| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 
 | /* Simple data type for real numbers for the GNU compiler.
   Copyright (C) 2002-2018 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
/* This library supports real numbers;
   inf and nan are NOT supported.
   It is written to be simple and fast.
   Value of sreal is
	x = sig * 2 ^ exp
   where
	sig = significant
	  (for < 64-bit machines sig = sig_lo + sig_hi * 2 ^ SREAL_PART_BITS)
	exp = exponent
   One uint64_t is used for the significant.
   Only a half of significant bits is used (in normalized sreals) so that we do
   not have problems with overflow, for example when c->sig = a->sig * b->sig.
   So the precision is 32-bit.
   Invariant: The numbers are normalized before and after each call of sreal_*.
   Normalized sreals:
   All numbers (except zero) meet following conditions:
	 SREAL_MIN_SIG <= sig && sig <= SREAL_MAX_SIG
	-SREAL_MAX_EXP <= exp && exp <= SREAL_MAX_EXP
   If the number would be too large, it is set to upper bounds of these
   conditions.
   If the number is zero or would be too small it meets following conditions:
	sig == 0 && exp == -SREAL_MAX_EXP
*/
#include "config.h"
#include "system.h"
#include <math.h>
#include "coretypes.h"
#include "sreal.h"
#include "selftest.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "cgraph.h"
#include "data-streamer.h"
/* Print the content of struct sreal.  */
void
sreal::dump (FILE *file) const
{
  fprintf (file, "(%" PRIi64 " * 2^%d)", m_sig, m_exp);
}
DEBUG_FUNCTION void
debug (const sreal &ref)
{
  ref.dump (stderr);
}
DEBUG_FUNCTION void
debug (const sreal *ptr)
{
  if (ptr)
    debug (*ptr);
  else
    fprintf (stderr, "<nil>\n");
}
/* Shift this right by S bits.  Needed: 0 < S <= SREAL_BITS.
   When the most significant bit shifted out is 1, add 1 to this (rounding).
   */
void
sreal::shift_right (int s)
{
  gcc_checking_assert (s > 0);
  gcc_checking_assert (s <= SREAL_BITS);
  /* Exponent should never be so large because shift_right is used only by
     sreal_add and sreal_sub ant thus the number cannot be shifted out from
     exponent range.  */
  gcc_checking_assert (m_exp + s <= SREAL_MAX_EXP);
  m_exp += s;
  m_sig += (int64_t) 1 << (s - 1);
  m_sig >>= s;
}
/* Return integer value of *this.  */
int64_t
sreal::to_int () const
{
  int64_t sign = SREAL_SIGN (m_sig);
  if (m_exp <= -SREAL_BITS)
    return 0;
  if (m_exp >= SREAL_PART_BITS)
    return sign * INTTYPE_MAXIMUM (int64_t);
  if (m_exp > 0)
    return sign * (SREAL_ABS (m_sig) << m_exp);
  if (m_exp < 0)
    return m_sig >> -m_exp;
  return m_sig;
}
/* Return value of *this as double.
   This should be used for debug output only.  */
double
sreal::to_double () const
{
  double val = m_sig;
  if (m_exp)
    val = ldexp (val, m_exp);
  return val;
}
/* Return *this + other.  */
sreal
sreal::operator+ (const sreal &other) const
{
  int dexp;
  sreal tmp, r;
  const sreal *a_p = this, *b_p = &other, *bb;
  if (a_p->m_exp < b_p->m_exp)
    std::swap (a_p, b_p);
  dexp = a_p->m_exp - b_p->m_exp;
  r.m_exp = a_p->m_exp;
  if (dexp > SREAL_BITS)
    {
      r.m_sig = a_p->m_sig;
      return r;
    }
  if (dexp == 0)
    bb = b_p;
  else
    {
      tmp = *b_p;
      tmp.shift_right (dexp);
      bb = &tmp;
    }
  r.m_sig = a_p->m_sig + bb->m_sig;
  r.normalize ();
  return r;
}
/* Return *this - other.  */
sreal
sreal::operator- (const sreal &other) const
{
  int dexp;
  sreal tmp, r;
  const sreal *bb;
  const sreal *a_p = this, *b_p = &other;
  int64_t sign = 1;
  if (a_p->m_exp < b_p->m_exp)
    {
      sign = -1;
      std::swap (a_p, b_p);
    }
  dexp = a_p->m_exp - b_p->m_exp;
  r.m_exp = a_p->m_exp;
  if (dexp > SREAL_BITS)
    {
      r.m_sig = sign * a_p->m_sig;
      return r;
    }
  if (dexp == 0)
    bb = b_p;
  else
    {
      tmp = *b_p;
      tmp.shift_right (dexp);
      bb = &tmp;
    }
  r.m_sig = sign * (a_p->m_sig - bb->m_sig);
  r.normalize ();
  return r;
}
/* Return *this * other.  */
