1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
|
/* Conversion of SESE regions to Polyhedra.
Copyright (C) 2009-2018 Free Software Foundation, Inc.
Contributed by Sebastian Pop <sebastian.pop@amd.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#define USES_ISL
#include "config.h"
#ifdef HAVE_isl
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "cfghooks.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "params.h"
#include "fold-const.h"
#include "gimple-iterator.h"
#include "gimplify.h"
#include "gimplify-me.h"
#include "tree-cfg.h"
#include "tree-ssa-loop-manip.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop.h"
#include "tree-into-ssa.h"
#include "tree-pass.h"
#include "cfgloop.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "domwalk.h"
#include "tree-ssa-propagate.h"
#include <isl/constraint.h>
#include <isl/set.h>
#include <isl/map.h>
#include <isl/union_map.h>
#include <isl/constraint.h>
#include <isl/aff.h>
#include <isl/val.h>
#include "graphite.h"
/* Assigns to RES the value of the INTEGER_CST T. */
static inline void
tree_int_to_gmp (tree t, mpz_t res)
{
wi::to_mpz (wi::to_wide (t), res, TYPE_SIGN (TREE_TYPE (t)));
}
/* Return an isl identifier for the polyhedral basic block PBB. */
static isl_id *
isl_id_for_pbb (scop_p s, poly_bb_p pbb)
{
char name[14];
snprintf (name, sizeof (name), "S_%d", pbb_index (pbb));
return isl_id_alloc (s->isl_context, name, pbb);
}
static isl_pw_aff *extract_affine (scop_p, tree, __isl_take isl_space *space);
/* Extract an affine expression from the chain of recurrence E. */
static isl_pw_aff *
extract_affine_chrec (scop_p s, tree e, __isl_take isl_space *space)
{
isl_pw_aff *lhs = extract_affine (s, CHREC_LEFT (e), isl_space_copy (space));
isl_pw_aff *rhs = extract_affine (s, CHREC_RIGHT (e), isl_space_copy (space));
isl_local_space *ls = isl_local_space_from_space (space);
unsigned pos = sese_loop_depth (s->scop_info->region, get_chrec_loop (e)) - 1;
isl_aff *loop = isl_aff_set_coefficient_si
(isl_aff_zero_on_domain (ls), isl_dim_in, pos, 1);
isl_pw_aff *l = isl_pw_aff_from_aff (loop);
/* Before multiplying, make sure that the result is affine. */
gcc_assert (isl_pw_aff_is_cst (rhs)
|| isl_pw_aff_is_cst (l));
return isl_pw_aff_add (lhs, isl_pw_aff_mul (rhs, l));
}
/* Extract an affine expression from the mult_expr E. */
static isl_pw_aff *
extract_affine_mul (scop_p s, tree e, __isl_take isl_space *space)
{
isl_pw_aff *lhs = extract_affine (s, TREE_OPERAND (e, 0),
isl_space_copy (space));
isl_pw_aff *rhs = extract_affine (s, TREE_OPERAND (e, 1), space);
if (!isl_pw_aff_is_cst (lhs)
&& !isl_pw_aff_is_cst (rhs))
{
isl_pw_aff_free (lhs);
isl_pw_aff_free (rhs);
return NULL;
}
return isl_pw_aff_mul (lhs, rhs);
}
/* Return an isl identifier from the name of the ssa_name E. */
static isl_id *
isl_id_for_ssa_name (scop_p s, tree e)
{
char name1[14];
snprintf (name1, sizeof (name1), "P_%d", SSA_NAME_VERSION (e));
return isl_id_alloc (s->isl_context, name1, e);
}
/* Return an isl identifier for the data reference DR. Data references and
scalar references get the same isl_id. They need to be comparable and are
distinguished through the first dimension, which contains the alias set or
SSA_NAME_VERSION number. */
static isl_id *
isl_id_for_dr (scop_p s)
{
return isl_id_alloc (s->isl_context, "", 0);
}
/* Extract an affine expression from the ssa_name E. */
static isl_pw_aff *
extract_affine_name (int dimension, __isl_take isl_space *space)
{
isl_set *dom = isl_set_universe (isl_space_copy (space));
isl_aff *aff = isl_aff_zero_on_domain (isl_local_space_from_space (space));
aff = isl_aff_add_coefficient_si (aff, isl_dim_param, dimension, 1);
return isl_pw_aff_alloc (dom, aff);
}
/* Convert WI to a isl_val with CTX. */
static __isl_give isl_val *
isl_val_int_from_wi (isl_ctx *ctx, const widest_int &wi)
{
if (wi::neg_p (wi, SIGNED))
{
widest_int mwi = -wi;
return isl_val_neg (isl_val_int_from_chunks (ctx, mwi.get_len (),
sizeof (HOST_WIDE_INT),
mwi.get_val ()));
}
return isl_val_int_from_chunks (ctx, wi.get_len (), sizeof (HOST_WIDE_INT),
wi.get_val ());
}
/* Extract an affine expression from the gmp constant G. */
static isl_pw_aff *
extract_affine_wi (const widest_int &g, __isl_take isl_space *space)
{
isl_local_space *ls = isl_local_space_from_space (isl_space_copy (space));
isl_aff *aff = isl_aff_zero_on_domain (ls);
isl_set *dom = isl_set_universe (space);
isl_ctx *ct = isl_aff_get_ctx (aff);
isl_val *v = isl_val_int_from_wi (ct, g);
aff = isl_aff_add_constant_val (aff, v);
return isl_pw_aff_alloc (dom, aff);
}
/* Extract an affine expression from the integer_cst E. */
static isl_pw_aff *
extract_affine_int (tree e, __isl_take isl_space *space)
{
isl_pw_aff *res = extract_affine_wi (wi::to_widest (e), space);
return res;
}
/* Compute pwaff mod 2^width. */
static isl_pw_aff *
wrap (isl_pw_aff *pwaff, unsigned width)
{
isl_val *mod;
mod = isl_val_int_from_ui (isl_pw_aff_get_ctx (pwaff), width);
mod = isl_val_2exp (mod);
pwaff = isl_pw_aff_mod_val (pwaff, mod);
return pwaff;
}
/* When parameter NAME is in REGION, returns its index in SESE_PARAMS.
