1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
|
/* Derivation and subsumption rules for constraints.
Copyright (C) 2013-2018 Free Software Foundation, Inc.
Contributed by Andrew Sutton (andrew.n.sutton@gmail.com)
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#define INCLUDE_LIST
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "timevar.h"
#include "hash-set.h"
#include "machmode.h"
#include "vec.h"
#include "double-int.h"
#include "input.h"
#include "alias.h"
#include "symtab.h"
#include "wide-int.h"
#include "inchash.h"
#include "tree.h"
#include "stringpool.h"
#include "attribs.h"
#include "intl.h"
#include "flags.h"
#include "cp-tree.h"
#include "c-family/c-common.h"
#include "c-family/c-objc.h"
#include "cp-objcp-common.h"
#include "tree-inline.h"
#include "decl.h"
#include "toplev.h"
#include "type-utils.h"
namespace {
// Helper algorithms
template<typename I>
inline I
next (I iter)
{
return ++iter;
}
template<typename I, typename P>
inline bool
any_p (I first, I last, P pred)
{
while (first != last)
{
if (pred(*first))
return true;
++first;
}
return false;
}
bool prove_implication (tree, tree);
/*---------------------------------------------------------------------------
Proof state
---------------------------------------------------------------------------*/
struct term_entry
{
tree t;
};
/* Hashing function and equality for constraint entries. */
struct term_hasher : ggc_ptr_hash<term_entry>
{
static hashval_t hash (term_entry *e)
{
return iterative_hash_template_arg (e->t, 0);
}
static bool equal (term_entry *e1, term_entry *e2)
{
return cp_tree_equal (e1->t, e2->t);
}
};
/* A term list is a list of atomic constraints. It is used
to maintain the lists of assumptions and conclusions in a
proof goal.
Each term list maintains an iterator that refers to the current
term. This can be used by various tactics to support iteration
and stateful manipulation of the list. */
struct term_list
{
typedef std::list<tree>::iterator iterator;
term_list ();
term_list (tree);
bool includes (tree);
iterator insert (iterator, tree);
iterator push_back (tree);
iterator erase (iterator);
iterator replace (iterator, tree);
iterator replace (iterator, tree, tree);
iterator begin() { return seq.begin(); }
iterator end() { return seq.end(); }
std::list<tree> seq;
hash_table<term_hasher> tab;
};
inline
term_list::term_list ()
: seq(), tab (11)
{
}
/* Initialize a term list with an initial term. */
inline
term_list::term_list (tree t)
: seq (), tab (11)
{
push_back (t);
}
/* Returns true if T is the in the tree. */
inline bool
term_list::includes (tree t)
{
term_entry ent = {t};
return tab.find (&ent);
}
/* Append a term to the list. */
inline term_list::iterator
term_list::push_back (tree t)
{
return insert (end(), t);
}
/* Insert a new (unseen) term T into the list before the proposition
indicated by ITER. Returns the iterator to the newly inserted
element. */
term_list::iterator
term_list::insert (iterator iter, tree t)
{
gcc_assert (!includes (t));
iter = seq.insert (iter, t);
term_entry ent = {t};
term_entry** slot = tab.find_slot (&ent, INSERT);
term_entry* ptr = ggc_alloc<term_entry> ();
*ptr = ent;
*slot = ptr;
return iter;
}
/* Remove an existing term from the list. Returns an iterator referring
to the element after the removed term. This may be end(). */
term_list::iterator
term_list::erase (iterator iter)
{
gcc_assert (includes (*iter));
term_entry ent = {*iter};
tab.remove_elt (&ent);
iter = seq.erase (iter);
return iter;
}
/* Replace the given term with that specified. If the term has
been previously seen, do not insert the term. Returns the
first iterator past the current term. */
term_list::iterator
term_list::replace (iterator iter, tree t)
{
iter = erase (iter);
if (!includes (t))
insert (iter, t);
return iter;
}
/* Replace the term at the given position by the supplied T1
followed by t2. This is used in certain logical operators to
load a list of assumptions or conclusions. */
term_list::iterator
term_list::replace (iterator iter, tree t1, tree t2)
{
iter = erase (iter);
if (!includes (t1))
insert (iter, t1);
if (!includes (t2))
insert (iter, t2);
return iter;
}
/* A goal (or subgoal) models a sequent of the form
'A |- C' where A and C are lists of assumptions and
conclusions written as propositions in the constraint
language (i.e., lists of trees). */
struct proof_goal
{
term_list assumptions;
term_list conclusions;
};
/* A proof state owns a list of goals and tracks the
current sub-goal. The class also provides facilities
for managing subgoals and constructing term lists. */
struct proof_state : std::list<proof_goal>
{
proof_state ();
iterator branch (iterator i);
iterator discharge (iterator i);
};
/* Initialize the state with a single empty goal, and set that goal
as the current subgoal. */
inline
proof_state::proof_state ()
: std::list<proof_goal> (1)
{ }
/* Branch the current goal by creating a new subgoal, returning a
