1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
|
/* Utility routines for data type conversion for GCC.
Copyright (C) 1987-2018 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* These routines are somewhat language-independent utility function
intended to be called by the language-specific convert () functions. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "target.h"
#include "tree.h"
#include "diagnostic-core.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "convert.h"
#include "langhooks.h"
#include "builtins.h"
#include "ubsan.h"
#include "stringpool.h"
#include "attribs.h"
#include "asan.h"
#define maybe_fold_build1_loc(FOLD_P, LOC, CODE, TYPE, EXPR) \
((FOLD_P) ? fold_build1_loc (LOC, CODE, TYPE, EXPR) \
: build1_loc (LOC, CODE, TYPE, EXPR))
#define maybe_fold_build2_loc(FOLD_P, LOC, CODE, TYPE, EXPR1, EXPR2) \
((FOLD_P) ? fold_build2_loc (LOC, CODE, TYPE, EXPR1, EXPR2) \
: build2_loc (LOC, CODE, TYPE, EXPR1, EXPR2))
/* Convert EXPR to some pointer or reference type TYPE.
EXPR must be pointer, reference, integer, enumeral, or literal zero;
in other cases error is called. If FOLD_P is true, try to fold the
expression. */
static tree
convert_to_pointer_1 (tree type, tree expr, bool fold_p)
{
location_t loc = EXPR_LOCATION (expr);
if (TREE_TYPE (expr) == type)
return expr;
switch (TREE_CODE (TREE_TYPE (expr)))
{
case POINTER_TYPE:
case REFERENCE_TYPE:
{
/* If the pointers point to different address spaces, conversion needs
to be done via a ADDR_SPACE_CONVERT_EXPR instead of a NOP_EXPR. */
addr_space_t to_as = TYPE_ADDR_SPACE (TREE_TYPE (type));
addr_space_t from_as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (expr)));
if (to_as == from_as)
return maybe_fold_build1_loc (fold_p, loc, NOP_EXPR, type, expr);
else
return maybe_fold_build1_loc (fold_p, loc, ADDR_SPACE_CONVERT_EXPR,
type, expr);
}
case INTEGER_TYPE:
case ENUMERAL_TYPE:
case BOOLEAN_TYPE:
{
/* If the input precision differs from the target pointer type
precision, first convert the input expression to an integer type of
the target precision. Some targets, e.g. VMS, need several pointer
sizes to coexist so the latter isn't necessarily POINTER_SIZE. */
unsigned int pprec = TYPE_PRECISION (type);
unsigned int eprec = TYPE_PRECISION (TREE_TYPE (expr));
if (eprec != pprec)
expr
= maybe_fold_build1_loc (fold_p, loc, NOP_EXPR,
lang_hooks.types.type_for_size (pprec, 0),
expr);
}
return maybe_fold_build1_loc (fold_p, loc, CONVERT_EXPR, type, expr);
default:
error ("cannot convert to a pointer type");
return convert_to_pointer_1 (type, integer_zero_node, fold_p);
}
}
/* A wrapper around convert_to_pointer_1 that always folds the
expression. */
tree
convert_to_pointer (tree type, tree expr)
{
return convert_to_pointer_1 (type, expr, true);
}
/* A wrapper around convert_to_pointer_1 that only folds the
expression if DOFOLD, or if it is CONSTANT_CLASS_P. */
tree
convert_to_pointer_maybe_fold (tree type, tree expr, bool dofold)
{
return convert_to_pointer_1 (type, expr, dofold || CONSTANT_CLASS_P (expr));
}
/* Convert EXPR to some floating-point type TYPE.