Otherwise returns -1. */
static inline int
parameter_index_in_region (tree name, sese_info_p region)
{
int i;
tree p;
FOR_EACH_VEC_ELT (region->params, i, p)
if (p == name)
return i;
return -1;
}
/* Extract an affine expression from the tree E in the scop S. */
static isl_pw_aff *
extract_affine (scop_p s, tree e, __isl_take isl_space *space)
{
isl_pw_aff *lhs, *rhs, *res;
if (e == chrec_dont_know) {
isl_space_free (space);
return NULL;
}
tree type = TREE_TYPE (e);
switch (TREE_CODE (e))
{
case POLYNOMIAL_CHREC:
res = extract_affine_chrec (s, e, space);
break;
case MULT_EXPR:
res = extract_affine_mul (s, e, space);
break;
case POINTER_PLUS_EXPR:
{
lhs = extract_affine (s, TREE_OPERAND (e, 0), isl_space_copy (space));
/* The RHS of a pointer-plus expression is to be interpreted
as signed value. Try to look through a sign-changing conversion
first. */
tree tem = TREE_OPERAND (e, 1);
STRIP_NOPS (tem);
rhs = extract_affine (s, tem, space);
if (TYPE_UNSIGNED (TREE_TYPE (tem)))
rhs = wrap (rhs, TYPE_PRECISION (type) - 1);
res = isl_pw_aff_add (lhs, rhs);
break;
}
case PLUS_EXPR:
lhs = extract_affine (s, TREE_OPERAND (e, 0), isl_space_copy (space));
rhs = extract_affine (s, TREE_OPERAND (e, 1), space);
res = isl_pw_aff_add (lhs, rhs);
break;
case MINUS_EXPR:
lhs = extract_affine (s, TREE_OPERAND (e, 0), isl_space_copy (space));
rhs = extract_affine (s, TREE_OPERAND (e, 1), space);
res = isl_pw_aff_sub (lhs, rhs);
break;
case BIT_NOT_EXPR:
lhs = extract_affine (s, integer_minus_one_node, isl_space_copy (space));
rhs = extract_affine (s, TREE_OPERAND (e, 0), space);
res = isl_pw_aff_sub (lhs, rhs);
break;
case NEGATE_EXPR:
lhs = extract_affine (s, TREE_OPERAND (e, 0), isl_space_copy (space));
rhs = extract_affine (s, integer_minus_one_node, space);
res = isl_pw_aff_mul (lhs, rhs);
break;
case SSA_NAME:
{
gcc_assert (! defined_in_sese_p (e, s->scop_info->region));
int dim = parameter_index_in_region (e, s->scop_info);
gcc_assert (dim != -1);
res = extract_affine_name (dim, space);
break;
}
case INTEGER_CST:
res = extract_affine_int (e, space);
/* No need to wrap a single integer. */
return res;
CASE_CONVERT:
{
tree itype = TREE_TYPE (TREE_OPERAND (e, 0));
res = extract_affine (s, TREE_OPERAND (e, 0), space);
/* Signed values, even if overflow is undefined, get modulo-reduced.
