1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
|
/* Predicate aware uninitialized variable warning.
Copyright (C) 2001-2018 Free Software Foundation, Inc.
Contributed by Xinliang David Li <davidxl@google.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "diagnostic-core.h"
#include "fold-const.h"
#include "gimple-iterator.h"
#include "tree-ssa.h"
#include "params.h"
#include "tree-cfg.h"
#include "cfghooks.h"
/* This implements the pass that does predicate aware warning on uses of
possibly uninitialized variables. The pass first collects the set of
possibly uninitialized SSA names. For each such name, it walks through
all its immediate uses. For each immediate use, it rebuilds the condition
expression (the predicate) that guards the use. The predicate is then
examined to see if the variable is always defined under that same condition.
This is done either by pruning the unrealizable paths that lead to the
default definitions or by checking if the predicate set that guards the
defining paths is a superset of the use predicate. */
/* Max PHI args we can handle in pass. */
const unsigned max_phi_args = 32;
/* Pointer set of potentially undefined ssa names, i.e.,
ssa names that are defined by phi with operands that
are not defined or potentially undefined. */
static hash_set<tree> *possibly_undefined_names = 0;
/* Bit mask handling macros. */
#define MASK_SET_BIT(mask, pos) mask |= (1 << pos)
#define MASK_TEST_BIT(mask, pos) (mask & (1 << pos))
#define MASK_EMPTY(mask) (mask == 0)
/* Returns the first bit position (starting from LSB)
in mask that is non zero. Returns -1 if the mask is empty. */
static int
get_mask_first_set_bit (unsigned mask)
{
int pos = 0;
if (mask == 0)
return -1;
while ((mask & (1 << pos)) == 0)
pos++;
return pos;
}
#define MASK_FIRST_SET_BIT(mask) get_mask_first_set_bit (mask)
/* Return true if T, an SSA_NAME, has an undefined value. */
static bool
has_undefined_value_p (tree t)
{
return (ssa_undefined_value_p (t)
|| (possibly_undefined_names
&& possibly_undefined_names->contains (t)));
}
/* Like has_undefined_value_p, but don't return true if TREE_NO_WARNING
is set on SSA_NAME_VAR. */
static inline bool
uninit_undefined_value_p (tree t)
{
if (!has_undefined_value_p (t))
return false;
if (SSA_NAME_VAR (t) && TREE_NO_WARNING (SSA_NAME_VAR (t)))
return false;
return true;
}
/* Emit warnings for uninitialized variables. This is done in two passes.
The first pass notices real uses of SSA names with undefined values.
Such uses are unconditionally uninitialized, and we can be certain that
such a use is a mistake. This pass is run before most optimizations,
so that we catch as many as we can.
The second pass follows PHI nodes to find uses that are potentially
uninitialized. In this case we can't necessarily prove that the use
is really uninitialized. This pass is run after most optimizations,
so that we thread as many jumps and possible, and delete as much dead
code as possible, in order to reduce false positives. We also look
again for plain uninitialized variables, since optimization may have
changed conditionally uninitialized to unconditionally uninitialized. */
/* Emit a warning for EXPR based on variable VAR at the point in the
program T, an SSA_NAME, is used being uninitialized. The exact
warning text is in MSGID and DATA is the gimple stmt with info about
the location in source code. When DATA is a GIMPLE_PHI, PHIARG_IDX
gives which argument of the phi node to take the location from. WC
is the warning code. */
static void
warn_uninit (enum opt_code wc, tree t, tree expr, tree var,
const char *gmsgid, void *data, location_t phiarg_loc)
{
gimple *context = (gimple *) data;
location_t location, cfun_loc;
expanded_location xloc, floc;
/* Ignore COMPLEX_EXPR as initializing only a part of a complex
turns in a COMPLEX_EXPR with the not initialized part being
set to its previous (undefined) value. */
if (is_gimple_assign (context)
&& gimple_assign_rhs_code (context) == COMPLEX_EXPR)
return;
if (!has_undefined_value_p (t))
return;
/* Anonymous SSA_NAMEs shouldn't be uninitialized, but ssa_undefined_value_p
can return true if the def stmt of anonymous SSA_NAME is COMPLEX_EXPR
created for conversion from scalar to complex. Use the underlying var of
the COMPLEX_EXPRs real part in that case. See PR71581. */
if (expr == NULL_TREE
&& var == NULL_TREE
&& SSA_NAME_VAR (t) == NULL_TREE
&& is_gimple_assign (SSA_NAME_DEF_STMT (t))
&& gimple_assign_rhs_code (SSA_NAME_DEF_STMT (t)) == COMPLEX_EXPR)
{
tree v = gimple_assign_rhs1 (SSA_NAME_DEF_STMT (t));
if (TREE_CODE (v) == SSA_NAME
&& has_undefined_value_p (v)
&& zerop (gimple_assign_rhs2 (SSA_NAME_DEF_STMT (t))))
{
expr = SSA_NAME_VAR (v);
var = expr;
}
}
if (expr == NULL_TREE)
return;
/* TREE_NO_WARNING either means we already warned, or the front end
wishes to suppress the warning. */
if ((context
&& (gimple_no_warning_p (context)
|| (gimple_assign_single_p (context)
&& TREE_NO_WARNING (gimple_assign_rhs1 (context)))))
|| TREE_NO_WARNING (expr))
return;
if (context != NULL && gimple_has_location (context))
location = gimple_location (context);
else if (phiarg_loc != UNKNOWN_LOCATION)
location = phiarg_loc;
else
location = DECL_SOURCE_LOCATION (var);
location = linemap_resolve_location (line_table, location,
LRK_SPELLING_LOCATION, NULL);
cfun_loc = DECL_SOURCE_LOCATION (cfun->decl);
xloc = expand_location (location);
floc = expand_location (cfun_loc);
if (warning_at (location, wc, gmsgid, expr))
{
TREE_NO_WARNING (expr) = 1;
if (location == DECL_SOURCE_LOCATION (var))
return;
if (xloc.file != floc.file
|| linemap_location_before_p (line_table, location, cfun_loc)
|| linemap_location_before_p (line_table, cfun->function_end_locus,
location))
inform (DECL_SOURCE_LOCATION (var), "%qD was declared here", var);
}
}
struct check_defs_data
{
/* If we found any may-defs besides must-def clobbers. */
bool found_may_defs;
};
/* Callback for walk_aliased_vdefs. */
static bool
check_defs (ao_ref *ref, tree vdef, void *data_)
{
check_defs_data *data = (check_defs_data *)data_;
gimple *def_stmt = SSA_NAME_DEF_STMT (vdef);
/* If this is a clobber then if it is not a kill walk past it. */
if (gimple_clobber_p (def_stmt))
{
if (stmt_kills_ref_p (def_stmt, ref))
return true;
return false;
}