EXPR must be float, fixed-point, integer, or enumeral;
in other cases error is called. If FOLD_P is true, try to fold
the expression. */
static tree
convert_to_real_1 (tree type, tree expr, bool fold_p)
{
enum built_in_function fcode = builtin_mathfn_code (expr);
tree itype = TREE_TYPE (expr);
location_t loc = EXPR_LOCATION (expr);
if (TREE_CODE (expr) == COMPOUND_EXPR)
{
tree t = convert_to_real_1 (type, TREE_OPERAND (expr, 1), fold_p);
if (t == TREE_OPERAND (expr, 1))
return expr;
return build2_loc (EXPR_LOCATION (expr), COMPOUND_EXPR, TREE_TYPE (t),
TREE_OPERAND (expr, 0), t);
}
/* Disable until we figure out how to decide whether the functions are
present in runtime. */
/* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
if (optimize
&& (TYPE_MODE (type) == TYPE_MODE (double_type_node)
|| TYPE_MODE (type) == TYPE_MODE (float_type_node)))
{
switch (fcode)
{
#define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
CASE_MATHFN (COSH)
CASE_MATHFN (EXP)
CASE_MATHFN (EXP10)
CASE_MATHFN (EXP2)
CASE_MATHFN (EXPM1)
CASE_MATHFN (GAMMA)
CASE_MATHFN (J0)
CASE_MATHFN (J1)
CASE_MATHFN (LGAMMA)
CASE_MATHFN (POW10)
CASE_MATHFN (SINH)
CASE_MATHFN (TGAMMA)
CASE_MATHFN (Y0)
CASE_MATHFN (Y1)
/* The above functions may set errno differently with float
input or output so this transformation is not safe with
-fmath-errno. */
if (flag_errno_math)
break;
gcc_fallthrough ();
CASE_MATHFN (ACOS)
CASE_MATHFN (ACOSH)
CASE_MATHFN (ASIN)
CASE_MATHFN (ASINH)
CASE_MATHFN (ATAN)
CASE_MATHFN (ATANH)
CASE_MATHFN (CBRT)
CASE_MATHFN (COS)
CASE_MATHFN (ERF)
CASE_MATHFN (ERFC)
CASE_MATHFN (LOG)
CASE_MATHFN (LOG10)
CASE_MATHFN (LOG2)
CASE_MATHFN (LOG1P)
CASE_MATHFN (SIN)
CASE_MATHFN (TAN)
CASE_MATHFN (TANH)
/* The above functions are not safe to do this conversion. */
if (!flag_unsafe_math_optimizations)
break;
gcc_fallthrough ();
CASE_MATHFN (SQRT)
CASE_MATHFN (FABS)
CASE_MATHFN (LOGB)
#undef CASE_MATHFN
if (call_expr_nargs (expr) != 1
|| !SCALAR_FLOAT_TYPE_P (TREE_TYPE (CALL_EXPR_ARG (expr, 0))))
break;
{
tree arg0 = strip_float_extensions (CALL_EXPR_ARG (expr, 0));
tree newtype = type;
/* We have (outertype)sqrt((innertype)x). Choose the wider mode
from the both as the safe type for operation. */
if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
newtype = TREE_TYPE (arg0);
/* We consider to convert
(T1) sqrtT2 ((T2) exprT3)
to
(T1) sqrtT4 ((T4) exprT3)
, where T1 is TYPE, T2 is ITYPE, T3 is TREE_TYPE (ARG0),
and T4 is NEWTYPE. All those types are of floating point types.
T4 (NEWTYPE) should be narrower than T2 (ITYPE). This conversion
is safe only if P1 >= P2*2+2, where P1 and P2 are precisions of
T2 and T4. See the following URL for a reference:
http://stackoverflow.com/questions/9235456/determining-
floating-point-square-root
*/
if ((fcode == BUILT_IN_SQRT || fcode == BUILT_IN_SQRTL)
&& !flag_unsafe_math_optimizations)
{
/* The following conversion is unsafe even the precision condition
below is satisfied:
(float) sqrtl ((long double) double_val) -> (float) sqrt (double_val)
*/
if (TYPE_MODE (type) != TYPE_MODE (newtype))
break;
int p1 = REAL_MODE_FORMAT (TYPE_MODE (itype))->p;
int p2 = REAL_MODE_FORMAT (TYPE_MODE (newtype))->p;
if (p1 < p2 * 2 + 2)
break;
}
/* Be careful about integer to fp conversions.
These may overflow still. */
if (FLOAT_TYPE_P (TREE_TYPE (arg0))
&& TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
&& (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
|| TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
{
tree fn = mathfn_built_in (newtype, fcode);
if (fn)
{
tree arg = convert_to_real_1 (newtype, arg0, fold_p);
expr = build_call_expr (fn, 1, arg);
if (newtype == type)
return expr;
}
}
}
default:
break;
}
}
/* Propagate the cast into the operation. */
if (itype != type && FLOAT_TYPE_P (type))
switch (TREE_CODE (expr))
{
/* Convert (float)-x into -(float)x. This is safe for
round-to-nearest rounding mode when the inner type is float. */
case ABS_EXPR:
case NEGATE_EXPR:
if (!flag_rounding_math
&& FLOAT_TYPE_P (itype)
&& TYPE_PRECISION (type) < TYPE_PRECISION (itype))
{
tree arg = convert_to_real_1 (type, TREE_OPERAND (expr, 0),
fold_p);
return build1 (TREE_CODE (expr), type, arg);
}
break;
/* Convert (outertype)((innertype0)a+(innertype1)b)
into ((newtype)a+(newtype)b) where newtype
is the widest mode from all of these. */
case PLUS_EXPR:
case MINUS_EXPR:
case MULT_EXPR:
case RDIV_EXPR:
{
tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
if (FLOAT_TYPE_P (TREE_TYPE (arg0))
&& FLOAT_TYPE_P (TREE_TYPE (arg1))
&& DECIMAL_FLOAT_TYPE_P (itype) == DECIMAL_FLOAT_TYPE_P (type))