But only if not all values of the old type fit in the new. */
if (! TYPE_UNSIGNED (type)
&& ((TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (e, 0)))
&& TYPE_PRECISION (type) <= TYPE_PRECISION (itype))
|| TYPE_PRECISION (type) < TYPE_PRECISION (itype)))
res = wrap (res, TYPE_PRECISION (type) - 1);
break;
}
case NON_LVALUE_EXPR:
res = extract_affine (s, TREE_OPERAND (e, 0), space);
break;
default:
gcc_unreachable ();
break;
}
if (TYPE_UNSIGNED (type))
res = wrap (res, TYPE_PRECISION (type));
return res;
}
/* Returns a linear expression for tree T evaluated in PBB. */
static isl_pw_aff *
create_pw_aff_from_tree (poly_bb_p pbb, loop_p loop, tree t)
{
scop_p scop = PBB_SCOP (pbb);
t = scalar_evolution_in_region (scop->scop_info->region, loop, t);
gcc_assert (!chrec_contains_undetermined (t));
gcc_assert (!automatically_generated_chrec_p (t));
return extract_affine (scop, t, isl_set_get_space (pbb->domain));
}
/* Add conditional statement STMT to pbb. CODE is used as the comparison
operator. This allows us to invert the condition or to handle
inequalities. */
static void
add_condition_to_pbb (poly_bb_p pbb, gcond *stmt, enum tree_code code)
{
loop_p loop = gimple_bb (stmt)->loop_father;
isl_pw_aff *lhs = create_pw_aff_from_tree (pbb, loop, gimple_cond_lhs (stmt));
isl_pw_aff *rhs = create_pw_aff_from_tree (pbb, loop, gimple_cond_rhs (stmt));
isl_set *cond;
switch (code)
{
case LT_EXPR:
cond = isl_pw_aff_lt_set (lhs, rhs);
break;
case GT_EXPR:
cond = isl_pw_aff_gt_set (lhs, rhs);
break;
case LE_EXPR:
cond = isl_pw_aff_le_set (lhs, rhs);
break;
case GE_EXPR:
cond = isl_pw_aff_ge_set (lhs, rhs);
break;
case EQ_EXPR:
cond = isl_pw_aff_eq_set (lhs, rhs);
break;
case NE_EXPR:
cond = isl_pw_aff_ne_set (lhs, rhs);
break;
default:
gcc_unreachable ();
}
cond = isl_set_coalesce (cond);
cond = isl_set_set_tuple_id (cond, isl_set_get_tuple_id (pbb->domain));
pbb->domain = isl_set_coalesce (isl_set_intersect (pbb->domain, cond));
}
/* Add conditions to the domain of PBB. */
static void
add_conditions_to_domain (poly_bb_p pbb)
{
unsigned int i;
gimple *stmt;
gimple_poly_bb_p gbb = PBB_BLACK_BOX (pbb);
if (GBB_CONDITIONS (gbb).is_empty ())
return;
FOR_EACH_VEC_ELT (GBB_CONDITIONS (gbb), i, stmt)
switch (gimple_code (stmt))
{
case GIMPLE_COND:
{
/* Don't constrain on anything else than INTEGER_TYPE. */
if (TREE_CODE (TREE_TYPE (gimple_cond_lhs (stmt))) != INTEGER_TYPE)
break;
gcond *cond_stmt = as_a <gcond *> (stmt);
enum tree_code code = gimple_cond_code (cond_stmt);
/* The conditions for ELSE-branches are inverted. */
if (!GBB_CONDITION_CASES (gbb)[i])
code = invert_tree_comparison (code, false);
add_condition_to_pbb (pbb, cond_stmt, code);
break;
}
default:
gcc_unreachable ();
break;
}
}
/* Add constraints on the possible values of parameter P from the type
of P. */
static void
add_param_constraints (scop_p scop, graphite_dim_t p, tree parameter)
{
tree type = TREE_TYPE (parameter);
wide_int min, max;
gcc_assert (INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type));
if (INTEGRAL_TYPE_P (type)
&& get_range_info (parameter, &min, &max) == VR_RANGE)
;
else
{
min = wi::min_value (TYPE_PRECISION (type), TYPE_SIGN (type));
max = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
}
isl_space *space = isl_set_get_space (scop->param_context);
isl_constraint *c = isl_inequality_alloc (isl_local_space_from_space (space));
isl_val *v = isl_val_int_from_wi (scop->isl_context,
widest_int::from (min, TYPE_SIGN (type)));
v = isl_val_neg (v);
c = isl_constraint_set_constant_val (c, v);
c = isl_constraint_set_coefficient_si (c, isl_dim_param, p, 1);
scop->param_context = isl_set_coalesce
(isl_set_add_constraint (scop->param_context, c));
space = isl_set_get_space (scop->param_context);
c = isl_inequality_alloc (isl_local_space_from_space (space));
v = isl_val_int_from_wi (scop->isl_context,
widest_int::from (max, TYPE_SIGN (type)));
c = isl_constraint_set_constant_val (c, v);
c = isl_constraint_set_coefficient_si (c, isl_dim_param, p, -1);
scop->param_context = isl_set_coalesce
(isl_set_add_constraint (scop->param_context, c));
}
/* Add a constrain to the ACCESSES polyhedron for the alias set of
data reference DR. ACCESSP_NB_DIMS is the dimension of the
ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
domain. */
static isl_map *
pdr_add_alias_set (isl_map *acc, dr_info &dri)
{
isl_constraint *c = isl_equality_alloc
(isl_local_space_from_space (isl_map_get_space (acc)));
/* Positive numbers for all alias sets. */
c = isl_constraint_set_constant_si (c, -dri.alias_set);
c = isl_constraint_set_coefficient_si (c, isl_dim_out, 0, 1);
return isl_map_add_constraint (acc, c);
}
/* Assign the affine expression INDEX to the output dimension POS of
MAP and return the result. */
static isl_map *
set_index (isl_map *map, int pos, isl_pw_aff *index)
{
isl_map *index_map;
int len = isl_map_dim (map, isl_dim_out);
isl_id *id;
index_map = isl_map_from_pw_aff (index);
index_map = isl_map_insert_dims (index_map, isl_dim_out, 0, pos);
index_map = isl_map_add_dims (index_map, isl_dim_out, len - pos - 1);
id = isl_map_get_tuple_id (map, isl_dim_out);
index_map = isl_map_set_tuple_id (index_map, isl_dim_out, id);
id = isl_map_get_tuple_id (map, isl_dim_in);
index_map = isl_map_set_tuple_id (index_map, isl_dim_in, id);
return isl_map_intersect (map, index_map);
}
/* Add to ACCESSES polyhedron equalities defining the access functions
to the memory. ACCESSP_NB_DIMS is the dimension of the ACCESSES
polyhedron, DOM_NB_DIMS is the dimension of the iteration domain.
