 */
far = TARGET_V9 && (get_attr_length (insn) >= 3);
if (reversed ^ far)
{
/* Reversal of FP compares takes care -- an ordered compare
becomes an unordered compare and vice versa. */
if (mode == CCFPmode || mode == CCFPEmode)
code = reverse_condition_maybe_unordered (code);
else
code = reverse_condition (code);
}
/* Start by writing the branch condition. */
if (mode == CCFPmode || mode == CCFPEmode)
{
switch (code)
{
case NE:
branch = "fbne";
break;
case EQ:
branch = "fbe";
break;
case GE:
branch = "fbge";
break;
case GT:
branch = "fbg";
break;
case LE:
branch = "fble";
break;
case LT:
branch = "fbl";
break;
case UNORDERED:
branch = "fbu";
break;
case ORDERED:
branch = "fbo";
break;
case UNGT:
branch = "fbug";
break;
case UNLT:
branch = "fbul";
break;
case UNEQ:
branch = "fbue";
break;
case UNGE:
branch = "fbuge";
break;
case UNLE:
branch = "fbule";
break;
case LTGT:
branch = "fblg";
break;
default:
gcc_unreachable ();
}
/* ??? !v9: FP branches cannot be preceded by another floating point
insn. Because there is currently no concept of pre-delay slots,
we can fix this only by always emitting a nop before a floating
point branch. */
string[0] = '\0';
if (! TARGET_V9)
strcpy (string, "nop\n\t");
strcat (string, branch);
}
else
{
switch (code)
{
case NE:
if (mode == CCVmode || mode == CCXVmode)
branch = "bvs";
else
branch = "bne";
break;
case EQ:
if (mode == CCVmode || mode == CCXVmode)
branch = "bvc";
else
branch = "be";
break;
case GE:
if (mode == CCNZmode || mode == CCXNZmode)
branch = "bpos";
else
branch = "bge";
break;
case GT:
branch = "bg";
break;
case LE:
branch = "ble";
break;
case LT:
if (mode == CCNZmode || mode == CCXNZmode)
branch = "bneg";
else
branch = "bl";
break;
case GEU:
branch = "bgeu";
break;
case GTU:
branch = "bgu";
break;
case LEU:
branch = "bleu";
break;
case LTU:
branch = "blu";
break;
default:
gcc_unreachable ();
}
strcpy (string, branch);
}
spaces -= strlen (branch);
p = strchr (string, '\0');
/* Now add the annulling, the label, and a possible noop. */
if (annul && ! far)
{
strcpy (p, ",a");
p += 2;
spaces -= 2;
}
if (TARGET_V9)
{
rtx note;
int v8 = 0;
if (! far && insn && INSN_ADDRESSES_SET_P ())
{
int delta = (INSN_ADDRESSES (INSN_UID (dest))
- INSN_ADDRESSES (INSN_UID (insn)));
/* Leave some instructions for "slop". */
if (delta < -260000 || delta >= 260000)
v8 = 1;
}
switch (mode)
{
case E_CCmode:
case E_CCNZmode:
case E_CCCmode:
case E_CCVmode:
labelno = "%%icc, ";
if (v8)
labelno = "";
break;
case E_CCXmode:
case E_CCXNZmode:
case E_CCXCmode:
case E_CCXVmode:
labelno = "%%xcc, ";
gcc_assert (!v8);
break;
case E_CCFPmode:
case E_CCFPEmode:
{
static char v9_fcc_labelno[] = "%%fccX, ";
/* Set the char indicating the number of the fcc reg to use. */
v9_fcc_labelno[5] = REGNO (cc_reg) - SPARC_FIRST_V9_FCC_REG + '0';
labelno = v9_fcc_labelno;
if (v8)
{
gcc_assert (REGNO (cc_reg) == SPARC_FCC_REG);
labelno = "";
}
}
break;
default:
gcc_unreachable ();
}
if (*labelno && insn && (note = find_reg_note (insn, REG_BR_PROB, NULL_RTX)))
{
strcpy (p,
((profile_probability::from_reg_br_prob_note (XINT (note, 0))
>= profile_probability::even ()) ^ far)
? ",pt" : ",pn");
p += 3;
spaces -= 3;
}
}
else
labelno = "";
if (spaces > 0)
*p++ = '\t';
else
*p++ = ' ';
strcpy (p, labelno);
p = strchr (p, '\0');
if (far)
{
strcpy (p, ".+12\n\t nop\n\tb\t");
/* Skip the next insn if requested or
if we know that it will be a nop. */
if (annul || ! final_sequence)
p[3] = '6';
p += 14;
}
*p++ = '%';
*p++ = 'l';
*p++ = label + '0';
*p++ = '%';
*p++ = '#';
*p = '\0';
return string;
}
/* Emit a library call comparison between floating point X and Y.
COMPARISON is the operator to compare with (EQ, NE, GT, etc).
Return the new operator to be used in the comparison sequence.
TARGET_ARCH64 uses _Qp_* functions, which use pointers to TFmode
values as arguments instead of the TFmode registers themselves,
that's why we cannot call emit_float_lib_cmp. */
rtx
sparc_emit_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison)
{
const char *qpfunc;
rtx slot0, slot1, result, tem, tem2, libfunc;
machine_mode mode;
enum rtx_code new_comparison;
switch (comparison)
{
case EQ:
qpfunc = (TARGET_ARCH64 ? "_Qp_feq" : "_Q_feq");
break;
case NE:
qpfunc = (TARGET_ARCH64 ? "_Qp_fne" : "_Q_fne");
break;
case GT:
qpfunc = (TARGET_ARCH64 ? "_Qp_fgt" : "_Q_fgt");
break;
case GE:
qpfunc = (TARGET_ARCH64 ? "_Qp_fge" : "_Q_fge");
break;
case LT:
qpfunc = (TARGET_ARCH64 ? "_Qp_flt" : "_Q_flt");
break;
case LE:
qpfunc = (TARGET_ARCH64 ? "_Qp_fle" : "_Q_fle");
break;
case ORDERED:
case UNORDERED:
case UNGT:
case UNLT:
case UNEQ:
case UNGE:
case UNLE:
case LTGT:
qpfunc = (TARGET_ARCH64 ? "_Qp_cmp" : "_Q_cmp");
break;
default:
gcc_unreachable ();
}
if (TARGET_ARCH64)
{
if (MEM_P (x))
{
tree expr = MEM_EXPR (x);
if (expr)
mark_addressable (expr);
slot0 = x;
}
else
{
slot0 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode));
emit_move_insn (slot0, x);
}
if (MEM_P (y))
{
tree expr = MEM_EXPR (y);
if (expr)
mark_addressable (expr);
slot1 = y;
}
else
{
slot1 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode));
emit_move_insn (slot1, y);
}
libfunc = gen_rtx_SYMBOL_REF (Pmode, qpfunc);
emit_library_call (libfunc, LCT_NORMAL,
DImode,
XEXP (slot0, 0), Pmode,
XEXP (slot1, 0), Pmode);
mode = DImode;
}
else
{
libfunc = gen_rtx_SYMBOL_REF (Pmode, qpfunc);
emit_library_call (libfunc, LCT_NORMAL,
SImode,
x, TFmode, y, TFmode);
mode = SImode;
}
/* Immediately move the result of the libcall into a pseudo
register so reload doesn't clobber the value if it needs
the return register for a spill reg. */
result = gen_reg_rtx (mode);
emit_move_insn (result, hard_libcall_value (mode, libfunc));
switch (comparison)
{
default:
return gen_rtx_NE (VOIDmode, result, const0_rtx);
case ORDERED:
case UNORDERED:
new_comparison = (comparison == UNORDERED ? EQ : NE);
return gen_rtx_fmt_ee (new_comparison, VOIDmode, result, GEN_INT(3));
case UNGT:
case UNGE:
new_comparison = (comparison == UNGT ? GT : NE);
return gen_rtx_fmt_ee (new_comparison, VOIDmode, result, const1_rtx);
case UNLE:
return gen_rtx_NE (VOIDmode, result, const2_rtx);
case UNLT:
tem = gen_reg_rtx (mode);
if (TARGET_ARCH32)
emit_insn (gen_andsi3 (tem, result, const1_rtx));
else
emit_insn (gen_anddi3 (tem, result, const1_rtx));
return gen_rtx_NE (VOIDmode, tem, const0_rtx);
case UNEQ:
case LTGT:
tem = gen_reg_rtx (mode);
if (TARGET_ARCH32)
emit_insn (gen_addsi3 (tem, result, const1_rtx));
else
emit_insn (gen_adddi3 (tem, result, const1_rtx));
tem2 = gen_reg_rtx (mode);
if (TARGET_ARCH32)
emit_insn (gen_andsi3 (tem2, tem, const2_rtx));
else
emit_insn (gen_anddi3 (tem2, tem, const2_rtx));
new_comparison = (comparison == UNEQ ? EQ : NE);
return gen_rtx_fmt_ee (new_comparison, VOIDmode, tem2, const0_rtx);
}
gcc_unreachable ();
}
/* Generate an unsigned DImode to FP conversion. This is the same code
optabs would emit if we didn't have TFmode patterns. */
void
sparc_emit_floatunsdi (rtx *operands, machine_mode mode)
{
rtx i0, i1, f0, in, out;
out = operands[0];
in = force_reg (DImode, operands[1]);
rtx_code_label *neglab = gen_label_rtx ();
rtx_code_label *donelab = gen_label_rtx ();
i0 = gen_reg_rtx (DImode);
i1 = gen_reg_rtx (DImode);
f0 = gen_reg_rtx (mode);
emit_cmp_and_jump_insns (in, const0_rtx, LT, const0_rtx, DImode, 0, neglab);
emit_insn (gen_rtx_SET (out, gen_rtx_FLOAT (mode, in)));
emit_jump_insn (gen_jump (donelab));
emit_barrier ();
emit_label (neglab);
emit_insn (gen_lshrdi3 (i0, in, const1_rtx));
emit_insn (gen_anddi3 (i1, in, const1_rtx));
emit_insn (gen_iordi3 (i0, i0, i1));
emit_insn (gen_rtx_SET (f0, gen_rtx_FLOAT (mode, i0)));
emit_insn (gen_rtx_SET (out, gen_rtx_PLUS (mode, f0, f0)));
emit_label (donelab);
}
/* Generate an FP to unsigned DImode conversion. This is the same code
optabs would emit if we didn't have TFmode patterns. */
void
sparc_emit_fixunsdi (rtx *operands, machine_mode mode)
{
rtx i0, i1, f0, in, out, limit;
out = operands[0];
in = force_reg (mode, operands[1]);
rtx_code_label *neglab = gen_label_rtx ();
rtx_code_label *donelab = gen_label_rtx ();
i0 = gen_reg_rtx (DImode);
i1 = gen_reg_rtx (DImode);
limit = gen_reg_rtx (mode);
f0 = gen_reg_rtx (mode);
emit_move_insn (limit,
const_double_from_real_value (
REAL_VALUE_ATOF ("9223372036854775808.0", mode), mode));
emit_cmp_and_jump_insns (in, limit, GE, NULL_RTX, mode, 0, neglab);
emit_insn (gen_rtx_SET (out,
gen_rtx_FIX (DImode, gen_rtx_FIX (mode, in))));
emit_jump_insn (gen_jump (donelab));
emit_barrier ();
emit_label (neglab);
emit_insn (gen_rtx_SET (f0, gen_rtx_MINUS (mode, in, limit)));
emit_insn (gen_rtx_SET (i0,
gen_rtx_FIX (DImode, gen_rtx_FIX (mode, f0))));
emit_insn (gen_movdi (i1, const1_rtx));
emit_insn (gen_ashldi3 (i1, i1, GEN_INT (63)));
emit_insn (gen_xordi3 (out, i0, i1));
emit_label (donelab);
}
/* Return the string to output a compare and branch instruction to DEST.
DEST is the destination insn (i.e. the label), INSN is the source,
and OP is the conditional expression. */
const char *
output_cbcond (rtx op, rtx dest, rtx_insn *insn)
{
machine_mode mode = GET_MODE (XEXP (op, 0));
enum rtx_code code = GET_CODE (op);
const char *cond_str, *tmpl;
int far, emit_nop, len;
static char string[64];
char size_char;
/* Compare and Branch is limited to +-2KB. If it is too far away,
change
cxbne X, Y, .LC30
to
cxbe X, Y, .+16
nop
ba,pt xcc, .LC30
nop */
len = get_attr_length (insn);
far = len == 4;
emit_nop = len == 2;
if (far)
code = reverse_condition (code);
size_char = ((mode == SImode) ? 'w' : 'x');
switch (code)
{
case NE:
cond_str = "ne";
break;
case EQ:
cond_str = "e";
break;
case GE:
cond_str = "ge";
break;
case GT:
cond_str = "g";
break;
case LE:
cond_str = "le";
break;
case LT:
cond_str = "l";
break;
case GEU:
cond_str = "cc";
break;
case GTU:
cond_str = "gu";
break;
case LEU:
cond_str = "leu";
break;
case LTU:
cond_str = "cs";
break;
default:
gcc_unreachable ();
}
if (far)
{
int veryfar = 1, delta;
if (INSN_ADDRESSES_SET_P ())
{
delta = (INSN_ADDRESSES (INSN_UID (dest))
- INSN_ADDRESSES (INSN_UID (insn)));
/* Leave some instructions for "slop". */
if (delta >= -260000 && delta < 260000)
veryfar = 0;
}
if (veryfar)
tmpl = "c%cb%s\t%%1, %%2, .+16\n\tnop\n\tb\t%%3\n\tnop";
else
tmpl = "c%cb%s\t%%1, %%2, .+16\n\tnop\n\tba,pt\t%%%%xcc, %%3\n\tnop";
}
else
{
if (emit_nop)
tmpl = "c%cb%s\t%%1, %%2, %%3\n\tnop";
else
tmpl = "c%cb%s\t%%1, %%2, %%3";
}
snprintf (string, sizeof(string), tmpl, size_char, cond_str);
return string;
}
/* Return the string to output a conditional branch to LABEL, testing
register REG. LABEL is the operand number of the label; REG is the
operand number of the reg. OP is the conditional expression. The mode
of REG says what kind of comparison we made.
DEST is the destination insn (i.e. the label), INSN is the source.
REVERSED is nonzero if we should reverse the sense of the comparison.
ANNUL is nonzero if we should generate an annulling branch. */
const char *
output_v9branch (rtx op, rtx dest, int reg, int label, int reversed,
int annul, rtx_insn *insn)
{
static char string[64];
enum rtx_code code = GET_CODE (op);
machine_mode mode = GET_MODE (XEXP (op, 0));
rtx note;
int far;
char *p;
/* branch on register are limited to +-128KB. If it is too far away,
change
brnz,pt %g1, .LC30
to
brz,pn %g1, .+12
nop
ba,pt %xcc, .LC30
and
brgez,a,pn %o1, .LC29
to
brlz,pt %o1, .+16
nop
ba,pt %xcc, .LC29 */
far = get_attr_length (insn) >= 3;
/* If not floating-point or if EQ or NE, we can just reverse the code. */
if (reversed ^ far)
code = reverse_condition (code);
/* Only 64-bit versions of these instructions exist. */
gcc_assert (mode == DImode);
/* Start by writing the branch condition. */
switch (code)
{
case NE:
strcpy (string, "brnz");
break;
case EQ:
strcpy (string, "brz");
break;
case GE:
strcpy (string, "brgez");
break;
case LT:
strcpy (string, "brlz");
break;
case LE:
strcpy (string, "brlez");
break;
case GT:
strcpy (string, "brgz");
break;
default:
gcc_unreachable ();
}
p = strchr (string, '\0');
/* Now add the annulling, reg, label, and nop. */
if (annul && ! far)
{
strcpy (p, ",a");
p += 2;
}
if (insn && (note = find_reg_note (insn, REG_BR_PROB, NULL_RTX)))
{
strcpy (p,
((profile_probability::from_reg_br_prob_note (XINT (note, 0))
>= profile_probability::even ()) ^ far)
? ",pt" : ",pn");
p += 3;
}
*p = p < string + 8 ? '\t' : ' ';
p++;
*p++ = '%';
*p++ = '0' + reg;
*p++ = ',';
*p++ = ' ';
if (far)
{
int veryfar = 1, delta;
if (INSN_ADDRESSES_SET_P ())
{
delta = (INSN_ADDRESSES (INSN_UID (dest))
- INSN_ADDRESSES (INSN_UID (insn)));
/* Leave some instructions for "slop". */
if (delta >= -260000 && delta < 260000)
veryfar = 0;
}
strcpy (p, ".+12\n\t nop\n\t");
/* Skip the next insn if requested or
if we know that it will be a nop. */
if (annul || ! final_sequence)
p[3] = '6';
p += 12;
if (veryfar)
{
strcpy (p, "b\t");
p += 2;
}
else
{
strcpy (p, "ba,pt\t%%xcc, ");
p += 13;
}
}
*p++ = '%';
*p++ = 'l';
*p++ = '0' + label;
*p++ = '%';
*p++ = '#';
*p = '\0';
return string;
}
/* Return 1, if any of the registers of the instruction are %l[0-7] or %o[0-7].
Such instructions cannot be used in the delay slot of return insn on v9.
If TEST is 0, also rename all %i[0-7] registers to their %o[0-7] counterparts.
*/
static int
epilogue_renumber (register rtx *where, int test)
{
register const char *fmt;
register int i;
register enum rtx_code code;
if (*where == 0)
return 0;
code = GET_CODE (*where);
switch (code)
{
case REG:
if (REGNO (*where) >= 8 && REGNO (*where) < 24) /* oX or lX */
return 1;
if (! test && REGNO (*where) >= 24 && REGNO (*where) < 32)
*where = gen_rtx_REG (GET_MODE (*where), OUTGOING_REGNO (REGNO(*where)));
/* fallthrough */
case SCRATCH:
case CC0:
case PC:
case CONST_INT:
case CONST_WIDE_INT:
case CONST_DOUBLE:
return 0;
/* Do not replace the frame pointer with the stack pointer because
it can cause the delayed instruction to load below the stack.
This occurs when instructions like:
(set (reg/i:SI 24 %i0)
(mem/f:SI (plus:SI (reg/f:SI 30 %fp)
(const_int -20 [0xffffffec])) 0))
are in the return delayed slot. */
case PLUS:
if (GET_CODE (XEXP (*where, 0)) == REG
&& REGNO (XEXP (*where, 0)) == HARD_FRAME_POINTER_REGNUM
&& (GET_CODE (XEXP (*where, 1)) != CONST_INT
|| INTVAL (XEXP (*where, 1)) < SPARC_STACK_BIAS))
return 1;
break;
case MEM:
if (SPARC_STACK_BIAS
&& GET_CODE (XEXP (*where, 0)) == REG
&& REGNO (XEXP (*where, 0)) == HARD_FRAME_POINTER_REGNUM)
return 1;
break;
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'E')
{
register int j;
for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
if (epilogue_renumber (&(XVECEXP (*where, i, j)), test))
return 1;
}
else if (fmt[i] == 'e'
&& epilogue_renumber (&(XEXP (*where, i)), test))
return 1;
}
return 0;
}
/* Leaf functions and non-leaf functions have different needs. */
static const int
reg_leaf_alloc_order[] = REG_LEAF_ALLOC_ORDER;
static const int
reg_nonleaf_alloc_order[] = REG_ALLOC_ORDER;
static const int *const reg_alloc_orders[] = {
reg_leaf_alloc_order,
reg_nonleaf_alloc_order};
void
order_regs_for_local_alloc (void)
{
static int last_order_nonleaf = 1;
if (df_regs_ever_live_p (15) != last_order_nonleaf)
{
last_order_nonleaf = !last_order_nonleaf;
memcpy ((char *) reg_alloc_order,
(const char *) reg_alloc_orders[last_order_nonleaf],
FIRST_PSEUDO_REGISTER * sizeof (int));
}
}
/* Return 1 if REG and MEM are legitimate enough to allow the various
MEM<-->REG splits to be run. */
int
sparc_split_reg_mem_legitimate (rtx reg, rtx mem)
{
/* Punt if we are here by mistake. */
gcc_assert (reload_completed);
/* We must have an offsettable memory reference. */
if (!offsettable_memref_p (mem))
return 0;
/* If we have legitimate args for ldd/std, we do not want
the split to happen. */
if ((REGNO (reg) % 2) == 0 && mem_min_alignment (mem, 8))
return 0;
/* Success. */
return 1;
}
/* Split a REG <-- MEM move into a pair of moves in MODE. */
void
sparc_split_reg_mem (rtx dest, rtx src, machine_mode mode)
{
rtx high_part = gen_highpart (mode, dest);
rtx low_part = gen_lowpart (mode, dest);
rtx word0 = adjust_address (src, mode, 0);
rtx word1 = adjust_address (src, mode, 4);
if (reg_overlap_mentioned_p (high_part, word1))
{
emit_move_insn_1 (low_part, word1);
emit_move_insn_1 (high_part, word0);
}
else
{
emit_move_insn_1 (high_part, word0);
emit_move_insn_1 (low_part, word1);
}
}
/* Split a MEM <-- REG move into a pair of moves in MODE. */
void
sparc_split_mem_reg (rtx dest, rtx src, machine_mode mode)
{
rtx word0 = adjust_address (dest, mode, 0);
rtx word1 = adjust_address (dest, mode, 4);
rtx high_part = gen_highpart (mode, src);
rtx low_part = gen_lowpart (mode, src);
emit_move_insn_1 (word0, high_part);
emit_move_insn_1 (word1, low_part);
}
/* Like sparc_split_reg_mem_legitimate but for REG <--> REG moves. */
int
sparc_split_reg_reg_legitimate (rtx reg1, rtx reg2)
{
/* Punt if we are here by mistake. */
gcc_assert (reload_completed);
if (GET_CODE (reg1) == SUBREG)
reg1 = SUBREG_REG (reg1);
if (GET_CODE (reg1) != REG)
return 0;
const int regno1 = REGNO (reg1);
if (GET_CODE (reg2) == SUBREG)
reg2 = SUBREG_REG (reg2);
if (GET_CODE (reg2) != REG)
return 0;
const int regno2 = REGNO (reg2);
if (SPARC_INT_REG_P (regno1) && SPARC_INT_REG_P (regno2))
return 1;
if (TARGET_VIS3)
{
if ((SPARC_INT_REG_P (regno1) && SPARC_FP_REG_P (regno2))
|| (SPARC_FP_REG_P (regno1) && SPARC_INT_REG_P (regno2)))
return 1;
}
return 0;
}
/* Split a REG <--> REG move into a pair of moves in MODE. */
void
sparc_split_reg_reg (rtx dest, rtx src, machine_mode mode)
{
rtx dest1 = gen_highpart (mode, dest);
rtx dest2 = gen_lowpart (mode, dest);
rtx src1 = gen_highpart (mode, src);
rtx src2 = gen_lowpart (mode, src);
/* Now emit using the real source and destination we found, swapping
the order if we detect overlap. */
if (reg_overlap_mentioned_p (dest1, src2))
{
emit_move_insn_1 (dest2, src2);
emit_move_insn_1 (dest1, src1);
}
else
{
emit_move_insn_1 (dest1, src1);
emit_move_insn_1 (dest2, src2);
}
}
/* Return 1 if REGNO (reg1) is even and REGNO (reg1) == REGNO (reg2) - 1.
This makes them candidates for using ldd and std insns.
Note reg1 and reg2 *must* be hard registers. */
int
registers_ok_for_ldd_peep (rtx reg1, rtx reg2)
{
/* We might have been passed a SUBREG. */
if (GET_CODE (reg1) != REG || GET_CODE (reg2) != REG)
return 0;
if (REGNO (reg1) % 2 != 0)
return 0;
/* Integer ldd is deprecated in SPARC V9 */
if (TARGET_V9 && SPARC_INT_REG_P (REGNO (reg1)))
return 0;
return (REGNO (reg1) == REGNO (reg2) - 1);
}
/* Return 1 if the addresses in mem1 and mem2 are suitable for use in
an ldd or std insn.
This can only happen when addr1 and addr2, the addresses in mem1
and mem2, are consecutive memory locations (addr1 + 4 == addr2).
addr1 must also be aligned on a 64-bit boundary.
Also iff dependent_reg_rtx is not null it should not be used to
compute the address for mem1, i.e. we cannot optimize a sequence
like:
ld [%o0], %o0
ld [%o0 + 4], %o1
to
ldd [%o0], %o0
nor:
ld [%g3 + 4], %g3
ld [%g3], %g2
to
ldd [%g3], %g2
But, note that the transformation from:
ld [%g2 + 4], %g3
ld [%g2], %g2
to
ldd [%g2], %g2
is perfectly fine. Thus, the peephole2 patterns always pass us
the destination register of the first load, never the second one.