/* Found a may-def on this path. */
data->found_may_defs = true;
return true;
}
static unsigned int
warn_uninitialized_vars (bool warn_possibly_uninitialized)
{
gimple_stmt_iterator gsi;
basic_block bb;
unsigned int vdef_cnt = 0;
unsigned int oracle_cnt = 0;
unsigned limit = 0;
FOR_EACH_BB_FN (bb, cfun)
{
basic_block succ = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
bool always_executed = dominated_by_p (CDI_POST_DOMINATORS, succ, bb);
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
use_operand_p use_p;
ssa_op_iter op_iter;
tree use;
if (is_gimple_debug (stmt))
continue;
/* We only do data flow with SSA_NAMEs, so that's all we
can warn about. */
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, op_iter, SSA_OP_USE)
{
/* BIT_INSERT_EXPR first operand should not be considered
a use for the purpose of uninit warnings. */
if (gassign *ass = dyn_cast <gassign *> (stmt))
{
if (gimple_assign_rhs_code (ass) == BIT_INSERT_EXPR
&& use_p->use == gimple_assign_rhs1_ptr (ass))
continue;
}
use = USE_FROM_PTR (use_p);
if (always_executed)
warn_uninit (OPT_Wuninitialized, use, SSA_NAME_VAR (use),
SSA_NAME_VAR (use),
"%qD is used uninitialized in this function", stmt,
UNKNOWN_LOCATION);
else if (warn_possibly_uninitialized)
warn_uninit (OPT_Wmaybe_uninitialized, use, SSA_NAME_VAR (use),
SSA_NAME_VAR (use),
"%qD may be used uninitialized in this function",
stmt, UNKNOWN_LOCATION);
}
/* For limiting the alias walk below we count all
vdefs in the function. */
if (gimple_vdef (stmt))
vdef_cnt++;
if (gimple_assign_load_p (stmt)
&& gimple_has_location (stmt))
{
tree rhs = gimple_assign_rhs1 (stmt);
tree lhs = gimple_assign_lhs (stmt);
bool has_bit_insert = false;
use_operand_p luse_p;
imm_use_iterator liter;
if (TREE_NO_WARNING (rhs))
continue;
ao_ref ref;
ao_ref_init (&ref, rhs);
/* Do not warn if the base was marked so or this is a
hard register var. */
tree base = ao_ref_base (&ref);
if ((VAR_P (base)
&& DECL_HARD_REGISTER (base))
|| TREE_NO_WARNING (base))
continue;
/* Do not warn if the access is fully outside of the
variable. */
poly_int64 decl_size;
if (DECL_P (base)
&& known_size_p (ref.size)
&& ((known_eq (ref.max_size, ref.size)
&& known_le (ref.offset + ref.size, 0))
|| (known_ge (ref.offset, 0)
&& DECL_SIZE (base)
&& poly_int_tree_p (DECL_SIZE (base), &decl_size)
&& known_le (decl_size, ref.offset))))
continue;
/* Do not warn if the access is then used for a BIT_INSERT_EXPR. */
if (TREE_CODE (lhs) == SSA_NAME)
FOR_EACH_IMM_USE_FAST (luse_p, liter, lhs)
{
gimple *use_stmt = USE_STMT (luse_p);
/* BIT_INSERT_EXPR first operand should not be considered
a use for the purpose of uninit warnings. */
if (gassign *ass = dyn_cast <gassign *> (use_stmt))
{
if (gimple_assign_rhs_code (ass) == BIT_INSERT_EXPR
&& luse_p->use == gimple_assign_rhs1_ptr (ass))
{
has_bit_insert = true;
break;
}
}
}
if (has_bit_insert)
continue;
/* Limit the walking to a constant number of stmts after
we overcommit quadratic behavior for small functions
and O(n) behavior. */
if (oracle_cnt > 128 * 128
&& oracle_cnt > vdef_cnt * 2)
limit = 32;
check_defs_data data;
bool fentry_reached = false;
data.found_may_defs = false;
use = gimple_vuse (stmt);
int res = walk_aliased_vdefs (&ref, use,
check_defs, &data, NULL,
&fentry_reached, limit);
if (res == -1)
{
oracle_cnt += limit;
continue;
}
oracle_cnt += res;
if (data.found_may_defs)
continue;
/* Do not warn if it can be initialized outside this function.
If we did not reach function entry then we found killing
clobbers on all paths to entry. */
if (fentry_reached
/* ??? We'd like to use ref_may_alias_global_p but that
excludes global readonly memory and thus we get bougs
warnings from p = cond ? "a" : "b" for example. */
&& (!VAR_P (base)
|| is_global_var (base)))
continue;
/* We didn't find any may-defs so on all paths either
reached function entry or a killing clobber. */
location_t location
= linemap_resolve_location (line_table, gimple_location (stmt),
LRK_SPELLING_LOCATION, NULL);
if (always_executed)
{
if (warning_at (location, OPT_Wuninitialized,
"%qE is used uninitialized in this function",
rhs))
/* ??? This is only effective for decls as in
gcc.dg/uninit-B-O0.c. Avoid doing this for
maybe-uninit uses as it may hide important
locations. */
TREE_NO_WARNING (rhs) = 1;
}
else if (warn_possibly_uninitialized)
warning_at (location, OPT_Wmaybe_uninitialized,
"%qE may be used uninitialized in this function",
rhs);
}
}
}
return 0;
}
/* Checks if the operand OPND of PHI is defined by
another phi with one operand defined by this PHI,
but the rest operands are all defined. If yes,
returns true to skip this operand as being
redundant. Can be enhanced to be more general. */
static bool
can_skip_redundant_opnd (tree opnd, gimple *phi)
{
gimple *op_def;
tree phi_def;
int i, n;
phi_def = gimple_phi_result (phi);
op_def = SSA_NAME_DEF_STMT (opnd);
if (gimple_code (op_def) != GIMPLE_PHI)
return false;
n = gimple_phi_num_args (op_def);
for (i = 0; i < n; ++i)
{
tree op = gimple_phi_arg_def (op_def, i);
if (TREE_CODE (op) != SSA_NAME)
continue;
if (op != phi_def && uninit_undefined_value_p (op))
return false;
}
return true;
}
/* Returns a bit mask holding the positions of arguments in PHI
that have empty (or possibly empty) definitions. */
static unsigned
compute_uninit_opnds_pos (gphi *phi)
{
size_t i, n;
unsigned uninit_opnds = 0;
n = gimple_phi_num_args (phi);
/* Bail out for phi with too many args. */
if (n > max_phi_args)
return 0;
for (i = 0; i < n; ++i)
{
tree op = gimple_phi_arg_def (phi, i);
if (TREE_CODE (op) == SSA_NAME
&& uninit_undefined_value_p (op)
&& !can_skip_redundant_opnd (op, phi))
{
if (cfun->has_nonlocal_label || cfun->calls_setjmp)
{
/* Ignore SSA_NAMEs that appear on abnormal edges
somewhere. */
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
continue;
}
MASK_SET_BIT (uninit_opnds, i);
}
}
return uninit_opnds;
}
/* Find the immediate postdominator PDOM of the specified
basic block BLOCK. */
static inline basic_block
find_pdom (basic_block block)
{
if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
return EXIT_BLOCK_PTR_FOR_FN (cfun);
else
{
basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
if (!bb)
return EXIT_BLOCK_PTR_FOR_FN (cfun);
return bb;
}
}
/* Find the immediate DOM of the specified basic block BLOCK. */