{
tree newtype = type;
if (TYPE_MODE (TREE_TYPE (arg0)) == SDmode
|| TYPE_MODE (TREE_TYPE (arg1)) == SDmode
|| TYPE_MODE (type) == SDmode)
newtype = dfloat32_type_node;
if (TYPE_MODE (TREE_TYPE (arg0)) == DDmode
|| TYPE_MODE (TREE_TYPE (arg1)) == DDmode
|| TYPE_MODE (type) == DDmode)
newtype = dfloat64_type_node;
if (TYPE_MODE (TREE_TYPE (arg0)) == TDmode
|| TYPE_MODE (TREE_TYPE (arg1)) == TDmode
|| TYPE_MODE (type) == TDmode)
newtype = dfloat128_type_node;
if (newtype == dfloat32_type_node
|| newtype == dfloat64_type_node
|| newtype == dfloat128_type_node)
{
expr = build2 (TREE_CODE (expr), newtype,
convert_to_real_1 (newtype, arg0,
fold_p),
convert_to_real_1 (newtype, arg1,
fold_p));
if (newtype == type)
return expr;
break;
}
if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
newtype = TREE_TYPE (arg0);
if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
newtype = TREE_TYPE (arg1);
/* Sometimes this transformation is safe (cannot
change results through affecting double rounding
cases) and sometimes it is not. If NEWTYPE is
wider than TYPE, e.g. (float)((long double)double
+ (long double)double) converted to
(float)(double + double), the transformation is
unsafe regardless of the details of the types
involved; double rounding can arise if the result
of NEWTYPE arithmetic is a NEWTYPE value half way
between two representable TYPE values but the
exact value is sufficiently different (in the
right direction) for this difference to be
visible in ITYPE arithmetic. If NEWTYPE is the
same as TYPE, however, the transformation may be
safe depending on the types involved: it is safe
if the ITYPE has strictly more than twice as many
mantissa bits as TYPE, can represent infinities
and NaNs if the TYPE can, and has sufficient
exponent range for the product or ratio of two
values representable in the TYPE to be within the
range of normal values of ITYPE. */
if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
&& (flag_unsafe_math_optimizations
|| (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
&& real_can_shorten_arithmetic (TYPE_MODE (itype),
TYPE_MODE (type))
&& !excess_precision_type (newtype))))
{
expr = build2 (TREE_CODE (expr), newtype,
convert_to_real_1 (newtype, arg0,
fold_p),
convert_to_real_1 (newtype, arg1,
fold_p));
if (newtype == type)
return expr;
}
}
}
break;
default:
break;
}
switch (TREE_CODE (TREE_TYPE (expr)))
{
case REAL_TYPE:
/* Ignore the conversion if we don't need to store intermediate
results and neither type is a decimal float. */
return build1_loc (loc,
(flag_float_store
|| DECIMAL_FLOAT_TYPE_P (type)
|| DECIMAL_FLOAT_TYPE_P (itype))
? CONVERT_EXPR : NOP_EXPR, type, expr);
case INTEGER_TYPE:
case ENUMERAL_TYPE:
case BOOLEAN_TYPE:
return build1 (FLOAT_EXPR, type, expr);
case FIXED_POINT_TYPE:
return build1 (FIXED_CONVERT_EXPR, type, expr);
case COMPLEX_TYPE:
return convert (type,
maybe_fold_build1_loc (fold_p, loc, REALPART_EXPR,
TREE_TYPE (TREE_TYPE (expr)),
expr));
case POINTER_TYPE:
case REFERENCE_TYPE:
error ("pointer value used where a floating point value was expected");
return convert_to_real_1 (type, integer_zero_node, fold_p);
default:
error ("aggregate value used where a float was expected");
return convert_to_real_1 (type, integer_zero_node, fold_p);
}
}
/* A wrapper around convert_to_real_1 that always folds the
expression. */
tree
convert_to_real (tree type, tree expr)
{
return convert_to_real_1 (type, expr, true);
}
/* A wrapper around convert_to_real_1 that only folds the
expression if DOFOLD, or if it is CONSTANT_CLASS_P. */
tree
convert_to_real_maybe_fold (tree type, tree expr, bool dofold)
{
return convert_to_real_1 (type, expr, dofold || CONSTANT_CLASS_P (expr));
}
/* Try to narrow EX_FORM ARG0 ARG1 in narrowed arg types producing a
result in TYPE. */
static tree
do_narrow (location_t loc,
enum tree_code ex_form, tree type, tree arg0, tree arg1,
tree expr, unsigned inprec, unsigned outprec, bool dofold)
{
/* Do the arithmetic in type TYPEX,
then convert result to TYPE. */
tree typex = type;
/* Can't do arithmetic in enumeral types
so use an integer type that will hold the values. */
if (TREE_CODE (typex) == ENUMERAL_TYPE)
typex = lang_hooks.types.type_for_size (TYPE_PRECISION (typex),
TYPE_UNSIGNED (typex));
/* The type demotion below might cause doing unsigned arithmetic
instead of signed, and thus hide overflow bugs. */
if ((ex_form == PLUS_EXPR || ex_form == MINUS_EXPR)
&& !TYPE_UNSIGNED (typex)
&& sanitize_flags_p (SANITIZE_SI_OVERFLOW))
return NULL_TREE;
/* But now perhaps TYPEX is as wide as INPREC.