For stores we don't have a similar problem, so dependent_reg_rtx is
NULL_RTX. */
int
mems_ok_for_ldd_peep (rtx mem1, rtx mem2, rtx dependent_reg_rtx)
{
rtx addr1, addr2;
unsigned int reg1;
HOST_WIDE_INT offset1;
/* The mems cannot be volatile. */
if (MEM_VOLATILE_P (mem1) || MEM_VOLATILE_P (mem2))
return 0;
/* MEM1 should be aligned on a 64-bit boundary. */
if (MEM_ALIGN (mem1) < 64)
return 0;
addr1 = XEXP (mem1, 0);
addr2 = XEXP (mem2, 0);
/* Extract a register number and offset (if used) from the first addr. */
if (GET_CODE (addr1) == PLUS)
{
/* If not a REG, return zero. */
if (GET_CODE (XEXP (addr1, 0)) != REG)
return 0;
else
{
reg1 = REGNO (XEXP (addr1, 0));
/* The offset must be constant! */
if (GET_CODE (XEXP (addr1, 1)) != CONST_INT)
return 0;
offset1 = INTVAL (XEXP (addr1, 1));
}
}
else if (GET_CODE (addr1) != REG)
return 0;
else
{
reg1 = REGNO (addr1);
/* This was a simple (mem (reg)) expression. Offset is 0. */
offset1 = 0;
}
/* Make sure the second address is a (mem (plus (reg) (const_int). */
if (GET_CODE (addr2) != PLUS)
return 0;
if (GET_CODE (XEXP (addr2, 0)) != REG
|| GET_CODE (XEXP (addr2, 1)) != CONST_INT)
return 0;
if (reg1 != REGNO (XEXP (addr2, 0)))
return 0;
if (dependent_reg_rtx != NULL_RTX && reg1 == REGNO (dependent_reg_rtx))
return 0;
/* The first offset must be evenly divisible by 8 to ensure the
address is 64-bit aligned. */
if (offset1 % 8 != 0)
return 0;
/* The offset for the second addr must be 4 more than the first addr. */
if (INTVAL (XEXP (addr2, 1)) != offset1 + 4)
return 0;
/* All the tests passed. addr1 and addr2 are valid for ldd and std
instructions. */
return 1;
}
/* Return the widened memory access made of MEM1 and MEM2 in MODE. */
rtx
widen_mem_for_ldd_peep (rtx mem1, rtx mem2, machine_mode mode)
{
rtx x = widen_memory_access (mem1, mode, 0);
MEM_NOTRAP_P (x) = MEM_NOTRAP_P (mem1) && MEM_NOTRAP_P (mem2);
return x;
}
/* Return 1 if reg is a pseudo, or is the first register in
a hard register pair. This makes it suitable for use in
ldd and std insns. */
int
register_ok_for_ldd (rtx reg)
{
/* We might have been passed a SUBREG. */
if (!REG_P (reg))
return 0;
if (REGNO (reg) < FIRST_PSEUDO_REGISTER)
return (REGNO (reg) % 2 == 0);
return 1;
}
/* Return 1 if OP, a MEM, has an address which is known to be
aligned to an 8-byte boundary. */
int
memory_ok_for_ldd (rtx op)
{
/* In 64-bit mode, we assume that the address is word-aligned. */
if (TARGET_ARCH32 && !mem_min_alignment (op, 8))
return 0;
if (! can_create_pseudo_p ()
&& !strict_memory_address_p (Pmode, XEXP (op, 0)))
return 0;
return 1;
}
/* Implement TARGET_PRINT_OPERAND_PUNCT_VALID_P. */
static bool
sparc_print_operand_punct_valid_p (unsigned char code)
{
if (code == '#'
|| code == '*'
|| code == '('
|| code == ')'
|| code == '_'
|| code == '&')
return true;
return false;
}
/* Implement TARGET_PRINT_OPERAND.
Print operand X (an rtx) in assembler syntax to file FILE.
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
For `%' followed by punctuation, CODE is the punctuation and X is null. */
static void
sparc_print_operand (FILE *file, rtx x, int code)
{
const char *s;
switch (code)
{
case '#':
/* Output an insn in a delay slot. */
if (final_sequence)
sparc_indent_opcode = 1;
else
fputs ("\n\t nop", file);
return;
case '*':
/* Output an annul flag if there's nothing for the delay slot and we
are optimizing. This is always used with '(' below.
Sun OS 4.1.1 dbx can't handle an annulled unconditional branch;
this is a dbx bug. So, we only do this when optimizing.
On UltraSPARC, a branch in a delay slot causes a pipeline flush.
Always emit a nop in case the next instruction is a branch. */
if (! final_sequence && (optimize && (int)sparc_cpu < PROCESSOR_V9))
fputs (",a", file);
return;
case '(':
/* Output a 'nop' if there's nothing for the delay slot and we are
not optimizing. This is always used with '*' above. */
if (! final_sequence && ! (optimize && (int)sparc_cpu < PROCESSOR_V9))
fputs ("\n\t nop", file);
else if (final_sequence)
sparc_indent_opcode = 1;
return;
case ')':
/* Output the right displacement from the saved PC on function return.
The caller may have placed an "unimp" insn immediately after the call
so we have to account for it. This insn is used in the 32-bit ABI
when calling a function that returns a non zero-sized structure. The
64-bit ABI doesn't have it. Be careful to have this test be the same
as that for the call. The exception is when sparc_std_struct_return
is enabled, the psABI is followed exactly and the adjustment is made
by the code in sparc_struct_value_rtx. The call emitted is the same
when sparc_std_struct_return is enabled. */
if (!TARGET_ARCH64
&& cfun->returns_struct
&& !sparc_std_struct_return
&& DECL_SIZE (DECL_RESULT (current_function_decl))
&& TREE_CODE (DECL_SIZE (DECL_RESULT (current_function_decl)))
== INTEGER_CST
&& !integer_zerop (DECL_SIZE (DECL_RESULT (current_function_decl))))
fputs ("12", file);
else
fputc ('8', file);
return;
case '_':
/* Output the Embedded Medium/Anywhere code model base register. */
fputs (EMBMEDANY_BASE_REG, file);
return;
case '&':
/* Print some local dynamic TLS name. */
if (const char *name = get_some_local_dynamic_name ())
assemble_name (file, name);
else
output_operand_lossage ("'%%&' used without any "
"local dynamic TLS references");
return;
case 'Y':
/* Adjust the operand to take into account a RESTORE operation. */
if (GET_CODE (x) == CONST_INT)
break;
else if (GET_CODE (x) != REG)
output_operand_lossage ("invalid %%Y operand");
else if (REGNO (x) < 8)
fputs (reg_names[REGNO (x)], file);
else if (REGNO (x) >= 24 && REGNO (x) < 32)
fputs (reg_names[REGNO (x)-16], file);
else
output_operand_lossage ("invalid %%Y operand");
return;
case 'L':
/* Print out the low order register name of a register pair. */
if (WORDS_BIG_ENDIAN)
fputs (reg_names[REGNO (x)+1], file);
else
fputs (reg_names[REGNO (x)], file);
return;
case 'H':
/* Print out the high order register name of a register pair. */
if (WORDS_BIG_ENDIAN)
fputs (reg_names[REGNO (x)], file);
else
fputs (reg_names[REGNO (x)+1], file);
return;
case 'R':
/* Print out the second register name of a register pair or quad.
I.e., R (%o0) => %o1. */
fputs (reg_names[REGNO (x)+1], file);
return;
case 'S':
/* Print out the third register name of a register quad.
I.e., S (%o0) => %o2. */
fputs (reg_names[REGNO (x)+2], file);
return;
case 'T':
/* Print out the fourth register name of a register quad.
I.e., T (%o0) => %o3. */
fputs (reg_names[REGNO (x)+3], file);
return;
case 'x':
/* Print a condition code register. */
if (REGNO (x) == SPARC_ICC_REG)
{
switch (GET_MODE (x))
{
case E_CCmode:
case E_CCNZmode:
case E_CCCmode:
case E_CCVmode:
s = "%icc";
break;
case E_CCXmode:
case E_CCXNZmode:
case E_CCXCmode:
case E_CCXVmode:
s = "%xcc";
break;
default:
gcc_unreachable ();
}
fputs (s, file);
}
else
/* %fccN register */
fputs (reg_names[REGNO (x)], file);
return;
case 'm':
/* Print the operand's address only. */
output_address (GET_MODE (x), XEXP (x, 0));
return;
case 'r':
/* In this case we need a register. Use %g0 if the
operand is const0_rtx. */
if (x == const0_rtx
|| (GET_MODE (x) != VOIDmode && x == CONST0_RTX (GET_MODE (x))))
{
fputs ("%g0", file);
return;
}
else
break;
case 'A':
switch (GET_CODE (x))
{
case IOR:
s = "or";
break;
case AND:
s = "and";
break;
case XOR:
s = "xor";
break;
default:
output_operand_lossage ("invalid %%A operand");
s = "";
break;
}
fputs (s, file);
return;
case 'B':
switch (GET_CODE (x))
{
case IOR:
s = "orn";
break;
case AND:
s = "andn";
break;
case XOR:
s = "xnor";
break;
default:
output_operand_lossage ("invalid %%B operand");
s = "";
break;
}
fputs (s, file);
return;
/* This is used by the conditional move instructions. */
case 'C':
{
machine_mode mode = GET_MODE (XEXP (x, 0));
switch (GET_CODE (x))
{
case NE:
if (mode == CCVmode || mode == CCXVmode)
s = "vs";
else
s = "ne";
break;
case EQ:
if (mode == CCVmode || mode == CCXVmode)
s = "vc";
else
s = "e";
break;
case GE:
if (mode == CCNZmode || mode == CCXNZmode)
s = "pos";
else
s = "ge";
break;
case GT:
s = "g";
break;
case LE:
s = "le";
break;
case LT:
if (mode == CCNZmode || mode == CCXNZmode)
s = "neg";
else
s = "l";
break;
case GEU:
s = "geu";
break;
case GTU:
s = "gu";
break;
case LEU:
s = "leu";
break;
case LTU:
s = "lu";
break;
case LTGT:
s = "lg";
break;
case UNORDERED:
s = "u";
break;
case ORDERED:
s = "o";
break;
case UNLT:
s = "ul";
break;
case UNLE:
s = "ule";
break;
case UNGT:
s = "ug";
break;
case UNGE:
s = "uge"
; break;
case UNEQ:
s = "ue";
break;
default:
output_operand_lossage ("invalid %%C operand");
s = "";
break;
}
fputs (s, file);
return;
}
/* This are used by the movr instruction pattern. */
case 'D':
{
switch (GET_CODE (x))
{
case NE:
s = "ne";
break;
case EQ:
s = "e";
break;
case GE:
s = "gez";
break;
case LT:
s = "lz";
break;
case LE:
s = "lez";
break;
case GT:
s = "gz";
break;
default:
output_operand_lossage ("invalid %%D operand");
s = "";
break;
}
fputs (s, file);
return;
}
case 'b':
{
/* Print a sign-extended character. */
int i = trunc_int_for_mode (INTVAL (x), QImode);
fprintf (file, "%d", i);
return;
}
case 'f':
/* Operand must be a MEM; write its address. */
if (GET_CODE (x) != MEM)
output_operand_lossage ("invalid %%f operand");
output_address (GET_MODE (x), XEXP (x, 0));
return;
case 's':
{
/* Print a sign-extended 32-bit value. */
HOST_WIDE_INT i;
if (GET_CODE(x) == CONST_INT)
i = INTVAL (x);
else
{
output_operand_lossage ("invalid %%s operand");
return;
}
i = trunc_int_for_mode (i, SImode);
fprintf (file, HOST_WIDE_INT_PRINT_DEC, i);
return;
}
case 0:
/* Do nothing special. */
break;
default:
/* Undocumented flag. */
output_operand_lossage ("invalid operand output code");
}
if (GET_CODE (x) == REG)
fputs (reg_names[REGNO (x)], file);
else if (GET_CODE (x) == MEM)
{
fputc ('[', file);
/* Poor Sun assembler doesn't understand absolute addressing. */
if (CONSTANT_P (XEXP (x, 0)))
fputs ("%g0+", file);
output_address (GET_MODE (x), XEXP (x, 0));
fputc (']', file);
}
else if (GET_CODE (x) == HIGH)
{
fputs ("%hi(", file);
output_addr_const (file, XEXP (x, 0));
fputc (')', file);
}
else if (GET_CODE (x) == LO_SUM)
{
sparc_print_operand (file, XEXP (x, 0), 0);
if (TARGET_CM_MEDMID)
fputs ("+%l44(", file);
else
fputs ("+%lo(", file);
output_addr_const (file, XEXP (x, 1));
fputc (')', file);
}
else if (GET_CODE (x) == CONST_DOUBLE)
output_operand_lossage ("floating-point constant not a valid immediate operand");
else
output_addr_const (file, x);
}
/* Implement TARGET_PRINT_OPERAND_ADDRESS. */
static void
sparc_print_operand_address (FILE *file, machine_mode /*mode*/, rtx x)
{
register rtx base, index = 0;
int offset = 0;
register rtx addr = x;
if (REG_P (addr))
fputs (reg_names[REGNO (addr)], file);
else if (GET_CODE (addr) == PLUS)
{
if (CONST_INT_P (XEXP (addr, 0)))
offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);
else if (CONST_INT_P (XEXP (addr, 1)))
offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);
else
base = XEXP (addr, 0), index = XEXP (addr, 1);
if (GET_CODE (base) == LO_SUM)
{
gcc_assert (USE_AS_OFFSETABLE_LO10
&& TARGET_ARCH64
&& ! TARGET_CM_MEDMID);
output_operand (XEXP (base, 0), 0);
fputs ("+%lo(", file);
output_address (VOIDmode, XEXP (base, 1));
fprintf (file, ")+%d", offset);
}
else
{
fputs (reg_names[REGNO (base)], file);
if (index == 0)
fprintf (file, "%+d", offset);
else if (REG_P (index))
fprintf (file, "+%s", reg_names[REGNO (index)]);
else if (GET_CODE (index) == SYMBOL_REF
|| GET_CODE (index) == LABEL_REF
|| GET_CODE (index) == CONST)
fputc ('+', file), output_addr_const (file, index);
else gcc_unreachable ();
}
}
else if (GET_CODE (addr) == MINUS
&& GET_CODE (XEXP (addr, 1)) == LABEL_REF)
{
output_addr_const (file, XEXP (addr, 0));
fputs ("-(", file);
output_addr_const (file, XEXP (addr, 1));
fputs ("-.)", file);
}
else if (GET_CODE (addr) == LO_SUM)
{
output_operand (XEXP (addr, 0), 0);
if (TARGET_CM_MEDMID)
fputs ("+%l44(", file);
else
fputs ("+%lo(", file);
output_address (VOIDmode, XEXP (addr, 1));
fputc (')', file);
}
else if (flag_pic
&& GET_CODE (addr) == CONST
&& GET_CODE (XEXP (addr, 0)) == MINUS
&& GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST
&& GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS
&& XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx)
{
addr = XEXP (addr, 0);
output_addr_const (file, XEXP (addr, 0));
/* Group the args of the second CONST in parenthesis. */
fputs ("-(", file);
/* Skip past the second CONST--it does nothing for us. */
output_addr_const (file, XEXP (XEXP (addr, 1), 0));
/* Close the parenthesis. */
fputc (')', file);
}
else
{
output_addr_const (file, addr);
}
}
/* Target hook for assembling integer objects. The sparc version has
special handling for aligned DI-mode objects. */
static bool
sparc_assemble_integer (rtx x, unsigned int size, int aligned_p)
{
/* ??? We only output .xword's for symbols and only then in environments
where the assembler can handle them. */
if (aligned_p && size == 8 && GET_CODE (x) != CONST_INT)
{
if (TARGET_V9)
{
assemble_integer_with_op ("\t.xword\t", x);
return true;
}
else
{
assemble_aligned_integer (4, const0_rtx);
assemble_aligned_integer (4, x);
return true;
}
}
return default_assemble_integer (x, size, aligned_p);
}
/* Return the value of a code used in the .proc pseudo-op that says
what kind of result this function returns. For non-C types, we pick
the closest C type. */
#ifndef SHORT_TYPE_SIZE
#define SHORT_TYPE_SIZE (BITS_PER_UNIT * 2)
#endif
#ifndef INT_TYPE_SIZE
#define INT_TYPE_SIZE BITS_PER_WORD
#endif
#ifndef LONG_TYPE_SIZE
#define LONG_TYPE_SIZE BITS_PER_WORD
#endif
#ifndef LONG_LONG_TYPE_SIZE
#define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2)
#endif
#ifndef FLOAT_TYPE_SIZE
#define FLOAT_TYPE_SIZE BITS_PER_WORD
#endif
#ifndef DOUBLE_TYPE_SIZE
#define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
#endif
#ifndef LONG_DOUBLE_TYPE_SIZE
#define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
#endif
unsigned long
sparc_type_code (register tree type)
{
register unsigned long qualifiers = 0;
register unsigned shift;
/* Only the first 30 bits of the qualifier are valid. We must refrain from
setting more, since some assemblers will give an error for this. Also,
we must be careful to avoid shifts of 32 bits or more to avoid getting
unpredictable results. */
for (shift = 6; shift < 30; shift += 2, type = TREE_TYPE (type))
{
switch (TREE_CODE (type))
{
case ERROR_MARK:
return qualifiers;
case ARRAY_TYPE:
qualifiers |= (3 << shift);
break;
case FUNCTION_TYPE:
case METHOD_TYPE:
qualifiers |= (2 << shift);
break;
case POINTER_TYPE:
case REFERENCE_TYPE:
case OFFSET_TYPE:
qualifiers |= (1 << shift);
break;
case RECORD_TYPE:
return (qualifiers | 8);
case UNION_TYPE:
case QUAL_UNION_TYPE:
return (qualifiers | 9);
case ENUMERAL_TYPE:
return (qualifiers | 10);
case VOID_TYPE:
return (qualifiers | 16);
case INTEGER_TYPE:
/* If this is a range type, consider it to be the underlying
type. */
if (TREE_TYPE (type) != 0)
break;
/* Carefully distinguish all the standard types of C,
without messing up if the language is not C. We do this by
testing TYPE_PRECISION and TYPE_UNSIGNED. The old code used to
look at both the names and the above fields, but that's redundant.
Any type whose size is between two C types will be considered
to be the wider of the two types. Also, we do not have a
special code to use for "long long", so anything wider than
long is treated the same. Note that we can't distinguish
between "int" and "long" in this code if they are the same
size, but that's fine, since neither can the assembler. */
if (TYPE_PRECISION (type) <= CHAR_TYPE_SIZE)
return (qualifiers | (TYPE_UNSIGNED (type) ? 12 : 2));
else if (TYPE_PRECISION (type) <= SHORT_TYPE_SIZE)
return (qualifiers | (TYPE_UNSIGNED (type) ? 13 : 3));
else if (TYPE_PRECISION (type) <= INT_TYPE_SIZE)
return (qualifiers | (TYPE_UNSIGNED (type) ? 14 : 4));
else
return (qualifiers | (TYPE_UNSIGNED (type) ? 15 : 5));
case REAL_TYPE:
/* If this is a range type, consider it to be the underlying
type. */
if (TREE_TYPE (type) != 0)
break;
/* Carefully distinguish all the standard types of C,
without messing up if the language is not C. */
if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE)
return (qualifiers | 6);
else
return (qualifiers | 7);
case COMPLEX_TYPE: /* GNU Fortran COMPLEX type. */
/* ??? We need to distinguish between double and float complex types,
but I don't know how yet because I can't reach this code from
existing front-ends. */
return (qualifiers | 7); /* Who knows? */
case VECTOR_TYPE:
case BOOLEAN_TYPE: /* Boolean truth value type. */
case LANG_TYPE:
case NULLPTR_TYPE:
return qualifiers;
default:
gcc_unreachable (); /* Not a type! */
}
}
return qualifiers;
}
/* Nested function support. */
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function.
This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
(to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
(to store insns). This is a bit excessive. Perhaps a different
mechanism would be better here.