static inline basic_block
find_dom (basic_block block)
{
if (block == ENTRY_BLOCK_PTR_FOR_FN (cfun))
return ENTRY_BLOCK_PTR_FOR_FN (cfun);
else
{
basic_block bb = get_immediate_dominator (CDI_DOMINATORS, block);
if (!bb)
return ENTRY_BLOCK_PTR_FOR_FN (cfun);
return bb;
}
}
/* Returns true if BB1 is postdominating BB2 and BB1 is
not a loop exit bb. The loop exit bb check is simple and does
not cover all cases. */
static bool
is_non_loop_exit_postdominating (basic_block bb1, basic_block bb2)
{
if (!dominated_by_p (CDI_POST_DOMINATORS, bb2, bb1))
return false;
if (single_pred_p (bb1) && !single_succ_p (bb2))
return false;
return true;
}
/* Find the closest postdominator of a specified BB, which is control
equivalent to BB. */
static inline basic_block
find_control_equiv_block (basic_block bb)
{
basic_block pdom;
pdom = find_pdom (bb);
/* Skip the postdominating bb that is also loop exit. */
if (!is_non_loop_exit_postdominating (pdom, bb))
return NULL;
if (dominated_by_p (CDI_DOMINATORS, pdom, bb))
return pdom;
return NULL;
}
#define MAX_NUM_CHAINS 8
#define MAX_CHAIN_LEN 5
#define MAX_POSTDOM_CHECK 8
#define MAX_SWITCH_CASES 40
/* Computes the control dependence chains (paths of edges)
for DEP_BB up to the dominating basic block BB (the head node of a
chain should be dominated by it). CD_CHAINS is pointer to an
array holding the result chains. CUR_CD_CHAIN is the current
chain being computed. *NUM_CHAINS is total number of chains. The
function returns true if the information is successfully computed,
return false if there is no control dependence or not computed. */
static bool
compute_control_dep_chain (basic_block bb, basic_block dep_bb,
vec<edge> *cd_chains,
size_t *num_chains,
vec<edge> *cur_cd_chain,
int *num_calls)
{
edge_iterator ei;
edge e;
size_t i;
bool found_cd_chain = false;
size_t cur_chain_len = 0;
if (*num_calls > PARAM_VALUE (PARAM_UNINIT_CONTROL_DEP_ATTEMPTS))
return false;
++*num_calls;
/* Could use a set instead. */
cur_chain_len = cur_cd_chain->length ();
if (cur_chain_len > MAX_CHAIN_LEN)
return false;
for (i = 0; i < cur_chain_len; i++)
{
edge e = (*cur_cd_chain)[i];
/* Cycle detected. */
if (e->src == bb)
return false;
}
FOR_EACH_EDGE (e, ei, bb->succs)
{
basic_block cd_bb;
int post_dom_check = 0;
if (e->flags & (EDGE_FAKE | EDGE_ABNORMAL))
continue;
cd_bb = e->dest;
cur_cd_chain->safe_push (e);
while (!is_non_loop_exit_postdominating (cd_bb, bb))
{
if (cd_bb == dep_bb)
{
/* Found a direct control dependence. */
if (*num_chains < MAX_NUM_CHAINS)
{
cd_chains[*num_chains] = cur_cd_chain->copy ();
(*num_chains)++;
}
found_cd_chain = true;
/* Check path from next edge. */
break;
}
/* Now check if DEP_BB is indirectly control dependent on BB. */
if (compute_control_dep_chain (cd_bb, dep_bb, cd_chains, num_chains,
cur_cd_chain, num_calls))
{
found_cd_chain = true;
break;
}
cd_bb = find_pdom (cd_bb);
post_dom_check++;
if (cd_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
|| post_dom_check > MAX_POSTDOM_CHECK)
break;
}
cur_cd_chain->pop ();
gcc_assert (cur_cd_chain->length () == cur_chain_len);
}
gcc_assert (cur_cd_chain->length () == cur_chain_len);
return found_cd_chain;
}
/* The type to represent a simple predicate. */
struct pred_info
{
tree pred_lhs;
tree pred_rhs;
enum tree_code cond_code;
bool invert;
};
/* The type to represent a sequence of predicates grouped
with .AND. operation. */
typedef vec<pred_info, va_heap, vl_ptr> pred_chain;
/* The type to represent a sequence of pred_chains grouped
with .OR. operation. */
typedef vec<pred_chain, va_heap, vl_ptr> pred_chain_union;
/* Converts the chains of control dependence edges into a set of
predicates. A control dependence chain is represented by a vector
edges. DEP_CHAINS points to an array of dependence chains.
NUM_CHAINS is the size of the chain array. One edge in a dependence
chain is mapped to predicate expression represented by pred_info
type. One dependence chain is converted to a composite predicate that
is the result of AND operation of pred_info mapped to each edge.
A composite predicate is presented by a vector of pred_info. On
return, *PREDS points to the resulting array of composite predicates.
*NUM_PREDS is the number of composite predictes. */
static bool
convert_control_dep_chain_into_preds (vec<edge> *dep_chains,
size_t num_chains,
pred_chain_union *preds)
{
bool has_valid_pred = false;
size_t i, j;
if (num_chains == 0 || num_chains >= MAX_NUM_CHAINS)
return false;
/* Now convert the control dep chain into a set
of predicates. */
preds->reserve (num_chains);
for (i = 0; i < num_chains; i++)
{
vec<edge> one_cd_chain = dep_chains[i];
has_valid_pred = false;
pred_chain t_chain = vNULL;
for (j = 0; j < one_cd_chain.length (); j++)
{
gimple *cond_stmt;
gimple_stmt_iterator gsi;
basic_block guard_bb;
pred_info one_pred;
edge e;
e = one_cd_chain[j];
guard_bb = e->src;
gsi = gsi_last_bb (guard_bb);
/* Ignore empty forwarder blocks. */
if (empty_block_p (guard_bb) && single_succ_p (guard_bb))
continue;
/* An empty basic block here is likely a PHI, and is not one
of the cases we handle below. */
if (gsi_end_p (gsi))
{
has_valid_pred = false;
break;
}
cond_stmt = gsi_stmt (gsi);
if (is_gimple_call (cond_stmt) && EDGE_COUNT (e->src->succs) >= 2)
/* Ignore EH edge. Can add assertion on the other edge's flag. */
continue;
/* Skip if there is essentially one succesor. */
if (EDGE_COUNT (e->src->succs) == 2)
{
edge e1;
edge_iterator ei1;
bool skip = false;
FOR_EACH_EDGE (e1, ei1, e->src->succs)
{
if (EDGE_COUNT (e1->dest->succs) == 0)
{
skip = true;
break;
}
}
if (skip)
continue;
}
if (gimple_code (cond_stmt) == GIMPLE_COND)
{
one_pred.pred_lhs = gimple_cond_lhs (cond_stmt);
one_pred.pred_rhs = gimple_cond_rhs (cond_stmt);
one_pred.cond_code = gimple_cond_code (cond_stmt);
one_pred.invert = !!(e->flags & EDGE_FALSE_VALUE);
t_chain.safe_push (one_pred);
has_valid_pred = true;
}
else if (gswitch *gs = dyn_cast<gswitch *> (cond_stmt))
{
/* Avoid quadratic behavior. */
if (gimple_switch_num_labels (gs) > MAX_SWITCH_CASES)
{
has_valid_pred = false;
break;
}
/* Find the case label. */
tree l = NULL_TREE;
unsigned idx;
for (idx = 0; idx < gimple_switch_num_labels (gs); ++idx)
{
tree tl = gimple_switch_label (gs, idx);
if (e->dest == label_to_block (CASE_LABEL (tl)))
{
if (!l)
