1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
|
/* File format for coverage information
Copyright (C) 1996-2018 Free Software Foundation, Inc.
Contributed by Bob Manson <manson@cygnus.com>.
Completely remangled by Nathan Sidwell <nathan@codesourcery.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/* Routines declared in gcov-io.h. This file should be #included by
another source file, after having #included gcov-io.h. */
#if !IN_GCOV
static void gcov_write_block (unsigned);
static gcov_unsigned_t *gcov_write_words (unsigned);
#endif
static const gcov_unsigned_t *gcov_read_words (unsigned);
#if !IN_LIBGCOV
static void gcov_allocate (unsigned);
#endif
/* Optimum number of gcov_unsigned_t's read from or written to disk. */
#define GCOV_BLOCK_SIZE (1 << 10)
struct gcov_var
{
FILE *file;
gcov_position_t start; /* Position of first byte of block */
unsigned offset; /* Read/write position within the block. */
unsigned length; /* Read limit in the block. */
unsigned overread; /* Number of words overread. */
int error; /* < 0 overflow, > 0 disk error. */
int mode; /* < 0 writing, > 0 reading */
#if IN_LIBGCOV
/* Holds one block plus 4 bytes, thus all coverage reads & writes
fit within this buffer and we always can transfer GCOV_BLOCK_SIZE
to and from the disk. libgcov never backtracks and only writes 4
or 8 byte objects. */
gcov_unsigned_t buffer[GCOV_BLOCK_SIZE + 1];
#else
int endian; /* Swap endianness. */
/* Holds a variable length block, as the compiler can write
strings and needs to backtrack. */
size_t alloc;
gcov_unsigned_t *buffer;
#endif
} gcov_var;
/* Save the current position in the gcov file. */
/* We need to expose this function when compiling for gcov-tool. */
#ifndef IN_GCOV_TOOL
static inline
#endif
gcov_position_t
gcov_position (void)
{
gcov_nonruntime_assert (gcov_var.mode > 0);
return gcov_var.start + gcov_var.offset;
}
/* Return nonzero if the error flag is set. */
/* We need to expose this function when compiling for gcov-tool. */
#ifndef IN_GCOV_TOOL
static inline
#endif
int
gcov_is_error (void)
{
return gcov_var.file ? gcov_var.error : 1;
}
#if IN_LIBGCOV
/* Move to beginning of file and initialize for writing. */
GCOV_LINKAGE inline void
gcov_rewrite (void)
{
gcov_var.mode = -1;
gcov_var.start = 0;
gcov_var.offset = 0;
fseek (gcov_var.file, 0L, SEEK_SET);
}
#endif
static inline gcov_unsigned_t from_file (gcov_unsigned_t value)
{
#if !IN_LIBGCOV
if (gcov_var.endian)
{
value = (value >> 16) | (value << 16);
value = ((value & 0xff00ff) << 8) | ((value >> 8) & 0xff00ff);
}
#endif
return value;
}
/* Open a gcov file. NAME is the name of the file to open and MODE
indicates whether a new file should be created, or an existing file
opened. If MODE is >= 0 an existing file will be opened, if
possible, and if MODE is <= 0, a new file will be created. Use
MODE=0 to attempt to reopen an existing file and then fall back on
creating a new one. If MODE > 0, the file will be opened in
read-only mode. Otherwise it will be opened for modification.