Emit enough FLUSH insns to synchronize the data and instruction caches. */
static void
sparc32_initialize_trampoline (rtx m_tramp, rtx fnaddr, rtx cxt)
{
/* SPARC 32-bit trampoline:
sethi %hi(fn), %g1
sethi %hi(static), %g2
jmp %g1+%lo(fn)
or %g2, %lo(static), %g2
SETHI i,r = 00rr rrr1 00ii iiii iiii iiii iiii iiii
JMPL r+i,d = 10dd ddd1 1100 0rrr rr1i iiii iiii iiii
*/
emit_move_insn
(adjust_address (m_tramp, SImode, 0),
expand_binop (SImode, ior_optab,
expand_shift (RSHIFT_EXPR, SImode, fnaddr, 10, 0, 1),
GEN_INT (trunc_int_for_mode (0x03000000, SImode)),
NULL_RTX, 1, OPTAB_DIRECT));
emit_move_insn
(adjust_address (m_tramp, SImode, 4),
expand_binop (SImode, ior_optab,
expand_shift (RSHIFT_EXPR, SImode, cxt, 10, 0, 1),
GEN_INT (trunc_int_for_mode (0x05000000, SImode)),
NULL_RTX, 1, OPTAB_DIRECT));
emit_move_insn
(adjust_address (m_tramp, SImode, 8),
expand_binop (SImode, ior_optab,
expand_and (SImode, fnaddr, GEN_INT (0x3ff), NULL_RTX),
GEN_INT (trunc_int_for_mode (0x81c06000, SImode)),
NULL_RTX, 1, OPTAB_DIRECT));
emit_move_insn
(adjust_address (m_tramp, SImode, 12),
expand_binop (SImode, ior_optab,
expand_and (SImode, cxt, GEN_INT (0x3ff), NULL_RTX),
GEN_INT (trunc_int_for_mode (0x8410a000, SImode)),
NULL_RTX, 1, OPTAB_DIRECT));
/* On UltraSPARC a flush flushes an entire cache line. The trampoline is
aligned on a 16 byte boundary so one flush clears it all. */
emit_insn (gen_flushsi (validize_mem (adjust_address (m_tramp, SImode, 0))));
if (sparc_cpu != PROCESSOR_ULTRASPARC
&& sparc_cpu != PROCESSOR_ULTRASPARC3
&& sparc_cpu != PROCESSOR_NIAGARA
&& sparc_cpu != PROCESSOR_NIAGARA2
&& sparc_cpu != PROCESSOR_NIAGARA3
&& sparc_cpu != PROCESSOR_NIAGARA4
&& sparc_cpu != PROCESSOR_NIAGARA7
&& sparc_cpu != PROCESSOR_M8)
emit_insn (gen_flushsi (validize_mem (adjust_address (m_tramp, SImode, 8))));
/* Call __enable_execute_stack after writing onto the stack to make sure
the stack address is accessible. */
#ifdef HAVE_ENABLE_EXECUTE_STACK
emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__enable_execute_stack"),
LCT_NORMAL, VOIDmode, XEXP (m_tramp, 0), Pmode);
#endif
}
/* The 64-bit version is simpler because it makes more sense to load the
values as "immediate" data out of the trampoline. It's also easier since
we can read the PC without clobbering a register. */
static void
sparc64_initialize_trampoline (rtx m_tramp, rtx fnaddr, rtx cxt)
{
/* SPARC 64-bit trampoline:
rd %pc, %g1
ldx [%g1+24], %g5
jmp %g5
ldx [%g1+16], %g5
+16 bytes data
*/
emit_move_insn (adjust_address (m_tramp, SImode, 0),
GEN_INT (trunc_int_for_mode (0x83414000, SImode)));
emit_move_insn (adjust_address (m_tramp, SImode, 4),
GEN_INT (trunc_int_for_mode (0xca586018, SImode)));
emit_move_insn (adjust_address (m_tramp, SImode, 8),
GEN_INT (trunc_int_for_mode (0x81c14000, SImode)));
emit_move_insn (adjust_address (m_tramp, SImode, 12),
GEN_INT (trunc_int_for_mode (0xca586010, SImode)));
emit_move_insn (adjust_address (m_tramp, DImode, 16), cxt);
emit_move_insn (adjust_address (m_tramp, DImode, 24), fnaddr);
emit_insn (gen_flushdi (validize_mem (adjust_address (m_tramp, DImode, 0))));
if (sparc_cpu != PROCESSOR_ULTRASPARC
&& sparc_cpu != PROCESSOR_ULTRASPARC3
&& sparc_cpu != PROCESSOR_NIAGARA
&& sparc_cpu != PROCESSOR_NIAGARA2
&& sparc_cpu != PROCESSOR_NIAGARA3
&& sparc_cpu != PROCESSOR_NIAGARA4
&& sparc_cpu != PROCESSOR_NIAGARA7
&& sparc_cpu != PROCESSOR_M8)
emit_insn (gen_flushdi (validize_mem (adjust_address (m_tramp, DImode, 8))));
/* Call __enable_execute_stack after writing onto the stack to make sure
the stack address is accessible. */
#ifdef HAVE_ENABLE_EXECUTE_STACK
emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__enable_execute_stack"),
LCT_NORMAL, VOIDmode, XEXP (m_tramp, 0), Pmode);
#endif
}
/* Worker for TARGET_TRAMPOLINE_INIT. */
static void
sparc_trampoline_init (rtx m_tramp, tree fndecl, rtx cxt)
{
rtx fnaddr = force_reg (Pmode, XEXP (DECL_RTL (fndecl), 0));
cxt = force_reg (Pmode, cxt);
if (TARGET_ARCH64)
sparc64_initialize_trampoline (m_tramp, fnaddr, cxt);
else
sparc32_initialize_trampoline (m_tramp, fnaddr, cxt);
}
/* Adjust the cost of a scheduling dependency. Return the new cost of
a dependency LINK or INSN on DEP_INSN. COST is the current cost. */
static int
supersparc_adjust_cost (rtx_insn *insn, int dep_type, rtx_insn *dep_insn,
int cost)
{
enum attr_type insn_type;
if (recog_memoized (insn) < 0)
return cost;
insn_type = get_attr_type (insn);
if (dep_type == 0)
{
/* Data dependency; DEP_INSN writes a register that INSN reads some
cycles later. */
/* if a load, then the dependence must be on the memory address;
add an extra "cycle". Note that the cost could be two cycles
if the reg was written late in an instruction group; we ca not tell
here. */
if (insn_type == TYPE_LOAD || insn_type == TYPE_FPLOAD)
return cost + 3;
/* Get the delay only if the address of the store is the dependence. */
if (insn_type == TYPE_STORE || insn_type == TYPE_FPSTORE)
{
rtx pat = PATTERN(insn);
rtx dep_pat = PATTERN (dep_insn);
if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET)
return cost; /* This should not happen! */
/* The dependency between the two instructions was on the data that
is being stored. Assume that this implies that the address of the
store is not dependent. */
if (rtx_equal_p (SET_DEST (dep_pat), SET_SRC (pat)))
return cost;
return cost + 3; /* An approximation. */
}
/* A shift instruction cannot receive its data from an instruction
in the same cycle; add a one cycle penalty. */
if (insn_type == TYPE_SHIFT)
return cost + 3; /* Split before cascade into shift. */
}
else
{
/* Anti- or output- dependency; DEP_INSN reads/writes a register that
INSN writes some cycles later. */
/* These are only significant for the fpu unit; writing a fp reg before
the fpu has finished with it stalls the processor. */
/* Reusing an integer register causes no problems. */
if (insn_type == TYPE_IALU || insn_type == TYPE_SHIFT)
return 0;
}
return cost;
}
static int
hypersparc_adjust_cost (rtx_insn *insn, int dtype, rtx_insn *dep_insn,
int cost)
{
enum attr_type insn_type, dep_type;
rtx pat = PATTERN(insn);
rtx dep_pat = PATTERN (dep_insn);
if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0)
return cost;
insn_type = get_attr_type (insn);
dep_type = get_attr_type (dep_insn);
switch (dtype)
{
case 0:
/* Data dependency; DEP_INSN writes a register that INSN reads some
cycles later. */
switch (insn_type)
{
case TYPE_STORE:
case TYPE_FPSTORE:
/* Get the delay iff the address of the store is the dependence. */
if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET)
return cost;
if (rtx_equal_p (SET_DEST (dep_pat), SET_SRC (pat)))
return cost;
return cost + 3;
case TYPE_LOAD:
case TYPE_SLOAD:
case TYPE_FPLOAD:
/* If a load, then the dependence must be on the memory address. If
the addresses aren't equal, then it might be a false dependency */
if (dep_type == TYPE_STORE || dep_type == TYPE_FPSTORE)
{
if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET
|| GET_CODE (SET_DEST (dep_pat)) != MEM
|| GET_CODE (SET_SRC (pat)) != MEM
|| ! rtx_equal_p (XEXP (SET_DEST (dep_pat), 0),
XEXP (SET_SRC (pat), 0)))
return cost + 2;
return cost + 8;
}
break;
case TYPE_BRANCH:
/* Compare to branch latency is 0. There is no benefit from
separating compare and branch. */
if (dep_type == TYPE_COMPARE)
return 0;
/* Floating point compare to branch latency is less than
compare to conditional move. */
if (dep_type == TYPE_FPCMP)
return cost - 1;
break;
default:
break;
}
break;
case REG_DEP_ANTI:
/* Anti-dependencies only penalize the fpu unit. */
if (insn_type == TYPE_IALU || insn_type == TYPE_SHIFT)
return 0;
break;
default:
break;
}
return cost;
}
static int
sparc_adjust_cost (rtx_insn *insn, int dep_type, rtx_insn *dep, int cost,
unsigned int)
{
switch (sparc_cpu)
{
case PROCESSOR_SUPERSPARC:
cost = supersparc_adjust_cost (insn, dep_type, dep, cost);
break;
case PROCESSOR_HYPERSPARC:
case PROCESSOR_SPARCLITE86X:
cost = hypersparc_adjust_cost (insn, dep_type, dep, cost);
break;
default:
break;
}
return cost;
}
static void
sparc_sched_init (FILE *dump ATTRIBUTE_UNUSED,
int sched_verbose ATTRIBUTE_UNUSED,
int max_ready ATTRIBUTE_UNUSED)
{}
static int
sparc_use_sched_lookahead (void)
{
if (sparc_cpu == PROCESSOR_NIAGARA
|| sparc_cpu == PROCESSOR_NIAGARA2
|| sparc_cpu == PROCESSOR_NIAGARA3)
return 0;
if (sparc_cpu == PROCESSOR_NIAGARA4
|| sparc_cpu == PROCESSOR_NIAGARA7
|| sparc_cpu == PROCESSOR_M8)
return 2;
if (sparc_cpu == PROCESSOR_ULTRASPARC
|| sparc_cpu == PROCESSOR_ULTRASPARC3)
return 4;
if ((1 << sparc_cpu) &
((1 << PROCESSOR_SUPERSPARC) | (1 << PROCESSOR_HYPERSPARC) |
(1 << PROCESSOR_SPARCLITE86X)))
return 3;
return 0;
}
static int
sparc_issue_rate (void)
{
switch (sparc_cpu)
{
case PROCESSOR_NIAGARA:
case PROCESSOR_NIAGARA2:
case PROCESSOR_NIAGARA3:
default:
return 1;
case PROCESSOR_NIAGARA4:
case PROCESSOR_NIAGARA7:
case PROCESSOR_V9:
/* Assume V9 processors are capable of at least dual-issue. */
return 2;
case PROCESSOR_SUPERSPARC:
return 3;
case PROCESSOR_HYPERSPARC:
case PROCESSOR_SPARCLITE86X:
return 2;
case PROCESSOR_ULTRASPARC:
case PROCESSOR_ULTRASPARC3:
case PROCESSOR_M8:
return 4;
}
}
static int
set_extends (rtx_insn *insn)
{
register rtx pat = PATTERN (insn);
switch (GET_CODE (SET_SRC (pat)))
{
/* Load and some shift instructions zero extend. */
case MEM:
case ZERO_EXTEND:
/* sethi clears the high bits */
case HIGH:
/* LO_SUM is used with sethi. sethi cleared the high
bits and the values used with lo_sum are positive */
case LO_SUM:
/* Store flag stores 0 or 1 */
case LT: case LTU:
case GT: case GTU:
case LE: case LEU:
case GE: case GEU:
case EQ:
case NE:
return 1;
case AND:
{
rtx op0 = XEXP (SET_SRC (pat), 0);
rtx op1 = XEXP (SET_SRC (pat), 1);
if (GET_CODE (op1) == CONST_INT)
return INTVAL (op1) >= 0;
if (GET_CODE (op0) != REG)
return 0;
if (sparc_check_64 (op0, insn) == 1)
return 1;
return (GET_CODE (op1) == REG && sparc_check_64 (op1, insn) == 1);
}
case IOR:
case XOR:
{
rtx op0 = XEXP (SET_SRC (pat), 0);
rtx op1 = XEXP (SET_SRC (pat), 1);
if (GET_CODE (op0) != REG || sparc_check_64 (op0, insn) <= 0)
return 0;
if (GET_CODE (op1) == CONST_INT)
return INTVAL (op1) >= 0;
return (GET_CODE (op1) == REG && sparc_check_64 (op1, insn) == 1);
}
case LSHIFTRT:
return GET_MODE (SET_SRC (pat)) == SImode;
/* Positive integers leave the high bits zero. */
case CONST_INT:
return !(INTVAL (SET_SRC (pat)) & 0x80000000);
case ASHIFTRT:
case SIGN_EXTEND:
return - (GET_MODE (SET_SRC (pat)) == SImode);
case REG:
return sparc_check_64 (SET_SRC (pat), insn);
default:
return 0;
}
}
/* We _ought_ to have only one kind per function, but... */
static GTY(()) rtx sparc_addr_diff_list;
static GTY(()) rtx sparc_addr_list;
void
sparc_defer_case_vector (rtx lab, rtx vec, int diff)
{
vec = gen_rtx_EXPR_LIST (VOIDmode, lab, vec);
if (diff)
sparc_addr_diff_list
= gen_rtx_EXPR_LIST (VOIDmode, vec, sparc_addr_diff_list);
else
sparc_addr_list = gen_rtx_EXPR_LIST (VOIDmode, vec, sparc_addr_list);
}
static void
sparc_output_addr_vec (rtx vec)
{
rtx lab = XEXP (vec, 0), body = XEXP (vec, 1);
int idx, vlen = XVECLEN (body, 0);
#ifdef ASM_OUTPUT_ADDR_VEC_START
ASM_OUTPUT_ADDR_VEC_START (asm_out_file);
#endif
#ifdef ASM_OUTPUT_CASE_LABEL
ASM_OUTPUT_CASE_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (lab),
NEXT_INSN (lab));
#else
(*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (lab));
#endif
for (idx = 0; idx < vlen; idx++)
{
ASM_OUTPUT_ADDR_VEC_ELT
(asm_out_file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
}
#ifdef ASM_OUTPUT_ADDR_VEC_END
ASM_OUTPUT_ADDR_VEC_END (asm_out_file);
#endif
}
static void
sparc_output_addr_diff_vec (rtx vec)
{
rtx lab = XEXP (vec, 0), body = XEXP (vec, 1);
rtx base = XEXP (XEXP (body, 0), 0);
int idx, vlen = XVECLEN (body, 1);
#ifdef ASM_OUTPUT_ADDR_VEC_START
ASM_OUTPUT_ADDR_VEC_START (asm_out_file);
#endif
#ifdef ASM_OUTPUT_CASE_LABEL
ASM_OUTPUT_CASE_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (lab),
NEXT_INSN (lab));
#else
(*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (lab));
#endif
for (idx = 0; idx < vlen; idx++)
{
ASM_OUTPUT_ADDR_DIFF_ELT
(asm_out_file,
body,
CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
CODE_LABEL_NUMBER (base));
}
#ifdef ASM_OUTPUT_ADDR_VEC_END
ASM_OUTPUT_ADDR_VEC_END (asm_out_file);
#endif
}
static void
sparc_output_deferred_case_vectors (void)
{
rtx t;
int align;
if (sparc_addr_list == NULL_RTX
&& sparc_addr_diff_list == NULL_RTX)
return;
/* Align to cache line in the function's code section. */
switch_to_section (current_function_section ());
align = floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT);
if (align > 0)
ASM_OUTPUT_ALIGN (asm_out_file, align);
for (t = sparc_addr_list; t ; t = XEXP (t, 1))
sparc_output_addr_vec (XEXP (t, 0));
for (t = sparc_addr_diff_list; t ; t = XEXP (t, 1))
sparc_output_addr_diff_vec (XEXP (t, 0));
sparc_addr_list = sparc_addr_diff_list = NULL_RTX;
}
/* Return 0 if the high 32 bits of X (the low word of X, if DImode) are
unknown. Return 1 if the high bits are zero, -1 if the register is
sign extended. */
int
sparc_check_64 (rtx x, rtx_insn *insn)
{
/* If a register is set only once it is safe to ignore insns this
code does not know how to handle. The loop will either recognize
the single set and return the correct value or fail to recognize
it and return 0. */
int set_once = 0;
rtx y = x;
gcc_assert (GET_CODE (x) == REG);
if (GET_MODE (x) == DImode)
y = gen_rtx_REG (SImode, REGNO (x) + WORDS_BIG_ENDIAN);
if (flag_expensive_optimizations
&& df && DF_REG_DEF_COUNT (REGNO (y)) == 1)
set_once = 1;
if (insn == 0)
{
if (set_once)
insn = get_last_insn_anywhere ();
else
return 0;
}
while ((insn = PREV_INSN (insn)))
{
switch (GET_CODE (insn))
{
case JUMP_INSN:
case NOTE:
break;
case CODE_LABEL:
case CALL_INSN:
default:
if (! set_once)
return 0;
break;
case INSN:
{
rtx pat = PATTERN (insn);
if (GET_CODE (pat) != SET)
return 0;
if (rtx_equal_p (x, SET_DEST (pat)))
return set_extends (insn);
if (y && rtx_equal_p (y, SET_DEST (pat)))
return set_extends (insn);
if (reg_overlap_mentioned_p (SET_DEST (pat), y))
return 0;
}
}
}
return 0;
}
/* Output a wide shift instruction in V8+ mode. INSN is the instruction,
OPERANDS are its operands and OPCODE is the mnemonic to be used. */
const char *
output_v8plus_shift (rtx_insn *insn, rtx *operands, const char *opcode)
{
static char asm_code[60];
/* The scratch register is only required when the destination
register is not a 64-bit global or out register. */
if (which_alternative != 2)
operands[3] = operands[0];
/* We can only shift by constants <= 63. */
if (GET_CODE (operands[2]) == CONST_INT)
operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);
if (GET_CODE (operands[1]) == CONST_INT)
{
output_asm_insn ("mov\t%1, %3", operands);
}
else
{
output_asm_insn ("sllx\t%H1, 32, %3", operands);
if (sparc_check_64 (operands[1], insn) <= 0)
output_asm_insn ("srl\t%L1, 0, %L1", operands);
output_asm_insn ("or\t%L1, %3, %3", operands);
}
strcpy (asm_code, opcode);
if (which_alternative != 2)
return strcat (asm_code, "\t%0, %2, %L0\n\tsrlx\t%L0, 32, %H0");
else
return
strcat (asm_code, "\t%3, %2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0");
}
/* Output rtl to increment the profiler label LABELNO
for profiling a function entry. */
void
sparc_profile_hook (int labelno)
{
char buf[32];
rtx lab, fun;
fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_FUNCTION);
if (NO_PROFILE_COUNTERS)
{
emit_library_call (fun, LCT_NORMAL, VOIDmode);
}
else
{
ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
lab = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
emit_library_call (fun, LCT_NORMAL, VOIDmode, lab, Pmode);
}
}
#ifdef TARGET_SOLARIS
/* Solaris implementation of TARGET_ASM_NAMED_SECTION. */
static void
sparc_solaris_elf_asm_named_section (const char *name, unsigned int flags,
tree decl ATTRIBUTE_UNUSED)
{
if (HAVE_COMDAT_GROUP && flags & SECTION_LINKONCE)
{
solaris_elf_asm_comdat_section (name, flags, decl);
return;
}
fprintf (asm_out_file, "\t.section\t\"%s\"", name);
if (!(flags & SECTION_DEBUG))
fputs (",#alloc", asm_out_file);
if (flags & SECTION_WRITE)
fputs (",#write", asm_out_file);
if (flags & SECTION_TLS)
fputs (",#tls", asm_out_file);
if (flags & SECTION_CODE)
fputs (",#execinstr", asm_out_file);
if (flags & SECTION_NOTYPE)
;
else if (flags & SECTION_BSS)
fputs (",#nobits", asm_out_file);
else
fputs (",#progbits", asm_out_file);
fputc ('\n', asm_out_file);
}
#endif /* TARGET_SOLARIS */
/* We do not allow indirect calls to be optimized into sibling calls.
We cannot use sibling calls when delayed branches are disabled
because they will likely require the call delay slot to be filled.
Also, on SPARC 32-bit we cannot emit a sibling call when the
current function returns a structure. This is because the "unimp
after call" convention would cause the callee to return to the
wrong place. The generic code already disallows cases where the
function being called returns a structure.
It may seem strange how this last case could occur. Usually there
is code after the call which jumps to epilogue code which dumps the
return value into the struct return area. That ought to invalidate
the sibling call right? Well, in the C++ case we can end up passing
the pointer to the struct return area to a constructor (which returns
void) and then nothing else happens. Such a sibling call would look
valid without the added check here.
VxWorks PIC PLT entries require the global pointer to be initialized
on entry. We therefore can't emit sibling calls to them. */
static bool
sparc_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
{
return (decl
&& flag_delayed_branch
&& (TARGET_ARCH64 || ! cfun->returns_struct)
&& !(TARGET_VXWORKS_RTP
&& flag_pic
&& !targetm.binds_local_p (decl)));
}
/* libfunc renaming. */
static void
sparc_init_libfuncs (void)
{
if (TARGET_ARCH32)
{
/* Use the subroutines that Sun's library provides for integer
multiply and divide. The `*' prevents an underscore from
being prepended by the compiler. .umul is a little faster
than .mul. */
set_optab_libfunc (smul_optab, SImode, "*.umul");
set_optab_libfunc (sdiv_optab, SImode, "*.div");
set_optab_libfunc (udiv_optab, SImode, "*.udiv");
set_optab_libfunc (smod_optab, SImode, "*.rem");
set_optab_libfunc (umod_optab, SImode, "*.urem");
/* TFmode arithmetic. These names are part of the SPARC 32bit ABI. */
set_optab_libfunc (add_optab, TFmode, "_Q_add");
set_optab_libfunc (sub_optab, TFmode, "_Q_sub");
set_optab_libfunc (neg_optab, TFmode, "_Q_neg");
set_optab_libfunc (smul_optab, TFmode, "_Q_mul");
set_optab_libfunc (sdiv_optab, TFmode, "_Q_div");
/* We can define the TFmode sqrt optab only if TARGET_FPU. This
is because with soft-float, the SFmode and DFmode sqrt
instructions will be absent, and the compiler will notice and
try to use the TFmode sqrt instruction for calls to the
builtin function sqrt, but this fails. */
if (TARGET_FPU)
set_optab_libfunc (sqrt_optab, TFmode, "_Q_sqrt");
set_optab_libfunc (eq_optab, TFmode, "_Q_feq");
set_optab_libfunc (ne_optab, TFmode, "_Q_fne");
set_optab_libfunc (gt_optab, TFmode, "_Q_fgt");
set_optab_libfunc (ge_optab, TFmode, "_Q_fge");
set_optab_libfunc (lt_optab, TFmode, "_Q_flt");
set_optab_libfunc (le_optab, TFmode, "_Q_fle");
set_conv_libfunc (sext_optab, TFmode, SFmode, "_Q_stoq");
set_conv_libfunc (sext_optab, TFmode, DFmode, "_Q_dtoq");
set_conv_libfunc (trunc_optab, SFmode, TFmode, "_Q_qtos");
set_conv_libfunc (trunc_optab, DFmode, TFmode, "_Q_qtod");
set_conv_libfunc (sfix_optab, SImode, TFmode, "_Q_qtoi");
set_conv_libfunc (ufix_optab, SImode, TFmode, "_Q_qtou");
set_conv_libfunc (sfloat_optab, TFmode, SImode, "_Q_itoq");
set_conv_libfunc (ufloat_optab, TFmode, SImode, "_Q_utoq");
if (DITF_CONVERSION_LIBFUNCS)
{
set_conv_libfunc (sfix_optab, DImode, TFmode, "_Q_qtoll");
set_conv_libfunc (ufix_optab, DImode, TFmode, "_Q_qtoull");
set_conv_libfunc (sfloat_optab, TFmode, DImode, "_Q_lltoq");
set_conv_libfunc (ufloat_optab, TFmode, DImode, "_Q_ulltoq");
}
if (SUN_CONVERSION_LIBFUNCS)
{
set_conv_libfunc (sfix_optab, DImode, SFmode, "__ftoll");
set_conv_libfunc (ufix_optab, DImode, SFmode, "__ftoull");
set_conv_libfunc (sfix_optab, DImode, DFmode, "__dtoll");
set_conv_libfunc (ufix_optab, DImode, DFmode, "__dtoull");
}
}
if (TARGET_ARCH64)
{
/* In the SPARC 64bit ABI, SImode multiply and divide functions
do not exist in the library. Make sure the compiler does not
emit calls to them by accident. (It should always use the
hardware instructions.) */
set_optab_libfunc (smul_optab, SImode, 0);
set_optab_libfunc (sdiv_optab, SImode, 0);
set_optab_libfunc (udiv_optab, SImode, 0);
set_optab_libfunc (smod_optab, SImode, 0);
set_optab_libfunc (umod_optab, SImode, 0);
if (SUN_INTEGER_MULTIPLY_64)
{
set_optab_libfunc (smul_optab, DImode, "__mul64");
set_optab_libfunc (sdiv_optab, DImode, "__div64");
set_optab_libfunc (udiv_optab, DImode, "__udiv64");
set_optab_libfunc (smod_optab, DImode, "__rem64");
set_optab_libfunc (umod_optab, DImode, "__urem64");
}
if (SUN_CONVERSION_LIBFUNCS)
{
set_conv_libfunc (sfix_optab, DImode, SFmode, "__ftol");
set_conv_libfunc (ufix_optab, DImode, SFmode, "__ftoul");
set_conv_libfunc (sfix_optab, DImode, DFmode, "__dtol");
set_conv_libfunc (ufix_optab, DImode, DFmode, "__dtoul");
}
}
}
/* SPARC builtins. */
enum sparc_builtins
{
/* FPU builtins. */
SPARC_BUILTIN_LDFSR,
SPARC_BUILTIN_STFSR,
/* VIS 1.0 builtins. */
SPARC_BUILTIN_FPACK16,
SPARC_BUILTIN_FPACK32,
SPARC_BUILTIN_FPACKFIX,
SPARC_BUILTIN_FEXPAND,
SPARC_BUILTIN_FPMERGE,
SPARC_BUILTIN_FMUL8X16,
SPARC_BUILTIN_FMUL8X16AU,
SPARC_BUILTIN_FMUL8X16AL,
SPARC_BUILTIN_FMUL8SUX16,
SPARC_BUILTIN_FMUL8ULX16,
SPARC_BUILTIN_FMULD8SUX16,
SPARC_BUILTIN_FMULD8ULX16,
SPARC_BUILTIN_FALIGNDATAV4HI,
SPARC_BUILTIN_FALIGNDATAV8QI,
SPARC_BUILTIN_FALIGNDATAV2SI,
SPARC_BUILTIN_FALIGNDATADI,
SPARC_BUILTIN_WRGSR,
SPARC_BUILTIN_RDGSR,
SPARC_BUILTIN_ALIGNADDR,
SPARC_BUILTIN_ALIGNADDRL,
SPARC_BUILTIN_PDIST,
SPARC_BUILTIN_EDGE8,
SPARC_BUILTIN_EDGE8L,
SPARC_BUILTIN_EDGE16,
SPARC_BUILTIN_EDGE16L,
SPARC_BUILTIN_EDGE32,
SPARC_BUILTIN_EDGE32L,
SPARC_BUILTIN_FCMPLE16,
SPARC_BUILTIN_FCMPLE32,
SPARC_BUILTIN_FCMPNE16,
SPARC_BUILTIN_FCMPNE32,
SPARC_BUILTIN_FCMPGT16,
SPARC_BUILTIN_FCMPGT32,
SPARC_BUILTIN_FCMPEQ16,
SPARC_BUILTIN_FCMPEQ32,
SPARC_BUILTIN_FPADD16,
SPARC_BUILTIN_FPADD16S,
SPARC_BUILTIN_FPADD32,
SPARC_BUILTIN_FPADD32S,
SPARC_BUILTIN_FPSUB16,
SPARC_BUILTIN_FPSUB16S,
SPARC_BUILTIN_FPSUB32,
SPARC_BUILTIN_FPSUB32S,
SPARC_BUILTIN_ARRAY8,
SPARC_BUILTIN_ARRAY16,
SPARC_BUILTIN_ARRAY32,
/* VIS 2.0 builtins. */
SPARC_BUILTIN_EDGE8N,
SPARC_BUILTIN_EDGE8LN,
SPARC_BUILTIN_EDGE16N,
SPARC_BUILTIN_EDGE16LN,
SPARC_BUILTIN_EDGE32N,
SPARC_BUILTIN_EDGE32LN,
SPARC_BUILTIN_BMASK,
SPARC_BUILTIN_BSHUFFLEV4HI,
SPARC_BUILTIN_BSHUFFLEV8QI,
SPARC_BUILTIN_BSHUFFLEV2SI,
SPARC_BUILTIN_BSHUFFLEDI,
/* VIS 3.0 builtins. */
SPARC_BUILTIN_CMASK8,
SPARC_BUILTIN_CMASK16,
SPARC_BUILTIN_CMASK32,
SPARC_BUILTIN_FCHKSM16,
SPARC_BUILTIN_FSLL16,
SPARC_BUILTIN_FSLAS16,
SPARC_BUILTIN_FSRL16,
SPARC_BUILTIN_FSRA16,
SPARC_BUILTIN_FSLL32,
SPARC_BUILTIN_FSLAS32,
SPARC_BUILTIN_FSRL32,
SPARC_BUILTIN_FSRA32,
SPARC_BUILTIN_PDISTN,
SPARC_BUILTIN_FMEAN16,
SPARC_BUILTIN_FPADD64,
SPARC_BUILTIN_FPSUB64,
SPARC_BUILTIN_FPADDS16,
SPARC_BUILTIN_FPADDS16S,
SPARC_BUILTIN_FPSUBS16,
SPARC_BUILTIN_FPSUBS16S,
SPARC_BUILTIN_FPADDS32,
SPARC_BUILTIN_FPADDS32S,
SPARC_BUILTIN_FPSUBS32,
SPARC_BUILTIN_FPSUBS32S,
SPARC_BUILTIN_FUCMPLE8,
SPARC_BUILTIN_FUCMPNE8,
SPARC_BUILTIN_FUCMPGT8,
SPARC_BUILTIN_FUCMPEQ8,
SPARC_BUILTIN_FHADDS,
SPARC_BUILTIN_FHADDD,
SPARC_BUILTIN_FHSUBS,
SPARC_BUILTIN_FHSUBD,
SPARC_BUILTIN_FNHADDS,
SPARC_BUILTIN_FNHADDD,
SPARC_BUILTIN_UMULXHI,
SPARC_BUILTIN_XMULX,
SPARC_BUILTIN_XMULXHI,
/* VIS 4.0 builtins. */
SPARC_BUILTIN_FPADD8,
SPARC_BUILTIN_FPADDS8,
SPARC_BUILTIN_FPADDUS8,
SPARC_BUILTIN_FPADDUS16,
SPARC_BUILTIN_FPCMPLE8,
SPARC_BUILTIN_FPCMPGT8,
SPARC_BUILTIN_FPCMPULE16,
SPARC_BUILTIN_FPCMPUGT16,
SPARC_BUILTIN_FPCMPULE32,
SPARC_BUILTIN_FPCMPUGT32,
SPARC_BUILTIN_FPMAX8,
SPARC_BUILTIN_FPMAX16,
SPARC_BUILTIN_FPMAX32,
SPARC_BUILTIN_FPMAXU8,
SPARC_BUILTIN_FPMAXU16,
SPARC_BUILTIN_FPMAXU32,
SPARC_BUILTIN_FPMIN8,
SPARC_BUILTIN_FPMIN16,
SPARC_BUILTIN_FPMIN32,
SPARC_BUILTIN_FPMINU8,
SPARC_BUILTIN_FPMINU16,
SPARC_BUILTIN_FPMINU32,
SPARC_BUILTIN_FPSUB8,
SPARC_BUILTIN_FPSUBS8,
SPARC_BUILTIN_FPSUBUS8,
SPARC_BUILTIN_FPSUBUS16,
/* VIS 4.0B builtins. */
/* Note that all the DICTUNPACK* entries should be kept
contiguous. */
SPARC_BUILTIN_FIRST_DICTUNPACK,
SPARC_BUILTIN_DICTUNPACK8 = SPARC_BUILTIN_FIRST_DICTUNPACK,
SPARC_BUILTIN_DICTUNPACK16,
SPARC_BUILTIN_DICTUNPACK32,
SPARC_BUILTIN_LAST_DICTUNPACK = SPARC_BUILTIN_DICTUNPACK32,
/* Note that all the FPCMP*SHL entries should be kept
contiguous. */
SPARC_BUILTIN_FIRST_FPCMPSHL,
SPARC_BUILTIN_FPCMPLE8SHL = SPARC_BUILTIN_FIRST_FPCMPSHL,
SPARC_BUILTIN_FPCMPGT8SHL,
SPARC_BUILTIN_FPCMPEQ8SHL,
SPARC_BUILTIN_FPCMPNE8SHL,
SPARC_BUILTIN_FPCMPLE16SHL,
SPARC_BUILTIN_FPCMPGT16SHL,
SPARC_BUILTIN_FPCMPEQ16SHL,
SPARC_BUILTIN_FPCMPNE16SHL,
SPARC_BUILTIN_FPCMPLE32SHL,
SPARC_BUILTIN_FPCMPGT32SHL,
SPARC_BUILTIN_FPCMPEQ32SHL,
SPARC_BUILTIN_FPCMPNE32SHL,
SPARC_BUILTIN_FPCMPULE8SHL,
SPARC_BUILTIN_FPCMPUGT8SHL,
SPARC_BUILTIN_FPCMPULE16SHL,
SPARC_BUILTIN_FPCMPUGT16SHL,
SPARC_BUILTIN_FPCMPULE32SHL,
SPARC_BUILTIN_FPCMPUGT32SHL,
SPARC_BUILTIN_FPCMPDE8SHL,
SPARC_BUILTIN_FPCMPDE16SHL,
SPARC_BUILTIN_FPCMPDE32SHL,
SPARC_BUILTIN_FPCMPUR8SHL,
SPARC_BUILTIN_FPCMPUR16SHL,
SPARC_BUILTIN_FPCMPUR32SHL,
SPARC_BUILTIN_LAST_FPCMPSHL = SPARC_BUILTIN_FPCMPUR32SHL,
SPARC_BUILTIN_MAX
};
static GTY (()) tree sparc_builtins[(int) SPARC_BUILTIN_MAX];
static enum insn_code sparc_builtins_icode[(int) SPARC_BUILTIN_MAX];
/* Return true if OPVAL can be used for operand OPNUM of instruction ICODE.