In that case, do nothing special here.
(Otherwise would recurse infinitely in convert. */
if (TYPE_PRECISION (typex) != inprec)
{
/* Don't do unsigned arithmetic where signed was wanted,
or vice versa.
Exception: if both of the original operands were
unsigned then we can safely do the work as unsigned.
Exception: shift operations take their type solely
from the first argument.
Exception: the LSHIFT_EXPR case above requires that
we perform this operation unsigned lest we produce
signed-overflow undefinedness.
And we may need to do it as unsigned
if we truncate to the original size. */
if (TYPE_UNSIGNED (TREE_TYPE (expr))
|| (TYPE_UNSIGNED (TREE_TYPE (arg0))
&& (TYPE_UNSIGNED (TREE_TYPE (arg1))
|| ex_form == LSHIFT_EXPR
|| ex_form == RSHIFT_EXPR
|| ex_form == LROTATE_EXPR
|| ex_form == RROTATE_EXPR))
|| ex_form == LSHIFT_EXPR
/* If we have !flag_wrapv, and either ARG0 or
ARG1 is of a signed type, we have to do
PLUS_EXPR, MINUS_EXPR or MULT_EXPR in an unsigned
type in case the operation in outprec precision
could overflow. Otherwise, we would introduce
signed-overflow undefinedness. */
|| ((!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
&& TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
|| !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
&& TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1))))
&& ((TYPE_PRECISION (TREE_TYPE (arg0)) * 2u
> outprec)
|| (TYPE_PRECISION (TREE_TYPE (arg1)) * 2u
> outprec))
&& (ex_form == PLUS_EXPR
|| ex_form == MINUS_EXPR
|| ex_form == MULT_EXPR)))
{
if (!TYPE_UNSIGNED (typex))
typex = unsigned_type_for (typex);
}
else
{
if (TYPE_UNSIGNED (typex))
typex = signed_type_for (typex);
}
/* We should do away with all this once we have a proper
type promotion/demotion pass, see PR45397. */
expr = maybe_fold_build2_loc (dofold, loc, ex_form, typex,
convert (typex, arg0),
convert (typex, arg1));
return convert (type, expr);
}
return NULL_TREE;
}
/* Convert EXPR to some integer (or enum) type TYPE.
EXPR must be pointer, integer, discrete (enum, char, or bool), float,
fixed-point or vector; in other cases error is called.
If DOFOLD is TRUE, we try to simplify newly-created patterns by folding.
The result of this is always supposed to be a newly created tree node
not in use in any existing structure. */
static tree
convert_to_integer_1 (tree type, tree expr, bool dofold)
{
enum tree_code ex_form = TREE_CODE (expr);
tree intype = TREE_TYPE (expr);
unsigned int inprec = element_precision (intype);
unsigned int outprec = element_precision (type);
location_t loc = EXPR_LOCATION (expr);
/* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
be. Consider `enum E = { a, b = (enum E) 3 };'. */
if (!COMPLETE_TYPE_P (type))
{
error ("conversion to incomplete type");
return error_mark_node;
}
if (ex_form == COMPOUND_EXPR)
{
tree t = convert_to_integer_1 (type, TREE_OPERAND (expr, 1), dofold);
if (t == TREE_OPERAND (expr, 1))
return expr;
return build2_loc (EXPR_LOCATION (expr), COMPOUND_EXPR, TREE_TYPE (t),
TREE_OPERAND (expr, 0), t);
}
/* Convert e.g. (long)round(d) -> lround(d). */
/* If we're converting to char, we may encounter differing behavior
between converting from double->char vs double->long->char.