reference to the new object. This does not update the current goal. */
inline proof_state::iterator
proof_state::branch (iterator i)
{
gcc_assert (i != end());
proof_goal& g = *i;
return insert (++i, g);
}
/* Discharge the current goal, setting it equal to the
next non-satisfied goal. */
inline proof_state::iterator
proof_state::discharge (iterator i)
{
gcc_assert (i != end());
return erase (i);
}
/*---------------------------------------------------------------------------
Debugging
---------------------------------------------------------------------------*/
// void
// debug (term_list& ts)
// {
// for (term_list::iterator i = ts.begin(); i != ts.end(); ++i)
// verbatim (" # %E", *i);
// }
//
// void
// debug (proof_goal& g)
// {
// debug (g.assumptions);
// verbatim (" |-");
// debug (g.conclusions);
// }
/*---------------------------------------------------------------------------
Atomicity of constraints
---------------------------------------------------------------------------*/
/* Returns true if T is not an atomic constraint. */
bool
non_atomic_constraint_p (tree t)
{
switch (TREE_CODE (t))
{
case PRED_CONSTR:
case EXPR_CONSTR:
case TYPE_CONSTR:
case ICONV_CONSTR:
case DEDUCT_CONSTR:
case EXCEPT_CONSTR:
/* A pack expansion isn't atomic, but it can't decompose to prove an
atom, so it shouldn't cause analyze_atom to return undecided. */
case EXPR_PACK_EXPANSION:
return false;
case CHECK_CONSTR:
case PARM_CONSTR:
case CONJ_CONSTR:
case DISJ_CONSTR:
return true;
default:
gcc_unreachable ();
}
}
/* Returns true if any constraints in T are not atomic. */
bool
any_non_atomic_constraints_p (term_list& t)
{
return any_p (t.begin(), t.end(), non_atomic_constraint_p);
}
/*---------------------------------------------------------------------------
Proof validations
---------------------------------------------------------------------------*/
enum proof_result
{
invalid,
valid,
undecided
};
proof_result check_term (term_list&, tree);
proof_result
analyze_atom (term_list& ts, tree t)
{
/* FIXME: Hook into special cases, if any. */
/*
term_list::iterator iter = ts.begin();
term_list::iterator end = ts.end();
while (iter != end)
{
++iter;
}
*/
if (non_atomic_constraint_p (t))
return undecided;
if (any_non_atomic_constraints_p (ts))
return undecided;
return invalid;
}
/* Search for a pack expansion in the list of assumptions that would
make this expansion valid. */
proof_result
analyze_pack (term_list& ts, tree t)
{
tree c1 = normalize_expression (PACK_EXPANSION_PATTERN (t));
term_list::iterator iter = ts.begin();
term_list::iterator end = ts.end();
while (iter != end)
{
if (TREE_CODE (*iter) == TREE_CODE (t))
{
tree c2 = normalize_expression (PACK_EXPANSION_PATTERN (*iter));
if (prove_implication (c2, c1))
return valid;
else
return invalid;
}
++iter;
}
return invalid;
}
/* Search for concept checks in TS that we know subsume T. */
proof_result
search_known_subsumptions (term_list& ts, tree t)
{
for (term_list::iterator i = ts.begin(); i != ts.end(); ++i)
if (TREE_CODE (*i) == CHECK_CONSTR)
{
if (bool* b = lookup_subsumption_result (*i, t))
return *b ? valid : invalid;
}
return undecided;
}
/* Determine if the terms in TS provide sufficient support for proving
the proposition T. If any term in TS is a concept check that is known
to subsume T, then the proof is valid. Otherwise, we have to expand T
and continue searching for support. */
proof_result
analyze_check (term_list& ts, tree t)
{
proof_result r = search_known_subsumptions (ts, t);
if (r != undecided)
return r;
tree tmpl = CHECK_CONSTR_CONCEPT (t);
tree args = CHECK_CONSTR_ARGS (t);
tree c = expand_concept (tmpl, args);
return check_term (ts, c);
}
/* Recursively check constraints of the parameterized constraint. */
proof_result
analyze_parameterized (term_list& ts, tree t)
{
return check_term (ts, PARM_CONSTR_OPERAND (t));
}
proof_result
analyze_conjunction (term_list& ts, tree t)
{
proof_result r = check_term (ts, TREE_OPERAND (t, 0));
if (r == invalid || r == undecided)
return r;
return check_term (ts, TREE_OPERAND (t, 1));
}
proof_result
analyze_disjunction (term_list& ts, tree t)
{
proof_result r = check_term (ts, TREE_OPERAND (t, 0));
if (r == valid)
return r;
return check_term (ts, TREE_OPERAND (t, 1));
}
proof_result
analyze_term (term_list& ts, tree t)
{
switch (TREE_CODE (t))
{
case CHECK_CONSTR:
return analyze_check (ts, t);
case PARM_CONSTR:
return analyze_parameterized (ts, t);
case CONJ_CONSTR:
return analyze_conjunction (ts, t);
case DISJ_CONSTR:
return analyze_disjunction (ts, t);
case PRED_CONSTR:
case EXPR_CONSTR:
case TYPE_CONSTR:
case ICONV_CONSTR:
case DEDUCT_CONSTR:
case EXCEPT_CONSTR:
return analyze_atom (ts, t);
case EXPR_PACK_EXPANSION:
return analyze_pack (ts, t);
case ERROR_MARK:
/* Encountering an error anywhere in a constraint invalidates
the proof, since the constraint is ill-formed. */
return invalid;
default:
gcc_unreachable ();
}
}
/* Check if a single term can be proven from a set of assumptions.