The instruction should require a constant operand of some sort. The
function prints an error if OPVAL is not valid. */
static int
check_constant_argument (enum insn_code icode, int opnum, rtx opval)
{
if (GET_CODE (opval) != CONST_INT)
{
error ("%qs expects a constant argument", insn_data[icode].name);
return false;
}
if (!(*insn_data[icode].operand[opnum].predicate) (opval, VOIDmode))
{
error ("constant argument out of range for %qs", insn_data[icode].name);
return false;
}
return true;
}
/* Add a SPARC builtin function with NAME, ICODE, CODE and TYPE. Return the
function decl or NULL_TREE if the builtin was not added. */
static tree
def_builtin (const char *name, enum insn_code icode, enum sparc_builtins code,
tree type)
{
tree t
= add_builtin_function (name, type, code, BUILT_IN_MD, NULL, NULL_TREE);
if (t)
{
sparc_builtins[code] = t;
sparc_builtins_icode[code] = icode;
}
return t;
}
/* Likewise, but also marks the function as "const". */
static tree
def_builtin_const (const char *name, enum insn_code icode,
enum sparc_builtins code, tree type)
{
tree t = def_builtin (name, icode, code, type);
if (t)
TREE_READONLY (t) = 1;
return t;
}
/* Implement the TARGET_INIT_BUILTINS target hook.
Create builtin functions for special SPARC instructions. */
static void
sparc_init_builtins (void)
{
if (TARGET_FPU)
sparc_fpu_init_builtins ();
if (TARGET_VIS)
sparc_vis_init_builtins ();
}
/* Create builtin functions for FPU instructions. */
static void
sparc_fpu_init_builtins (void)
{
tree ftype
= build_function_type_list (void_type_node,
build_pointer_type (unsigned_type_node), 0);
def_builtin ("__builtin_load_fsr", CODE_FOR_ldfsr,
SPARC_BUILTIN_LDFSR, ftype);
def_builtin ("__builtin_store_fsr", CODE_FOR_stfsr,
SPARC_BUILTIN_STFSR, ftype);
}
/* Create builtin functions for VIS instructions. */
static void
sparc_vis_init_builtins (void)
{
tree v4qi = build_vector_type (unsigned_intQI_type_node, 4);
tree v8qi = build_vector_type (unsigned_intQI_type_node, 8);
tree v4hi = build_vector_type (intHI_type_node, 4);
tree v2hi = build_vector_type (intHI_type_node, 2);
tree v2si = build_vector_type (intSI_type_node, 2);
tree v1si = build_vector_type (intSI_type_node, 1);
tree v4qi_ftype_v4hi = build_function_type_list (v4qi, v4hi, 0);
tree v8qi_ftype_v2si_v8qi = build_function_type_list (v8qi, v2si, v8qi, 0);
tree v2hi_ftype_v2si = build_function_type_list (v2hi, v2si, 0);
tree v4hi_ftype_v4qi = build_function_type_list (v4hi, v4qi, 0);
tree v8qi_ftype_v4qi_v4qi = build_function_type_list (v8qi, v4qi, v4qi, 0);
tree v4hi_ftype_v4qi_v4hi = build_function_type_list (v4hi, v4qi, v4hi, 0);
tree v4hi_ftype_v4qi_v2hi = build_function_type_list (v4hi, v4qi, v2hi, 0);
tree v2si_ftype_v4qi_v2hi = build_function_type_list (v2si, v4qi, v2hi, 0);
tree v4hi_ftype_v8qi_v4hi = build_function_type_list (v4hi, v8qi, v4hi, 0);
tree v4hi_ftype_v4hi_v4hi = build_function_type_list (v4hi, v4hi, v4hi, 0);
tree v2si_ftype_v2si_v2si = build_function_type_list (v2si, v2si, v2si, 0);
tree v8qi_ftype_v8qi_v8qi = build_function_type_list (v8qi, v8qi, v8qi, 0);
tree v2hi_ftype_v2hi_v2hi = build_function_type_list (v2hi, v2hi, v2hi, 0);
tree v1si_ftype_v1si_v1si = build_function_type_list (v1si, v1si, v1si, 0);
tree di_ftype_v8qi_v8qi_di = build_function_type_list (intDI_type_node,
v8qi, v8qi,
intDI_type_node, 0);
tree di_ftype_v8qi_v8qi = build_function_type_list (intDI_type_node,
v8qi, v8qi, 0);
tree si_ftype_v8qi_v8qi = build_function_type_list (intSI_type_node,
v8qi, v8qi, 0);
tree v8qi_ftype_df_si = build_function_type_list (v8qi, double_type_node,
intSI_type_node, 0);
tree v4hi_ftype_df_si = build_function_type_list (v4hi, double_type_node,
intSI_type_node, 0);
tree v2si_ftype_df_si = build_function_type_list (v2si, double_type_node,
intDI_type_node, 0);
tree di_ftype_di_di = build_function_type_list (intDI_type_node,
intDI_type_node,
intDI_type_node, 0);
tree si_ftype_si_si = build_function_type_list (intSI_type_node,
intSI_type_node,
intSI_type_node, 0);
tree ptr_ftype_ptr_si = build_function_type_list (ptr_type_node,
ptr_type_node,
intSI_type_node, 0);
tree ptr_ftype_ptr_di = build_function_type_list (ptr_type_node,
ptr_type_node,
intDI_type_node, 0);
tree si_ftype_ptr_ptr = build_function_type_list (intSI_type_node,
ptr_type_node,
ptr_type_node, 0);
tree di_ftype_ptr_ptr = build_function_type_list (intDI_type_node,
ptr_type_node,
ptr_type_node, 0);
tree si_ftype_v4hi_v4hi = build_function_type_list (intSI_type_node,
v4hi, v4hi, 0);
tree si_ftype_v2si_v2si = build_function_type_list (intSI_type_node,
v2si, v2si, 0);
tree di_ftype_v4hi_v4hi = build_function_type_list (intDI_type_node,
v4hi, v4hi, 0);
tree di_ftype_v2si_v2si = build_function_type_list (intDI_type_node,
v2si, v2si, 0);
tree void_ftype_di = build_function_type_list (void_type_node,
intDI_type_node, 0);
tree di_ftype_void = build_function_type_list (intDI_type_node,
void_type_node, 0);
tree void_ftype_si = build_function_type_list (void_type_node,
intSI_type_node, 0);
tree sf_ftype_sf_sf = build_function_type_list (float_type_node,
float_type_node,
float_type_node, 0);
tree df_ftype_df_df = build_function_type_list (double_type_node,
double_type_node,
double_type_node, 0);
/* Packing and expanding vectors. */
def_builtin ("__builtin_vis_fpack16", CODE_FOR_fpack16_vis,
SPARC_BUILTIN_FPACK16, v4qi_ftype_v4hi);
def_builtin ("__builtin_vis_fpack32", CODE_FOR_fpack32_vis,
SPARC_BUILTIN_FPACK32, v8qi_ftype_v2si_v8qi);
def_builtin ("__builtin_vis_fpackfix", CODE_FOR_fpackfix_vis,
SPARC_BUILTIN_FPACKFIX, v2hi_ftype_v2si);
def_builtin_const ("__builtin_vis_fexpand", CODE_FOR_fexpand_vis,
SPARC_BUILTIN_FEXPAND, v4hi_ftype_v4qi);
def_builtin_const ("__builtin_vis_fpmerge", CODE_FOR_fpmerge_vis,
SPARC_BUILTIN_FPMERGE, v8qi_ftype_v4qi_v4qi);
/* Multiplications. */
def_builtin_const ("__builtin_vis_fmul8x16", CODE_FOR_fmul8x16_vis,
SPARC_BUILTIN_FMUL8X16, v4hi_ftype_v4qi_v4hi);
def_builtin_const ("__builtin_vis_fmul8x16au", CODE_FOR_fmul8x16au_vis,
SPARC_BUILTIN_FMUL8X16AU, v4hi_ftype_v4qi_v2hi);
def_builtin_const ("__builtin_vis_fmul8x16al", CODE_FOR_fmul8x16al_vis,
SPARC_BUILTIN_FMUL8X16AL, v4hi_ftype_v4qi_v2hi);
def_builtin_const ("__builtin_vis_fmul8sux16", CODE_FOR_fmul8sux16_vis,
SPARC_BUILTIN_FMUL8SUX16, v4hi_ftype_v8qi_v4hi);
def_builtin_const ("__builtin_vis_fmul8ulx16", CODE_FOR_fmul8ulx16_vis,
SPARC_BUILTIN_FMUL8ULX16, v4hi_ftype_v8qi_v4hi);
def_builtin_const ("__builtin_vis_fmuld8sux16", CODE_FOR_fmuld8sux16_vis,
SPARC_BUILTIN_FMULD8SUX16, v2si_ftype_v4qi_v2hi);
def_builtin_const ("__builtin_vis_fmuld8ulx16", CODE_FOR_fmuld8ulx16_vis,
SPARC_BUILTIN_FMULD8ULX16, v2si_ftype_v4qi_v2hi);
/* Data aligning. */
def_builtin ("__builtin_vis_faligndatav4hi", CODE_FOR_faligndatav4hi_vis,
SPARC_BUILTIN_FALIGNDATAV4HI, v4hi_ftype_v4hi_v4hi);
def_builtin ("__builtin_vis_faligndatav8qi", CODE_FOR_faligndatav8qi_vis,
SPARC_BUILTIN_FALIGNDATAV8QI, v8qi_ftype_v8qi_v8qi);
def_builtin ("__builtin_vis_faligndatav2si", CODE_FOR_faligndatav2si_vis,
SPARC_BUILTIN_FALIGNDATAV2SI, v2si_ftype_v2si_v2si);
def_builtin ("__builtin_vis_faligndatadi", CODE_FOR_faligndatav1di_vis,
SPARC_BUILTIN_FALIGNDATADI, di_ftype_di_di);
def_builtin ("__builtin_vis_write_gsr", CODE_FOR_wrgsr_vis,
SPARC_BUILTIN_WRGSR, void_ftype_di);
def_builtin ("__builtin_vis_read_gsr", CODE_FOR_rdgsr_vis,
SPARC_BUILTIN_RDGSR, di_ftype_void);
if (TARGET_ARCH64)
{
def_builtin ("__builtin_vis_alignaddr", CODE_FOR_alignaddrdi_vis,
SPARC_BUILTIN_ALIGNADDR, ptr_ftype_ptr_di);
def_builtin ("__builtin_vis_alignaddrl", CODE_FOR_alignaddrldi_vis,
SPARC_BUILTIN_ALIGNADDRL, ptr_ftype_ptr_di);
}
else
{
def_builtin ("__builtin_vis_alignaddr", CODE_FOR_alignaddrsi_vis,
SPARC_BUILTIN_ALIGNADDR, ptr_ftype_ptr_si);
def_builtin ("__builtin_vis_alignaddrl", CODE_FOR_alignaddrlsi_vis,
SPARC_BUILTIN_ALIGNADDRL, ptr_ftype_ptr_si);
}
/* Pixel distance. */
def_builtin_const ("__builtin_vis_pdist", CODE_FOR_pdist_vis,
SPARC_BUILTIN_PDIST, di_ftype_v8qi_v8qi_di);
/* Edge handling. */
if (TARGET_ARCH64)
{
def_builtin_const ("__builtin_vis_edge8", CODE_FOR_edge8di_vis,
SPARC_BUILTIN_EDGE8, di_ftype_ptr_ptr);
def_builtin_const ("__builtin_vis_edge8l", CODE_FOR_edge8ldi_vis,
SPARC_BUILTIN_EDGE8L, di_ftype_ptr_ptr);
def_builtin_const ("__builtin_vis_edge16", CODE_FOR_edge16di_vis,
SPARC_BUILTIN_EDGE16, di_ftype_ptr_ptr);
def_builtin_const ("__builtin_vis_edge16l", CODE_FOR_edge16ldi_vis,
SPARC_BUILTIN_EDGE16L, di_ftype_ptr_ptr);
def_builtin_const ("__builtin_vis_edge32", CODE_FOR_edge32di_vis,
SPARC_BUILTIN_EDGE32, di_ftype_ptr_ptr);
def_builtin_const ("__builtin_vis_edge32l", CODE_FOR_edge32ldi_vis,
SPARC_BUILTIN_EDGE32L, di_ftype_ptr_ptr);
}
else
{
def_builtin_const ("__builtin_vis_edge8", CODE_FOR_edge8si_vis,
SPARC_BUILTIN_EDGE8, si_ftype_ptr_ptr);
def_builtin_const ("__builtin_vis_edge8l", CODE_FOR_edge8lsi_vis,
SPARC_BUILTIN_EDGE8L, si_ftype_ptr_ptr);
def_builtin_const ("__builtin_vis_edge16", CODE_FOR_edge16si_vis,
SPARC_BUILTIN_EDGE16, si_ftype_ptr_ptr);
def_builtin_const ("__builtin_vis_edge16l", CODE_FOR_edge16lsi_vis,
SPARC_BUILTIN_EDGE16L, si_ftype_ptr_ptr);
def_builtin_const ("__builtin_vis_edge32", CODE_FOR_edge32si_vis,
SPARC_BUILTIN_EDGE32, si_ftype_ptr_ptr);
def_builtin_const ("__builtin_vis_edge32l", CODE_FOR_edge32lsi_vis,
SPARC_BUILTIN_EDGE32L, si_ftype_ptr_ptr);
}
/* Pixel compare. */
if (TARGET_ARCH64)
{
def_builtin_const ("__builtin_vis_fcmple16", CODE_FOR_fcmple16di_vis,
SPARC_BUILTIN_FCMPLE16, di_ftype_v4hi_v4hi);
def_builtin_const ("__builtin_vis_fcmple32", CODE_FOR_fcmple32di_vis,
SPARC_BUILTIN_FCMPLE32, di_ftype_v2si_v2si);
def_builtin_const ("__builtin_vis_fcmpne16", CODE_FOR_fcmpne16di_vis,
SPARC_BUILTIN_FCMPNE16, di_ftype_v4hi_v4hi);
def_builtin_const ("__builtin_vis_fcmpne32", CODE_FOR_fcmpne32di_vis,
SPARC_BUILTIN_FCMPNE32, di_ftype_v2si_v2si);
def_builtin_const ("__builtin_vis_fcmpgt16", CODE_FOR_fcmpgt16di_vis,
SPARC_BUILTIN_FCMPGT16, di_ftype_v4hi_v4hi);
def_builtin_const ("__builtin_vis_fcmpgt32", CODE_FOR_fcmpgt32di_vis,
SPARC_BUILTIN_FCMPGT32, di_ftype_v2si_v2si);
def_builtin_const ("__builtin_vis_fcmpeq16", CODE_FOR_fcmpeq16di_vis,
SPARC_BUILTIN_FCMPEQ16, di_ftype_v4hi_v4hi);
def_builtin_const ("__builtin_vis_fcmpeq32", CODE_FOR_fcmpeq32di_vis,
SPARC_BUILTIN_FCMPEQ32, di_ftype_v2si_v2si);
}
else
{
def_builtin_const ("__builtin_vis_fcmple16", CODE_FOR_fcmple16si_vis,
SPARC_BUILTIN_FCMPLE16, si_ftype_v4hi_v4hi);
def_builtin_const ("__builtin_vis_fcmple32", CODE_FOR_fcmple32si_vis,
SPARC_BUILTIN_FCMPLE32, si_ftype_v2si_v2si);
def_builtin_const ("__builtin_vis_fcmpne16", CODE_FOR_fcmpne16si_vis,
SPARC_BUILTIN_FCMPNE16, si_ftype_v4hi_v4hi);
def_builtin_const ("__builtin_vis_fcmpne32", CODE_FOR_fcmpne32si_vis,
SPARC_BUILTIN_FCMPNE32, si_ftype_v2si_v2si);
def_builtin_const ("__builtin_vis_fcmpgt16", CODE_FOR_fcmpgt16si_vis,
SPARC_BUILTIN_FCMPGT16, si_ftype_v4hi_v4hi);
def_builtin_const ("__builtin_vis_fcmpgt32", CODE_FOR_fcmpgt32si_vis,
SPARC_BUILTIN_FCMPGT32, si_ftype_v2si_v2si);
def_builtin_const ("__builtin_vis_fcmpeq16", CODE_FOR_fcmpeq16si_vis,
SPARC_BUILTIN_FCMPEQ16, si_ftype_v4hi_v4hi);
def_builtin_const ("__builtin_vis_fcmpeq32", CODE_FOR_fcmpeq32si_vis,
SPARC_BUILTIN_FCMPEQ32, si_ftype_v2si_v2si);
}
/* Addition and subtraction. */
def_builtin_const ("__builtin_vis_fpadd16", CODE_FOR_addv4hi3,
SPARC_BUILTIN_FPADD16, v4hi_ftype_v4hi_v4hi);
def_builtin_const ("__builtin_vis_fpadd16s", CODE_FOR_addv2hi3,
SPARC_BUILTIN_FPADD16S, v2hi_ftype_v2hi_v2hi);
def_builtin_const ("__builtin_vis_fpadd32", CODE_FOR_addv2si3,
SPARC_BUILTIN_FPADD32, v2si_ftype_v2si_v2si);
def_builtin_const ("__builtin_vis_fpadd32s", CODE_FOR_addv1si3,
SPARC_BUILTIN_FPADD32S, v1si_ftype_v1si_v1si);
def_builtin_const ("__builtin_vis_fpsub16", CODE_FOR_subv4hi3,
SPARC_BUILTIN_FPSUB16, v4hi_ftype_v4hi_v4hi);
def_builtin_const ("__builtin_vis_fpsub16s", CODE_FOR_subv2hi3,
SPARC_BUILTIN_FPSUB16S, v2hi_ftype_v2hi_v2hi);
def_builtin_const ("__builtin_vis_fpsub32", CODE_FOR_subv2si3,
SPARC_BUILTIN_FPSUB32, v2si_ftype_v2si_v2si);
def_builtin_const ("__builtin_vis_fpsub32s", CODE_FOR_subv1si3,
SPARC_BUILTIN_FPSUB32S, v1si_ftype_v1si_v1si);
/* Three-dimensional array addressing. */
if (TARGET_ARCH64)
{
def_builtin_const ("__builtin_vis_array8", CODE_FOR_array8di_vis,
SPARC_BUILTIN_ARRAY8, di_ftype_di_di);
def_builtin_const ("__builtin_vis_array16", CODE_FOR_array16di_vis,
SPARC_BUILTIN_ARRAY16, di_ftype_di_di);
def_builtin_const ("__builtin_vis_array32", CODE_FOR_array32di_vis,
SPARC_BUILTIN_ARRAY32, di_ftype_di_di);
}
else
{
def_builtin_const ("__builtin_vis_array8", CODE_FOR_array8si_vis,
SPARC_BUILTIN_ARRAY8, si_ftype_si_si);
def_builtin_const ("__builtin_vis_array16", CODE_FOR_array16si_vis,
SPARC_BUILTIN_ARRAY16, si_ftype_si_si);
def_builtin_const ("__builtin_vis_array32", CODE_FOR_array32si_vis,
SPARC_BUILTIN_ARRAY32, si_ftype_si_si);
}
if (TARGET_VIS2)
{
/* Edge handling. */
if (TARGET_ARCH64)
{
def_builtin_const ("__builtin_vis_edge8n", CODE_FOR_edge8ndi_vis,
SPARC_BUILTIN_EDGE8N, di_ftype_ptr_ptr);
def_builtin_const ("__builtin_vis_edge8ln", CODE_FOR_edge8lndi_vis,
SPARC_BUILTIN_EDGE8LN, di_ftype_ptr_ptr);
def_builtin_const ("__builtin_vis_edge16n", CODE_FOR_edge16ndi_vis,
SPARC_BUILTIN_EDGE16N, di_ftype_ptr_ptr);
def_builtin_const ("__builtin_vis_edge16ln", CODE_FOR_edge16lndi_vis,
SPARC_BUILTIN_EDGE16LN, di_ftype_ptr_ptr);
def_builtin_const ("__builtin_vis_edge32n", CODE_FOR_edge32ndi_vis,
SPARC_BUILTIN_EDGE32N, di_ftype_ptr_ptr);
def_builtin_const ("__builtin_vis_edge32ln", CODE_FOR_edge32lndi_vis,
SPARC_BUILTIN_EDGE32LN, di_ftype_ptr_ptr);
}
else
{
def_builtin_const ("__builtin_vis_edge8n", CODE_FOR_edge8nsi_vis,
SPARC_BUILTIN_EDGE8N, si_ftype_ptr_ptr);
def_builtin_const ("__builtin_vis_edge8ln", CODE_FOR_edge8lnsi_vis,
SPARC_BUILTIN_EDGE8LN, si_ftype_ptr_ptr);
def_builtin_const ("__builtin_vis_edge16n", CODE_FOR_edge16nsi_vis,
SPARC_BUILTIN_EDGE16N, si_ftype_ptr_ptr);
def_builtin_const ("__builtin_vis_edge16ln", CODE_FOR_edge16lnsi_vis,
SPARC_BUILTIN_EDGE16LN, si_ftype_ptr_ptr);
def_builtin_const ("__builtin_vis_edge32n", CODE_FOR_edge32nsi_vis,
SPARC_BUILTIN_EDGE32N, si_ftype_ptr_ptr);
def_builtin_const ("__builtin_vis_edge32ln", CODE_FOR_edge32lnsi_vis,
SPARC_BUILTIN_EDGE32LN, si_ftype_ptr_ptr);
}
/* Byte mask and shuffle. */
if (TARGET_ARCH64)
def_builtin ("__builtin_vis_bmask", CODE_FOR_bmaskdi_vis,
SPARC_BUILTIN_BMASK, di_ftype_di_di);
else
def_builtin ("__builtin_vis_bmask", CODE_FOR_bmasksi_vis,
SPARC_BUILTIN_BMASK, si_ftype_si_si);
def_builtin ("__builtin_vis_bshufflev4hi", CODE_FOR_bshufflev4hi_vis,
SPARC_BUILTIN_BSHUFFLEV4HI, v4hi_ftype_v4hi_v4hi);
def_builtin ("__builtin_vis_bshufflev8qi", CODE_FOR_bshufflev8qi_vis,
SPARC_BUILTIN_BSHUFFLEV8QI, v8qi_ftype_v8qi_v8qi);
def_builtin ("__builtin_vis_bshufflev2si", CODE_FOR_bshufflev2si_vis,
SPARC_BUILTIN_BSHUFFLEV2SI, v2si_ftype_v2si_v2si);
def_builtin ("__builtin_vis_bshuffledi", CODE_FOR_bshufflev1di_vis,
SPARC_BUILTIN_BSHUFFLEDI, di_ftype_di_di);
}
if (TARGET_VIS3)
{
if (TARGET_ARCH64)
{
def_builtin ("__builtin_vis_cmask8", CODE_FOR_cmask8di_vis,
SPARC_BUILTIN_CMASK8, void_ftype_di);
def_builtin ("__builtin_vis_cmask16", CODE_FOR_cmask16di_vis,
SPARC_BUILTIN_CMASK16, void_ftype_di);
def_builtin ("__builtin_vis_cmask32", CODE_FOR_cmask32di_vis,
SPARC_BUILTIN_CMASK32, void_ftype_di);
}
else
{
def_builtin ("__builtin_vis_cmask8", CODE_FOR_cmask8si_vis,
SPARC_BUILTIN_CMASK8, void_ftype_si);
def_builtin ("__builtin_vis_cmask16", CODE_FOR_cmask16si_vis,
SPARC_BUILTIN_CMASK16, void_ftype_si);
def_builtin ("__builtin_vis_cmask32", CODE_FOR_cmask32si_vis,
SPARC_BUILTIN_CMASK32, void_ftype_si);
}
def_builtin_const ("__builtin_vis_fchksm16", CODE_FOR_fchksm16_vis,
SPARC_BUILTIN_FCHKSM16, v4hi_ftype_v4hi_v4hi);
def_builtin_const ("__builtin_vis_fsll16", CODE_FOR_vashlv4hi3,
SPARC_BUILTIN_FSLL16, v4hi_ftype_v4hi_v4hi);
def_builtin_const ("__builtin_vis_fslas16", CODE_FOR_vssashlv4hi3,
SPARC_BUILTIN_FSLAS16, v4hi_ftype_v4hi_v4hi);
def_builtin_const ("__builtin_vis_fsrl16", CODE_FOR_vlshrv4hi3,
SPARC_BUILTIN_FSRL16, v4hi_ftype_v4hi_v4hi);
def_builtin_const ("__builtin_vis_fsra16", CODE_FOR_vashrv4hi3,
SPARC_BUILTIN_FSRA16, v4hi_ftype_v4hi_v4hi);
def_builtin_const ("__builtin_vis_fsll32", CODE_FOR_vashlv2si3,
SPARC_BUILTIN_FSLL32, v2si_ftype_v2si_v2si);