Return zero on failure, non-zero on success. */
GCOV_LINKAGE int
#if IN_LIBGCOV
gcov_open (const char *name)
#else
gcov_open (const char *name, int mode)
#endif
{
#if IN_LIBGCOV
int mode = 0;
#endif
#if GCOV_LOCKED
struct flock s_flock;
int fd;
s_flock.l_whence = SEEK_SET;
s_flock.l_start = 0;
s_flock.l_len = 0; /* Until EOF. */
s_flock.l_pid = getpid ();
#endif
gcov_nonruntime_assert (!gcov_var.file);
gcov_var.start = 0;
gcov_var.offset = gcov_var.length = 0;
gcov_var.overread = -1u;
gcov_var.error = 0;
#if !IN_LIBGCOV
gcov_var.endian = 0;
#endif
#if GCOV_LOCKED
if (mode > 0)
{
/* Read-only mode - acquire a read-lock. */
s_flock.l_type = F_RDLCK;
/* pass mode (ignored) for compatibility */
fd = open (name, O_RDONLY, S_IRUSR | S_IWUSR);
}
else
{
/* Write mode - acquire a write-lock. */
s_flock.l_type = F_WRLCK;
/* Truncate if force new mode. */
fd = open (name, O_RDWR | O_CREAT | (mode < 0 ? O_TRUNC : 0), 0666);
}
if (fd < 0)
return 0;
while (fcntl (fd, F_SETLKW, &s_flock) && errno == EINTR)
continue;
gcov_var.file = fdopen (fd, (mode > 0) ? "rb" : "r+b");
if (!gcov_var.file)
{
close (fd);
return 0;
}
#else
if (mode >= 0)
/* Open an existing file. */
gcov_var.file = fopen (name, (mode > 0) ? "rb" : "r+b");
if (gcov_var.file)
mode = 1;
else if (mode <= 0)
/* Create a new file. */
gcov_var.file = fopen (name, "w+b");
if (!gcov_var.file)
return 0;
#endif
gcov_var.mode = mode ? mode : 1;
setbuf (gcov_var.file, (char *)0);
return 1;
}
/* Close the current gcov file. Flushes data to disk. Returns nonzero
on failure or error flag set. */
GCOV_LINKAGE int
gcov_close (void)
{
if (gcov_var.file)
{
#if !IN_GCOV
if (gcov_var.offset && gcov_var.mode < 0)
gcov_write_block (gcov_var.offset);
#endif
fclose (gcov_var.file);
gcov_var.file = 0;
gcov_var.length = 0;
}
#if !IN_LIBGCOV
free (gcov_var.buffer);
gcov_var.alloc = 0;
gcov_var.buffer = 0;
#endif
gcov_var.mode = 0;
return gcov_var.error;
}
#if !IN_LIBGCOV
/* Check if MAGIC is EXPECTED. Use it to determine endianness of the
file. Returns +1 for same endian, -1 for other endian and zero for
not EXPECTED. */
GCOV_LINKAGE int
gcov_magic (gcov_unsigned_t magic, gcov_unsigned_t expected)
{
if (magic == expected)
return 1;
magic = (magic >> 16) | (magic << 16);
magic = ((magic & 0xff00ff) << 8) | ((magic >> 8) & 0xff00ff);
if (magic == expected)
{
gcov_var.endian = 1;
return -1;
}
return 0;
}
#endif
#if !IN_LIBGCOV
static void
gcov_allocate (unsigned length)
{
size_t new_size = gcov_var.alloc;
if (!new_size)
new_size = GCOV_BLOCK_SIZE;
new_size += length;
new_size *= 2;
gcov_var.alloc = new_size;
gcov_var.buffer = XRESIZEVAR (gcov_unsigned_t, gcov_var.buffer, new_size << 2);
}
#endif
#if !IN_GCOV
/* Write out the current block, if needs be. */
static void
gcov_write_block (unsigned size)
{
if (fwrite (gcov_var.buffer, size << 2, 1, gcov_var.file) != 1)
gcov_var.error = 1;
gcov_var.start += size;
gcov_var.offset -= size;
}
/* Allocate space to write BYTES bytes to the gcov file. Return a
pointer to those bytes, or NULL on failure. */
static gcov_unsigned_t *
gcov_write_words (unsigned words)
{
gcov_unsigned_t *result;
gcov_nonruntime_assert (gcov_var.mode < 0);
#if IN_LIBGCOV
if (gcov_var.offset >= GCOV_BLOCK_SIZE)
{
gcov_write_block (GCOV_BLOCK_SIZE);
if (gcov_var.offset)
{
memcpy (gcov_var.buffer, gcov_var.buffer + GCOV_BLOCK_SIZE, 4);
}
}
#else
if (gcov_var.offset + words > gcov_var.alloc)
gcov_allocate (gcov_var.offset + words);
#endif
result = &gcov_var.buffer[gcov_var.offset];
gcov_var.offset += words;
return result;
}