If the proof is not valid, then it is incomplete when either
the given term is non-atomic or any term in the list of assumptions
is not-atomic. */
proof_result
check_term (term_list& ts, tree t)
{
/* Try the easy way; search for an equivalent term. */
if (ts.includes (t))
return valid;
/* The hard way; actually consider what the term means. */
return analyze_term (ts, t);
}
/* Check to see if any term is proven by the assumptions in the
proof goal. The proof is valid if the proof of any term is valid.
If validity cannot be determined, but any particular
check was undecided, then this goal is undecided. */
proof_result
check_goal (proof_goal& g)
{
term_list::iterator iter = g.conclusions.begin ();
term_list::iterator end = g.conclusions.end ();
bool incomplete = false;
while (iter != end)
{
proof_result r = check_term (g.assumptions, *iter);
if (r == valid)
return r;
if (r == undecided)
incomplete = true;
++iter;
}
/* Was the proof complete? */
if (incomplete)
return undecided;
else
return invalid;
}
/* Check if the the proof is valid. This is the case when all
goals can be discharged. If any goal is invalid, then the
entire proof is invalid. Otherwise, the proof is undecided. */
proof_result
check_proof (proof_state& p)
{
proof_state::iterator iter = p.begin();
proof_state::iterator end = p.end();
while (iter != end)
{
proof_result r = check_goal (*iter);
if (r == invalid)
return r;
if (r == valid)
iter = p.discharge (iter);
else
++iter;
}
/* If all goals are discharged, then the proof is valid. */
if (p.empty())
return valid;
else
return undecided;
}
/*---------------------------------------------------------------------------
Left logical rules
---------------------------------------------------------------------------*/
term_list::iterator
load_check_assumption (term_list& ts, term_list::iterator i)
{
tree decl = CHECK_CONSTR_CONCEPT (*i);
tree tmpl = DECL_TI_TEMPLATE (decl);
tree args = CHECK_CONSTR_ARGS (*i);
return ts.replace(i, expand_concept (tmpl, args));
}
term_list::iterator
load_parameterized_assumption (term_list& ts, term_list::iterator i)
{
return ts.replace(i, PARM_CONSTR_OPERAND(*i));
}
term_list::iterator
load_conjunction_assumption (term_list& ts, term_list::iterator i)
{
tree t1 = TREE_OPERAND (*i, 0);
tree t2 = TREE_OPERAND (*i, 1);
return ts.replace(i, t1, t2);
}
/* Examine the terms in the list, and apply left-logical rules to move
terms into the set of assumptions. */
void
load_assumptions (proof_goal& g)
{
term_list::iterator iter = g.assumptions.begin();
term_list::iterator end = g.assumptions.end();
while (iter != end)
{
switch (TREE_CODE (*iter))
{
case CHECK_CONSTR:
iter = load_check_assumption (g.assumptions, iter);
break;
case PARM_CONSTR:
iter = load_parameterized_assumption (g.assumptions, iter);
break;
case CONJ_CONSTR:
iter = load_conjunction_assumption (g.assumptions, iter);
break;
default:
++iter;
break;
}
}
}
/* In each subgoal, load constraints into the assumption set. */
void
load_assumptions(proof_state& p)
{
proof_state::iterator iter = p.begin();
while (iter != p.end())
{
load_assumptions (*iter);
++iter;
}
}
void
explode_disjunction (proof_state& p, proof_state::iterator gi, term_list::iterator ti1)
{
tree t1 = TREE_OPERAND (*ti1, 0);
tree t2 = TREE_OPERAND (*ti1, 1);
/* Erase the current term from the goal. */
proof_goal& g1 = *gi;
proof_goal& g2 = *p.branch (gi);
/* Get an iterator to the equivalent position in th enew goal. */
int n = std::distance (g1.assumptions.begin (), ti1);
term_list::iterator ti2 = g2.assumptions.begin ();
std::advance (ti2, n);
/* Replace the disjunction in both branches. */
g1.assumptions.replace (ti1, t1);
g2.assumptions.replace (ti2, t2);
}