def_builtin_const ("__builtin_vis_fslas32", CODE_FOR_vssashlv2si3,
SPARC_BUILTIN_FSLAS32, v2si_ftype_v2si_v2si);
def_builtin_const ("__builtin_vis_fsrl32", CODE_FOR_vlshrv2si3,
SPARC_BUILTIN_FSRL32, v2si_ftype_v2si_v2si);
def_builtin_const ("__builtin_vis_fsra32", CODE_FOR_vashrv2si3,
SPARC_BUILTIN_FSRA32, v2si_ftype_v2si_v2si);
if (TARGET_ARCH64)
def_builtin_const ("__builtin_vis_pdistn", CODE_FOR_pdistndi_vis,
SPARC_BUILTIN_PDISTN, di_ftype_v8qi_v8qi);
else
def_builtin_const ("__builtin_vis_pdistn", CODE_FOR_pdistnsi_vis,
SPARC_BUILTIN_PDISTN, si_ftype_v8qi_v8qi);
def_builtin_const ("__builtin_vis_fmean16", CODE_FOR_fmean16_vis,
SPARC_BUILTIN_FMEAN16, v4hi_ftype_v4hi_v4hi);
def_builtin_const ("__builtin_vis_fpadd64", CODE_FOR_fpadd64_vis,
SPARC_BUILTIN_FPADD64, di_ftype_di_di);
def_builtin_const ("__builtin_vis_fpsub64", CODE_FOR_fpsub64_vis,
SPARC_BUILTIN_FPSUB64, di_ftype_di_di);
def_builtin_const ("__builtin_vis_fpadds16", CODE_FOR_ssaddv4hi3,
SPARC_BUILTIN_FPADDS16, v4hi_ftype_v4hi_v4hi);
def_builtin_const ("__builtin_vis_fpadds16s", CODE_FOR_ssaddv2hi3,
SPARC_BUILTIN_FPADDS16S, v2hi_ftype_v2hi_v2hi);
def_builtin_const ("__builtin_vis_fpsubs16", CODE_FOR_sssubv4hi3,
SPARC_BUILTIN_FPSUBS16, v4hi_ftype_v4hi_v4hi);
def_builtin_const ("__builtin_vis_fpsubs16s", CODE_FOR_sssubv2hi3,
SPARC_BUILTIN_FPSUBS16S, v2hi_ftype_v2hi_v2hi);
def_builtin_const ("__builtin_vis_fpadds32", CODE_FOR_ssaddv2si3,
SPARC_BUILTIN_FPADDS32, v2si_ftype_v2si_v2si);
def_builtin_const ("__builtin_vis_fpadds32s", CODE_FOR_ssaddv1si3,
SPARC_BUILTIN_FPADDS32S, v1si_ftype_v1si_v1si);
def_builtin_const ("__builtin_vis_fpsubs32", CODE_FOR_sssubv2si3,
SPARC_BUILTIN_FPSUBS32, v2si_ftype_v2si_v2si);
def_builtin_const ("__builtin_vis_fpsubs32s", CODE_FOR_sssubv1si3,
SPARC_BUILTIN_FPSUBS32S, v1si_ftype_v1si_v1si);
if (TARGET_ARCH64)
{
def_builtin_const ("__builtin_vis_fucmple8", CODE_FOR_fucmple8di_vis,
SPARC_BUILTIN_FUCMPLE8, di_ftype_v8qi_v8qi);
def_builtin_const ("__builtin_vis_fucmpne8", CODE_FOR_fucmpne8di_vis,
SPARC_BUILTIN_FUCMPNE8, di_ftype_v8qi_v8qi);
def_builtin_const ("__builtin_vis_fucmpgt8", CODE_FOR_fucmpgt8di_vis,
SPARC_BUILTIN_FUCMPGT8, di_ftype_v8qi_v8qi);
def_builtin_const ("__builtin_vis_fucmpeq8", CODE_FOR_fucmpeq8di_vis,
SPARC_BUILTIN_FUCMPEQ8, di_ftype_v8qi_v8qi);
}
else
{
def_builtin_const ("__builtin_vis_fucmple8", CODE_FOR_fucmple8si_vis,
SPARC_BUILTIN_FUCMPLE8, si_ftype_v8qi_v8qi);
def_builtin_const ("__builtin_vis_fucmpne8", CODE_FOR_fucmpne8si_vis,
SPARC_BUILTIN_FUCMPNE8, si_ftype_v8qi_v8qi);
def_builtin_const ("__builtin_vis_fucmpgt8", CODE_FOR_fucmpgt8si_vis,
SPARC_BUILTIN_FUCMPGT8, si_ftype_v8qi_v8qi);
def_builtin_const ("__builtin_vis_fucmpeq8", CODE_FOR_fucmpeq8si_vis,
SPARC_BUILTIN_FUCMPEQ8, si_ftype_v8qi_v8qi);
}
def_builtin_const ("__builtin_vis_fhadds", CODE_FOR_fhaddsf_vis,
SPARC_BUILTIN_FHADDS, sf_ftype_sf_sf);
def_builtin_const ("__builtin_vis_fhaddd", CODE_FOR_fhadddf_vis,
SPARC_BUILTIN_FHADDD, df_ftype_df_df);
def_builtin_const ("__builtin_vis_fhsubs", CODE_FOR_fhsubsf_vis,
SPARC_BUILTIN_FHSUBS, sf_ftype_sf_sf);
def_builtin_const ("__builtin_vis_fhsubd", CODE_FOR_fhsubdf_vis,
SPARC_BUILTIN_FHSUBD, df_ftype_df_df);
def_builtin_const ("__builtin_vis_fnhadds", CODE_FOR_fnhaddsf_vis,
SPARC_BUILTIN_FNHADDS, sf_ftype_sf_sf);
def_builtin_const ("__builtin_vis_fnhaddd", CODE_FOR_fnhadddf_vis,
SPARC_BUILTIN_FNHADDD, df_ftype_df_df);
def_builtin_const ("__builtin_vis_umulxhi", CODE_FOR_umulxhi_vis,
SPARC_BUILTIN_UMULXHI, di_ftype_di_di);
def_builtin_const ("__builtin_vis_xmulx", CODE_FOR_xmulx_vis,
SPARC_BUILTIN_XMULX, di_ftype_di_di);
def_builtin_const ("__builtin_vis_xmulxhi", CODE_FOR_xmulxhi_vis,
SPARC_BUILTIN_XMULXHI, di_ftype_di_di);
}
if (TARGET_VIS4)
{
def_builtin_const ("__builtin_vis_fpadd8", CODE_FOR_addv8qi3,
SPARC_BUILTIN_FPADD8, v8qi_ftype_v8qi_v8qi);
def_builtin_const ("__builtin_vis_fpadds8", CODE_FOR_ssaddv8qi3,
SPARC_BUILTIN_FPADDS8, v8qi_ftype_v8qi_v8qi);
def_builtin_const ("__builtin_vis_fpaddus8", CODE_FOR_usaddv8qi3,
SPARC_BUILTIN_FPADDUS8, v8qi_ftype_v8qi_v8qi);
def_builtin_const ("__builtin_vis_fpaddus16", CODE_FOR_usaddv4hi3,
SPARC_BUILTIN_FPADDUS16, v4hi_ftype_v4hi_v4hi);
if (TARGET_ARCH64)
{
def_builtin_const ("__builtin_vis_fpcmple8", CODE_FOR_fpcmple8di_vis,
SPARC_BUILTIN_FPCMPLE8, di_ftype_v8qi_v8qi);
def_builtin_const ("__builtin_vis_fpcmpgt8", CODE_FOR_fpcmpgt8di_vis,
SPARC_BUILTIN_FPCMPGT8, di_ftype_v8qi_v8qi);
def_builtin_const ("__builtin_vis_fpcmpule16", CODE_FOR_fpcmpule16di_vis,
SPARC_BUILTIN_FPCMPULE16, di_ftype_v4hi_v4hi);
def_builtin_const ("__builtin_vis_fpcmpugt16", CODE_FOR_fpcmpugt16di_vis,
SPARC_BUILTIN_FPCMPUGT16, di_ftype_v4hi_v4hi);
def_builtin_const ("__builtin_vis_fpcmpule32", CODE_FOR_fpcmpule32di_vis,
SPARC_BUILTIN_FPCMPULE32, di_ftype_v2si_v2si);
def_builtin_const ("__builtin_vis_fpcmpugt32", CODE_FOR_fpcmpugt32di_vis,
SPARC_BUILTIN_FPCMPUGT32, di_ftype_v2si_v2si);
}
else
{
def_builtin_const ("__builtin_vis_fpcmple8", CODE_FOR_fpcmple8si_vis,
SPARC_BUILTIN_FPCMPLE8, si_ftype_v8qi_v8qi);
def_builtin_const ("__builtin_vis_fpcmpgt8", CODE_FOR_fpcmpgt8si_vis,
SPARC_BUILTIN_FPCMPGT8, si_ftype_v8qi_v8qi);
def_builtin_const ("__builtin_vis_fpcmpule16", CODE_FOR_fpcmpule16si_vis,
SPARC_BUILTIN_FPCMPULE16, si_ftype_v4hi_v4hi);
def_builtin_const ("__builtin_vis_fpcmpugt16", CODE_FOR_fpcmpugt16si_vis,
SPARC_BUILTIN_FPCMPUGT16, si_ftype_v4hi_v4hi);
def_builtin_const ("__builtin_vis_fpcmpule32", CODE_FOR_fpcmpule32si_vis,
SPARC_BUILTIN_FPCMPULE32, di_ftype_v2si_v2si);
def_builtin_const ("__builtin_vis_fpcmpugt32", CODE_FOR_fpcmpugt32si_vis,
SPARC_BUILTIN_FPCMPUGT32, di_ftype_v2si_v2si);
}
def_builtin_const ("__builtin_vis_fpmax8", CODE_FOR_maxv8qi3,
SPARC_BUILTIN_FPMAX8, v8qi_ftype_v8qi_v8qi);
def_builtin_const ("__builtin_vis_fpmax16", CODE_FOR_maxv4hi3,
SPARC_BUILTIN_FPMAX16, v4hi_ftype_v4hi_v4hi);
def_builtin_const ("__builtin_vis_fpmax32", CODE_FOR_maxv2si3,
SPARC_BUILTIN_FPMAX32, v2si_ftype_v2si_v2si);
def_builtin_const ("__builtin_vis_fpmaxu8", CODE_FOR_maxuv8qi3,
SPARC_BUILTIN_FPMAXU8, v8qi_ftype_v8qi_v8qi);
def_builtin_const ("__builtin_vis_fpmaxu16", CODE_FOR_maxuv4hi3,
SPARC_BUILTIN_FPMAXU16, v4hi_ftype_v4hi_v4hi);
def_builtin_const ("__builtin_vis_fpmaxu32", CODE_FOR_maxuv2si3,
SPARC_BUILTIN_FPMAXU32, v2si_ftype_v2si_v2si);
def_builtin_const ("__builtin_vis_fpmin8", CODE_FOR_minv8qi3,
SPARC_BUILTIN_FPMIN8, v8qi_ftype_v8qi_v8qi);
def_builtin_const ("__builtin_vis_fpmin16", CODE_FOR_minv4hi3,
SPARC_BUILTIN_FPMIN16, v4hi_ftype_v4hi_v4hi);
def_builtin_const ("__builtin_vis_fpmin32", CODE_FOR_minv2si3,
SPARC_BUILTIN_FPMIN32, v2si_ftype_v2si_v2si);
def_builtin_const ("__builtin_vis_fpminu8", CODE_FOR_minuv8qi3,
SPARC_BUILTIN_FPMINU8, v8qi_ftype_v8qi_v8qi);
def_builtin_const ("__builtin_vis_fpminu16", CODE_FOR_minuv4hi3,
SPARC_BUILTIN_FPMINU16, v4hi_ftype_v4hi_v4hi);
def_builtin_const ("__builtin_vis_fpminu32", CODE_FOR_minuv2si3,
SPARC_BUILTIN_FPMINU32, v2si_ftype_v2si_v2si);
def_builtin_const ("__builtin_vis_fpsub8", CODE_FOR_subv8qi3,
SPARC_BUILTIN_FPSUB8, v8qi_ftype_v8qi_v8qi);
def_builtin_const ("__builtin_vis_fpsubs8", CODE_FOR_sssubv8qi3,
SPARC_BUILTIN_FPSUBS8, v8qi_ftype_v8qi_v8qi);
def_builtin_const ("__builtin_vis_fpsubus8", CODE_FOR_ussubv8qi3,
SPARC_BUILTIN_FPSUBUS8, v8qi_ftype_v8qi_v8qi);
def_builtin_const ("__builtin_vis_fpsubus16", CODE_FOR_ussubv4hi3,
SPARC_BUILTIN_FPSUBUS16, v4hi_ftype_v4hi_v4hi);
}
if (TARGET_VIS4B)
{
def_builtin_const ("__builtin_vis_dictunpack8", CODE_FOR_dictunpack8,
SPARC_BUILTIN_DICTUNPACK8, v8qi_ftype_df_si);
def_builtin_const ("__builtin_vis_dictunpack16", CODE_FOR_dictunpack16,
SPARC_BUILTIN_DICTUNPACK16, v4hi_ftype_df_si);
def_builtin_const ("__builtin_vis_dictunpack32", CODE_FOR_dictunpack32,
SPARC_BUILTIN_DICTUNPACK32, v2si_ftype_df_si);
if (TARGET_ARCH64)
{
tree di_ftype_v8qi_v8qi_si = build_function_type_list (intDI_type_node,
v8qi, v8qi,
intSI_type_node, 0);
tree di_ftype_v4hi_v4hi_si = build_function_type_list (intDI_type_node,
v4hi, v4hi,
intSI_type_node, 0);
tree di_ftype_v2si_v2si_si = build_function_type_list (intDI_type_node,
v2si, v2si,
intSI_type_node, 0);
def_builtin_const ("__builtin_vis_fpcmple8shl", CODE_FOR_fpcmple8dishl,
SPARC_BUILTIN_FPCMPLE8SHL, di_ftype_v8qi_v8qi_si);
def_builtin_const ("__builtin_vis_fpcmpgt8shl", CODE_FOR_fpcmpgt8dishl,
SPARC_BUILTIN_FPCMPGT8SHL, di_ftype_v8qi_v8qi_si);
def_builtin_const ("__builtin_vis_fpcmpeq8shl", CODE_FOR_fpcmpeq8dishl,
SPARC_BUILTIN_FPCMPEQ8SHL, di_ftype_v8qi_v8qi_si);
def_builtin_const ("__builtin_vis_fpcmpne8shl", CODE_FOR_fpcmpne8dishl,
SPARC_BUILTIN_FPCMPNE8SHL, di_ftype_v8qi_v8qi_si);
def_builtin_const ("__builtin_vis_fpcmple16shl", CODE_FOR_fpcmple16dishl,
SPARC_BUILTIN_FPCMPLE16SHL, di_ftype_v4hi_v4hi_si);
def_builtin_const ("__builtin_vis_fpcmpgt16shl", CODE_FOR_fpcmpgt16dishl,
SPARC_BUILTIN_FPCMPGT16SHL, di_ftype_v4hi_v4hi_si);
def_builtin_const ("__builtin_vis_fpcmpeq16shl", CODE_FOR_fpcmpeq16dishl,
SPARC_BUILTIN_FPCMPEQ16SHL, di_ftype_v4hi_v4hi_si);
def_builtin_const ("__builtin_vis_fpcmpne16shl", CODE_FOR_fpcmpne16dishl,
SPARC_BUILTIN_FPCMPNE16SHL, di_ftype_v4hi_v4hi_si);
def_builtin_const ("__builtin_vis_fpcmple32shl", CODE_FOR_fpcmple32dishl,
SPARC_BUILTIN_FPCMPLE32SHL, di_ftype_v2si_v2si_si);
def_builtin_const ("__builtin_vis_fpcmpgt32shl", CODE_FOR_fpcmpgt32dishl,
SPARC_BUILTIN_FPCMPGT32SHL, di_ftype_v2si_v2si_si);
def_builtin_const ("__builtin_vis_fpcmpeq32shl", CODE_FOR_fpcmpeq32dishl,
SPARC_BUILTIN_FPCMPEQ32SHL, di_ftype_v2si_v2si_si);
def_builtin_const ("__builtin_vis_fpcmpne32shl", CODE_FOR_fpcmpne32dishl,
SPARC_BUILTIN_FPCMPNE32SHL, di_ftype_v2si_v2si_si);
def_builtin_const ("__builtin_vis_fpcmpule8shl", CODE_FOR_fpcmpule8dishl,
SPARC_BUILTIN_FPCMPULE8SHL, di_ftype_v8qi_v8qi_si);
def_builtin_const ("__builtin_vis_fpcmpugt8shl", CODE_FOR_fpcmpugt8dishl,
SPARC_BUILTIN_FPCMPUGT8SHL, di_ftype_v8qi_v8qi_si);
def_builtin_const ("__builtin_vis_fpcmpule16shl", CODE_FOR_fpcmpule16dishl,
SPARC_BUILTIN_FPCMPULE16SHL, di_ftype_v4hi_v4hi_si);
def_builtin_const ("__builtin_vis_fpcmpugt16shl", CODE_FOR_fpcmpugt16dishl,
SPARC_BUILTIN_FPCMPUGT16SHL, di_ftype_v4hi_v4hi_si);
def_builtin_const ("__builtin_vis_fpcmpule32shl", CODE_FOR_fpcmpule32dishl,
SPARC_BUILTIN_FPCMPULE32SHL, di_ftype_v2si_v2si_si);
def_builtin_const ("__builtin_vis_fpcmpugt32shl", CODE_FOR_fpcmpugt32dishl,
SPARC_BUILTIN_FPCMPUGT32SHL, di_ftype_v2si_v2si_si);
def_builtin_const ("__builtin_vis_fpcmpde8shl", CODE_FOR_fpcmpde8dishl,
SPARC_BUILTIN_FPCMPDE8SHL, di_ftype_v8qi_v8qi_si);
def_builtin_const ("__builtin_vis_fpcmpde16shl", CODE_FOR_fpcmpde16dishl,
SPARC_BUILTIN_FPCMPDE16SHL, di_ftype_v4hi_v4hi_si);
def_builtin_const ("__builtin_vis_fpcmpde32shl", CODE_FOR_fpcmpde32dishl,
SPARC_BUILTIN_FPCMPDE32SHL, di_ftype_v2si_v2si_si);
def_builtin_const ("__builtin_vis_fpcmpur8shl", CODE_FOR_fpcmpur8dishl,
SPARC_BUILTIN_FPCMPUR8SHL, di_ftype_v8qi_v8qi_si);
def_builtin_const ("__builtin_vis_fpcmpur16shl", CODE_FOR_fpcmpur16dishl,
SPARC_BUILTIN_FPCMPUR16SHL, di_ftype_v4hi_v4hi_si);
def_builtin_const ("__builtin_vis_fpcmpur32shl", CODE_FOR_fpcmpur32dishl,
SPARC_BUILTIN_FPCMPUR32SHL, di_ftype_v2si_v2si_si);
}
else
{
tree si_ftype_v8qi_v8qi_si = build_function_type_list (intSI_type_node,
v8qi, v8qi,
intSI_type_node, 0);
tree si_ftype_v4hi_v4hi_si = build_function_type_list (intSI_type_node,
v4hi, v4hi,
intSI_type_node, 0);
tree si_ftype_v2si_v2si_si = build_function_type_list (intSI_type_node,
v2si, v2si,
intSI_type_node, 0);
def_builtin_const ("__builtin_vis_fpcmple8shl", CODE_FOR_fpcmple8sishl,
SPARC_BUILTIN_FPCMPLE8SHL, si_ftype_v8qi_v8qi_si);
def_builtin_const ("__builtin_vis_fpcmpgt8shl", CODE_FOR_fpcmpgt8sishl,
SPARC_BUILTIN_FPCMPGT8SHL, si_ftype_v8qi_v8qi_si);
def_builtin_const ("__builtin_vis_fpcmpeq8shl", CODE_FOR_fpcmpeq8sishl,
SPARC_BUILTIN_FPCMPEQ8SHL, si_ftype_v8qi_v8qi_si);
def_builtin_const ("__builtin_vis_fpcmpne8shl", CODE_FOR_fpcmpne8sishl,
SPARC_BUILTIN_FPCMPNE8SHL, si_ftype_v8qi_v8qi_si);
def_builtin_const ("__builtin_vis_fpcmple16shl", CODE_FOR_fpcmple16sishl,
SPARC_BUILTIN_FPCMPLE16SHL, si_ftype_v4hi_v4hi_si);
def_builtin_const ("__builtin_vis_fpcmpgt16shl", CODE_FOR_fpcmpgt16sishl,
SPARC_BUILTIN_FPCMPGT16SHL, si_ftype_v4hi_v4hi_si);
def_builtin_const ("__builtin_vis_fpcmpeq16shl", CODE_FOR_fpcmpeq16sishl,
SPARC_BUILTIN_FPCMPEQ16SHL, si_ftype_v4hi_v4hi_si);
def_builtin_const ("__builtin_vis_fpcmpne16shl", CODE_FOR_fpcmpne16sishl,
SPARC_BUILTIN_FPCMPNE16SHL, si_ftype_v4hi_v4hi_si);
def_builtin_const ("__builtin_vis_fpcmple32shl", CODE_FOR_fpcmple32sishl,
SPARC_BUILTIN_FPCMPLE32SHL, si_ftype_v2si_v2si_si);
def_builtin_const ("__builtin_vis_fpcmpgt32shl", CODE_FOR_fpcmpgt32sishl,
SPARC_BUILTIN_FPCMPGT32SHL, si_ftype_v2si_v2si_si);
def_builtin_const ("__builtin_vis_fpcmpeq32shl", CODE_FOR_fpcmpeq32sishl,
SPARC_BUILTIN_FPCMPEQ32SHL, si_ftype_v2si_v2si_si);
def_builtin_const ("__builtin_vis_fpcmpne32shl", CODE_FOR_fpcmpne32sishl,
SPARC_BUILTIN_FPCMPNE32SHL, si_ftype_v2si_v2si_si);
def_builtin_const ("__builtin_vis_fpcmpule8shl", CODE_FOR_fpcmpule8sishl,
SPARC_BUILTIN_FPCMPULE8SHL, si_ftype_v8qi_v8qi_si);
def_builtin_const ("__builtin_vis_fpcmpugt8shl", CODE_FOR_fpcmpugt8sishl,
SPARC_BUILTIN_FPCMPUGT8SHL, si_ftype_v8qi_v8qi_si);
def_builtin_const ("__builtin_vis_fpcmpule16shl", CODE_FOR_fpcmpule16sishl,
SPARC_BUILTIN_FPCMPULE16SHL, si_ftype_v4hi_v4hi_si);
def_builtin_const ("__builtin_vis_fpcmpugt16shl", CODE_FOR_fpcmpugt16sishl,
SPARC_BUILTIN_FPCMPUGT16SHL, si_ftype_v4hi_v4hi_si);
def_builtin_const ("__builtin_vis_fpcmpule32shl", CODE_FOR_fpcmpule32sishl,
SPARC_BUILTIN_FPCMPULE32SHL, si_ftype_v2si_v2si_si);
def_builtin_const ("__builtin_vis_fpcmpugt32shl", CODE_FOR_fpcmpugt32sishl,
SPARC_BUILTIN_FPCMPUGT32SHL, si_ftype_v2si_v2si_si);
def_builtin_const ("__builtin_vis_fpcmpde8shl", CODE_FOR_fpcmpde8sishl,
SPARC_BUILTIN_FPCMPDE8SHL, si_ftype_v8qi_v8qi_si);
def_builtin_const ("__builtin_vis_fpcmpde16shl", CODE_FOR_fpcmpde16sishl,
SPARC_BUILTIN_FPCMPDE16SHL, si_ftype_v4hi_v4hi_si);
def_builtin_const ("__builtin_vis_fpcmpde32shl", CODE_FOR_fpcmpde32sishl,
SPARC_BUILTIN_FPCMPDE32SHL, si_ftype_v2si_v2si_si);
def_builtin_const ("__builtin_vis_fpcmpur8shl", CODE_FOR_fpcmpur8sishl,
SPARC_BUILTIN_FPCMPUR8SHL, si_ftype_v8qi_v8qi_si);
def_builtin_const ("__builtin_vis_fpcmpur16shl", CODE_FOR_fpcmpur16sishl,
SPARC_BUILTIN_FPCMPUR16SHL, si_ftype_v4hi_v4hi_si);
def_builtin_const ("__builtin_vis_fpcmpur32shl", CODE_FOR_fpcmpur32sishl,
SPARC_BUILTIN_FPCMPUR32SHL, si_ftype_v2si_v2si_si);
}
}
}
/* Implement TARGET_BUILTIN_DECL hook. */
static tree
sparc_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED)
{
if (code >= SPARC_BUILTIN_MAX)
return error_mark_node;
return sparc_builtins[code];
}
/* Implemented TARGET_EXPAND_BUILTIN hook. */
static rtx
sparc_expand_builtin (tree exp, rtx target,
rtx subtarget ATTRIBUTE_UNUSED,
machine_mode tmode ATTRIBUTE_UNUSED,
int ignore ATTRIBUTE_UNUSED)
{
tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
enum sparc_builtins code = (enum sparc_builtins) DECL_FUNCTION_CODE (fndecl);
enum insn_code icode = sparc_builtins_icode[code];
bool nonvoid = TREE_TYPE (TREE_TYPE (fndecl)) != void_type_node;
call_expr_arg_iterator iter;
int arg_count = 0;
rtx pat, op[4];
tree arg;
if (nonvoid)
{
machine_mode tmode = insn_data[icode].operand[0].mode;
if (!target
|| GET_MODE (target) != tmode
|| ! (*insn_data[icode].operand[0].predicate) (target, tmode))
op[0] = gen_reg_rtx (tmode);
else
op[0] = target;
}
FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
{
const struct insn_operand_data *insn_op;
int idx;
if (arg == error_mark_node)
return NULL_RTX;
arg_count++;
idx = arg_count - !nonvoid;
insn_op = &insn_data[icode].operand[idx];
op[arg_count] = expand_normal (arg);
/* Some of the builtins require constant arguments. We check
for this here. */
if ((code >= SPARC_BUILTIN_FIRST_FPCMPSHL
&& code <= SPARC_BUILTIN_LAST_FPCMPSHL
&& arg_count == 3)
|| (code >= SPARC_BUILTIN_FIRST_DICTUNPACK
&& code <= SPARC_BUILTIN_LAST_DICTUNPACK
&& arg_count == 2))
{
if (!check_constant_argument (icode, idx, op[arg_count]))
return const0_rtx;
}
if (code == SPARC_BUILTIN_LDFSR || code == SPARC_BUILTIN_STFSR)
{
if (!address_operand (op[arg_count], SImode))
{
op[arg_count] = convert_memory_address (Pmode, op[arg_count]);