PBB is the poly_bb_p that contains the data reference DR. */
static isl_map *
pdr_add_memory_accesses (isl_map *acc, dr_info &dri)
{
data_reference_p dr = dri.dr;
poly_bb_p pbb = dri.pbb;
int i, nb_subscripts = DR_NUM_DIMENSIONS (dr);
scop_p scop = PBB_SCOP (pbb);
for (i = 0; i < nb_subscripts; i++)
{
isl_pw_aff *aff;
tree afn = DR_ACCESS_FN (dr, i);
aff = extract_affine (scop, afn,
isl_space_domain (isl_map_get_space (acc)));
acc = set_index (acc, nb_subscripts - i , aff);
}
return isl_map_coalesce (acc);
}
/* Return true when the LOW and HIGH bounds of an array reference REF are valid
to extract constraints on accessed elements of the array. Returning false is
the conservative answer. */
static bool
bounds_are_valid (tree ref, tree low, tree high)
{
if (!high)
return false;
if (!tree_fits_shwi_p (low)
|| !tree_fits_shwi_p (high))
return false;
/* 1-element arrays at end of structures may extend over
their declared size. */
if (array_at_struct_end_p (ref)
&& operand_equal_p (low, high, 0))
return false;
/* Fortran has some arrays where high bound is -1 and low is 0. */
if (integer_onep (fold_build2 (LT_EXPR, boolean_type_node, high, low)))
return false;
return true;
}
/* Add constrains representing the size of the accessed data to the
ACCESSES polyhedron. ACCESSP_NB_DIMS is the dimension of the
ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
domain. */
static isl_set *
pdr_add_data_dimensions (isl_set *subscript_sizes, scop_p scop,
data_reference_p dr)
{
tree ref = DR_REF (dr);
int nb_subscripts = DR_NUM_DIMENSIONS (dr);
for (int i = nb_subscripts - 1; i >= 0; i--, ref = TREE_OPERAND (ref, 0))
{
if (TREE_CODE (ref) != ARRAY_REF)
return subscript_sizes;
tree low = array_ref_low_bound (ref);
tree high = array_ref_up_bound (ref);
if (!bounds_are_valid (ref, low, high))
continue;
isl_space *space = isl_set_get_space (subscript_sizes);
isl_pw_aff *lb = extract_affine_int (low, isl_space_copy (space));
isl_pw_aff *ub = extract_affine_int (high, isl_space_copy (space));
/* high >= 0 */
isl_set *valid = isl_pw_aff_nonneg_set (isl_pw_aff_copy (ub));
valid = isl_set_project_out (valid, isl_dim_set, 0,
isl_set_dim (valid, isl_dim_set));
scop->param_context = isl_set_coalesce
(isl_set_intersect (scop->param_context, valid));
isl_aff *aff
= isl_aff_zero_on_domain (isl_local_space_from_space (space));
aff = isl_aff_add_coefficient_si (aff, isl_dim_in, i + 1, 1);
isl_set *univ
= isl_set_universe (isl_space_domain (isl_aff_get_space (aff)));
isl_pw_aff *index = isl_pw_aff_alloc (univ, aff);
isl_id *id = isl_set_get_tuple_id (subscript_sizes);
lb = isl_pw_aff_set_tuple_id (lb, isl_dim_in, isl_id_copy (id));
ub = isl_pw_aff_set_tuple_id (ub, isl_dim_in, id);
/* low <= sub_i <= high */
isl_set *lbs = isl_pw_aff_ge_set (isl_pw_aff_copy (index), lb);
isl_set *ubs = isl_pw_aff_le_set (index, ub);
subscript_sizes = isl_set_intersect (subscript_sizes, lbs);
subscript_sizes = isl_set_intersect (subscript_sizes, ubs);
}
return isl_set_coalesce (subscript_sizes);
}
/* Build data accesses for DRI. */
static void
build_poly_dr (dr_info &dri)
{
isl_map *acc;
isl_set *subscript_sizes;
poly_bb_p pbb = dri.pbb;
data_reference_p dr = dri.dr;
scop_p scop = PBB_SCOP (pbb);
isl_id *id = isl_id_for_dr (scop);
{
isl_space *dc = isl_set_get_space (pbb->domain);
int nb_out = 1 + DR_NUM_DIMENSIONS (dr);
isl_space *space = isl_space_add_dims (isl_space_from_domain (dc),
isl_dim_out, nb_out);
acc = isl_map_universe (space);
acc = isl_map_set_tuple_id (acc, isl_dim_out, isl_id_copy (id));
}
acc = pdr_add_alias_set (acc, dri);
acc = pdr_add_memory_accesses (acc, dri);
{
int nb = 1 + DR_NUM_DIMENSIONS (dr);
isl_space *space = isl_space_set_alloc (scop->isl_context, 0, nb);
space = isl_space_set_tuple_id (space, isl_dim_set, id);
subscript_sizes = isl_set_nat_universe (space);
subscript_sizes = isl_set_fix_si (subscript_sizes, isl_dim_set, 0,
dri.alias_set);
subscript_sizes = pdr_add_data_dimensions (subscript_sizes, scop, dr);
}
new_poly_dr (pbb, DR_STMT (dr), DR_IS_READ (dr) ? PDR_READ : PDR_WRITE,
acc, subscript_sizes);
}
static void
build_poly_sr_1 (poly_bb_p pbb, gimple *stmt, tree var, enum poly_dr_type kind,
isl_map *acc, isl_set *subscript_sizes)
{
scop_p scop = PBB_SCOP (pbb);