l = tl;
else
{
l = NULL_TREE;
break;
}
}
}
/* If more than one label reaches this block or the case
label doesn't have a single value (like the default one)
fail. */
if (!l
|| !CASE_LOW (l)
|| (CASE_HIGH (l)
&& !operand_equal_p (CASE_LOW (l), CASE_HIGH (l), 0)))
{
has_valid_pred = false;
break;
}
one_pred.pred_lhs = gimple_switch_index (gs);
one_pred.pred_rhs = CASE_LOW (l);
one_pred.cond_code = EQ_EXPR;
one_pred.invert = false;
t_chain.safe_push (one_pred);
has_valid_pred = true;
}
else
{
has_valid_pred = false;
break;
}
}
if (!has_valid_pred)
break;
else
preds->safe_push (t_chain);
}
return has_valid_pred;
}
/* Computes all control dependence chains for USE_BB. The control
dependence chains are then converted to an array of composite
predicates pointed to by PREDS. PHI_BB is the basic block of
the phi whose result is used in USE_BB. */
static bool
find_predicates (pred_chain_union *preds,
basic_block phi_bb,
basic_block use_bb)
{
size_t num_chains = 0, i;
int num_calls = 0;
vec<edge> dep_chains[MAX_NUM_CHAINS];
auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
bool has_valid_pred = false;
basic_block cd_root = 0;
/* First find the closest bb that is control equivalent to PHI_BB
that also dominates USE_BB. */
cd_root = phi_bb;
while (dominated_by_p (CDI_DOMINATORS, use_bb, cd_root))
{
basic_block ctrl_eq_bb = find_control_equiv_block (cd_root);
if (ctrl_eq_bb && dominated_by_p (CDI_DOMINATORS, use_bb, ctrl_eq_bb))
cd_root = ctrl_eq_bb;
else
break;
}
compute_control_dep_chain (cd_root, use_bb, dep_chains, &num_chains,
&cur_chain, &num_calls);
has_valid_pred
= convert_control_dep_chain_into_preds (dep_chains, num_chains, preds);
for (i = 0; i < num_chains; i++)
dep_chains[i].release ();
return has_valid_pred;
}
/* Computes the set of incoming edges of PHI that have non empty
definitions of a phi chain. The collection will be done
recursively on operands that are defined by phis. CD_ROOT
is the control dependence root. *EDGES holds the result, and
VISITED_PHIS is a pointer set for detecting cycles. */
static void
collect_phi_def_edges (gphi *phi, basic_block cd_root,
auto_vec<edge> *edges,
hash_set<gimple *> *visited_phis)
{
size_t i, n;
edge opnd_edge;
tree opnd;
if (visited_phis->add (phi))
return;
n = gimple_phi_num_args (phi);
for (i = 0; i < n; i++)
{
opnd_edge = gimple_phi_arg_edge (phi, i);
opnd = gimple_phi_arg_def (phi, i);
if (TREE_CODE (opnd) != SSA_NAME)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int) i);
print_gimple_stmt (dump_file, phi, 0);
}
edges->safe_push (opnd_edge);
}
else
{
gimple *def = SSA_NAME_DEF_STMT (opnd);
if (gimple_code (def) == GIMPLE_PHI
&& dominated_by_p (CDI_DOMINATORS, gimple_bb (def), cd_root))
collect_phi_def_edges (as_a<gphi *> (def), cd_root, edges,
visited_phis);
else if (!uninit_undefined_value_p (opnd))
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\n[CHECK] Found def edge %d in ",
(int) i);
print_gimple_stmt (dump_file, phi, 0);
}
edges->safe_push (opnd_edge);
}
}
}
}
/* For each use edge of PHI, computes all control dependence chains.
The control dependence chains are then converted to an array of
composite predicates pointed to by PREDS. */
static bool
find_def_preds (pred_chain_union *preds, gphi *phi)
{
size_t num_chains = 0, i, n;
vec<edge> dep_chains[MAX_NUM_CHAINS];
auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
auto_vec<edge> def_edges;
bool has_valid_pred = false;
basic_block phi_bb, cd_root = 0;
phi_bb = gimple_bb (phi);
/* First find the closest dominating bb to be
the control dependence root. */
cd_root = find_dom (phi_bb);
if (!cd_root)
return false;
hash_set<gimple *> visited_phis;
collect_phi_def_edges (phi, cd_root, &def_edges, &visited_phis);
n = def_edges.length ();
if (n == 0)
return false;
for (i = 0; i < n; i++)
{
size_t prev_nc, j;
int num_calls = 0;
edge opnd_edge;
opnd_edge = def_edges[i];
prev_nc = num_chains;
compute_control_dep_chain (cd_root, opnd_edge->src, dep_chains,
&num_chains, &cur_chain, &num_calls);
/* Now update the newly added chains with
the phi operand edge: */
if (EDGE_COUNT (opnd_edge->src->succs) > 1)
{
if (prev_nc == num_chains && num_chains < MAX_NUM_CHAINS)
dep_chains[num_chains++] = vNULL;
for (j = prev_nc; j < num_chains; j++)
dep_chains[j].safe_push (opnd_edge);
}
}
has_valid_pred
= convert_control_dep_chain_into_preds (dep_chains, num_chains, preds);
for (i = 0; i < num_chains; i++)
dep_chains[i].release ();
return has_valid_pred;
}
/* Dump a pred_info. */
static void
dump_pred_info (pred_info one_pred)
{
if (one_pred.invert)
fprintf (dump_file, " (.NOT.) ");
print_generic_expr (dump_file, one_pred.pred_lhs);
fprintf (dump_file, " %s ", op_symbol_code (one_pred.cond_code));
print_generic_expr (dump_file, one_pred.pred_rhs);
}
/* Dump a pred_chain. */
static void
dump_pred_chain (pred_chain one_pred_chain)
{
size_t np = one_pred_chain.length ();
for (size_t j = 0; j < np; j++)
{
dump_pred_info (one_pred_chain[j]);
if (j < np - 1)
fprintf (dump_file, " (.AND.) ");
else
fprintf (dump_file, "\n");
}
}
/* Dumps the predicates (PREDS) for USESTMT. */
static void
dump_predicates (gimple *usestmt, pred_chain_union preds, const char *msg)
{
fprintf (dump_file, "%s", msg);
if (usestmt)
{
print_gimple_stmt (dump_file, usestmt, 0);
fprintf (dump_file, "is guarded by :\n\n");
}
size_t num_preds = preds.length ();
for (size_t i = 0; i < num_preds; i++)
{
dump_pred_chain (preds[i]);
if (i < num_preds - 1)
fprintf (dump_file, "(.OR.)\n");
else
fprintf (dump_file, "\n\n");
}
}
/* Destroys the predicate set *PREDS. */
static void
destroy_predicate_vecs (pred_chain_union *preds)
{
size_t i;
size_t n = preds->length ();
for (i = 0; i < n; i++)
(*preds)[i].release ();
preds->release ();
}
/* Computes the 'normalized' conditional code with operand
swapping and condition inversion. */
static enum tree_code
get_cmp_code (enum tree_code orig_cmp_code, bool swap_cond, bool invert)
{
enum tree_code tc = orig_cmp_code;
if (swap_cond)
tc = swap_tree_comparison (orig_cmp_code);
if (invert)
tc = invert_tree_comparison (tc, false);
switch (tc)
{
case LT_EXPR:
case LE_EXPR:
case GT_EXPR:
case GE_EXPR:
case EQ_EXPR:
case NE_EXPR:
break;
default:
return ERROR_MARK;
}
return tc;
}
/* Returns true if VAL falls in the range defined by BOUNDARY and CMPC, i.e.