op[arg_count] = copy_addr_to_reg (op[arg_count]);
}
op[arg_count] = gen_rtx_MEM (SImode, op[arg_count]);
}
else if (insn_op->mode == V1DImode
&& GET_MODE (op[arg_count]) == DImode)
op[arg_count] = gen_lowpart (V1DImode, op[arg_count]);
else if (insn_op->mode == V1SImode
&& GET_MODE (op[arg_count]) == SImode)
op[arg_count] = gen_lowpart (V1SImode, op[arg_count]);
if (! (*insn_data[icode].operand[idx].predicate) (op[arg_count],
insn_op->mode))
op[arg_count] = copy_to_mode_reg (insn_op->mode, op[arg_count]);
}
switch (arg_count)
{
case 0:
pat = GEN_FCN (icode) (op[0]);
break;
case 1:
if (nonvoid)
pat = GEN_FCN (icode) (op[0], op[1]);
else
pat = GEN_FCN (icode) (op[1]);
break;
case 2:
pat = GEN_FCN (icode) (op[0], op[1], op[2]);
break;
case 3:
pat = GEN_FCN (icode) (op[0], op[1], op[2], op[3]);
break;
default:
gcc_unreachable ();
}
if (!pat)
return NULL_RTX;
emit_insn (pat);
return (nonvoid ? op[0] : const0_rtx);
}
/* Return the upper 16 bits of the 8x16 multiplication. */
static int
sparc_vis_mul8x16 (int e8, int e16)
{
return (e8 * e16 + 128) / 256;
}
/* Multiply the VECTOR_CSTs CST0 and CST1 as specified by FNCODE and put
the result into the array N_ELTS, whose elements are of INNER_TYPE. */
static void
sparc_handle_vis_mul8x16 (vec<tree> *n_elts, enum sparc_builtins fncode,
tree inner_type, tree cst0, tree cst1)
{
unsigned i, num = VECTOR_CST_NELTS (cst0);
int scale;
switch (fncode)
{
case SPARC_BUILTIN_FMUL8X16:
for (i = 0; i < num; ++i)
{
int val
= sparc_vis_mul8x16 (TREE_INT_CST_LOW (VECTOR_CST_ELT (cst0, i)),
TREE_INT_CST_LOW (VECTOR_CST_ELT (cst1, i)));
n_elts->quick_push (build_int_cst (inner_type, val));
}
break;
case SPARC_BUILTIN_FMUL8X16AU:
scale = TREE_INT_CST_LOW (VECTOR_CST_ELT (cst1, 0));
for (i = 0; i < num; ++i)
{
int val
= sparc_vis_mul8x16 (TREE_INT_CST_LOW (VECTOR_CST_ELT (cst0, i)),
scale);
n_elts->quick_push (build_int_cst (inner_type, val));
}
break;
case SPARC_BUILTIN_FMUL8X16AL:
scale = TREE_INT_CST_LOW (VECTOR_CST_ELT (cst1, 1));
for (i = 0; i < num; ++i)
{
int val
= sparc_vis_mul8x16 (TREE_INT_CST_LOW (VECTOR_CST_ELT (cst0, i)),
scale);
n_elts->quick_push (build_int_cst (inner_type, val));
}
break;
default:
gcc_unreachable ();
}
}
/* Implement TARGET_FOLD_BUILTIN hook.
Fold builtin functions for SPARC intrinsics. If IGNORE is true the
result of the function call is ignored. NULL_TREE is returned if the
function could not be folded. */
static tree
sparc_fold_builtin (tree fndecl, int n_args ATTRIBUTE_UNUSED,
tree *args, bool ignore)
{
enum sparc_builtins code = (enum sparc_builtins) DECL_FUNCTION_CODE (fndecl);
tree rtype = TREE_TYPE (TREE_TYPE (fndecl));
tree arg0, arg1, arg2;
if (ignore)
switch (code)
{
case SPARC_BUILTIN_LDFSR:
case SPARC_BUILTIN_STFSR:
case SPARC_BUILTIN_ALIGNADDR:
case SPARC_BUILTIN_WRGSR:
case SPARC_BUILTIN_BMASK:
case SPARC_BUILTIN_CMASK8:
case SPARC_BUILTIN_CMASK16:
case SPARC_BUILTIN_CMASK32:
break;
default:
return build_zero_cst (rtype);
}
switch (code)
{
case SPARC_BUILTIN_FEXPAND:
arg0 = args[0];
STRIP_NOPS (arg0);
if (TREE_CODE (arg0) == VECTOR_CST)
{
tree inner_type = TREE_TYPE (rtype);
unsigned i;
tree_vector_builder n_elts (rtype, VECTOR_CST_NELTS (arg0), 1);
for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i)
{
unsigned HOST_WIDE_INT val
= TREE_INT_CST_LOW (VECTOR_CST_ELT (arg0, i));
n_elts.quick_push (build_int_cst (inner_type, val << 4));
}
return n_elts.build ();
}
break;
case SPARC_BUILTIN_FMUL8X16:
case SPARC_BUILTIN_FMUL8X16AU:
case SPARC_BUILTIN_FMUL8X16AL:
arg0 = args[0];
arg1 = args[1];
STRIP_NOPS (arg0);
STRIP_NOPS (arg1);
if (TREE_CODE (arg0) == VECTOR_CST && TREE_CODE (arg1) == VECTOR_CST)
{
tree inner_type = TREE_TYPE (rtype);
tree_vector_builder n_elts (rtype, VECTOR_CST_NELTS (arg0), 1);
sparc_handle_vis_mul8x16 (&n_elts, code, inner_type, arg0, arg1);
return n_elts.build ();
}
break;
case SPARC_BUILTIN_FPMERGE:
arg0 = args[0];
arg1 = args[1];
STRIP_NOPS (arg0);
STRIP_NOPS (arg1);
if (TREE_CODE (arg0) == VECTOR_CST && TREE_CODE (arg1) == VECTOR_CST)
{
tree_vector_builder n_elts (rtype, 2 * VECTOR_CST_NELTS (arg0), 1);
unsigned i;
for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i)
{
n_elts.quick_push (VECTOR_CST_ELT (arg0, i));
n_elts.quick_push (VECTOR_CST_ELT (arg1, i));
}
return n_elts.build ();
}
break;
case SPARC_BUILTIN_PDIST:
case SPARC_BUILTIN_PDISTN:
arg0 = args[0];
arg1 = args[1];
STRIP_NOPS (arg0);
STRIP_NOPS (arg1);
if (code == SPARC_BUILTIN_PDIST)
{
arg2 = args[2];
STRIP_NOPS (arg2);
}
else
arg2 = integer_zero_node;
if (TREE_CODE (arg0) == VECTOR_CST
&& TREE_CODE (arg1) == VECTOR_CST
&& TREE_CODE (arg2) == INTEGER_CST)
{
bool overflow = false;
widest_int result = wi::to_widest (arg2);
widest_int tmp;
unsigned i;
for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i)
{
tree e0 = VECTOR_CST_ELT (arg0, i);
tree e1 = VECTOR_CST_ELT (arg1, i);
bool neg1_ovf, neg2_ovf, add1_ovf, add2_ovf;
tmp = wi::neg (wi::to_widest (e1), &neg1_ovf);
tmp = wi::add (wi::to_widest (e0), tmp, SIGNED, &add1_ovf);
if (wi::neg_p (tmp))
tmp = wi::neg (tmp, &neg2_ovf);
else
neg2_ovf = false;
result = wi::add (result, tmp, SIGNED, &add2_ovf);
overflow |= neg1_ovf | neg2_ovf | add1_ovf | add2_ovf;
}
gcc_assert (!overflow);
return wide_int_to_tree (rtype, result);
}
default:
break;
}
return NULL_TREE;
}
/* ??? This duplicates information provided to the compiler by the
??? scheduler description. Some day, teach genautomata to output
??? the latencies and then CSE will just use that. */
static bool
sparc_rtx_costs (rtx x, machine_mode mode, int outer_code,
int opno ATTRIBUTE_UNUSED,
int *total, bool speed ATTRIBUTE_UNUSED)
{
int code = GET_CODE (x);
bool float_mode_p = FLOAT_MODE_P (mode);
switch (code)
{
case CONST_INT:
if (SMALL_INT (x))
*total = 0;
else
*total = 2;
return true;
case CONST_WIDE_INT:
*total = 0;
if (!SPARC_SIMM13_P (CONST_WIDE_INT_ELT (x, 0)))
*total += 2;
if (!SPARC_SIMM13_P (CONST_WIDE_INT_ELT (x, 1)))
*total += 2;
return true;
case HIGH:
*total = 2;
return true;
case CONST:
case LABEL_REF:
case SYMBOL_REF:
*total = 4;
return true;
case CONST_DOUBLE:
*total = 8;
return true;
case MEM:
/* If outer-code was a sign or zero extension, a cost
of COSTS_N_INSNS (1) was already added in. This is
why we are subtracting it back out. */
if (outer_code == ZERO_EXTEND)
{
*total = sparc_costs->int_zload - COSTS_N_INSNS (1);
}
else if (outer_code == SIGN_EXTEND)
{
*total = sparc_costs->int_sload - COSTS_N_INSNS (1);
}
else if (float_mode_p)
{
*total = sparc_costs->float_load;
}
else
{
*total = sparc_costs->int_load;
}
return true;
case PLUS:
case MINUS:
if (float_mode_p)
*total = sparc_costs->float_plusminus;
else
*total = COSTS_N_INSNS (1);
return false;
case FMA:
{
rtx sub;
gcc_assert (float_mode_p);
*total = sparc_costs->float_mul;
sub = XEXP (x, 0);
if (GET_CODE (sub) == NEG)
sub = XEXP (sub, 0);
*total += rtx_cost (sub, mode, FMA, 0, speed);
sub = XEXP (x, 2);
if (GET_CODE (sub) == NEG)
sub = XEXP (sub, 0);
*total += rtx_cost (sub, mode, FMA, 2, speed);
return true;
}
case MULT:
if (float_mode_p)
*total = sparc_costs->float_mul;
else if (TARGET_ARCH32 && !TARGET_HARD_MUL)
*total = COSTS_N_INSNS (25);
else
{
int bit_cost;
bit_cost = 0;
if (sparc_costs->int_mul_bit_factor)
{
int nbits;
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
{
unsigned HOST_WIDE_INT value = INTVAL (XEXP (x, 1));
for (nbits = 0; value != 0; value &= value - 1)
nbits++;
}
else
nbits = 7;
if (nbits < 3)
nbits = 3;
bit_cost = (nbits - 3) / sparc_costs->int_mul_bit_factor;
bit_cost = COSTS_N_INSNS (bit_cost);
}
if (mode == DImode || !TARGET_HARD_MUL)
*total = sparc_costs->int_mulX + bit_cost;
else
*total = sparc_costs->int_mul + bit_cost;
}
return false;
case ASHIFT:
case ASHIFTRT:
case LSHIFTRT:
*total = COSTS_N_INSNS (1) + sparc_costs->shift_penalty;
return false;
case DIV:
case UDIV:
case MOD:
case UMOD:
if (float_mode_p)
{
if (mode == DFmode)
*total = sparc_costs->float_div_df;
else
*total = sparc_costs->float_div_sf;
}
else
{
if (mode == DImode)
*total = sparc_costs->int_divX;
else
*total = sparc_costs->int_div;
}
return false;
case NEG:
if (! float_mode_p)
{
*total = COSTS_N_INSNS (1);
return false;
}
/* FALLTHRU */
case ABS:
case FLOAT:
case UNSIGNED_FLOAT:
case FIX:
case UNSIGNED_FIX:
case FLOAT_EXTEND:
case FLOAT_TRUNCATE:
*total = sparc_costs->float_move;
return false;
case SQRT:
if (mode == DFmode)
*total = sparc_costs->float_sqrt_df;
else
*total = sparc_costs->float_sqrt_sf;
return false;
case COMPARE:
if (float_mode_p)
*total = sparc_costs->float_cmp;
else
*total = COSTS_N_INSNS (1);
return false;
case IF_THEN_ELSE:
if (float_mode_p)
*total = sparc_costs->float_cmove;
else
*total = sparc_costs->int_cmove;
return false;
case IOR:
/* Handle the NAND vector patterns. */
if (sparc_vector_mode_supported_p (mode)
&& GET_CODE (XEXP (x, 0)) == NOT
&& GET_CODE (XEXP (x, 1)) == NOT)
{
*total = COSTS_N_INSNS (1);
return true;
}
else
return false;
default:
return false;
}
}
/* Return true if CLASS is either GENERAL_REGS or I64_REGS. */
static inline bool
general_or_i64_p (reg_class_t rclass)
{
return (rclass == GENERAL_REGS || rclass == I64_REGS);
}
/* Implement TARGET_REGISTER_MOVE_COST. */
static int
sparc_register_move_cost (machine_mode mode ATTRIBUTE_UNUSED,
reg_class_t from, reg_class_t to)
{
bool need_memory = false;
/* This helps postreload CSE to eliminate redundant comparisons. */
if (from == NO_REGS || to == NO_REGS)
return 100;
if (from == FPCC_REGS || to == FPCC_REGS)
need_memory = true;
else if ((FP_REG_CLASS_P (from) && general_or_i64_p (to))
|| (general_or_i64_p (from) && FP_REG_CLASS_P (to)))
{
if (TARGET_VIS3)
{
int size = GET_MODE_SIZE (mode);
if (size == 8 || size == 4)
{
if (! TARGET_ARCH32 || size == 4)
return 4;
else
return 6;
}
}
need_memory = true;
}
if (need_memory)
{
if (sparc_cpu == PROCESSOR_ULTRASPARC
|| sparc_cpu == PROCESSOR_ULTRASPARC3
|| sparc_cpu == PROCESSOR_NIAGARA
|| sparc_cpu == PROCESSOR_NIAGARA2
|| sparc_cpu == PROCESSOR_NIAGARA3
|| sparc_cpu == PROCESSOR_NIAGARA4
|| sparc_cpu == PROCESSOR_NIAGARA7
|| sparc_cpu == PROCESSOR_M8)
return 12;
return 6;
}
return 2;
}
/* Emit the sequence of insns SEQ while preserving the registers REG and REG2.
This is achieved by means of a manual dynamic stack space allocation in
the current frame. We make the assumption that SEQ doesn't contain any
function calls, with the possible exception of calls to the GOT helper. */
static void
emit_and_preserve (rtx seq, rtx reg, rtx reg2)
{
/* We must preserve the lowest 16 words for the register save area. */
HOST_WIDE_INT offset = 16*UNITS_PER_WORD;
/* We really need only 2 words of fresh stack space. */
HOST_WIDE_INT size = SPARC_STACK_ALIGN (offset + 2*UNITS_PER_WORD);
rtx slot
= gen_rtx_MEM (word_mode, plus_constant (Pmode, stack_pointer_rtx,
SPARC_STACK_BIAS + offset));
emit_insn (gen_stack_pointer_inc (GEN_INT (-size)));
emit_insn (gen_rtx_SET (slot, reg));
if (reg2)
emit_insn (gen_rtx_SET (adjust_address (slot, word_mode, UNITS_PER_WORD),
reg2));
emit_insn (seq);
if (reg2)
emit_insn (gen_rtx_SET (reg2,
adjust_address (slot, word_mode, UNITS_PER_WORD)));
emit_insn (gen_rtx_SET (reg, slot));
emit_insn (gen_stack_pointer_inc (GEN_INT (size)));
}
/* Output the assembler code for a thunk function. THUNK_DECL is the
declaration for the thunk function itself, FUNCTION is the decl for
the target function. DELTA is an immediate constant offset to be
added to THIS. If VCALL_OFFSET is nonzero, the word at address
(*THIS + VCALL_OFFSET) should be additionally added to THIS. */
static void
sparc_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
tree function)
{
rtx this_rtx, funexp;
rtx_insn *insn;
unsigned int int_arg_first;
reload_completed = 1;
epilogue_completed = 1;
emit_note (NOTE_INSN_PROLOGUE_END);
if (TARGET_FLAT)
{
sparc_leaf_function_p = 1;
int_arg_first = SPARC_OUTGOING_INT_ARG_FIRST;
}
else if (flag_delayed_branch)
{
/* We will emit a regular sibcall below, so we need to instruct
output_sibcall that we are in a leaf function. */
sparc_leaf_function_p = crtl->uses_only_leaf_regs = 1;
/* This will cause final.c to invoke leaf_renumber_regs so we
must behave as if we were in a not-yet-leafified function. */
int_arg_first = SPARC_INCOMING_INT_ARG_FIRST;
}
else
{
/* We will emit the sibcall manually below, so we will need to
manually spill non-leaf registers. */
sparc_leaf_function_p = crtl->uses_only_leaf_regs = 0;
/* We really are in a leaf function. */
int_arg_first = SPARC_OUTGOING_INT_ARG_FIRST;
}
/* Find the "this" pointer. Normally in %o0, but in ARCH64 if the function
returns a structure, the structure return pointer is there instead. */
if (TARGET_ARCH64
&& aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
this_rtx = gen_rtx_REG (Pmode, int_arg_first + 1);
else
this_rtx = gen_rtx_REG (Pmode, int_arg_first);
/* Add DELTA. When possible use a plain add, otherwise load it into
a register first. */
if (delta)
{
rtx delta_rtx = GEN_INT (delta);
if (! SPARC_SIMM13_P (delta))
{
rtx scratch = gen_rtx_REG (Pmode, 1);
emit_move_insn (scratch, delta_rtx);
delta_rtx = scratch;
}
/* THIS_RTX += DELTA. */
emit_insn (gen_add2_insn (this_rtx, delta_rtx));
}
/* Add the word at address (*THIS_RTX + VCALL_OFFSET). */
if (vcall_offset)
{
rtx vcall_offset_rtx = GEN_INT (vcall_offset);
rtx scratch = gen_rtx_REG (Pmode, 1);
gcc_assert (vcall_offset < 0);
/* SCRATCH = *THIS_RTX. */
emit_move_insn (scratch, gen_rtx_MEM (Pmode, this_rtx));
/* Prepare for adding VCALL_OFFSET. The difficulty is that we
may not have any available scratch register at this point. */
if (SPARC_SIMM13_P (vcall_offset))
;
/* This is the case if ARCH64 (unless -ffixed-g5 is passed). */
else if (! fixed_regs[5]
/* The below sequence is made up of at least 2 insns,
while the default method may need only one. */
&& vcall_offset < -8192)
{
rtx scratch2 = gen_rtx_REG (Pmode, 5);
emit_move_insn (scratch2, vcall_offset_rtx);
vcall_offset_rtx = scratch2;
}
else
{
rtx increment = GEN_INT (-4096);
/* VCALL_OFFSET is a negative number whose typical range can be
estimated as -32768..0 in 32-bit mode. In almost all cases
it is therefore cheaper to emit multiple add insns than
spilling and loading the constant into a register (at least
6 insns). */
while (! SPARC_SIMM13_P (vcall_offset))
{
emit_insn (gen_add2_insn (scratch, increment));
vcall_offset += 4096;
}
vcall_offset_rtx = GEN_INT (vcall_offset); /* cannot be 0 */
}
/* SCRATCH = *(*THIS_RTX + VCALL_OFFSET). */
emit_move_insn (scratch, gen_rtx_MEM (Pmode,
gen_rtx_PLUS (Pmode,
scratch,
vcall_offset_rtx)));
/* THIS_RTX += *(*THIS_RTX + VCALL_OFFSET). */
emit_insn (gen_add2_insn (this_rtx, scratch));
}
/* Generate a tail call to the target function. */
if (! TREE_USED (function))
{
assemble_external (function);
TREE_USED (function) = 1;
}
funexp = XEXP (DECL_RTL (function), 0);
if (flag_delayed_branch)
{
funexp = gen_rtx_MEM (FUNCTION_MODE, funexp);
insn = emit_call_insn (gen_sibcall (funexp));
SIBLING_CALL_P (insn) = 1;
}
else
{
/* The hoops we have to jump through in order to generate a sibcall
without using delay slots... */
rtx spill_reg, seq, scratch = gen_rtx_REG (Pmode, 1);
if (flag_pic)
{
spill_reg = gen_rtx_REG (word_mode, 15); /* %o7 */
start_sequence ();
load_got_register (); /* clobbers %o7 */
if (!TARGET_VXWORKS_RTP)
pic_offset_table_rtx = got_register_rtx;
scratch = sparc_legitimize_pic_address (funexp, scratch);
seq = get_insns ();
end_sequence ();
emit_and_preserve (seq, spill_reg, pic_offset_table_rtx);
}
else if (TARGET_ARCH32)
{
emit_insn (gen_rtx_SET (scratch,
gen_rtx_HIGH (SImode, funexp)));
emit_insn (gen_rtx_SET (scratch,
gen_rtx_LO_SUM (SImode, scratch, funexp)));
}
else /* TARGET_ARCH64 */
{
switch (sparc_cmodel)
{
case CM_MEDLOW:
case CM_MEDMID:
/* The destination can serve as a temporary. */
sparc_emit_set_symbolic_const64 (scratch, funexp, scratch);
break;
case CM_MEDANY:
case CM_EMBMEDANY:
/* The destination cannot serve as a temporary. */
spill_reg = gen_rtx_REG (DImode, 15); /* %o7 */
start_sequence ();
sparc_emit_set_symbolic_const64 (scratch, funexp, spill_reg);
seq = get_insns ();
end_sequence ();
emit_and_preserve (seq, spill_reg, 0);
break;
default:
gcc_unreachable ();
}
}
emit_jump_insn (gen_indirect_jump (scratch));
}
emit_barrier ();
/* Run just enough of rest_of_compilation to get the insns emitted.