We're in "undefined" territory but we prefer to be conservative,
so only proceed in "unsafe" math mode. */
if (optimize
&& (flag_unsafe_math_optimizations
|| (long_integer_type_node
&& outprec >= TYPE_PRECISION (long_integer_type_node))))
{
tree s_expr = strip_float_extensions (expr);
tree s_intype = TREE_TYPE (s_expr);
const enum built_in_function fcode = builtin_mathfn_code (s_expr);
tree fn = 0;
switch (fcode)
{
CASE_FLT_FN (BUILT_IN_CEIL):
CASE_FLT_FN_FLOATN_NX (BUILT_IN_CEIL):
/* Only convert in ISO C99 mode. */
if (!targetm.libc_has_function (function_c99_misc))
break;
if (outprec < TYPE_PRECISION (integer_type_node)
|| (outprec == TYPE_PRECISION (integer_type_node)
&& !TYPE_UNSIGNED (type)))
fn = mathfn_built_in (s_intype, BUILT_IN_ICEIL);
else if (outprec == TYPE_PRECISION (long_integer_type_node)
&& !TYPE_UNSIGNED (type))
fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL);
else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
&& !TYPE_UNSIGNED (type))
fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL);
break;
CASE_FLT_FN (BUILT_IN_FLOOR):
CASE_FLT_FN_FLOATN_NX (BUILT_IN_FLOOR):
/* Only convert in ISO C99 mode. */
if (!targetm.libc_has_function (function_c99_misc))
break;
if (outprec < TYPE_PRECISION (integer_type_node)
|| (outprec == TYPE_PRECISION (integer_type_node)
&& !TYPE_UNSIGNED (type)))
fn = mathfn_built_in (s_intype, BUILT_IN_IFLOOR);
else if (outprec == TYPE_PRECISION (long_integer_type_node)
&& !TYPE_UNSIGNED (type))
fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR);
else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
&& !TYPE_UNSIGNED (type))
fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR);
break;
CASE_FLT_FN (BUILT_IN_ROUND):
CASE_FLT_FN_FLOATN_NX (BUILT_IN_ROUND):
/* Only convert in ISO C99 mode and with -fno-math-errno. */
if (!targetm.libc_has_function (function_c99_misc)
|| flag_errno_math)
break;
if (outprec < TYPE_PRECISION (integer_type_node)
|| (outprec == TYPE_PRECISION (integer_type_node)
&& !TYPE_UNSIGNED (type)))
fn = mathfn_built_in (s_intype, BUILT_IN_IROUND);
else if (outprec == TYPE_PRECISION (long_integer_type_node)
&& !TYPE_UNSIGNED (type))
fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
&& !TYPE_UNSIGNED (type))
fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
break;
CASE_FLT_FN (BUILT_IN_NEARBYINT):
CASE_FLT_FN_FLOATN_NX (BUILT_IN_NEARBYINT):
/* Only convert nearbyint* if we can ignore math exceptions. */
if (flag_trapping_math)
break;
gcc_fallthrough ();
CASE_FLT_FN (BUILT_IN_RINT):
CASE_FLT_FN_FLOATN_NX (BUILT_IN_RINT):
/* Only convert in ISO C99 mode and with -fno-math-errno. */
if (!targetm.libc_has_function (function_c99_misc)
|| flag_errno_math)
break;
if (outprec < TYPE_PRECISION (integer_type_node)
|| (outprec == TYPE_PRECISION (integer_type_node)
&& !TYPE_UNSIGNED (type)))
fn = mathfn_built_in (s_intype, BUILT_IN_IRINT);
else if (outprec == TYPE_PRECISION (long_integer_type_node)
&& !TYPE_UNSIGNED (type))
fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
&& !TYPE_UNSIGNED (type))
fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
break;
CASE_FLT_FN (BUILT_IN_TRUNC):
CASE_FLT_FN_FLOATN_NX (BUILT_IN_TRUNC):
if (call_expr_nargs (s_expr) != 1
|| !SCALAR_FLOAT_TYPE_P (TREE_TYPE (CALL_EXPR_ARG (s_expr, 0))))
break;
return convert_to_integer_1 (type, CALL_EXPR_ARG (s_expr, 0),
dofold);
default:
break;
}
if (fn
&& call_expr_nargs (s_expr) == 1
&& SCALAR_FLOAT_TYPE_P (TREE_TYPE (CALL_EXPR_ARG (s_expr, 0))))
{
tree newexpr = build_call_expr (fn, 1, CALL_EXPR_ARG (s_expr, 0));
return convert_to_integer_1 (type, newexpr, dofold);
}
}
/* Convert (int)logb(d) -> ilogb(d). */
if (optimize
&& flag_unsafe_math_optimizations
&& !flag_trapping_math && !flag_errno_math && flag_finite_math_only
&& integer_type_node
&& (outprec > TYPE_PRECISION (integer_type_node)
|| (outprec == TYPE_PRECISION (integer_type_node)
&& !TYPE_UNSIGNED (type))))
{
tree s_expr = strip_float_extensions (expr);
tree s_intype = TREE_TYPE (s_expr);
const enum built_in_function fcode = builtin_mathfn_code (s_expr);
tree fn = 0;
switch (fcode)
{
CASE_FLT_FN (BUILT_IN_LOGB):
fn = mathfn_built_in (s_intype, BUILT_IN_ILOGB);
break;
default:
break;
}
if (fn
&& call_expr_nargs (s_expr) == 1
&& SCALAR_FLOAT_TYPE_P (TREE_TYPE (CALL_EXPR_ARG (s_expr, 0))))
{
tree newexpr = build_call_expr (fn, 1, CALL_EXPR_ARG (s_expr, 0));
return convert_to_integer_1 (type, newexpr, dofold);
}
}
switch (TREE_CODE (intype))
{
case POINTER_TYPE:
case REFERENCE_TYPE:
if (integer_zerop (expr) && !TREE_OVERFLOW (expr))
return build_int_cst (type, 0);
/* Convert to an unsigned integer of the correct width first, and from
there widen/truncate to the required type. Some targets support the
coexistence of multiple valid pointer sizes, so fetch the one we need
from the type. */
if (!dofold)
return build1 (CONVERT_EXPR, type, expr);
expr = fold_build1 (CONVERT_EXPR,
lang_hooks.types.type_for_size
(TYPE_PRECISION (intype), 0),
expr);
return fold_convert (type, expr);
case INTEGER_TYPE:
case ENUMERAL_TYPE:
case BOOLEAN_TYPE:
case OFFSET_TYPE:
/* If this is a logical operation, which just returns 0 or 1, we can
change the type of the expression. */
if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
{
expr = copy_node (expr);
TREE_TYPE (expr) = type;
return expr;
}
/* If we are widening the type, put in an explicit conversion.