/* Write unsigned VALUE to coverage file. Sets error flag
appropriately. */
GCOV_LINKAGE void
gcov_write_unsigned (gcov_unsigned_t value)
{
gcov_unsigned_t *buffer = gcov_write_words (1);
buffer[0] = value;
}
/* Write counter VALUE to coverage file. Sets error flag
appropriately. */
#if IN_LIBGCOV
GCOV_LINKAGE void
gcov_write_counter (gcov_type value)
{
gcov_unsigned_t *buffer = gcov_write_words (2);
buffer[0] = (gcov_unsigned_t) value;
if (sizeof (value) > sizeof (gcov_unsigned_t))
buffer[1] = (gcov_unsigned_t) (value >> 32);
else
buffer[1] = 0;
}
#endif /* IN_LIBGCOV */
#if !IN_LIBGCOV
/* Write STRING to coverage file. Sets error flag on file
error, overflow flag on overflow */
GCOV_LINKAGE void
gcov_write_string (const char *string)
{
unsigned length = 0;
unsigned alloc = 0;
gcov_unsigned_t *buffer;
if (string)
{
length = strlen (string);
alloc = (length + 4) >> 2;
}
buffer = gcov_write_words (1 + alloc);
buffer[0] = alloc;
if (alloc > 0)
{
buffer[alloc] = 0; /* place nul terminators. */
memcpy (&buffer[1], string, length);
}
}
#endif
#if !IN_LIBGCOV
/* Write FILENAME to coverage file. Sets error flag on file
error, overflow flag on overflow */
GCOV_LINKAGE void
gcov_write_filename (const char *filename)
{
if (profile_abs_path_flag && filename && filename[0]
&& !(IS_DIR_SEPARATOR (filename[0])
#if HAVE_DOS_BASED_FILE_SYSTEM
|| filename[1] == ':'
#endif
))
{
char *buf = getcwd (NULL, 0);
if (buf != NULL && buf[0])
{
size_t len = strlen (buf);
buf = (char*)xrealloc (buf, len + strlen (filename) + 2);
if (!IS_DIR_SEPARATOR (buf[len - 1]))
strcat (buf, "/");
strcat (buf, filename);
gcov_write_string (buf);
free (buf);
return;
}
}
gcov_write_string (filename);
}
#endif
#if !IN_LIBGCOV
/* Write a tag TAG and reserve space for the record length. Return a
value to be used for gcov_write_length. */
GCOV_LINKAGE gcov_position_t
gcov_write_tag (gcov_unsigned_t tag)
{
gcov_position_t result = gcov_var.start + gcov_var.offset;
gcov_unsigned_t *buffer = gcov_write_words (2);
buffer[0] = tag;
buffer[1] = 0;
return result;
}
/* Write a record length using POSITION, which was returned by
gcov_write_tag. The current file position is the end of the
record, and is restored before returning. Returns nonzero on
overflow. */
GCOV_LINKAGE void
gcov_write_length (gcov_position_t position)
{
unsigned offset;
gcov_unsigned_t length;
gcov_unsigned_t *buffer;
gcov_nonruntime_assert (gcov_var.mode < 0);
gcov_nonruntime_assert (position + 2 <= gcov_var.start + gcov_var.offset);
gcov_nonruntime_assert (position >= gcov_var.start);
offset = position - gcov_var.start;
length = gcov_var.offset - offset - 2;
buffer = (gcov_unsigned_t *) &gcov_var.buffer[offset];
buffer[1] = length;
if (gcov_var.offset >= GCOV_BLOCK_SIZE)
gcov_write_block (gcov_var.offset);
}
#else /* IN_LIBGCOV */
/* Write a tag TAG and length LENGTH. */
GCOV_LINKAGE void
gcov_write_tag_length (gcov_unsigned_t tag, gcov_unsigned_t length)
{
gcov_unsigned_t *buffer = gcov_write_words (2);
buffer[0] = tag;
buffer[1] = length;
}
/* Write a summary structure to the gcov file. Return nonzero on
overflow. */
GCOV_LINKAGE void
gcov_write_summary (gcov_unsigned_t tag, const struct gcov_summary *summary)
{
unsigned ix, h_ix, bv_ix, h_cnt = 0;
const struct gcov_ctr_summary *csum;
unsigned histo_bitvector[GCOV_HISTOGRAM_BITVECTOR_SIZE];
/* Count number of non-zero histogram entries, and fill in a bit vector
of non-zero indices. The histogram is only currently computed for arc
counters. */
for (bv_ix = 0; bv_ix < GCOV_HISTOGRAM_BITVECTOR_SIZE; bv_ix++)