/* Each scalar variables has a unique alias set number starting from
the maximum alias set assigned to a dr. */
int alias_set = scop->max_alias_set + SSA_NAME_VERSION (var);
subscript_sizes = isl_set_fix_si (subscript_sizes, isl_dim_set, 0,
alias_set);
/* Add a constrain to the ACCESSES polyhedron for the alias set of
data reference DR. */
isl_constraint *c
= isl_equality_alloc (isl_local_space_from_space (isl_map_get_space (acc)));
c = isl_constraint_set_constant_si (c, -alias_set);
c = isl_constraint_set_coefficient_si (c, isl_dim_out, 0, 1);
new_poly_dr (pbb, stmt, kind, isl_map_add_constraint (acc, c),
subscript_sizes);
}
/* Record all cross basic block scalar variables in PBB. */
static void
build_poly_sr (poly_bb_p pbb)
{
scop_p scop = PBB_SCOP (pbb);
gimple_poly_bb_p gbb = PBB_BLACK_BOX (pbb);
vec<scalar_use> &reads = gbb->read_scalar_refs;
vec<tree> &writes = gbb->write_scalar_refs;
isl_space *dc = isl_set_get_space (pbb->domain);
int nb_out = 1;
isl_space *space = isl_space_add_dims (isl_space_from_domain (dc),
isl_dim_out, nb_out);
isl_id *id = isl_id_for_dr (scop);
space = isl_space_set_tuple_id (space, isl_dim_set, isl_id_copy (id));
isl_map *acc = isl_map_universe (isl_space_copy (space));
acc = isl_map_set_tuple_id (acc, isl_dim_out, id);
isl_set *subscript_sizes = isl_set_nat_universe (space);
int i;
tree var;
FOR_EACH_VEC_ELT (writes, i, var)
build_poly_sr_1 (pbb, SSA_NAME_DEF_STMT (var), var, PDR_WRITE,
isl_map_copy (acc), isl_set_copy (subscript_sizes));
scalar_use *use;
FOR_EACH_VEC_ELT (reads, i, use)
build_poly_sr_1 (pbb, use->first, use->second, PDR_READ, isl_map_copy (acc),
isl_set_copy (subscript_sizes));
isl_map_free (acc);
isl_set_free (subscript_sizes);
}
/* Build data references in SCOP. */
static void
build_scop_drs (scop_p scop)
{
int i;
dr_info *dri;
FOR_EACH_VEC_ELT (scop->drs, i, dri)
build_poly_dr (*dri);
poly_bb_p pbb;
FOR_EACH_VEC_ELT (scop->pbbs, i, pbb)
build_poly_sr (pbb);
}
/* Add to the iteration DOMAIN one extra dimension for LOOP->num. */
static isl_set *
add_iter_domain_dimension (__isl_take isl_set *domain, loop_p loop, scop_p scop)
{
int loop_index = isl_set_dim (domain, isl_dim_set);
domain = isl_set_add_dims (domain, isl_dim_set, 1);
char name[50];
snprintf (name, sizeof(name), "i%d", loop->num);
isl_id *label = isl_id_alloc (scop->isl_context, name, NULL);
return isl_set_set_dim_id (domain, isl_dim_set, loop_index, label);
}
/* Add constraints to DOMAIN for each loop from LOOP up to CONTEXT. */
static isl_set *
add_loop_constraints (scop_p scop, __isl_take isl_set *domain, loop_p loop,
loop_p context)
{
if (loop == context)
return domain;
const sese_l ®ion = scop->scop_info->region;
if (!loop_in_sese_p (loop, region))
return domain;
/* Recursion all the way up to the context loop. */
domain = add_loop_constraints (scop, domain, loop_outer (loop), context);
/* Then, build constraints over the loop in post-order: outer to inner. */
int loop_index = isl_set_dim (domain, isl_dim_set);
if (dump_file)
fprintf (dump_file, "[sese-to-poly] adding one extra dimension to the "
"domain for loop_%d.\n", loop->num);
domain = add_iter_domain_dimension (domain, loop, scop);
isl_space *space = isl_set_get_space (domain);
/* 0 <= loop_i */
isl_local_space *ls = isl_local_space_from_space (isl_space_copy (space));
isl_constraint *c = isl_inequality_alloc (ls);
c = isl_constraint_set_coefficient_si (c, isl_dim_set, loop_index, 1);
if (dump_file)
{
fprintf (dump_file, "[sese-to-poly] adding constraint to the domain: ");
print_isl_constraint (dump_file, c);
}
domain = isl_set_add_constraint (domain, c);
tree nb_iters = number_of_latch_executions (loop);
if (TREE_CODE (nb_iters) == INTEGER_CST)
{
/* loop_i <= cst_nb_iters */
isl_local_space *ls = isl_local_space_from_space (space);
isl_constraint *c = isl_inequality_alloc (ls);
c = isl_constraint_set_coefficient_si (c, isl_dim_set, loop_index, -1);
isl_val *v
= isl_val_int_from_wi (scop->isl_context, wi::to_widest (nb_iters));
c = isl_constraint_set_constant_val (c, v);
return isl_set_add_constraint (domain, c);
}
/* loop_i <= expr_nb_iters */
gcc_assert (!chrec_contains_undetermined (nb_iters));
nb_iters = scalar_evolution_in_region (region, loop, nb_iters);
gcc_assert (!chrec_contains_undetermined (nb_iters));