There's not really enough bulk here to make other passes such as
instruction scheduling worth while. Note that use_thunk calls
assemble_start_function and assemble_end_function. */
insn = get_insns ();
shorten_branches (insn);
final_start_function (insn, file, 1);
final (insn, file, 1);
final_end_function ();
reload_completed = 0;
epilogue_completed = 0;
}
/* Return true if sparc_output_mi_thunk would be able to output the
assembler code for the thunk function specified by the arguments
it is passed, and false otherwise. */
static bool
sparc_can_output_mi_thunk (const_tree thunk_fndecl ATTRIBUTE_UNUSED,
HOST_WIDE_INT delta ATTRIBUTE_UNUSED,
HOST_WIDE_INT vcall_offset,
const_tree function ATTRIBUTE_UNUSED)
{
/* Bound the loop used in the default method above. */
return (vcall_offset >= -32768 || ! fixed_regs[5]);
}
/* How to allocate a 'struct machine_function'. */
static struct machine_function *
sparc_init_machine_status (void)
{
return ggc_cleared_alloc<machine_function> ();
}
/* This is called from dwarf2out.c via TARGET_ASM_OUTPUT_DWARF_DTPREL.
We need to emit DTP-relative relocations. */
static void
sparc_output_dwarf_dtprel (FILE *file, int size, rtx x)
{
switch (size)
{
case 4:
fputs ("\t.word\t%r_tls_dtpoff32(", file);
break;
case 8:
fputs ("\t.xword\t%r_tls_dtpoff64(", file);
break;
default:
gcc_unreachable ();
}
output_addr_const (file, x);
fputs (")", file);
}
/* Do whatever processing is required at the end of a file. */
static void
sparc_file_end (void)
{
/* If we need to emit the special GOT helper function, do so now. */
if (got_helper_rtx)
{
const char *name = XSTR (got_helper_rtx, 0);
const char *reg_name = reg_names[GLOBAL_OFFSET_TABLE_REGNUM];
#ifdef DWARF2_UNWIND_INFO
bool do_cfi;
#endif
if (USE_HIDDEN_LINKONCE)
{
tree decl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL,
get_identifier (name),
build_function_type_list (void_type_node,
NULL_TREE));
DECL_RESULT (decl) = build_decl (BUILTINS_LOCATION, RESULT_DECL,
NULL_TREE, void_type_node);
TREE_PUBLIC (decl) = 1;
TREE_STATIC (decl) = 1;
make_decl_one_only (decl, DECL_ASSEMBLER_NAME (decl));
DECL_VISIBILITY (decl) = VISIBILITY_HIDDEN;
DECL_VISIBILITY_SPECIFIED (decl) = 1;
resolve_unique_section (decl, 0, flag_function_sections);
allocate_struct_function (decl, true);
cfun->is_thunk = 1;
current_function_decl = decl;
init_varasm_status ();
assemble_start_function (decl, name);
}
else
{
const int align = floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT);
switch_to_section (text_section);
if (align > 0)
ASM_OUTPUT_ALIGN (asm_out_file, align);
ASM_OUTPUT_LABEL (asm_out_file, name);
}
#ifdef DWARF2_UNWIND_INFO
do_cfi = dwarf2out_do_cfi_asm ();
if (do_cfi)
fprintf (asm_out_file, "\t.cfi_startproc\n");
#endif
if (flag_delayed_branch)
fprintf (asm_out_file, "\tjmp\t%%o7+8\n\t add\t%%o7, %s, %s\n",
reg_name, reg_name);
else
fprintf (asm_out_file, "\tadd\t%%o7, %s, %s\n\tjmp\t%%o7+8\n\t nop\n",
reg_name, reg_name);
#ifdef DWARF2_UNWIND_INFO
if (do_cfi)
fprintf (asm_out_file, "\t.cfi_endproc\n");
#endif
}
if (NEED_INDICATE_EXEC_STACK)
file_end_indicate_exec_stack ();
#ifdef TARGET_SOLARIS
solaris_file_end ();
#endif
}
#ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING
/* Implement TARGET_MANGLE_TYPE. */
static const char *
sparc_mangle_type (const_tree type)
{
if (TARGET_ARCH32
&& TYPE_MAIN_VARIANT (type) == long_double_type_node
&& TARGET_LONG_DOUBLE_128)
return "g";
/* For all other types, use normal C++ mangling. */
return NULL;
}
#endif
/* Expand a membar instruction for various use cases. Both the LOAD_STORE
and BEFORE_AFTER arguments of the form X_Y. They are two-bit masks where
bit 0 indicates that X is true, and bit 1 indicates Y is true. */
void
sparc_emit_membar_for_model (enum memmodel model,
int load_store, int before_after)
{
/* Bits for the MEMBAR mmask field. */
const int LoadLoad = 1;
const int StoreLoad = 2;
const int LoadStore = 4;
const int StoreStore = 8;
int mm = 0, implied = 0;
switch (sparc_memory_model)
{
case SMM_SC:
/* Sequential Consistency. All memory transactions are immediately
visible in sequential execution order. No barriers needed. */
implied = LoadLoad | StoreLoad | LoadStore | StoreStore;
break;
case SMM_TSO:
/* Total Store Ordering: all memory transactions with store semantics
are followed by an implied StoreStore. */
implied |= StoreStore;
/* If we're not looking for a raw barrer (before+after), then atomic
operations get the benefit of being both load and store. */
if (load_store == 3 && before_after == 1)
implied |= StoreLoad;
/* FALLTHRU */
case SMM_PSO:
/* Partial Store Ordering: all memory transactions with load semantics
are followed by an implied LoadLoad | LoadStore. */
implied |= LoadLoad | LoadStore;
/* If we're not looking for a raw barrer (before+after), then atomic
operations get the benefit of being both load and store. */
if (load_store == 3 && before_after == 2)
implied |= StoreLoad | StoreStore;
/* FALLTHRU */
case SMM_RMO:
/* Relaxed Memory Ordering: no implicit bits. */
break;
default:
gcc_unreachable ();
}
if (before_after & 1)
{
if (is_mm_release (model) || is_mm_acq_rel (model)
|| is_mm_seq_cst (model))
{
if (load_store & 1)
mm |= LoadLoad | StoreLoad;
if (load_store & 2)
mm |= LoadStore | StoreStore;
}
}
if (before_after & 2)
{
if (is_mm_acquire (model) || is_mm_acq_rel (model)
|| is_mm_seq_cst (model))
{
if (load_store & 1)
mm |= LoadLoad | LoadStore;
if (load_store & 2)
mm |= StoreLoad | StoreStore;
}
}
/* Remove the bits implied by the system memory model. */
mm &= ~implied;
/* For raw barriers (before+after), always emit a barrier.
This will become a compile-time barrier if needed. */
if (mm || before_after == 3)
emit_insn (gen_membar (GEN_INT (mm)));
}
/* Expand code to perform a 8 or 16-bit compare and swap by doing 32-bit
compare and swap on the word containing the byte or half-word. */
static void
sparc_expand_compare_and_swap_12 (rtx bool_result, rtx result, rtx mem,
rtx oldval, rtx newval)
{
rtx addr1 = force_reg (Pmode, XEXP (mem, 0));
rtx addr = gen_reg_rtx (Pmode);
rtx off = gen_reg_rtx (SImode);
rtx oldv = gen_reg_rtx (SImode);
rtx newv = gen_reg_rtx (SImode);
rtx oldvalue = gen_reg_rtx (SImode);
rtx newvalue = gen_reg_rtx (SImode);
rtx res = gen_reg_rtx (SImode);
rtx resv = gen_reg_rtx (SImode);
rtx memsi, val, mask, cc;
emit_insn (gen_rtx_SET (addr, gen_rtx_AND (Pmode, addr1, GEN_INT (-4))));
if (Pmode != SImode)
addr1 = gen_lowpart (SImode, addr1);
emit_insn (gen_rtx_SET (off, gen_rtx_AND (SImode, addr1, GEN_INT (3))));
memsi = gen_rtx_MEM (SImode, addr);
set_mem_alias_set (memsi, ALIAS_SET_MEMORY_BARRIER);
MEM_VOLATILE_P (memsi) = MEM_VOLATILE_P (mem);
val = copy_to_reg (memsi);
emit_insn (gen_rtx_SET (off,
gen_rtx_XOR (SImode, off,
GEN_INT (GET_MODE (mem) == QImode
? 3 : 2))));
emit_insn (gen_rtx_SET (off, gen_rtx_ASHIFT (SImode, off, GEN_INT (3))));
if (GET_MODE (mem) == QImode)
mask = force_reg (SImode, GEN_INT (0xff));
else
mask = force_reg (SImode, GEN_INT (0xffff));
emit_insn (gen_rtx_SET (mask, gen_rtx_ASHIFT (SImode, mask, off)));
emit_insn (gen_rtx_SET (val,
gen_rtx_AND (SImode, gen_rtx_NOT (SImode, mask),
val)));
oldval = gen_lowpart (SImode, oldval);
emit_insn (gen_rtx_SET (oldv, gen_rtx_ASHIFT (SImode, oldval, off)));
newval = gen_lowpart_common (SImode, newval);
emit_insn (gen_rtx_SET (newv, gen_rtx_ASHIFT (SImode, newval, off)));
emit_insn (gen_rtx_SET (oldv, gen_rtx_AND (SImode, oldv, mask)));
emit_insn (gen_rtx_SET (newv, gen_rtx_AND (SImode, newv, mask)));
rtx_code_label *end_label = gen_label_rtx ();
rtx_code_label *loop_label = gen_label_rtx ();
emit_label (loop_label);
emit_insn (gen_rtx_SET (oldvalue, gen_rtx_IOR (SImode, oldv, val)));
emit_insn (gen_rtx_SET (newvalue, gen_rtx_IOR (SImode, newv, val)));
emit_move_insn (bool_result, const1_rtx);
emit_insn (gen_atomic_compare_and_swapsi_1 (res, memsi, oldvalue, newvalue));
emit_cmp_and_jump_insns (res, oldvalue, EQ, NULL, SImode, 0, end_label);
emit_insn (gen_rtx_SET (resv,
gen_rtx_AND (SImode, gen_rtx_NOT (SImode, mask),
res)));
emit_move_insn (bool_result, const0_rtx);
cc = gen_compare_reg_1 (NE, resv, val);
emit_insn (gen_rtx_SET (val, resv));
/* Use cbranchcc4 to separate the compare and branch! */
emit_jump_insn (gen_cbranchcc4 (gen_rtx_NE (VOIDmode, cc, const0_rtx),
cc, const0_rtx, loop_label));
emit_label (end_label);
emit_insn (gen_rtx_SET (res, gen_rtx_AND (SImode, res, mask)));
emit_insn (gen_rtx_SET (res, gen_rtx_LSHIFTRT (SImode, res, off)));
emit_move_insn (result, gen_lowpart (GET_MODE (result), res));
}
/* Expand code to perform a compare-and-swap. */
void
sparc_expand_compare_and_swap (rtx operands[])
{
rtx bval, retval, mem, oldval, newval;
machine_mode mode;
enum memmodel model;
bval = operands[0];
retval = operands[1];
mem = operands[2];
oldval = operands[3];
newval = operands[4];
model = (enum memmodel) INTVAL (operands[6]);
mode = GET_MODE (mem);
sparc_emit_membar_for_model (model, 3, 1);
if (reg_overlap_mentioned_p (retval, oldval))
oldval = copy_to_reg (oldval);
if (mode == QImode || mode == HImode)
sparc_expand_compare_and_swap_12 (bval, retval, mem, oldval, newval);
else
{
rtx (*gen) (rtx, rtx, rtx, rtx);
rtx x;
if (mode == SImode)
gen = gen_atomic_compare_and_swapsi_1;
else
gen = gen_atomic_compare_and_swapdi_1;
emit_insn (gen (retval, mem, oldval, newval));
x = emit_store_flag (bval, EQ, retval, oldval, mode, 1, 1);
if (x != bval)
convert_move (bval, x, 1);
}
sparc_emit_membar_for_model (model, 3, 2);
}
void
sparc_expand_vec_perm_bmask (machine_mode vmode, rtx sel)
{
rtx t_1, t_2, t_3;
sel = gen_lowpart (DImode, sel);
switch (vmode)
{
case E_V2SImode:
/* inp = xxxxxxxAxxxxxxxB */
t_1 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (16),
NULL_RTX, 1, OPTAB_DIRECT);
/* t_1 = ....xxxxxxxAxxx. */
sel = expand_simple_binop (SImode, AND, gen_lowpart (SImode, sel),
GEN_INT (3), NULL_RTX, 1, OPTAB_DIRECT);
t_1 = expand_simple_binop (SImode, AND, gen_lowpart (SImode, t_1),
GEN_INT (0x30000), NULL_RTX, 1, OPTAB_DIRECT);
/* sel = .......B */
/* t_1 = ...A.... */
sel = expand_simple_binop (SImode, IOR, sel, t_1, sel, 1, OPTAB_DIRECT);
/* sel = ...A...B */
sel = expand_mult (SImode, sel, GEN_INT (0x4444), sel, 1);
/* sel = AAAABBBB * 4 */
t_1 = force_reg (SImode, GEN_INT (0x01230123));
/* sel = { A*4, A*4+1, A*4+2, ... } */
break;
case E_V4HImode:
/* inp = xxxAxxxBxxxCxxxD */
t_1 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (8),
NULL_RTX, 1, OPTAB_DIRECT);
t_2 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (16),
NULL_RTX, 1, OPTAB_DIRECT);
t_3 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (24),
NULL_RTX, 1, OPTAB_DIRECT);
/* t_1 = ..xxxAxxxBxxxCxx */
/* t_2 = ....xxxAxxxBxxxC */
/* t_3 = ......xxxAxxxBxx */
sel = expand_simple_binop (SImode, AND, gen_lowpart (SImode, sel),
GEN_INT (0x07),
NULL_RTX, 1, OPTAB_DIRECT);
t_1 = expand_simple_binop (SImode, AND, gen_lowpart (SImode, t_1),
GEN_INT (0x0700),
NULL_RTX, 1, OPTAB_DIRECT);
t_2 = expand_simple_binop (SImode, AND, gen_lowpart (SImode, t_2),
GEN_INT (0x070000),
NULL_RTX, 1, OPTAB_DIRECT);
t_3 = expand_simple_binop (SImode, AND, gen_lowpart (SImode, t_3),
GEN_INT (0x07000000),
NULL_RTX, 1, OPTAB_DIRECT);
/* sel = .......D */
/* t_1 = .....C.. */
/* t_2 = ...B.... */
/* t_3 = .A...... */
sel = expand_simple_binop (SImode, IOR, sel, t_1, sel, 1, OPTAB_DIRECT);
t_2 = expand_simple_binop (SImode, IOR, t_2, t_3, t_2, 1, OPTAB_DIRECT);
sel = expand_simple_binop (SImode, IOR, sel, t_2, sel, 1, OPTAB_DIRECT);
/* sel = .A.B.C.D */
sel = expand_mult (SImode, sel, GEN_INT (0x22), sel, 1);
/* sel = AABBCCDD * 2 */
t_1 = force_reg (SImode, GEN_INT (0x01010101));
/* sel = { A*2, A*2+1, B*2, B*2+1, ... } */
break;
case E_V8QImode:
/* input = xAxBxCxDxExFxGxH */
sel = expand_simple_binop (DImode, AND, sel,
GEN_INT ((HOST_WIDE_INT)0x0f0f0f0f << 32
| 0x0f0f0f0f),
NULL_RTX, 1, OPTAB_DIRECT);
/* sel = .A.B.C.D.E.F.G.H */
t_1 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (4),
NULL_RTX, 1, OPTAB_DIRECT);
/* t_1 = ..A.B.C.D.E.F.G. */
sel = expand_simple_binop (DImode, IOR, sel, t_1,
NULL_RTX, 1, OPTAB_DIRECT);
/* sel = .AABBCCDDEEFFGGH */
sel = expand_simple_binop (DImode, AND, sel,
GEN_INT ((HOST_WIDE_INT)0xff00ff << 32
| 0xff00ff),
NULL_RTX, 1, OPTAB_DIRECT);
/* sel = ..AB..CD..EF..GH */
t_1 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (8),
NULL_RTX, 1, OPTAB_DIRECT);
/* t_1 = ....AB..CD..EF.. */
sel = expand_simple_binop (DImode, IOR, sel, t_1,
NULL_RTX, 1, OPTAB_DIRECT);
/* sel = ..ABABCDCDEFEFGH */
sel = expand_simple_binop (DImode, AND, sel,
GEN_INT ((HOST_WIDE_INT)0xffff << 32 | 0xffff),
NULL_RTX, 1, OPTAB_DIRECT);
/* sel = ....ABCD....EFGH */
t_1 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (16),
NULL_RTX, 1, OPTAB_DIRECT);
/* t_1 = ........ABCD.... */
sel = gen_lowpart (SImode, sel);
t_1 = gen_lowpart (SImode, t_1);
break;
default:
gcc_unreachable ();
}
/* Always perform the final addition/merge within the bmask insn. */
emit_insn (gen_bmasksi_vis (gen_reg_rtx (SImode), sel, t_1));
}
/* Implement TARGET_VEC_PERM_CONST. */
static bool
sparc_vectorize_vec_perm_const (machine_mode vmode, rtx target, rtx op0,
rtx op1, const vec_perm_indices &sel)
{
if (!TARGET_VIS2)
return false;
/* All permutes are supported. */
if (!target)
return true;
/* Force target-independent code to convert constant permutations on other
modes down to V8QI. Rely on this to avoid the complexity of the byte
order of the permutation. */
if (vmode != V8QImode)
return false;
unsigned int i, mask;
for (i = mask = 0; i < 8; ++i)
mask |= (sel[i] & 0xf) << (28 - i*4);
rtx mask_rtx = force_reg (SImode, gen_int_mode (mask, SImode));
emit_insn (gen_bmasksi_vis (gen_reg_rtx (SImode), mask_rtx, const0_rtx));
emit_insn (gen_bshufflev8qi_vis (target, op0, op1));
return true;
}
/* Implement TARGET_FRAME_POINTER_REQUIRED. */
static bool
sparc_frame_pointer_required (void)
{
/* If the stack pointer is dynamically modified in the function, it cannot
serve as the frame pointer. */
if (cfun->calls_alloca)
return true;
/* If the function receives nonlocal gotos, it needs to save the frame
pointer in the nonlocal_goto_save_area object. */
if (cfun->has_nonlocal_label)
return true;
/* In flat mode, that's it. */
if (TARGET_FLAT)
return false;
/* Otherwise, the frame pointer is required if the function isn't leaf, but
we cannot use sparc_leaf_function_p since it hasn't been computed yet. */
return !(optimize > 0 && crtl->is_leaf && only_leaf_regs_used ());
}
/* The way this is structured, we can't eliminate SFP in favor of SP
if the frame pointer is required: we want to use the SFP->HFP elimination
in that case. But the test in update_eliminables doesn't know we are
assuming below that we only do the former elimination. */
static bool
sparc_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
{
return to == HARD_FRAME_POINTER_REGNUM || !sparc_frame_pointer_required ();
}
/* Return the hard frame pointer directly to bypass the stack bias. */
static rtx
sparc_builtin_setjmp_frame_value (void)
{
return hard_frame_pointer_rtx;
}
/* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
they won't be allocated. */
static void
sparc_conditional_register_usage (void)
{
if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
{
fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
}
/* If the user has passed -f{fixed,call-{used,saved}}-g5 */
/* then honor it. */
if (TARGET_ARCH32 && fixed_regs[5])
fixed_regs[5] = 1;
else if (TARGET_ARCH64 && fixed_regs[5] == 2)
fixed_regs[5] = 0;
if (! TARGET_V9)
{
int regno;
for (regno = SPARC_FIRST_V9_FP_REG;
regno <= SPARC_LAST_V9_FP_REG;
regno++)
fixed_regs[regno] = 1;
/* %fcc0 is used by v8 and v9. */
for (regno = SPARC_FIRST_V9_FCC_REG + 1;
regno <= SPARC_LAST_V9_FCC_REG;
regno++)
fixed_regs[regno] = 1;
}
if (! TARGET_FPU)
{
int regno;
for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++)
fixed_regs[regno] = 1;
}
/* If the user has passed -f{fixed,call-{used,saved}}-g2 */
/* then honor it. Likewise with g3 and g4. */
if (fixed_regs[2] == 2)
fixed_regs[2] = ! TARGET_APP_REGS;
if (fixed_regs[3] == 2)
fixed_regs[3] = ! TARGET_APP_REGS;
if (TARGET_ARCH32 && fixed_regs[4] == 2)
fixed_regs[4] = ! TARGET_APP_REGS;
else if (TARGET_CM_EMBMEDANY)
fixed_regs[4] = 1;
else if (fixed_regs[4] == 2)
fixed_regs[4] = 0;
if (TARGET_FLAT)
{
int regno;
/* Disable leaf functions. */
memset (sparc_leaf_regs, 0, FIRST_PSEUDO_REGISTER);
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
leaf_reg_remap [regno] = regno;
}
if (TARGET_VIS)
global_regs[SPARC_GSR_REG] = 1;
}
/* Implement TARGET_USE_PSEUDO_PIC_REG. */
static bool
sparc_use_pseudo_pic_reg (void)
{
return !TARGET_VXWORKS_RTP && flag_pic;
}
/* Implement TARGET_INIT_PIC_REG. */
static void
sparc_init_pic_reg (void)
{
edge entry_edge;
rtx_insn *seq;
if (!crtl->uses_pic_offset_table)
return;
start_sequence ();
load_got_register ();
if (!TARGET_VXWORKS_RTP)
emit_move_insn (pic_offset_table_rtx, got_register_rtx);
seq = get_insns ();
end_sequence ();
entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
insert_insn_on_edge (seq, entry_edge);
commit_one_edge_insertion (entry_edge);
}
/* Implement TARGET_PREFERRED_RELOAD_CLASS:
- We can't load constants into FP registers.