histo_bitvector[bv_ix] = 0;
csum = &summary->ctrs[GCOV_COUNTER_ARCS];
for (h_ix = 0; h_ix < GCOV_HISTOGRAM_SIZE; h_ix++)
if (csum->histogram[h_ix].num_counters)
{
histo_bitvector[h_ix / 32] |= 1 << (h_ix % 32);
h_cnt++;
}
gcov_write_tag_length (tag, GCOV_TAG_SUMMARY_LENGTH (h_cnt));
gcov_write_unsigned (summary->checksum);
for (csum = summary->ctrs, ix = GCOV_COUNTERS_SUMMABLE; ix--; csum++)
{
gcov_write_unsigned (csum->num);
gcov_write_unsigned (csum->runs);
gcov_write_counter (csum->sum_all);
gcov_write_counter (csum->run_max);
gcov_write_counter (csum->sum_max);
if (ix != GCOV_COUNTER_ARCS)
{
for (bv_ix = 0; bv_ix < GCOV_HISTOGRAM_BITVECTOR_SIZE; bv_ix++)
gcov_write_unsigned (0);
continue;
}
for (bv_ix = 0; bv_ix < GCOV_HISTOGRAM_BITVECTOR_SIZE; bv_ix++)
gcov_write_unsigned (histo_bitvector[bv_ix]);
for (h_ix = 0; h_ix < GCOV_HISTOGRAM_SIZE; h_ix++)
{
if (!csum->histogram[h_ix].num_counters)
continue;
gcov_write_unsigned (csum->histogram[h_ix].num_counters);
gcov_write_counter (csum->histogram[h_ix].min_value);
gcov_write_counter (csum->histogram[h_ix].cum_value);
}
}
}
#endif /* IN_LIBGCOV */
#endif /*!IN_GCOV */
/* Return a pointer to read BYTES bytes from the gcov file. Returns
NULL on failure (read past EOF). */
static const gcov_unsigned_t *
gcov_read_words (unsigned words)
{
const gcov_unsigned_t *result;
unsigned excess = gcov_var.length - gcov_var.offset;
if (gcov_var.mode <= 0)
return NULL;
if (excess < words)
{
gcov_var.start += gcov_var.offset;
if (excess)
{
#if IN_LIBGCOV
memcpy (gcov_var.buffer, gcov_var.buffer + gcov_var.offset, 4);
#else
memmove (gcov_var.buffer, gcov_var.buffer + gcov_var.offset,
excess * 4);
#endif
}
gcov_var.offset = 0;
gcov_var.length = excess;
#if IN_LIBGCOV
excess = GCOV_BLOCK_SIZE;
#else
if (gcov_var.length + words > gcov_var.alloc)
gcov_allocate (gcov_var.length + words);
excess = gcov_var.alloc - gcov_var.length;
#endif
excess = fread (gcov_var.buffer + gcov_var.length,
1, excess << 2, gcov_var.file) >> 2;
gcov_var.length += excess;
if (gcov_var.length < words)
{
gcov_var.overread += words - gcov_var.length;
gcov_var.length = 0;
return 0;
}
}
result = &gcov_var.buffer[gcov_var.offset];
gcov_var.offset += words;
return result;
}
/* Read unsigned value from a coverage file. Sets error flag on file
error, overflow flag on overflow */
GCOV_LINKAGE gcov_unsigned_t
gcov_read_unsigned (void)
{
gcov_unsigned_t value;
const gcov_unsigned_t *buffer = gcov_read_words (1);
if (!buffer)
return 0;
value = from_file (buffer[0]);
return value;
}
/* Read counter value from a coverage file. Sets error flag on file
error, overflow flag on overflow */
GCOV_LINKAGE gcov_type
gcov_read_counter (void)
{
gcov_type value;
const gcov_unsigned_t *buffer = gcov_read_words (2);
if (!buffer)
return 0;
value = from_file (buffer[0]);
if (sizeof (value) > sizeof (gcov_unsigned_t))
value |= ((gcov_type) from_file (buffer[1])) << 32;
else if (buffer[1])
gcov_var.error = -1;
return value;
}
/* We need to expose the below function when compiling for gcov-tool. */
#if !IN_LIBGCOV || defined (IN_GCOV_TOOL)
/* Read string from coverage file. Returns a pointer to a static
buffer, or NULL on empty string. You must copy the string before
calling another gcov function. */
GCOV_LINKAGE const char *
gcov_read_string (void)
{
unsigned length = gcov_read_unsigned ();
if (!length)
return 0;
return (const char *) gcov_read_words (length);
}
#endif
GCOV_LINKAGE void
gcov_read_summary (struct gcov_summary *summary)
{
unsigned ix, h_ix, bv_ix, h_cnt = 0;
struct gcov_ctr_summary *csum;