all values in the range satisfies (x CMPC BOUNDARY) == true. */
static bool
is_value_included_in (tree val, tree boundary, enum tree_code cmpc)
{
bool inverted = false;
bool is_unsigned;
bool result;
/* Only handle integer constant here. */
if (TREE_CODE (val) != INTEGER_CST || TREE_CODE (boundary) != INTEGER_CST)
return true;
is_unsigned = TYPE_UNSIGNED (TREE_TYPE (val));
if (cmpc == GE_EXPR || cmpc == GT_EXPR || cmpc == NE_EXPR)
{
cmpc = invert_tree_comparison (cmpc, false);
inverted = true;
}
if (is_unsigned)
{
if (cmpc == EQ_EXPR)
result = tree_int_cst_equal (val, boundary);
else if (cmpc == LT_EXPR)
result = tree_int_cst_lt (val, boundary);
else
{
gcc_assert (cmpc == LE_EXPR);
result = tree_int_cst_le (val, boundary);
}
}
else
{
if (cmpc == EQ_EXPR)
result = tree_int_cst_equal (val, boundary);
else if (cmpc == LT_EXPR)
result = tree_int_cst_lt (val, boundary);
else
{
gcc_assert (cmpc == LE_EXPR);
result = (tree_int_cst_equal (val, boundary)
|| tree_int_cst_lt (val, boundary));
}
}
if (inverted)
result ^= 1;
return result;
}
/* Returns true if PRED is common among all the predicate
chains (PREDS) (and therefore can be factored out).
NUM_PRED_CHAIN is the size of array PREDS. */
static bool
find_matching_predicate_in_rest_chains (pred_info pred,
pred_chain_union preds,
size_t num_pred_chains)
{
size_t i, j, n;
/* Trival case. */
if (num_pred_chains == 1)
return true;
for (i = 1; i < num_pred_chains; i++)
{
bool found = false;
pred_chain one_chain = preds[i];
n = one_chain.length ();
for (j = 0; j < n; j++)
{
pred_info pred2 = one_chain[j];
/* Can relax the condition comparison to not
use address comparison. However, the most common
case is that multiple control dependent paths share
a common path prefix, so address comparison should
be ok. */
if (operand_equal_p (pred2.pred_lhs, pred.pred_lhs, 0)
&& operand_equal_p (pred2.pred_rhs, pred.pred_rhs, 0)
&& pred2.invert == pred.invert)
{
found = true;
break;
}
}
if (!found)
return false;
}
return true;
}
/* Forward declaration. */
static bool is_use_properly_guarded (gimple *use_stmt,
basic_block use_bb,
gphi *phi,
unsigned uninit_opnds,
pred_chain_union *def_preds,
hash_set<gphi *> *visited_phis);
/* Returns true if all uninitialized opnds are pruned. Returns false
otherwise. PHI is the phi node with uninitialized operands,
UNINIT_OPNDS is the bitmap of the uninitialize operand positions,
FLAG_DEF is the statement defining the flag guarding the use of the
PHI output, BOUNDARY_CST is the const value used in the predicate
associated with the flag, CMP_CODE is the comparison code used in
the predicate, VISITED_PHIS is the pointer set of phis visited, and
VISITED_FLAG_PHIS is the pointer to the pointer set of flag definitions
that are also phis.
Example scenario:
BB1:
flag_1 = phi <0, 1> // (1)
var_1 = phi <undef, some_val>
BB2:
flag_2 = phi <0, flag_1, flag_1> // (2)
var_2 = phi <undef, var_1, var_1>
if (flag_2 == 1)
goto BB3;
BB3:
use of var_2 // (3)
Because some flag arg in (1) is not constant, if we do not look into the
flag phis recursively, it is conservatively treated as unknown and var_1
is thought to be flowed into use at (3). Since var_1 is potentially
uninitialized a false warning will be emitted.
Checking recursively into (1), the compiler can find out that only some_val
(which is defined) can flow into (3) which is OK. */
static bool
prune_uninit_phi_opnds (gphi *phi, unsigned uninit_opnds, gphi *flag_def,
tree boundary_cst, enum tree_code cmp_code,
hash_set<gphi *> *visited_phis,
bitmap *visited_flag_phis)
{
unsigned i;
for (i = 0; i < MIN (max_phi_args, gimple_phi_num_args (flag_def)); i++)
{
tree flag_arg;
if (!MASK_TEST_BIT (uninit_opnds, i))
continue;
flag_arg = gimple_phi_arg_def (flag_def, i);
if (!is_gimple_constant (flag_arg))
{
gphi *flag_arg_def, *phi_arg_def;
tree phi_arg;
unsigned uninit_opnds_arg_phi;
if (TREE_CODE (flag_arg) != SSA_NAME)
return false;
flag_arg_def = dyn_cast<gphi *> (SSA_NAME_DEF_STMT (flag_arg));
if (!flag_arg_def)
return false;
phi_arg = gimple_phi_arg_def (phi, i);
if (TREE_CODE (phi_arg) != SSA_NAME)
return false;
phi_arg_def = dyn_cast<gphi *> (SSA_NAME_DEF_STMT (phi_arg));
if (!phi_arg_def)
return false;
if (gimple_bb (phi_arg_def) != gimple_bb (flag_arg_def))
return false;
if (!*visited_flag_phis)
*visited_flag_phis = BITMAP_ALLOC (NULL);
tree phi_result = gimple_phi_result (flag_arg_def);
if (bitmap_bit_p (*visited_flag_phis, SSA_NAME_VERSION (phi_result)))
return false;
bitmap_set_bit (*visited_flag_phis,
SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
/* Now recursively prune the uninitialized phi args. */
uninit_opnds_arg_phi = compute_uninit_opnds_pos (phi_arg_def);
if (!prune_uninit_phi_opnds
(phi_arg_def, uninit_opnds_arg_phi, flag_arg_def, boundary_cst,
cmp_code, visited_phis, visited_flag_phis))
return false;
phi_result = gimple_phi_result (flag_arg_def);
bitmap_clear_bit (*visited_flag_phis, SSA_NAME_VERSION (phi_result));
continue;
}
/* Now check if the constant is in the guarded range. */
if (is_value_included_in (flag_arg, boundary_cst, cmp_code))
{
tree opnd;
gimple *opnd_def;
/* Now that we know that this undefined edge is not
pruned. If the operand is defined by another phi,
we can further prune the incoming edges of that
phi by checking the predicates of this operands. */
opnd = gimple_phi_arg_def (phi, i);
opnd_def = SSA_NAME_DEF_STMT (opnd);
if (gphi *opnd_def_phi = dyn_cast <gphi *> (opnd_def))
{
edge opnd_edge;
unsigned uninit_opnds2 = compute_uninit_opnds_pos (opnd_def_phi);
if (!MASK_EMPTY (uninit_opnds2))
{
pred_chain_union def_preds = vNULL;
bool ok;
opnd_edge = gimple_phi_arg_edge (phi, i);
ok = is_use_properly_guarded (phi,
opnd_edge->src,
opnd_def_phi,
uninit_opnds2,
&def_preds,
visited_phis);
destroy_predicate_vecs (&def_preds);
if (!ok)
return false;
}
}
else
return false;
}
}
return true;
}
/* A helper function that determines if the predicate set
of the use is not overlapping with that of the uninit paths.