sreal
sreal::operator* (const sreal &other) const
{
  sreal r;
  if (absu_hwi (m_sig) < SREAL_MIN_SIG || absu_hwi (other.m_sig) < SREAL_MIN_SIG)
    {
      r.m_sig = 0;
      r.m_exp = -SREAL_MAX_EXP;
    }
  else
    {
      r.m_sig = m_sig * other.m_sig;
      r.m_exp = m_exp + other.m_exp;
      r.normalize ();
    }
  return r;
}
/* Return *this / other.  */
sreal
sreal::operator/ (const sreal &other) const
{
  gcc_checking_assert (other.m_sig != 0);
  sreal r;
  r.m_sig
    = SREAL_SIGN (m_sig) * (SREAL_ABS (m_sig) << SREAL_PART_BITS) / other.m_sig;
  r.m_exp = m_exp - other.m_exp - SREAL_PART_BITS;
  r.normalize ();
  return r;
}
/* Stream sreal value to OB.  */
void
sreal::stream_out (struct output_block *ob)
{
  streamer_write_hwi (ob, m_sig);
  streamer_write_hwi (ob, m_exp);
}
/* Read sreal value from IB.  */
sreal
sreal::stream_in (struct lto_input_block *ib)
{
  sreal val;
  val.m_sig = streamer_read_hwi (ib);
  val.m_exp = streamer_read_hwi (ib);
  return val;
}
#if CHECKING_P
namespace selftest {
/* Selftests for sreals.  */
/* Verify basic sreal operations.  */
static void
sreal_verify_basics (void)
{
  sreal minimum = INT_MIN;
  sreal maximum = INT_MAX;
  sreal seven = 7;
  sreal minus_two = -2;
  sreal minus_nine = -9;
  ASSERT_EQ (INT_MIN, minimum.to_int ());
  ASSERT_EQ (INT_MAX, maximum.to_int ());
  ASSERT_FALSE (minus_two < minus_two);
  ASSERT_FALSE (seven < seven);
  ASSERT_TRUE (seven > minus_two);
  ASSERT_TRUE (minus_two < seven);
  ASSERT_TRUE (minus_two != seven);
  ASSERT_EQ (minus_two, -2);
  ASSERT_EQ (seven, 7);
  ASSERT_EQ ((seven << 10) >> 10, 7);
  ASSERT_EQ (seven + minus_nine, -2);
}
/* Helper function that performs basic arithmetics and comparison
   of given arguments A and B.  */
static void
verify_aritmetics (int64_t a, int64_t b)
{
  ASSERT_EQ (a, -(-(sreal (a))).to_int ());
  ASSERT_EQ (a < b, sreal (a) < sreal (b));
  ASSERT_EQ (a <= b, sreal (a) <= sreal (b));
  ASSERT_EQ (a == b, sreal (a) == sreal (b));
  ASSERT_EQ (a != b, sreal (a) != sreal (b));
  ASSERT_EQ (a > b, sreal (a) > sreal (b));
  ASSERT_EQ (a >= b, sreal (a) >= sreal (b));
  ASSERT_EQ (a + b, (sreal (a) + sreal (b)).to_int ());
  ASSERT_EQ (a - b, (sreal (a) - sreal (b)).to_int ());
  ASSERT_EQ (b + a, (sreal (b) + sreal (a)).to_int ());
  ASSERT_EQ (b - a, (sreal (b) - sreal (a)).to_int ());
}
/* Verify arithmetics for interesting numbers.  */
static void
sreal_verify_arithmetics (void)
{
  int values[] = {-14123413, -7777, -17, -10, -2, 0, 17, 139, 1234123};
  unsigned c = sizeof (values) / sizeof (int);
  for (unsigned i = 0; i < c; i++)
    for (unsigned j = 0; j < c; j++)
      {
	int a = values[i];
	int b = values[j];
	verify_aritmetics (a, b);
      }
}
/* Helper function that performs various shifting test of a given
   argument A.  */
static void
verify_shifting (int64_t a)
{
  sreal v = a;
  for (unsigned i = 0; i < 16; i++)
    ASSERT_EQ (a << i, (v << i).to_int());
  a = a << 16;
  v = v << 16;
  for (unsigned i = 0; i < 16; i++)
    ASSERT_EQ (a >> i, (v >> i).to_int());
}
/* Verify shifting for interesting numbers.  */
static void
sreal_verify_shifting (void)
{
  int values[] = {0, 17, 32, 139, 1024, 55555, 1234123};
  unsigned c = sizeof (values) / sizeof (int);
  for (unsigned i = 0; i < c; i++)
    verify_shifting (values[i]);
}
/* Verify division by (of) a negative value.  */
static void
sreal_verify_negative_division (void)
{
  ASSERT_EQ (sreal (1) / sreal (1), sreal (1));
  ASSERT_EQ (sreal (-1) / sreal (-1), sreal (1));
  ASSERT_EQ (sreal (-1234567) / sreal (-1234567), sreal (1));
  ASSERT_EQ (sreal (-1234567) / sreal (1234567), sreal (-1));
  ASSERT_EQ (sreal (1234567) / sreal (-1234567), sreal (-1));
}
/* Run all of the selftests within this file.  */
void sreal_c_tests ()
{
  sreal_verify_basics ();
  sreal_verify_arithmetics ();
  sreal_verify_shifting ();
  sreal_verify_negative_division ();
}
} // namespace selftest
#endif /* CHECKING_P */
 |