Similarly if we are not changing the width. After this, we know
we are truncating EXPR. */
else if (outprec >= inprec)
{
enum tree_code code;
/* If the precision of the EXPR's type is K bits and the
destination mode has more bits, and the sign is changing,
it is not safe to use a NOP_EXPR. For example, suppose
that EXPR's type is a 3-bit unsigned integer type, the
TYPE is a 3-bit signed integer type, and the machine mode
for the types is 8-bit QImode. In that case, the
conversion necessitates an explicit sign-extension. In
the signed-to-unsigned case the high-order bits have to
be cleared. */
if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
&& !type_has_mode_precision_p (TREE_TYPE (expr)))
code = CONVERT_EXPR;
else
code = NOP_EXPR;
return maybe_fold_build1_loc (dofold, loc, code, type, expr);
}
/* If TYPE is an enumeral type or a type with a precision less
than the number of bits in its mode, do the conversion to the
type corresponding to its mode, then do a nop conversion
to TYPE. */
else if (TREE_CODE (type) == ENUMERAL_TYPE
|| maybe_ne (outprec, GET_MODE_PRECISION (TYPE_MODE (type))))
{
expr
= convert_to_integer_1 (lang_hooks.types.type_for_mode
(TYPE_MODE (type), TYPE_UNSIGNED (type)),
expr, dofold);
return maybe_fold_build1_loc (dofold, loc, NOP_EXPR, type, expr);
}
/* Here detect when we can distribute the truncation down past some
arithmetic. For example, if adding two longs and converting to an
int, we can equally well convert both to ints and then add.
For the operations handled here, such truncation distribution
is always safe.
It is desirable in these cases:
1) when truncating down to full-word from a larger size
2) when truncating takes no work.
3) when at least one operand of the arithmetic has been extended
(as by C's default conversions). In this case we need two conversions
if we do the arithmetic as already requested, so we might as well
truncate both and then combine. Perhaps that way we need only one.
Note that in general we cannot do the arithmetic in a type
shorter than the desired result of conversion, even if the operands
are both extended from a shorter type, because they might overflow
if combined in that type. The exceptions to this--the times when
two narrow values can be combined in their narrow type even to
make a wider result--are handled by "shorten" in build_binary_op. */
if (dofold)
switch (ex_form)
{
case RSHIFT_EXPR:
/* We can pass truncation down through right shifting
when the shift count is a nonpositive constant. */
if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
&& tree_int_cst_sgn (TREE_OPERAND (expr, 1)) <= 0)
goto trunc1;
break;
case LSHIFT_EXPR:
/* We can pass truncation down through left shifting
when the shift count is a nonnegative constant and
the target type is unsigned. */
if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
&& tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
&& TYPE_UNSIGNED (type)
&& TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
{
/* If shift count is less than the width of the truncated type,
really shift. */
if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
/* In this case, shifting is like multiplication. */
goto trunc1;
else
{
/* If it is >= that width, result is zero.