- We can't load FP constants into integer registers when soft-float,
because there is no soft-float pattern with a r/F constraint.
- We can't load FP constants into integer registers for TFmode unless
it is 0.0L, because there is no movtf pattern with a r/F constraint.
- Try and reload integer constants (symbolic or otherwise) back into
registers directly, rather than having them dumped to memory. */
static reg_class_t
sparc_preferred_reload_class (rtx x, reg_class_t rclass)
{
machine_mode mode = GET_MODE (x);
if (CONSTANT_P (x))
{
if (FP_REG_CLASS_P (rclass)
|| rclass == GENERAL_OR_FP_REGS
|| rclass == GENERAL_OR_EXTRA_FP_REGS
|| (GET_MODE_CLASS (mode) == MODE_FLOAT && ! TARGET_FPU)
|| (mode == TFmode && ! const_zero_operand (x, mode)))
return NO_REGS;
if (GET_MODE_CLASS (mode) == MODE_INT)
return GENERAL_REGS;
if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
{
if (! FP_REG_CLASS_P (rclass)
|| !(const_zero_operand (x, mode)
|| const_all_ones_operand (x, mode)))
return NO_REGS;
}
}
if (TARGET_VIS3
&& ! TARGET_ARCH64
&& (rclass == EXTRA_FP_REGS
|| rclass == GENERAL_OR_EXTRA_FP_REGS))
{
int regno = true_regnum (x);
if (SPARC_INT_REG_P (regno))
return (rclass == EXTRA_FP_REGS
? FP_REGS : GENERAL_OR_FP_REGS);
}
return rclass;
}
/* Return true if we use LRA instead of reload pass. */
static bool
sparc_lra_p (void)
{
return TARGET_LRA;
}
/* Output a wide multiply instruction in V8+ mode. INSN is the instruction,
OPERANDS are its operands and OPCODE is the mnemonic to be used. */
const char *
output_v8plus_mult (rtx_insn *insn, rtx *operands, const char *opcode)
{
char mulstr[32];
gcc_assert (! TARGET_ARCH64);
if (sparc_check_64 (operands[1], insn) <= 0)
output_asm_insn ("srl\t%L1, 0, %L1", operands);
if (which_alternative == 1)
output_asm_insn ("sllx\t%H1, 32, %H1", operands);
if (GET_CODE (operands[2]) == CONST_INT)
{
if (which_alternative == 1)
{
output_asm_insn ("or\t%L1, %H1, %H1", operands);
sprintf (mulstr, "%s\t%%H1, %%2, %%L0", opcode);
output_asm_insn (mulstr, operands);
return "srlx\t%L0, 32, %H0";
}
else
{
output_asm_insn ("sllx\t%H1, 32, %3", operands);
output_asm_insn ("or\t%L1, %3, %3", operands);
sprintf (mulstr, "%s\t%%3, %%2, %%3", opcode);
output_asm_insn (mulstr, operands);
output_asm_insn ("srlx\t%3, 32, %H0", operands);
return "mov\t%3, %L0";
}
}
else if (rtx_equal_p (operands[1], operands[2]))
{
if (which_alternative == 1)
{
output_asm_insn ("or\t%L1, %H1, %H1", operands);
sprintf (mulstr, "%s\t%%H1, %%H1, %%L0", opcode);
output_asm_insn (mulstr, operands);
return "srlx\t%L0, 32, %H0";
}
else
{
output_asm_insn ("sllx\t%H1, 32, %3", operands);
output_asm_insn ("or\t%L1, %3, %3", operands);
sprintf (mulstr, "%s\t%%3, %%3, %%3", opcode);
output_asm_insn (mulstr, operands);
output_asm_insn ("srlx\t%3, 32, %H0", operands);
return "mov\t%3, %L0";
}
}
if (sparc_check_64 (operands[2], insn) <= 0)
output_asm_insn ("srl\t%L2, 0, %L2", operands);
if (which_alternative == 1)
{
output_asm_insn ("or\t%L1, %H1, %H1", operands);
output_asm_insn ("sllx\t%H2, 32, %L1", operands);
output_asm_insn ("or\t%L2, %L1, %L1", operands);
sprintf (mulstr, "%s\t%%H1, %%L1, %%L0", opcode);
output_asm_insn (mulstr, operands);
return "srlx\t%L0, 32, %H0";
}
else
{
output_asm_insn ("sllx\t%H1, 32, %3", operands);
output_asm_insn ("sllx\t%H2, 32, %4", operands);
output_asm_insn ("or\t%L1, %3, %3", operands);
output_asm_insn ("or\t%L2, %4, %4", operands);
sprintf (mulstr, "%s\t%%3, %%4, %%3", opcode);
output_asm_insn (mulstr, operands);
output_asm_insn ("srlx\t%3, 32, %H0", operands);
return "mov\t%3, %L0";
}
}
/* Subroutine of sparc_expand_vector_init. Emit code to initialize
all fields of TARGET to ELT by means of VIS2 BSHUFFLE insn. MODE
and INNER_MODE are the modes describing TARGET. */
static void
vector_init_bshuffle (rtx target, rtx elt, machine_mode mode,
machine_mode inner_mode)
{
rtx t1, final_insn, sel;
int bmask;
t1 = gen_reg_rtx (mode);
elt = convert_modes (SImode, inner_mode, elt, true);
emit_move_insn (gen_lowpart(SImode, t1), elt);
switch (mode)
{
case E_V2SImode:
final_insn = gen_bshufflev2si_vis (target, t1, t1);
bmask = 0x45674567;
break;
case E_V4HImode:
final_insn = gen_bshufflev4hi_vis (target, t1, t1);
bmask = 0x67676767;
break;
case E_V8QImode:
final_insn = gen_bshufflev8qi_vis (target, t1, t1);
bmask = 0x77777777;
break;
default:
gcc_unreachable ();
}
sel = force_reg (SImode, GEN_INT (bmask));
emit_insn (gen_bmasksi_vis (gen_reg_rtx (SImode), sel, const0_rtx));
emit_insn (final_insn);
}
/* Subroutine of sparc_expand_vector_init. Emit code to initialize
all fields of TARGET to ELT in V8QI by means of VIS FPMERGE insn. */
static void
vector_init_fpmerge (rtx target, rtx elt)
{
rtx t1, t2, t2_low, t3, t3_low;
t1 = gen_reg_rtx (V4QImode);
elt = convert_modes (SImode, QImode, elt, true);
emit_move_insn (gen_lowpart (SImode, t1), elt);
t2 = gen_reg_rtx (V8QImode);
t2_low = gen_lowpart (V4QImode, t2);
emit_insn (gen_fpmerge_vis (t2, t1, t1));
t3 = gen_reg_rtx (V8QImode);
t3_low = gen_lowpart (V4QImode, t3);
emit_insn (gen_fpmerge_vis (t3, t2_low, t2_low));
emit_insn (gen_fpmerge_vis (target, t3_low, t3_low));
}
/* Subroutine of sparc_expand_vector_init. Emit code to initialize
all fields of TARGET to ELT in V4HI by means of VIS FALIGNDATA insn. */
static void
vector_init_faligndata (rtx target, rtx elt)
{
rtx t1 = gen_reg_rtx (V4HImode);
int i;
elt = convert_modes (SImode, HImode, elt, true);
emit_move_insn (gen_lowpart (SImode, t1), elt);
emit_insn (gen_alignaddrsi_vis (gen_reg_rtx (SImode),
force_reg (SImode, GEN_INT (6)),
const0_rtx));
for (i = 0; i < 4; i++)
emit_insn (gen_faligndatav4hi_vis (target, t1, target));
}
/* Emit code to initialize TARGET to values for individual fields VALS. */
void
sparc_expand_vector_init (rtx target, rtx vals)
{
const machine_mode mode = GET_MODE (target);
const machine_mode inner_mode = GET_MODE_INNER (mode);
const int n_elts = GET_MODE_NUNITS (mode);
int i, n_var = 0;
bool all_same = true;
rtx mem;
for (i = 0; i < n_elts; i++)
{
rtx x = XVECEXP (vals, 0, i);
if (!(CONST_SCALAR_INT_P (x) || CONST_DOUBLE_P (x) || CONST_FIXED_P (x)))
n_var++;
if (i > 0 && !rtx_equal_p (x, XVECEXP (vals, 0, 0)))
all_same = false;
}
if (n_var == 0)
{
emit_move_insn (target, gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0)));
return;
}
if (GET_MODE_SIZE (inner_mode) == GET_MODE_SIZE (mode))
{
if (GET_MODE_SIZE (inner_mode) == 4)
{
emit_move_insn (gen_lowpart (SImode, target),
gen_lowpart (SImode, XVECEXP (vals, 0, 0)));
return;
}
else if (GET_MODE_SIZE (inner_mode) == 8)
{
emit_move_insn (gen_lowpart (DImode, target),
gen_lowpart (DImode, XVECEXP (vals, 0, 0)));
return;
}
}
else if (GET_MODE_SIZE (inner_mode) == GET_MODE_SIZE (word_mode)
&& GET_MODE_SIZE (mode) == 2 * GET_MODE_SIZE (word_mode))
{
emit_move_insn (gen_highpart (word_mode, target),
gen_lowpart (word_mode, XVECEXP (vals, 0, 0)));
emit_move_insn (gen_lowpart (word_mode, target),
gen_lowpart (word_mode, XVECEXP (vals, 0, 1)));
return;
}
if (all_same && GET_MODE_SIZE (mode) == 8)
{
if (TARGET_VIS2)
{
vector_init_bshuffle (target, XVECEXP (vals, 0, 0), mode, inner_mode);
return;
}
if (mode == V8QImode)
{
vector_init_fpmerge (target, XVECEXP (vals, 0, 0));
return;
}
if (mode == V4HImode)
{
vector_init_faligndata (target, XVECEXP (vals, 0, 0));
return;
}
}
mem = assign_stack_temp (mode, GET_MODE_SIZE (mode));
for (i = 0; i < n_elts; i++)
emit_move_insn (adjust_address_nv (mem, inner_mode,
i * GET_MODE_SIZE (inner_mode)),
XVECEXP (vals, 0, i));
emit_move_insn (target, mem);
}
/* Implement TARGET_SECONDARY_RELOAD. */
static reg_class_t
sparc_secondary_reload (bool in_p, rtx x, reg_class_t rclass_i,
machine_mode mode, secondary_reload_info *sri)
{
enum reg_class rclass = (enum reg_class) rclass_i;
sri->icode = CODE_FOR_nothing;
sri->extra_cost = 0;
/* We need a temporary when loading/storing a HImode/QImode value
between memory and the FPU registers. This can happen when combine puts
a paradoxical subreg in a float/fix conversion insn. */
if (FP_REG_CLASS_P (rclass)
&& (mode == HImode || mode == QImode)
&& (GET_CODE (x) == MEM
|| ((GET_CODE (x) == REG || GET_CODE (x) == SUBREG)
&& true_regnum (x) == -1)))
return GENERAL_REGS;
/* On 32-bit we need a temporary when loading/storing a DFmode value
between unaligned memory and the upper FPU registers. */
if (TARGET_ARCH32
&& rclass == EXTRA_FP_REGS
&& mode == DFmode
&& GET_CODE (x) == MEM
&& ! mem_min_alignment (x, 8))
return FP_REGS;
if (((TARGET_CM_MEDANY
&& symbolic_operand (x, mode))
|| (TARGET_CM_EMBMEDANY
&& text_segment_operand (x, mode)))
&& ! flag_pic)
{
if (in_p)
sri->icode = direct_optab_handler (reload_in_optab, mode);
else
sri->icode = direct_optab_handler (reload_out_optab, mode);
return NO_REGS;
}
if (TARGET_VIS3 && TARGET_ARCH32)
{
int regno = true_regnum (x);
/* When using VIS3 fp<-->int register moves, on 32-bit we have
to move 8-byte values in 4-byte pieces. This only works via
FP_REGS, and not via EXTRA_FP_REGS. Therefore if we try to
move between EXTRA_FP_REGS and GENERAL_REGS, we will need
an FP_REGS intermediate move. */
if ((rclass == EXTRA_FP_REGS && SPARC_INT_REG_P (regno))
|| ((general_or_i64_p (rclass)
|| rclass == GENERAL_OR_FP_REGS)
&& SPARC_FP_REG_P (regno)))
{
sri->extra_cost = 2;
return FP_REGS;
}
}
return NO_REGS;
}
/* Implement TARGET_SECONDARY_MEMORY_NEEDED.
On SPARC when not VIS3 it is not possible to directly move data
between GENERAL_REGS and FP_REGS. */
static bool
sparc_secondary_memory_needed (machine_mode mode, reg_class_t class1,
reg_class_t class2)
{
return ((FP_REG_CLASS_P (class1) != FP_REG_CLASS_P (class2))
&& (! TARGET_VIS3
|| GET_MODE_SIZE (mode) > 8
|| GET_MODE_SIZE (mode) < 4));
}
/* Implement TARGET_SECONDARY_MEMORY_NEEDED_MODE.
get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
because the movsi and movsf patterns don't handle r/f moves.
For v8 we copy the default definition. */
static machine_mode
sparc_secondary_memory_needed_mode (machine_mode mode)
{
if (TARGET_ARCH64)
{
if (GET_MODE_BITSIZE (mode) < 32)
return mode_for_size (32, GET_MODE_CLASS (mode), 0).require ();
return mode;
}
else
{
if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
return mode_for_size (BITS_PER_WORD,
GET_MODE_CLASS (mode), 0).require ();
return mode;
}
}
/* Emit code to conditionally move either OPERANDS[2] or OPERANDS[3] into
OPERANDS[0] in MODE. OPERANDS[1] is the operator of the condition. */
bool
sparc_expand_conditional_move (machine_mode mode, rtx *operands)
{
enum rtx_code rc = GET_CODE (operands[1]);
machine_mode cmp_mode;
rtx cc_reg, dst, cmp;
cmp = operands[1];
if (GET_MODE (XEXP (cmp, 0)) == DImode && !TARGET_ARCH64)
return false;
if (GET_MODE (XEXP (cmp, 0)) == TFmode && !TARGET_HARD_QUAD)
cmp = sparc_emit_float_lib_cmp (XEXP (cmp, 0), XEXP (cmp, 1), rc);
cmp_mode = GET_MODE (XEXP (cmp, 0));
rc = GET_CODE (cmp);
dst = operands[0];
if (! rtx_equal_p (operands[2], dst)
&& ! rtx_equal_p (operands[3], dst))
{
if (reg_overlap_mentioned_p (dst, cmp))
dst = gen_reg_rtx (mode);
emit_move_insn (dst, operands[3]);
}
else if (operands[2] == dst)
{
operands[2] = operands[3];
if (GET_MODE_CLASS (cmp_mode) == MODE_FLOAT)
rc = reverse_condition_maybe_unordered (rc);
else
rc = reverse_condition (rc);
}
if (XEXP (cmp, 1) == const0_rtx
&& GET_CODE (XEXP (cmp, 0)) == REG
&& cmp_mode == DImode
&& v9_regcmp_p (rc))
cc_reg = XEXP (cmp, 0);
else
cc_reg = gen_compare_reg_1 (rc, XEXP (cmp, 0), XEXP (cmp, 1));
cmp = gen_rtx_fmt_ee (rc, GET_MODE (cc_reg), cc_reg, const0_rtx);
emit_insn (gen_rtx_SET (dst,
gen_rtx_IF_THEN_ELSE (mode, cmp, operands[2], dst)));
if (dst != operands[0])
emit_move_insn (operands[0], dst);
return true;
}
/* Emit code to conditionally move a combination of OPERANDS[1] and OPERANDS[2]
into OPERANDS[0] in MODE, depending on the outcome of the comparison of
OPERANDS[4] and OPERANDS[5]. OPERANDS[3] is the operator of the condition.
FCODE is the machine code to be used for OPERANDS[3] and CCODE the machine
code to be used for the condition mask. */
void
sparc_expand_vcond (machine_mode mode, rtx *operands, int ccode, int fcode)
{
rtx mask, cop0, cop1, fcmp, cmask, bshuf, gsr;
enum rtx_code code = GET_CODE (operands[3]);
mask = gen_reg_rtx (Pmode);
cop0 = operands[4];
cop1 = operands[5];
if (code == LT || code == GE)
{
rtx t;
code = swap_condition (code);
t = cop0; cop0 = cop1; cop1 = t;
}
gsr = gen_rtx_REG (DImode, SPARC_GSR_REG);
fcmp = gen_rtx_UNSPEC (Pmode,
gen_rtvec (1, gen_rtx_fmt_ee (code, mode, cop0, cop1)),
fcode);
cmask = gen_rtx_UNSPEC (DImode,
gen_rtvec (2, mask, gsr),
ccode);
bshuf = gen_rtx_UNSPEC (mode,
gen_rtvec (3, operands[1], operands[2], gsr),
UNSPEC_BSHUFFLE);
emit_insn (gen_rtx_SET (mask, fcmp));
emit_insn (gen_rtx_SET (gsr, cmask));
emit_insn (gen_rtx_SET (operands[0], bshuf));
}
/* On sparc, any mode which naturally allocates into the float
registers should return 4 here. */
unsigned int
sparc_regmode_natural_size (machine_mode mode)
{
int size = UNITS_PER_WORD;
if (TARGET_ARCH64)
{
enum mode_class mclass = GET_MODE_CLASS (mode);
if (mclass == MODE_FLOAT || mclass == MODE_VECTOR_INT)
size = 4;
}
return size;
}
/* Implement TARGET_HARD_REGNO_NREGS.
On SPARC, ordinary registers hold 32 bits worth; this means both
integer and floating point registers. On v9, integer regs hold 64
bits worth; floating point regs hold 32 bits worth (this includes the
new fp regs as even the odd ones are included in the hard register
count). */
static unsigned int
sparc_hard_regno_nregs (unsigned int regno, machine_mode mode)
{
if (regno == SPARC_GSR_REG)
return 1;
if (TARGET_ARCH64)
{
if (SPARC_INT_REG_P (regno) || regno == FRAME_POINTER_REGNUM)
return CEIL (GET_MODE_SIZE (mode), UNITS_PER_WORD);
return CEIL (GET_MODE_SIZE (mode), 4);
}
return CEIL (GET_MODE_SIZE (mode), UNITS_PER_WORD);
}
/* Implement TARGET_HARD_REGNO_MODE_OK.
??? Because of the funny way we pass parameters we should allow certain
??? types of float/complex values to be in integer registers during
??? RTL generation. This only matters on arch32. */
static bool
sparc_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
{
return (hard_regno_mode_classes[regno] & sparc_mode_class[mode]) != 0;
}
/* Implement TARGET_MODES_TIEABLE_P.
For V9 we have to deal with the fact that only the lower 32 floating
point registers are 32-bit addressable. */
static bool
sparc_modes_tieable_p (machine_mode mode1, machine_mode mode2)
{
enum mode_class mclass1, mclass2;
unsigned short size1, size2;
if (mode1 == mode2)
return true;
mclass1 = GET_MODE_CLASS (mode1);
mclass2 = GET_MODE_CLASS (mode2);
if (mclass1 != mclass2)
return false;
if (! TARGET_V9)
return true;
/* Classes are the same and we are V9 so we have to deal with upper
vs. lower floating point registers. If one of the modes is a
4-byte mode, and the other is not, we have to mark them as not
tieable because only the lower 32 floating point register are
addressable 32-bits at a time.
We can't just test explicitly for SFmode, otherwise we won't
cover the vector mode cases properly. */
if (mclass1 != MODE_FLOAT && mclass1 != MODE_VECTOR_INT)
return true;
size1 = GET_MODE_SIZE (mode1);
size2 = GET_MODE_SIZE (mode2);
if ((size1 > 4 && size2 == 4)
|| (size2 > 4 && size1 == 4))
return false;
return true;
}
/* Implement TARGET_CSTORE_MODE. */
static scalar_int_mode
sparc_cstore_mode (enum insn_code icode ATTRIBUTE_UNUSED)
{
return (TARGET_ARCH64 ? DImode : SImode);
}
/* Return the compound expression made of T1 and T2. */
static inline tree
compound_expr (tree t1, tree t2)
{
return build2 (COMPOUND_EXPR, void_type_node, t1, t2);
}
/* Implement TARGET_ATOMIC_ASSIGN_EXPAND_FENV hook. */
static void
sparc_atomic_assign_expand_fenv (tree *hold, tree *clear, tree *update)
{
if (!TARGET_FPU)
return;
const unsigned HOST_WIDE_INT accrued_exception_mask = 0x1f << 5;
const unsigned HOST_WIDE_INT trap_enable_mask = 0x1f << 23;
/* We generate the equivalent of feholdexcept (&fenv_var):
unsigned int fenv_var;
__builtin_store_fsr (&fenv_var);
unsigned int tmp1_var;
tmp1_var = fenv_var & ~(accrued_exception_mask | trap_enable_mask);
__builtin_load_fsr (&tmp1_var); */
tree fenv_var = create_tmp_var_raw (unsigned_type_node);
TREE_ADDRESSABLE (fenv_var) = 1;
tree fenv_addr = build_fold_addr_expr (fenv_var);
tree stfsr = sparc_builtins[SPARC_BUILTIN_STFSR];
tree hold_stfsr
= build4 (TARGET_EXPR, unsigned_type_node, fenv_var,
build_call_expr (stfsr, 1, fenv_addr), NULL_TREE, NULL_TREE);
tree tmp1_var = create_tmp_var_raw (unsigned_type_node);
TREE_ADDRESSABLE (tmp1_var) = 1;
tree masked_fenv_var
= build2 (BIT_AND_EXPR, unsigned_type_node, fenv_var,
build_int_cst (unsigned_type_node,
~(accrued_exception_mask | trap_enable_mask)));
tree hold_mask
= build4 (TARGET_EXPR, unsigned_type_node, tmp1_var, masked_fenv_var,
NULL_TREE, NULL_TREE);
tree tmp1_addr = build_fold_addr_expr (tmp1_var);
tree ldfsr = sparc_builtins[SPARC_BUILTIN_LDFSR];
tree hold_ldfsr = build_call_expr (ldfsr, 1, tmp1_addr);
*hold = compound_expr (compound_expr (hold_stfsr, hold_mask), hold_ldfsr);
/* We reload the value of tmp1_var to clear the exceptions:
__builtin_load_fsr (&tmp1_var); */
*clear = build_call_expr (ldfsr, 1, tmp1_addr);
/* We generate the equivalent of feupdateenv (&fenv_var):
unsigned int tmp2_var;
__builtin_store_fsr (&tmp2_var);
__builtin_load_fsr (&fenv_var);
if (SPARC_LOW_FE_EXCEPT_VALUES)
tmp2_var >>= 5;
__atomic_feraiseexcept ((int) tmp2_var); */
tree tmp2_var = create_tmp_var_raw (unsigned_type_node);
TREE_ADDRESSABLE (tmp2_var) = 1;
tree tmp2_addr = build_fold_addr_expr (tmp2_var);
tree update_stfsr
= build4 (TARGET_EXPR, unsigned_type_node, tmp2_var,
build_call_expr (stfsr, 1, tmp2_addr), NULL_TREE, NULL_TREE);
tree update_ldfsr = build_call_expr (ldfsr, 1, fenv_addr);
tree atomic_feraiseexcept
= builtin_decl_implicit (BUILT_IN_ATOMIC_FERAISEEXCEPT);
tree update_call
= build_call_expr (atomic_feraiseexcept, 1,
fold_convert (integer_type_node, tmp2_var));
if (SPARC_LOW_FE_EXCEPT_VALUES)
{
tree shifted_tmp2_var
= build2 (RSHIFT_EXPR, unsigned_type_node, tmp2_var,
build_int_cst (unsigned_type_node, 5));
tree update_shift
= build2 (MODIFY_EXPR, void_type_node, tmp2_var, shifted_tmp2_var);
update_call = compound_expr (update_shift, update_call);
}
*update
= compound_expr (compound_expr (update_stfsr, update_ldfsr), update_call);
}
/* Implement TARGET_CAN_CHANGE_MODE_CLASS. Borrowed from the PA port.
SImode loads to floating-point registers are not zero-extended.
The definition for LOAD_EXTEND_OP specifies that integer loads
narrower than BITS_PER_WORD will be zero-extended. As a result,
we inhibit changes from SImode unless they are to a mode that is
identical in size.
Likewise for SFmode, since word-mode paradoxical subregs are
problematic on big-endian architectures. */
static bool
sparc_can_change_mode_class (machine_mode from, machine_mode to,
reg_class_t rclass)
{
if (TARGET_ARCH64
&& GET_MODE_SIZE (from) == 4
&& GET_MODE_SIZE (to) != 4)
return !reg_classes_intersect_p (rclass, FP_REGS);
return true;
}
/* Implement TARGET_CONSTANT_ALIGNMENT. */
static HOST_WIDE_INT
sparc_constant_alignment (const_tree exp, HOST_WIDE_INT align)
{
if (TREE_CODE (exp) == STRING_CST)
return MAX (align, FASTEST_ALIGNMENT);
return align;
}
#include "gt-sparc.h"
|