isl_pw_aff *aff_nb_iters = extract_affine (scop, nb_iters,
isl_space_copy (space));
isl_set *valid = isl_pw_aff_nonneg_set (isl_pw_aff_copy (aff_nb_iters));
valid = isl_set_project_out (valid, isl_dim_set, 0,
isl_set_dim (valid, isl_dim_set));
if (valid)
scop->param_context = isl_set_intersect (scop->param_context, valid);
ls = isl_local_space_from_space (isl_space_copy (space));
isl_aff *loop_i = isl_aff_set_coefficient_si (isl_aff_zero_on_domain (ls),
isl_dim_in, loop_index, 1);
isl_set *le = isl_pw_aff_le_set (isl_pw_aff_from_aff (loop_i),
isl_pw_aff_copy (aff_nb_iters));
if (dump_file)
{
fprintf (dump_file, "[sese-to-poly] adding constraint to the domain: ");
print_isl_set (dump_file, le);
}
domain = isl_set_intersect (domain, le);
widest_int nit;
if (!max_stmt_executions (loop, &nit))
{
isl_pw_aff_free (aff_nb_iters);
isl_space_free (space);
return domain;
}
/* NIT is an upper bound to NB_ITERS: "NIT >= NB_ITERS", although we
do not know whether the loop executes at least once. */
--nit;
isl_pw_aff *approx = extract_affine_wi (nit, isl_space_copy (space));
isl_set *x = isl_pw_aff_ge_set (approx, aff_nb_iters);
x = isl_set_project_out (x, isl_dim_set, 0,
isl_set_dim (x, isl_dim_set));
scop->param_context = isl_set_intersect (scop->param_context, x);
ls = isl_local_space_from_space (space);
c = isl_inequality_alloc (ls);
c = isl_constraint_set_coefficient_si (c, isl_dim_set, loop_index, -1);
isl_val *v = isl_val_int_from_wi (scop->isl_context, nit);
c = isl_constraint_set_constant_val (c, v);
if (dump_file)
{
fprintf (dump_file, "[sese-to-poly] adding constraint to the domain: ");
print_isl_constraint (dump_file, c);
}
return isl_set_add_constraint (domain, c);
}
/* Builds the original iteration domains for each pbb in the SCOP. */
static int
build_iteration_domains (scop_p scop, __isl_keep isl_set *context,
int index, loop_p context_loop)
{
loop_p current = pbb_loop (scop->pbbs[index]);
isl_set *domain = isl_set_copy (context);
domain = add_loop_constraints (scop, domain, current, context_loop);
const sese_l ®ion = scop->scop_info->region;
int i;
poly_bb_p pbb;
FOR_EACH_VEC_ELT_FROM (scop->pbbs, i, pbb, index)
{
loop_p loop = pbb_loop (pbb);
if (current == loop)
{
pbb->iterators = isl_set_copy (domain);
pbb->domain = isl_set_copy (domain);
pbb->domain = isl_set_set_tuple_id (pbb->domain,
isl_id_for_pbb (scop, pbb));
add_conditions_to_domain (pbb);
if (dump_file)
{
fprintf (dump_file, "[sese-to-poly] set pbb_%d->domain: ",
pbb_index (pbb));
print_isl_set (dump_file, domain);
}
continue;
}
while (loop_in_sese_p (loop, region)
&& current != loop)
loop = loop_outer (loop);
if (current != loop)
{
/* A statement in a different loop nest than CURRENT loop. */
isl_set_free (domain);
return i;
}
/* A statement nested in the CURRENT loop. */
i = build_iteration_domains (scop, domain, i, current);
i--;
}
isl_set_free (domain);
return i;
}
/* Assign dimension for each parameter in SCOP and add constraints for the
parameters. */
static void
build_scop_context (scop_p scop)
{
sese_info_p region = scop->scop_info;
unsigned nbp = sese_nb_params (region);
isl_space *space = isl_space_set_alloc (scop->isl_context, nbp, 0);
unsigned i;
tree e;
FOR_EACH_VEC_ELT (region->params, i, e)
space = isl_space_set_dim_id (space, isl_dim_param, i,
isl_id_for_ssa_name (scop, e));
scop->param_context = isl_set_universe (space);
FOR_EACH_VEC_ELT (region->params, i, e)
add_param_constraints (scop, i, e);
}
/* Return true when loop A is nested in loop B. */
static bool
nested_in (loop_p a, loop_p b)
{
return b == find_common_loop (a, b);
}
/* Return the loop at a specific SCOP->pbbs[*INDEX]. */
static loop_p
loop_at (scop_p scop, int *index)
{
return pbb_loop (scop->pbbs[*index]);
}
/* Return the index of any pbb belonging to loop or a subloop of A. */
static int
index_outermost_in_loop (loop_p a, scop_p scop)
{
int i, outermost = -1;
int last_depth = -1;
poly_bb_p pbb;
FOR_EACH_VEC_ELT (scop->pbbs, i, pbb)
if (nested_in (pbb_loop (pbb), a)
&& (last_depth == -1
|| last_depth > (int) loop_depth (pbb_loop (pbb))))
{
outermost = i;
last_depth = loop_depth (pbb_loop (pbb));
}
return outermost;
}
/* Return the index of any pbb belonging to loop or a subloop of A. */
static int