The most common senario of guarded use is in Example 1:
Example 1:
if (some_cond)
{
x = ...;
flag = true;
}
... some code ...
if (flag)
use (x);
The real world examples are usually more complicated, but similar
and usually result from inlining:
bool init_func (int * x)
{
if (some_cond)
return false;
*x = ..
return true;
}
void foo (..)
{
int x;
if (!init_func (&x))
return;
.. some_code ...
use (x);
}
Another possible use scenario is in the following trivial example:
Example 2:
if (n > 0)
x = 1;
...
if (n > 0)
{
if (m < 2)
.. = x;
}
Predicate analysis needs to compute the composite predicate:
1) 'x' use predicate: (n > 0) .AND. (m < 2)
2) 'x' default value (non-def) predicate: .NOT. (n > 0)
(the predicate chain for phi operand defs can be computed
starting from a bb that is control equivalent to the phi's
bb and is dominating the operand def.)
and check overlapping:
(n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
<==> false
This implementation provides framework that can handle
scenarios. (Note that many simple cases are handled properly
without the predicate analysis -- this is due to jump threading
transformation which eliminates the merge point thus makes
path sensitive analysis unnecessary.)
PHI is the phi node whose incoming (undefined) paths need to be
pruned, and UNINIT_OPNDS is the bitmap holding uninit operand
positions. VISITED_PHIS is the pointer set of phi stmts being
checked. */
static bool
use_pred_not_overlap_with_undef_path_pred (pred_chain_union preds,
gphi *phi, unsigned uninit_opnds,
hash_set<gphi *> *visited_phis)
{
unsigned int i, n;
gimple *flag_def = 0;
tree boundary_cst = 0;
enum tree_code cmp_code;
bool swap_cond = false;
bool invert = false;
pred_chain the_pred_chain = vNULL;
bitmap visited_flag_phis = NULL;
bool all_pruned = false;
size_t num_preds = preds.length ();
gcc_assert (num_preds > 0);
/* Find within the common prefix of multiple predicate chains
a predicate that is a comparison of a flag variable against
a constant. */
the_pred_chain = preds[0];
n = the_pred_chain.length ();
for (i = 0; i < n; i++)
{
tree cond_lhs, cond_rhs, flag = 0;
pred_info the_pred = the_pred_chain[i];
invert = the_pred.invert;
cond_lhs = the_pred.pred_lhs;
cond_rhs = the_pred.pred_rhs;
cmp_code = the_pred.cond_code;
if (cond_lhs != NULL_TREE && TREE_CODE (cond_lhs) == SSA_NAME
&& cond_rhs != NULL_TREE && is_gimple_constant (cond_rhs))
{
boundary_cst = cond_rhs;
flag = cond_lhs;
}
else if (cond_rhs != NULL_TREE && TREE_CODE (cond_rhs) == SSA_NAME
&& cond_lhs != NULL_TREE && is_gimple_constant (cond_lhs))
{
boundary_cst = cond_lhs;
flag = cond_rhs;
swap_cond = true;
}
if (!flag)
continue;
flag_def = SSA_NAME_DEF_STMT (flag);
if (!flag_def)
continue;
if ((gimple_code (flag_def) == GIMPLE_PHI)
&& (gimple_bb (flag_def) == gimple_bb (phi))
&& find_matching_predicate_in_rest_chains (the_pred, preds,
num_preds))
break;
flag_def = 0;
}
if (!flag_def)
return false;
/* Now check all the uninit incoming edge has a constant flag value
that is in conflict with the use guard/predicate. */
cmp_code = get_cmp_code (cmp_code, swap_cond, invert);
if (cmp_code == ERROR_MARK)
return false;
all_pruned = prune_uninit_phi_opnds
(phi, uninit_opnds, as_a<gphi *> (flag_def), boundary_cst, cmp_code,
visited_phis, &visited_flag_phis);
if (visited_flag_phis)
BITMAP_FREE (visited_flag_phis);
return all_pruned;
}
/* The helper function returns true if two predicates X1 and X2
are equivalent. It assumes the expressions have already
properly re-associated. */
static inline bool
pred_equal_p (pred_info x1, pred_info x2)
{
enum tree_code c1, c2;
if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
|| !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
return false;
c1 = x1.cond_code;
if (x1.invert != x2.invert
&& TREE_CODE_CLASS (x2.cond_code) == tcc_comparison)
c2 = invert_tree_comparison (x2.cond_code, false);
else
c2 = x2.cond_code;
return c1 == c2;
}
/* Returns true if the predication is testing !=. */
static inline bool
is_neq_relop_p (pred_info pred)
{
return ((pred.cond_code == NE_EXPR && !pred.invert)
|| (pred.cond_code == EQ_EXPR && pred.invert));
}
/* Returns true if pred is of the form X != 0. */
static inline bool
is_neq_zero_form_p (pred_info pred)
{
if (!is_neq_relop_p (pred) || !integer_zerop (pred.pred_rhs)
|| TREE_CODE (pred.pred_lhs) != SSA_NAME)
return false;
return true;
}
/* The helper function returns true if two predicates X1
is equivalent to X2 != 0. */
static inline bool
pred_expr_equal_p (pred_info x1, tree x2)
{
if (!is_neq_zero_form_p (x1))
return false;
return operand_equal_p (x1.pred_lhs, x2, 0);
}
/* Returns true of the domain of single predicate expression
EXPR1 is a subset of that of EXPR2. Returns false if it
can not be proved. */
static bool
is_pred_expr_subset_of (pred_info expr1, pred_info expr2)
{
enum tree_code code1, code2;
if (pred_equal_p (expr1, expr2))
return true;
if ((TREE_CODE (expr1.pred_rhs) != INTEGER_CST)
|| (TREE_CODE (expr2.pred_rhs) != INTEGER_CST))
return false;
if (!operand_equal_p (expr1.pred_lhs, expr2.pred_lhs, 0))
return false;
code1 = expr1.cond_code;
if (expr1.invert)
code1 = invert_tree_comparison (code1, false);
code2 = expr2.cond_code;
if (expr2.invert)
code2 = invert_tree_comparison (code2, false);
if ((code1 == EQ_EXPR || code1 == BIT_AND_EXPR) && code2 == BIT_AND_EXPR)
return (wi::to_wide (expr1.pred_rhs)
== (wi::to_wide (expr1.pred_rhs) & wi::to_wide (expr2.pred_rhs)));
if (code1 != code2 && code2 != NE_EXPR)
return false;
if (is_value_included_in (expr1.pred_rhs, expr2.pred_rhs, code2))
return true;
return false;
}
/* Returns true if the domain of PRED1 is a subset
of that of PRED2. Returns false if it can not be proved so. */
static bool
is_pred_chain_subset_of (pred_chain pred1, pred_chain pred2)
{
size_t np1, np2, i1, i2;
np1 = pred1.length ();
np2 = pred2.length ();
for (i2 = 0; i2 < np2; i2++)
{
bool found = false;
pred_info info2 = pred2[i2];
for (i1 = 0; i1 < np1; i1++)
{
pred_info info1 = pred1[i1];
if (is_pred_expr_subset_of (info1, info2))
{
found = true;
break;
}
}
if (!found)
return false;
}
return true;
}
/* Returns true if the domain defined by
one pred chain ONE_PRED is a subset of the domain
of *PREDS. It returns false if ONE_PRED's domain is
not a subset of any of the sub-domains of PREDS
(corresponding to each individual chains in it), even
though it may be still be a subset of whole domain
of PREDS which is the union (ORed) of all its subdomains.