unsigned histo_bitvector[GCOV_HISTOGRAM_BITVECTOR_SIZE];
unsigned cur_bitvector;
summary->checksum = gcov_read_unsigned ();
for (csum = summary->ctrs, ix = GCOV_COUNTERS_SUMMABLE; ix--; csum++)
{
csum->num = gcov_read_unsigned ();
csum->runs = gcov_read_unsigned ();
csum->sum_all = gcov_read_counter ();
csum->run_max = gcov_read_counter ();
csum->sum_max = gcov_read_counter ();
memset (csum->histogram, 0,
sizeof (gcov_bucket_type) * GCOV_HISTOGRAM_SIZE);
for (bv_ix = 0; bv_ix < GCOV_HISTOGRAM_BITVECTOR_SIZE; bv_ix++)
{
histo_bitvector[bv_ix] = gcov_read_unsigned ();
#if IN_LIBGCOV
/* When building libgcov we don't include system.h, which includes
hwint.h (where popcount_hwi is declared). However, libgcov.a
is built by the bootstrapped compiler and therefore the builtins
are always available. */
h_cnt += __builtin_popcount (histo_bitvector[bv_ix]);
#else
h_cnt += popcount_hwi (histo_bitvector[bv_ix]);
#endif
}
bv_ix = 0;
h_ix = 0;
cur_bitvector = 0;
while (h_cnt--)
{
/* Find the index corresponding to the next entry we will read in.
First find the next non-zero bitvector and re-initialize
the histogram index accordingly, then right shift and increment
the index until we find a set bit. */
while (!cur_bitvector)
{
h_ix = bv_ix * 32;
if (bv_ix >= GCOV_HISTOGRAM_BITVECTOR_SIZE)
gcov_error ("corrupted profile info: summary histogram "
"bitvector is corrupt");
cur_bitvector = histo_bitvector[bv_ix++];
}
while (!(cur_bitvector & 0x1))
{
h_ix++;
cur_bitvector >>= 1;
}
if (h_ix >= GCOV_HISTOGRAM_SIZE)
gcov_error ("corrupted profile info: summary histogram "
"index is corrupt");
csum->histogram[h_ix].num_counters = gcov_read_unsigned ();
csum->histogram[h_ix].min_value = gcov_read_counter ();
csum->histogram[h_ix].cum_value = gcov_read_counter ();
/* Shift off the index we are done with and increment to the
corresponding next histogram entry. */
cur_bitvector >>= 1;
h_ix++;
}
}
}
/* We need to expose the below function when compiling for gcov-tool. */
#if !IN_LIBGCOV || defined (IN_GCOV_TOOL)
/* Reset to a known position. BASE should have been obtained from
gcov_position, LENGTH should be a record length. */
GCOV_LINKAGE void
gcov_sync (gcov_position_t base, gcov_unsigned_t length)
{
gcov_nonruntime_assert (gcov_var.mode > 0);
base += length;
if (base - gcov_var.start <= gcov_var.length)
gcov_var.offset = base - gcov_var.start;
else
{
gcov_var.offset = gcov_var.length = 0;
fseek (gcov_var.file, base << 2, SEEK_SET);
gcov_var.start = ftell (gcov_var.file) >> 2;
}
}
#endif
#if IN_LIBGCOV
/* Move to a given position in a gcov file. */
GCOV_LINKAGE void
gcov_seek (gcov_position_t base)
{
if (gcov_var.offset)
gcov_write_block (gcov_var.offset);
fseek (gcov_var.file, base << 2, SEEK_SET);
gcov_var.start = ftell (gcov_var.file) >> 2;
}
#endif
#if IN_GCOV > 0
/* Return the modification time of the current gcov file. */
GCOV_LINKAGE time_t
gcov_time (void)
{
struct stat status;
if (fstat (fileno (gcov_var.file), &status))
return 0;
else
return status.st_mtime;
}
#endif /* IN_GCOV */
#if !IN_GCOV
/* Determine the index into histogram for VALUE. */
#if IN_LIBGCOV
static unsigned
#else
GCOV_LINKAGE unsigned
#endif
gcov_histo_index (gcov_type value)
{
gcov_type_unsigned v = (gcov_type_unsigned)value;
unsigned r = 0;
unsigned prev2bits = 0;
/* Find index into log2 scale histogram, where each of the log2
sized buckets is divided into 4 linear sub-buckets for better
focus in the higher buckets. */
/* Find the place of the most-significant bit set. */
if (v > 0)
{
#if IN_LIBGCOV