Handling this with trunc1 would give the wrong result:
(int) ((long long) a << 32) is well defined (as 0)
but (int) a << 32 is undefined and would get a
warning. */
tree t = build_int_cst (type, 0);
/* If the original expression had side-effects, we must
preserve it. */
if (TREE_SIDE_EFFECTS (expr))
return build2 (COMPOUND_EXPR, type, expr, t);
else
return t;
}
}
break;
case TRUNC_DIV_EXPR:
{
tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), NULL_TREE);
tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), NULL_TREE);
/* Don't distribute unless the output precision is at least as
big as the actual inputs and it has the same signedness. */
if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
&& outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
/* If signedness of arg0 and arg1 don't match,
we can't necessarily find a type to compare them in. */
&& (TYPE_UNSIGNED (TREE_TYPE (arg0))
== TYPE_UNSIGNED (TREE_TYPE (arg1)))
/* Do not change the sign of the division. */
&& (TYPE_UNSIGNED (TREE_TYPE (expr))
== TYPE_UNSIGNED (TREE_TYPE (arg0)))
/* Either require unsigned division or a division by
a constant that is not -1. */
&& (TYPE_UNSIGNED (TREE_TYPE (arg0))
|| (TREE_CODE (arg1) == INTEGER_CST
&& !integer_all_onesp (arg1))))
{
tree tem = do_narrow (loc, ex_form, type, arg0, arg1,
expr, inprec, outprec, dofold);
if (tem)
return tem;
}
break;
}
case MAX_EXPR:
case MIN_EXPR:
case MULT_EXPR:
{
tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
/* Don't distribute unless the output precision is at least as
big as the actual inputs. Otherwise, the comparison of the
truncated values will be wrong. */
if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
&& outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
/* If signedness of arg0 and arg1 don't match,
we can't necessarily find a type to compare them in. */
&& (TYPE_UNSIGNED (TREE_TYPE (arg0))
== TYPE_UNSIGNED (TREE_TYPE (arg1))))
goto trunc1;
break;
}
case PLUS_EXPR:
case MINUS_EXPR:
case BIT_AND_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
trunc1:
{
tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
/* Do not try to narrow operands of pointer subtraction;
that will interfere with other folding. */
if (ex_form == MINUS_EXPR
&& CONVERT_EXPR_P (arg0)
&& CONVERT_EXPR_P (arg1)
&& POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 0)))
&& POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1, 0))))
break;
if (outprec >= BITS_PER_WORD
|| targetm.truly_noop_truncation (outprec, inprec)
|| inprec > TYPE_PRECISION (TREE_TYPE (arg0))
|| inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
{
tree tem = do_narrow (loc, ex_form, type, arg0, arg1,
expr, inprec, outprec, dofold);
if (tem)
return tem;
}
}
break;
case NEGATE_EXPR:
/* Using unsigned arithmetic for signed types may hide overflow
bugs. */
if (!TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (expr, 0)))
&& sanitize_flags_p (SANITIZE_SI_OVERFLOW))
break;
/* Fall through. */
case BIT_NOT_EXPR:
/* This is not correct for ABS_EXPR,
since we must test the sign before truncation. */
{
/* Do the arithmetic in type TYPEX,
then convert result to TYPE. */
tree typex = type;
/* Can't do arithmetic in enumeral types
so use an integer type that will hold the values. */
if (TREE_CODE (typex) == ENUMERAL_TYPE)
typex
= lang_hooks.types.type_for_size (TYPE_PRECISION (typex),
TYPE_UNSIGNED (typex));
if (!TYPE_UNSIGNED (typex))
typex = unsigned_type_for (typex);
return convert (type,
fold_build1 (ex_form, typex,
convert (typex,
TREE_OPERAND (expr, 0))));
}
CASE_CONVERT:
{
tree argtype = TREE_TYPE (TREE_OPERAND (expr, 0));
/* Don't introduce a "can't convert between vector values
of different size" error. */
if (TREE_CODE (argtype) == VECTOR_TYPE
&& maybe_ne (GET_MODE_SIZE (TYPE_MODE (argtype)),
GET_MODE_SIZE (TYPE_MODE (type))))
break;
}
/* If truncating after truncating, might as well do all at once.
If truncating after extending, we may get rid of wasted work. */
return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
case COND_EXPR:
/* It is sometimes worthwhile to push the narrowing down through
the conditional and never loses. A COND_EXPR may have a throw
as one operand, which then has void type. Just leave void
operands as they are. */
return
fold_build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
VOID_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1)))
? TREE_OPERAND (expr, 1)
: convert (type, TREE_OPERAND (expr, 1)),
VOID_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 2)))
? TREE_OPERAND (expr, 2)
: convert (type, TREE_OPERAND (expr, 2)));
default:
break;
}
/* When parsing long initializers, we might end up with a lot of casts.
Shortcut this. */
if (TREE_CODE (expr) == INTEGER_CST)
return fold_convert (type, expr);
return build1 (CONVERT_EXPR, type, expr);
case REAL_TYPE:
if (sanitize_flags_p (SANITIZE_FLOAT_CAST)
&& current_function_decl != NULL_TREE)
{
expr = save_expr (expr);
tree check = ubsan_instrument_float_cast (loc, type, expr);
expr = build1 (FIX_TRUNC_EXPR, type, expr);
if (check == NULL_TREE)
return expr;
return maybe_fold_build2_loc (dofold, loc, COMPOUND_EXPR,
TREE_TYPE (expr), check, expr);
}
else
return build1 (FIX_TRUNC_EXPR, type, expr);
case FIXED_POINT_TYPE:
return build1 (FIXED_CONVERT_EXPR, type, expr);
case COMPLEX_TYPE:
expr = maybe_fold_build1_loc (dofold, loc, REALPART_EXPR,
TREE_TYPE (TREE_TYPE (expr)), expr);
return convert (type, expr);
case VECTOR_TYPE:
if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
{
error ("can%'t convert a vector of type %qT"
" to type %qT which has different size",
TREE_TYPE (expr), type);
return error_mark_node;
}
return build1 (VIEW_CONVERT_EXPR, type, expr);
default:
error ("aggregate value used where an integer was expected");
return convert (type, integer_zero_node);
}
}
/* Convert EXPR to some integer (or enum) type TYPE.
EXPR must be pointer, integer, discrete (enum, char, or bool), float,
fixed-point or vector; in other cases error is called.