index_pbb_in_loop (loop_p a, scop_p scop)
{
int i;
poly_bb_p pbb;
FOR_EACH_VEC_ELT (scop->pbbs, i, pbb)
if (pbb_loop (pbb) == a)
return i;
return -1;
}
static poly_bb_p
outermost_pbb_in (loop_p loop, scop_p scop)
{
int x = index_pbb_in_loop (loop, scop);
if (x == -1)
x = index_outermost_in_loop (loop, scop);
return scop->pbbs[x];
}
static isl_schedule *
add_in_sequence (__isl_take isl_schedule *a, __isl_take isl_schedule *b)
{
gcc_assert (a || b);
if (!a)
return b;
if (!b)
return a;
return isl_schedule_sequence (a, b);
}
struct map_to_dimension_data {
int n;
isl_union_pw_multi_aff *res;
};
/* Create a function that maps the elements of SET to its N-th dimension and add
it to USER->res. */
static isl_stat
add_outer_projection (__isl_take isl_set *set, void *user)
{
struct map_to_dimension_data *data = (struct map_to_dimension_data *) user;
int dim = isl_set_dim (set, isl_dim_set);
isl_space *space = isl_set_get_space (set);
gcc_assert (dim >= data->n);
isl_pw_multi_aff *pma
= isl_pw_multi_aff_project_out_map (space, isl_dim_set, data->n,
dim - data->n);
data->res = isl_union_pw_multi_aff_add_pw_multi_aff (data->res, pma);
isl_set_free (set);
return isl_stat_ok;
}
/* Return SET in which all inner dimensions above N are removed. */
static isl_multi_union_pw_aff *
outer_projection_mupa (__isl_take isl_union_set *set, int n)
{
gcc_assert (n >= 0);
gcc_assert (set);
gcc_assert (!isl_union_set_is_empty (set));
isl_space *space = isl_union_set_get_space (set);
isl_union_pw_multi_aff *pwaff = isl_union_pw_multi_aff_empty (space);
struct map_to_dimension_data data = {n, pwaff};
if (isl_union_set_foreach_set (set, &add_outer_projection, &data) < 0)
data.res = isl_union_pw_multi_aff_free (data.res);
isl_union_set_free (set);
return isl_multi_union_pw_aff_from_union_pw_multi_aff (data.res);
}
/* Embed SCHEDULE in the constraints of the LOOP domain. */
static isl_schedule *
add_loop_schedule (__isl_take isl_schedule *schedule, loop_p loop,
scop_p scop)
{
poly_bb_p pbb = outermost_pbb_in (loop, scop);
isl_set *iterators = pbb->iterators;
int empty = isl_set_is_empty (iterators);
if (empty < 0 || empty)
return empty < 0 ? isl_schedule_free (schedule) : schedule;
isl_union_set *domain = isl_schedule_get_domain (schedule);
/* We cannot apply an empty domain to pbbs in this loop so return early. */
if (isl_union_set_is_empty (domain))
{
isl_union_set_free (domain);
return schedule;
}
isl_space *space = isl_set_get_space (iterators);
int loop_index = isl_space_dim (space, isl_dim_set) - 1;
loop_p ploop = pbb_loop (pbb);
while (loop != ploop)
{
--loop_index;
ploop = loop_outer (ploop);
}
isl_local_space *ls = isl_local_space_from_space (space);
isl_aff *aff = isl_aff_var_on_domain (ls, isl_dim_set, loop_index);
isl_multi_aff *prefix = isl_multi_aff_from_aff (aff);
char name[50];
snprintf (name, sizeof(name), "L_%d", loop->num);
isl_id *label = isl_id_alloc (isl_schedule_get_ctx (schedule),
name, NULL);
prefix = isl_multi_aff_set_tuple_id (prefix, isl_dim_out, label);
int n = isl_multi_aff_dim (prefix, isl_dim_in);
isl_multi_union_pw_aff *mupa = outer_projection_mupa (domain, n);
mupa = isl_multi_union_pw_aff_apply_multi_aff (mupa, prefix);
return isl_schedule_insert_partial_schedule (schedule, mupa);
}
/* Build schedule for the pbb at INDEX. */
static isl_schedule *
build_schedule_pbb (scop_p scop, int *index)
{
poly_bb_p pbb = scop->pbbs[*index];
++*index;
isl_set *domain = isl_set_copy (pbb->domain);
isl_union_set *ud = isl_union_set_from_set (domain);
return isl_schedule_from_domain (ud);
}
static isl_schedule *build_schedule_loop_nest (scop_p, int *, loop_p);
/* Build the schedule of the loop containing the SCOP pbb at INDEX. */
static isl_schedule *
build_schedule_loop (scop_p scop, int *index)
{
int max = scop->pbbs.length ();
gcc_assert (*index < max);
loop_p loop = loop_at (scop, index);
isl_schedule *s = NULL;
while (nested_in (loop_at (scop, index), loop))
{
if (loop == loop_at (scop, index))
s = add_in_sequence (s, build_schedule_pbb (scop, index));
else
s = add_in_sequence (s, build_schedule_loop_nest (scop, index, loop));
if (*index == max)
break;
}
return add_loop_schedule (s, loop, scop);
}
/* S is the schedule of the loop LOOP. Embed the schedule S in all outer loops.