/* When building libgcov we don't include system.h, which includes
hwint.h (where floor_log2 is declared). However, libgcov.a
is built by the bootstrapped compiler and therefore the builtins
are always available. */
r = sizeof (long long) * __CHAR_BIT__ - 1 - __builtin_clzll (v);
#else
/* We use floor_log2 from hwint.c, which takes a HOST_WIDE_INT
that is 64 bits and gcov_type_unsigned is 64 bits. */
r = floor_log2 (v);
#endif
}
/* If at most the 2 least significant bits are set (value is
0 - 3) then that value is our index into the lowest set of
four buckets. */
if (r < 2)
return (unsigned)value;
gcov_nonruntime_assert (r < 64);
/* Find the two next most significant bits to determine which
of the four linear sub-buckets to select. */
prev2bits = (v >> (r - 2)) & 0x3;
/* Finally, compose the final bucket index from the log2 index and
the next 2 bits. The minimum r value at this point is 2 since we
returned above if r was 2 or more, so the minimum bucket at this
point is 4. */
return (r - 1) * 4 + prev2bits;
}
/* Merge SRC_HISTO into TGT_HISTO. The counters are assumed to be in
the same relative order in both histograms, and are matched up
and merged in reverse order. Each counter is assigned an equal portion of
its entry's original cumulative counter value when computing the
new merged cum_value. */
static void gcov_histogram_merge (gcov_bucket_type *tgt_histo,
gcov_bucket_type *src_histo)
{
int src_i, tgt_i, tmp_i = 0;
unsigned src_num, tgt_num, merge_num;
gcov_type src_cum, tgt_cum, merge_src_cum, merge_tgt_cum, merge_cum;
gcov_type merge_min;
gcov_bucket_type tmp_histo[GCOV_HISTOGRAM_SIZE];
int src_done = 0;
memset (tmp_histo, 0, sizeof (gcov_bucket_type) * GCOV_HISTOGRAM_SIZE);
/* Assume that the counters are in the same relative order in both
histograms. Walk the histograms from largest to smallest entry,
matching up and combining counters in order. */
src_num = 0;
src_cum = 0;
src_i = GCOV_HISTOGRAM_SIZE - 1;
for (tgt_i = GCOV_HISTOGRAM_SIZE - 1; tgt_i >= 0 && !src_done; tgt_i--)
{
tgt_num = tgt_histo[tgt_i].num_counters;
tgt_cum = tgt_histo[tgt_i].cum_value;
/* Keep going until all of the target histogram's counters at this
position have been matched and merged with counters from the
source histogram. */
while (tgt_num > 0 && !src_done)
{
/* If this is either the first time through this loop or we just
exhausted the previous non-zero source histogram entry, look
for the next non-zero source histogram entry. */
if (!src_num)
{
/* Locate the next non-zero entry. */
while (src_i >= 0 && !src_histo[src_i].num_counters)
src_i--;
/* If source histogram has fewer counters, then just copy over the
remaining target counters and quit. */
if (src_i < 0)
{
tmp_histo[tgt_i].num_counters += tgt_num;
tmp_histo[tgt_i].cum_value += tgt_cum;
if (!tmp_histo[tgt_i].min_value ||
tgt_histo[tgt_i].min_value < tmp_histo[tgt_i].min_value)
tmp_histo[tgt_i].min_value = tgt_histo[tgt_i].min_value;
while (--tgt_i >= 0)
{
tmp_histo[tgt_i].num_counters
+= tgt_histo[tgt_i].num_counters;
tmp_histo[tgt_i].cum_value += tgt_histo[tgt_i].cum_value;
if (!tmp_histo[tgt_i].min_value ||
tgt_histo[tgt_i].min_value
< tmp_histo[tgt_i].min_value)
tmp_histo[tgt_i].min_value = tgt_histo[tgt_i].min_value;
}
src_done = 1;
break;
}
src_num = src_histo[src_i].num_counters;
src_cum = src_histo[src_i].cum_value;
}
/* The number of counters to merge on this pass is the minimum
of the remaining counters from the current target and source
histogram entries. */
merge_num = tgt_num;
if (src_num < merge_num)
merge_num = src_num;