In other words, the result is conservative. */
static bool
is_included_in (pred_chain one_pred, pred_chain_union preds)
{
size_t i;
size_t n = preds.length ();
for (i = 0; i < n; i++)
{
if (is_pred_chain_subset_of (one_pred, preds[i]))
return true;
}
return false;
}
/* Compares two predicate sets PREDS1 and PREDS2 and returns
true if the domain defined by PREDS1 is a superset
of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
PREDS2 respectively. The implementation chooses not to build
generic trees (and relying on the folding capability of the
compiler), but instead performs brute force comparison of
individual predicate chains (won't be a compile time problem
as the chains are pretty short). When the function returns
false, it does not necessarily mean *PREDS1 is not a superset
of *PREDS2, but mean it may not be so since the analysis can
not prove it. In such cases, false warnings may still be
emitted. */
static bool
is_superset_of (pred_chain_union preds1, pred_chain_union preds2)
{
size_t i, n2;
pred_chain one_pred_chain = vNULL;
n2 = preds2.length ();
for (i = 0; i < n2; i++)
{
one_pred_chain = preds2[i];
if (!is_included_in (one_pred_chain, preds1))
return false;
}
return true;
}
/* Returns true if TC is AND or OR. */
static inline bool
is_and_or_or_p (enum tree_code tc, tree type)
{
return (tc == BIT_IOR_EXPR
|| (tc == BIT_AND_EXPR
&& (type == 0 || TREE_CODE (type) == BOOLEAN_TYPE)));
}
/* Returns true if X1 is the negate of X2. */
static inline bool
pred_neg_p (pred_info x1, pred_info x2)
{
enum tree_code c1, c2;
if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
|| !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
return false;
c1 = x1.cond_code;
if (x1.invert == x2.invert)
c2 = invert_tree_comparison (x2.cond_code, false);
else
c2 = x2.cond_code;
return c1 == c2;
}
/* 1) ((x IOR y) != 0) AND (x != 0) is equivalent to (x != 0);
2) (X AND Y) OR (!X AND Y) is equivalent to Y;
3) X OR (!X AND Y) is equivalent to (X OR Y);
4) ((x IAND y) != 0) || (x != 0 AND y != 0)) is equivalent to
(x != 0 AND y != 0)
5) (X AND Y) OR (!X AND Z) OR (!Y AND Z) is equivalent to
(X AND Y) OR Z
PREDS is the predicate chains, and N is the number of chains. */
/* Helper function to implement rule 1 above. ONE_CHAIN is
the AND predication to be simplified. */
static void
simplify_pred (pred_chain *one_chain)
{
size_t i, j, n;
bool simplified = false;
pred_chain s_chain = vNULL;
n = one_chain->length ();
for (i = 0; i < n; i++)
{
pred_info *a_pred = &(*one_chain)[i];
if (!a_pred->pred_lhs)
continue;
if (!is_neq_zero_form_p (*a_pred))
continue;
gimple *def_stmt = SSA_NAME_DEF_STMT (a_pred->pred_lhs);
if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
continue;
if (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR)
{
for (j = 0; j < n; j++)
{
pred_info *b_pred = &(*one_chain)[j];
if (!b_pred->pred_lhs)
continue;
if (!is_neq_zero_form_p (*b_pred))
continue;
if (pred_expr_equal_p (*b_pred, gimple_assign_rhs1 (def_stmt))
|| pred_expr_equal_p (*b_pred, gimple_assign_rhs2 (def_stmt)))
{
/* Mark a_pred for removal. */
a_pred->pred_lhs = NULL;
a_pred->pred_rhs = NULL;
simplified = true;
break;
}
}
}
}
if (!simplified)
return;
for (i = 0; i < n; i++)
{
pred_info *a_pred = &(*one_chain)[i];
if (!a_pred->pred_lhs)
continue;
s_chain.safe_push (*a_pred);
}
one_chain->release ();
*one_chain = s_chain;
}
/* The helper function implements the rule 2 for the
OR predicate PREDS.
2) (X AND Y) OR (!X AND Y) is equivalent to Y. */
static bool
simplify_preds_2 (pred_chain_union *preds)
{
size_t i, j, n;
bool simplified = false;
pred_chain_union s_preds = vNULL;
/* (X AND Y) OR (!X AND Y) is equivalent to Y.
(X AND Y) OR (X AND !Y) is equivalent to X. */
n = preds->length ();
for (i = 0; i < n; i++)
{
pred_info x, y;
pred_chain *a_chain = &(*preds)[i];
if (a_chain->length () != 2)
continue;
x = (*a_chain)[0];
y = (*a_chain)[1];
for (j = 0; j < n; j++)
{
pred_chain *b_chain;
pred_info x2, y2;
if (j == i)
continue;
b_chain = &(*preds)[j];
if (b_chain->length () != 2)
continue;
x2 = (*b_chain)[0];
y2 = (*b_chain)[1];
if (pred_equal_p (x, x2) && pred_neg_p (y, y2))
{
/* Kill a_chain. */
a_chain->release ();
b_chain->release ();
b_chain->safe_push (x);
simplified = true;
break;
}
if (pred_neg_p (x, x2) && pred_equal_p (y, y2))
{
/* Kill a_chain. */
a_chain->release ();
b_chain->release ();
b_chain->safe_push (y);
simplified = true;
break;
}
}
}
/* Now clean up the chain. */
if (simplified)
{
for (i = 0; i < n; i++)
{
if ((*preds)[i].is_empty ())
continue;
s_preds.safe_push ((*preds)[i]);
}
preds->release ();
(*preds) = s_preds;
s_preds = vNULL;
}
return simplified;
}
/* The helper function implements the rule 2 for the
OR predicate PREDS.