When CONTEXT_LOOP is null, embed the schedule in all loops contained in the
SCOP surrounding LOOP. When CONTEXT_LOOP is non null, only embed S in the
maximal loop nest contained within CONTEXT_LOOP. */
static isl_schedule *
embed_in_surrounding_loops (__isl_take isl_schedule *s, scop_p scop,
loop_p loop, int *index, loop_p context_loop)
{
loop_p outer = loop_outer (loop);
sese_l region = scop->scop_info->region;
if (context_loop == outer
|| !loop_in_sese_p (outer, region))
return s;
int max = scop->pbbs.length ();
if (*index == max
|| (context_loop && !nested_in (loop_at (scop, index), context_loop))
|| (!context_loop
&& !loop_in_sese_p (find_common_loop (outer, loop_at (scop, index)),
region)))
return embed_in_surrounding_loops (add_loop_schedule (s, outer, scop),
scop, outer, index, context_loop);
bool a_pbb;
while ((a_pbb = (outer == loop_at (scop, index)))
|| nested_in (loop_at (scop, index), outer))
{
if (a_pbb)
s = add_in_sequence (s, build_schedule_pbb (scop, index));
else
s = add_in_sequence (s, build_schedule_loop (scop, index));
if (*index == max)
break;
}
/* We reached the end of the OUTER loop: embed S in OUTER. */
return embed_in_surrounding_loops (add_loop_schedule (s, outer, scop), scop,
outer, index, context_loop);
}
/* Build schedule for the full loop nest containing the pbb at INDEX. When
CONTEXT_LOOP is null, build the schedule of all loops contained in the SCOP
surrounding the pbb. When CONTEXT_LOOP is non null, only build the maximal loop
nest contained within CONTEXT_LOOP. */
static isl_schedule *
build_schedule_loop_nest (scop_p scop, int *index, loop_p context_loop)
{
gcc_assert (*index != (int) scop->pbbs.length ());
loop_p loop = loop_at (scop, index);
isl_schedule *s = build_schedule_loop (scop, index);
return embed_in_surrounding_loops (s, scop, loop, index, context_loop);
}
/* Build the schedule of the SCOP. */
static void
build_original_schedule (scop_p scop)
{
int i = 0;
int n = scop->pbbs.length ();
while (i < n)
{
poly_bb_p pbb = scop->pbbs[i];
isl_schedule *s = NULL;
if (!loop_in_sese_p (pbb_loop (pbb), scop->scop_info->region))
s = build_schedule_pbb (scop, &i);
else
s = build_schedule_loop_nest (scop, &i, NULL);
scop->original_schedule = add_in_sequence (scop->original_schedule, s);
}
if (dump_file)
{
fprintf (dump_file, "[sese-to-poly] original schedule:\n");
print_isl_schedule (dump_file, scop->original_schedule);
}
}
/* Builds the polyhedral representation for a SESE region. */
bool
build_poly_scop (scop_p scop)
{
int old_err = isl_options_get_on_error (scop->isl_context);
isl_options_set_on_error (scop->isl_context, ISL_ON_ERROR_CONTINUE);
build_scop_context (scop);
unsigned i = 0;
unsigned n = scop->pbbs.length ();
while (i < n)
i = build_iteration_domains (scop, scop->param_context, i, NULL);
build_scop_drs (scop);
build_original_schedule (scop);
enum isl_error err = isl_ctx_last_error (scop->isl_context);
isl_ctx_reset_error (scop->isl_context);
isl_options_set_on_error (scop->isl_context, old_err);
if (err != isl_error_none)
dump_printf (MSG_MISSED_OPTIMIZATION,
"ISL error while building poly scop\n");
return err == isl_error_none;
}
#endif /* HAVE_isl */
|