/* The merged min_value is the sum of the min_values from target
and source. */
merge_min = tgt_histo[tgt_i].min_value + src_histo[src_i].min_value;
/* Compute the portion of source and target entries' cum_value
that will be apportioned to the counters being merged.
The total remaining cum_value from each entry is divided
equally among the counters from that histogram entry if we
are not merging all of them. */
merge_src_cum = src_cum;
if (merge_num < src_num)
merge_src_cum = merge_num * src_cum / src_num;
merge_tgt_cum = tgt_cum;
if (merge_num < tgt_num)
merge_tgt_cum = merge_num * tgt_cum / tgt_num;
/* The merged cum_value is the sum of the source and target
components. */
merge_cum = merge_src_cum + merge_tgt_cum;
/* Update the remaining number of counters and cum_value left
to be merged from this source and target entry. */
src_cum -= merge_src_cum;
tgt_cum -= merge_tgt_cum;
src_num -= merge_num;
tgt_num -= merge_num;
/* The merged counters get placed in the new merged histogram
at the entry for the merged min_value. */
tmp_i = gcov_histo_index (merge_min);
gcov_nonruntime_assert (tmp_i < GCOV_HISTOGRAM_SIZE);
tmp_histo[tmp_i].num_counters += merge_num;
tmp_histo[tmp_i].cum_value += merge_cum;
if (!tmp_histo[tmp_i].min_value ||
merge_min < tmp_histo[tmp_i].min_value)
tmp_histo[tmp_i].min_value = merge_min;
/* Ensure the search for the next non-zero src_histo entry starts
at the next smallest histogram bucket. */
if (!src_num)
src_i--;
}
}
gcov_nonruntime_assert (tgt_i < 0);
/* In the case where there were more counters in the source histogram,
accumulate the remaining unmerged cumulative counter values. Add
those to the smallest non-zero target histogram entry. Otherwise,
the total cumulative counter values in the histogram will be smaller
than the sum_all stored in the summary, which will complicate
computing the working set information from the histogram later on. */
if (src_num)
src_i--;
while (src_i >= 0)
{
src_cum += src_histo[src_i].cum_value;
src_i--;
}
/* At this point, tmp_i should be the smallest non-zero entry in the
tmp_histo. */
gcov_nonruntime_assert (tmp_i >= 0 && tmp_i < GCOV_HISTOGRAM_SIZE
&& tmp_histo[tmp_i].num_counters > 0);
tmp_histo[tmp_i].cum_value += src_cum;
/* Finally, copy the merged histogram into tgt_histo. */
memcpy (tgt_histo, tmp_histo,
sizeof (gcov_bucket_type) * GCOV_HISTOGRAM_SIZE);
}
#endif /* !IN_GCOV */
/* This is used by gcov-dump (IN_GCOV == -1) and in the compiler
(!IN_GCOV && !IN_LIBGCOV). */
#if IN_GCOV <= 0 && !IN_LIBGCOV
/* Compute the working set information from the counter histogram in
the profile summary. This is an array of information corresponding to a
range of percentages of the total execution count (sum_all), and includes
the number of counters required to cover that working set percentage and
the minimum counter value in that working set. */
GCOV_LINKAGE void
compute_working_sets (const struct gcov_ctr_summary *summary,
gcov_working_set_t *gcov_working_sets)
{
gcov_type working_set_cum_values[NUM_GCOV_WORKING_SETS];
gcov_type ws_cum_hotness_incr;
gcov_type cum, tmp_cum;
const gcov_bucket_type *histo_bucket;
unsigned ws_ix, c_num, count;
int h_ix;
/* Compute the amount of sum_all that the cumulative hotness grows
by in each successive working set entry, which depends on the
number of working set entries. */
ws_cum_hotness_incr = summary->sum_all / NUM_GCOV_WORKING_SETS;
/* Next fill in an array of the cumulative hotness values corresponding
to each working set summary entry we are going to compute below.