The result of this is always supposed to be a newly created tree node
not in use in any existing structure. */
tree
convert_to_integer (tree type, tree expr)
{
return convert_to_integer_1 (type, expr, true);
}
/* A wrapper around convert_to_complex_1 that only folds the
expression if DOFOLD, or if it is CONSTANT_CLASS_P. */
tree
convert_to_integer_maybe_fold (tree type, tree expr, bool dofold)
{
return convert_to_integer_1 (type, expr, dofold || CONSTANT_CLASS_P (expr));
}
/* Convert EXPR to the complex type TYPE in the usual ways. If FOLD_P is
true, try to fold the expression. */
static tree
convert_to_complex_1 (tree type, tree expr, bool fold_p)
{
location_t loc = EXPR_LOCATION (expr);
tree subtype = TREE_TYPE (type);
switch (TREE_CODE (TREE_TYPE (expr)))
{
case REAL_TYPE:
case FIXED_POINT_TYPE:
case INTEGER_TYPE:
case ENUMERAL_TYPE:
case BOOLEAN_TYPE:
return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
convert (subtype, integer_zero_node));
case COMPLEX_TYPE:
{
tree elt_type = TREE_TYPE (TREE_TYPE (expr));
if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
return expr;
else if (TREE_CODE (expr) == COMPOUND_EXPR)
{
tree t = convert_to_complex_1 (type, TREE_OPERAND (expr, 1),
fold_p);
if (t == TREE_OPERAND (expr, 1))
return expr;
return build2_loc (EXPR_LOCATION (expr), COMPOUND_EXPR,
TREE_TYPE (t), TREE_OPERAND (expr, 0), t);
}
else if (TREE_CODE (expr) == COMPLEX_EXPR)
return maybe_fold_build2_loc (fold_p, loc, COMPLEX_EXPR, type,
convert (subtype,
TREE_OPERAND (expr, 0)),
convert (subtype,
TREE_OPERAND (expr, 1)));
else
{
expr = save_expr (expr);
tree realp = maybe_fold_build1_loc (fold_p, loc, REALPART_EXPR,
TREE_TYPE (TREE_TYPE (expr)),
expr);
tree imagp = maybe_fold_build1_loc (fold_p, loc, IMAGPART_EXPR,
TREE_TYPE (TREE_TYPE (expr)),
expr);
return maybe_fold_build2_loc (fold_p, loc, COMPLEX_EXPR, type,
convert (subtype, realp),
convert (subtype, imagp));
}
}
case POINTER_TYPE:
case REFERENCE_TYPE:
error ("pointer value used where a complex was expected");
return convert_to_complex_1 (type, integer_zero_node, fold_p);
default:
error ("aggregate value used where a complex was expected");
return convert_to_complex_1 (type, integer_zero_node, fold_p);
}
}
/* A wrapper around convert_to_complex_1 that always folds the
expression. */
tree
convert_to_complex (tree type, tree expr)
{
return convert_to_complex_1 (type, expr, true);
}
/* A wrapper around convert_to_complex_1 that only folds the
expression if DOFOLD, or if it is CONSTANT_CLASS_P. */
tree
convert_to_complex_maybe_fold (tree type, tree expr, bool dofold)
{
return convert_to_complex_1 (type, expr, dofold || CONSTANT_CLASS_P (expr));
}
/* Convert EXPR to the vector type TYPE in the usual ways. */
tree
convert_to_vector (tree type, tree expr)
{
switch (TREE_CODE (TREE_TYPE (expr)))
{
case INTEGER_TYPE:
case VECTOR_TYPE:
if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
{
error ("can%'t convert a value of type %qT"
" to vector type %qT which has different size",
TREE_TYPE (expr), type);
return error_mark_node;
}
return build1 (VIEW_CONVERT_EXPR, type, expr);
default:
error ("can%'t convert value to a vector");
return error_mark_node;
}
}
/* Convert EXPR to some fixed-point type TYPE.
EXPR must be fixed-point, float, integer, or enumeral;
in other cases error is called. */
tree
convert_to_fixed (tree type, tree expr)
{
if (integer_zerop (expr))
{
tree fixed_zero_node = build_fixed (type, FCONST0 (TYPE_MODE (type)));
return fixed_zero_node;
}
else if (integer_onep (expr) && ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)))
{
tree fixed_one_node = build_fixed (type, FCONST1 (TYPE_MODE (type)));
return fixed_one_node;
}
switch (TREE_CODE (TREE_TYPE (expr)))
{
case FIXED_POINT_TYPE:
case INTEGER_TYPE:
case ENUMERAL_TYPE:
case BOOLEAN_TYPE:
case REAL_TYPE:
return build1 (FIXED_CONVERT_EXPR, type, expr);
case COMPLEX_TYPE:
return convert (type,
fold_build1 (REALPART_EXPR,
TREE_TYPE (TREE_TYPE (expr)), expr));
default:
error ("aggregate value used where a fixed-point was expected");
return error_mark_node;
}
}
|