/* Search the assumptions of the goal for the first disjunction. */
bool
explode_goal (proof_state& p, proof_state::iterator gi)
{
term_list& ts = gi->assumptions;
term_list::iterator ti = ts.begin();
term_list::iterator end = ts.end();
while (ti != end)
{
if (TREE_CODE (*ti) == DISJ_CONSTR)
{
explode_disjunction (p, gi, ti);
return true;
}
else ++ti;
}
return false;
}
/* Search for the first goal with a disjunction, and then branch
creating a clone of that subgoal. */
void
explode_assumptions (proof_state& p)
{
proof_state::iterator iter = p.begin();
proof_state::iterator end = p.end();
while (iter != end)
{
if (explode_goal (p, iter))
return;
++iter;
}
}
/*---------------------------------------------------------------------------
Right logical rules
---------------------------------------------------------------------------*/
term_list::iterator
load_disjunction_conclusion (term_list& g, term_list::iterator i)
{
tree t1 = TREE_OPERAND (*i, 0);
tree t2 = TREE_OPERAND (*i, 1);
return g.replace(i, t1, t2);
}
/* Apply logical rules to the right hand side. This will load the
conclusion set with all tpp-level disjunctions. */
void
load_conclusions (proof_goal& g)
{
term_list::iterator iter = g.conclusions.begin();
term_list::iterator end = g.conclusions.end();
while (iter != end)
{
if (TREE_CODE (*iter) == DISJ_CONSTR)
iter = load_disjunction_conclusion (g.conclusions, iter);
else
++iter;
}
}
void
load_conclusions (proof_state& p)
{
proof_state::iterator iter = p.begin();
while (iter != p.end())
{
load_conclusions (*iter);
++iter;
}
}
/*---------------------------------------------------------------------------
High-level proof tactics
---------------------------------------------------------------------------*/
/* Given two constraints A and C, try to derive a proof that
A implies C. */
bool
prove_implication (tree a, tree c)
{
/* Quick accept. */
if (cp_tree_equal (a, c))
return true;
/* Build the initial proof state. */
proof_state proof;
proof_goal& goal = proof.front();
goal.assumptions.push_back(a);
goal.conclusions.push_back(c);
/* Perform an initial right-expansion in the off-chance that the right
hand side contains disjunctions. */
load_conclusions (proof);
int step_max = 1 << 10;
int step_count = 0; /* FIXME: We shouldn't have this. */
std::size_t branch_limit = 1024; /* FIXME: This needs to be configurable. */
while (step_count < step_max && proof.size() < branch_limit)
{
/* Determine if we can prove that the assumptions entail the
conclusions. If so, we're done. */
load_assumptions (proof);
/* Can we solve the proof based on this? */
proof_result r = check_proof (proof);
if (r != undecided)
return r == valid;
/* If not, then we need to dig into disjunctions. */
explode_assumptions (proof);
++step_count;
}
if (step_count == step_max)
error ("subsumption failed to resolve");
if (proof.size() == branch_limit)
error ("exceeded maximum number of branches");
return false;
}
/* Returns true if the LEFT constraint subsume the RIGHT constraints.
This is done by deriving a proof of the conclusions on the RIGHT
from the assumptions on the LEFT assumptions. */
bool
subsumes_constraints_nonnull (tree left, tree right)
{
gcc_assert (check_constraint_info (left));
gcc_assert (check_constraint_info (right));
auto_timevar time (TV_CONSTRAINT_SUB);
tree a = CI_ASSOCIATED_CONSTRAINTS (left);
tree c = CI_ASSOCIATED_CONSTRAINTS (right);
return prove_implication (a, c);
}
} /* namespace */
/* Returns true if the LEFT constraints subsume the RIGHT
constraints. */
bool
subsumes (tree left, tree right)
{
if (left == right)
return true;
if (!left)
return false;
if (!right)
return true;
return subsumes_constraints_nonnull (left, right);
}
|