Skip 0% statistics, which can be extrapolated from the
rest of the summary data. */
cum = ws_cum_hotness_incr;
for (ws_ix = 0; ws_ix < NUM_GCOV_WORKING_SETS;
ws_ix++, cum += ws_cum_hotness_incr)
working_set_cum_values[ws_ix] = cum;
/* The last summary entry is reserved for (roughly) 99.9% of the
working set. Divide by 1024 so it becomes a shift, which gives
almost exactly 99.9%. */
working_set_cum_values[NUM_GCOV_WORKING_SETS-1]
= summary->sum_all - summary->sum_all/1024;
/* Next, walk through the histogram in decending order of hotness
and compute the statistics for the working set summary array.
As histogram entries are accumulated, we check to see which
working set entries have had their expected cum_value reached
and fill them in, walking the working set entries in increasing
size of cum_value. */
ws_ix = 0; /* The current entry into the working set array. */
cum = 0; /* The current accumulated counter sum. */
count = 0; /* The current accumulated count of block counters. */
for (h_ix = GCOV_HISTOGRAM_SIZE - 1;
h_ix >= 0 && ws_ix < NUM_GCOV_WORKING_SETS; h_ix--)
{
histo_bucket = &summary->histogram[h_ix];
/* If we haven't reached the required cumulative counter value for
the current working set percentage, simply accumulate this histogram
entry into the running sums and continue to the next histogram
entry. */
if (cum + histo_bucket->cum_value < working_set_cum_values[ws_ix])
{
cum += histo_bucket->cum_value;
count += histo_bucket->num_counters;
continue;
}
/* If adding the current histogram entry's cumulative counter value
causes us to exceed the current working set size, then estimate
how many of this histogram entry's counter values are required to
reach the working set size, and fill in working set entries
as we reach their expected cumulative value. */
for (c_num = 0, tmp_cum = cum;
c_num < histo_bucket->num_counters && ws_ix < NUM_GCOV_WORKING_SETS;
c_num++)
{
count++;
/* If we haven't reached the last histogram entry counter, add
in the minimum value again. This will underestimate the
cumulative sum so far, because many of the counter values in this
entry may have been larger than the minimum. We could add in the
average value every time, but that would require an expensive
divide operation. */
if (c_num + 1 < histo_bucket->num_counters)
tmp_cum += histo_bucket->min_value;
/* If we have reached the last histogram entry counter, then add
in the entire cumulative value. */
else
tmp_cum = cum + histo_bucket->cum_value;
/* Next walk through successive working set entries and fill in
the statistics for any whose size we have reached by accumulating
this histogram counter. */
while (ws_ix < NUM_GCOV_WORKING_SETS
&& tmp_cum >= working_set_cum_values[ws_ix])
{
gcov_working_sets[ws_ix].num_counters = count;
gcov_working_sets[ws_ix].min_counter
= histo_bucket->min_value;
ws_ix++;
}
}
/* Finally, update the running cumulative value since we were
using a temporary above. */
cum += histo_bucket->cum_value;
}
gcov_nonruntime_assert (ws_ix == NUM_GCOV_WORKING_SETS);
}
#endif /* IN_GCOV <= 0 && !IN_LIBGCOV */
|