3) x OR (!x AND y) is equivalent to x OR y. */
static bool
simplify_preds_3 (pred_chain_union *preds)
{
size_t i, j, n;
bool simplified = false;
/* Now iteratively simplify X OR (!X AND Z ..)
into X OR (Z ...). */
n = preds->length ();
if (n < 2)
return false;
for (i = 0; i < n; i++)
{
pred_info x;
pred_chain *a_chain = &(*preds)[i];
if (a_chain->length () != 1)
continue;
x = (*a_chain)[0];
for (j = 0; j < n; j++)
{
pred_chain *b_chain;
pred_info x2;
size_t k;
if (j == i)
continue;
b_chain = &(*preds)[j];
if (b_chain->length () < 2)
continue;
for (k = 0; k < b_chain->length (); k++)
{
x2 = (*b_chain)[k];
if (pred_neg_p (x, x2))
{
b_chain->unordered_remove (k);
simplified = true;
break;
}
}
}
}
return simplified;
}
/* The helper function implements the rule 4 for the
OR predicate PREDS.
2) ((x AND y) != 0) OR (x != 0 AND y != 0) is equivalent to
(x != 0 ANd y != 0). */
static bool
simplify_preds_4 (pred_chain_union *preds)
{
size_t i, j, n;
bool simplified = false;
pred_chain_union s_preds = vNULL;
gimple *def_stmt;
n = preds->length ();
for (i = 0; i < n; i++)
{
pred_info z;
pred_chain *a_chain = &(*preds)[i];
if (a_chain->length () != 1)
continue;
z = (*a_chain)[0];
if (!is_neq_zero_form_p (z))
continue;
def_stmt = SSA_NAME_DEF_STMT (z.pred_lhs);
if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
continue;
if (gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR)
continue;
for (j = 0; j < n; j++)
{
pred_chain *b_chain;
pred_info x2, y2;
if (j == i)
continue;
b_chain = &(*preds)[j];
if (b_chain->length () != 2)
continue;
x2 = (*b_chain)[0];
y2 = (*b_chain)[1];
if (!is_neq_zero_form_p (x2) || !is_neq_zero_form_p (y2))
continue;
if ((pred_expr_equal_p (x2, gimple_assign_rhs1 (def_stmt))
&& pred_expr_equal_p (y2, gimple_assign_rhs2 (def_stmt)))
|| (pred_expr_equal_p (x2, gimple_assign_rhs2 (def_stmt))
&& pred_expr_equal_p (y2, gimple_assign_rhs1 (def_stmt))))
{
/* Kill a_chain. */
a_chain->release ();
simplified = true;
break;
}
}
}
/* Now clean up the chain. */
if (simplified)
{
for (i = 0; i < n; i++)
{
if ((*preds)[i].is_empty ())
continue;
s_preds.safe_push ((*preds)[i]);
}
preds->release ();
(*preds) = s_preds;
s_preds = vNULL;
}
return simplified;
}
/* This function simplifies predicates in PREDS. */
static void
simplify_preds (pred_chain_union *preds, gimple *use_or_def, bool is_use)
{
size_t i, n;
bool changed = false;
if (dump_file && dump_flags & TDF_DETAILS)
{
fprintf (dump_file, "[BEFORE SIMPLICATION -- ");
dump_predicates (use_or_def, *preds, is_use ? "[USE]:\n" : "[DEF]:\n");
}
for (i = 0; i < preds->length (); i++)
simplify_pred (&(*preds)[i]);
n = preds->length ();
if (n < 2)
return;
do
{
changed = false;
if (simplify_preds_2 (preds))
changed = true;
/* Now iteratively simplify X OR (!X AND Z ..)
into X OR (Z ...). */
if (simplify_preds_3 (preds))
changed = true;
if (simplify_preds_4 (preds))
changed = true;
}
while (changed);
return;
}
/* This is a helper function which attempts to normalize predicate chains
by following UD chains. It basically builds up a big tree of either IOR
operations or AND operations, and convert the IOR tree into a
pred_chain_union or BIT_AND tree into a pred_chain.
Example:
_3 = _2 RELOP1 _1;
_6 = _5 RELOP2 _4;
_9 = _8 RELOP3 _7;
_10 = _3 | _6;
_12 = _9 | _0;
_t = _10 | _12;
then _t != 0 will be normalized into a pred_chain_union
(_2 RELOP1 _1) OR (_5 RELOP2 _4) OR (_8 RELOP3 _7) OR (_0 != 0)
Similarly given,
_3 = _2 RELOP1 _1;
_6 = _5 RELOP2 _4;
_9 = _8 RELOP3 _7;
_10 = _3 & _6;
_12 = _9 & _0;
then _t != 0 will be normalized into a pred_chain:
(_2 RELOP1 _1) AND (_5 RELOP2 _4) AND (_8 RELOP3 _7) AND (_0 != 0)
*/
/* This is a helper function that stores a PRED into NORM_PREDS. */
inline static void
push_pred (pred_chain_union *norm_preds, pred_info pred)
{
pred_chain pred_chain = vNULL;
pred_chain.safe_push (pred);
norm_preds->safe_push (pred_chain);
}
/* A helper function that creates a predicate of the form
OP != 0 and push it WORK_LIST. */
inline static void
push_to_worklist (tree op, vec<pred_info, va_heap, vl_ptr> *work_list,
hash_set<tree> *mark_set)
{
if (mark_set->contains (op))
return;
mark_set->add (op);
pred_info arg_pred;
arg_pred.pred_lhs = op;
arg_pred.pred_rhs = integer_zero_node;
arg_pred.cond_code = NE_EXPR;
arg_pred.invert = false;
work_list->safe_push (arg_pred);
}
/* A helper that generates a pred_info from a gimple assignment
CMP_ASSIGN with comparison rhs. */
static pred_info
get_pred_info_from_cmp (gimple *cmp_assign)
{
pred_info n_pred;
n_pred.pred_lhs = gimple_assign_rhs1 (cmp_assign);
n_pred.pred_rhs = gimple_assign_rhs2 (cmp_assign);
n_pred.cond_code = gimple_assign_rhs_code (cmp_assign);
n_pred.invert = false;
return n_pred;
}
/* Returns true if the PHI is a degenerated phi with
all args with the same value (relop). In that case, *PRED
will be updated to that value. */
static bool
is_degenerated_phi (gimple *phi, pred_info *pred_p)
{
int i, n;
tree op0;
gimple *def0;
pred_info pred0;
n = gimple_phi_num_args (phi);
op0 = gimple_phi_arg_def (phi, 0);
if (TREE_CODE (op0) != SSA_NAME)
return false;
def0 = SSA_NAME_DEF_STMT (op0);
if (gimple_code (def0) != GIMPLE_ASSIGN)
return false;
if (TREE_CODE_CLASS (gimple_assign_rhs_code (def0)) != tcc_comparison)
return false;
pred0 = get_pred_info_from_cmp (def0);
for (i = 1; i < n; ++i)
{
gimple *def;
pred_info pred;
tree op = gimple_phi_arg_def (phi, i);
if (TREE_CODE (op) != SSA_NAME)
return false;
def = SSA_NAME_DEF_STMT (op);
if (gimple_code (def) != GIMPLE_ASSIGN)
return false;
if (TREE_CODE_CLASS (gimple_assign_rhs_code (def)) != tcc_comparison)
return false;
pred = get_pred_info_from_cmp (def);
if (!pred_equal_p (pred, pred0))
return false;
}
*pred_p = pred0;
return true;
}
/* Normalize one predicate PRED
1) if PRED can no longer be normlized, put it into NORM_PREDS.
2) otherwise if PRED is of the form x != 0, follow x's definition
and put normalized predicates into WORK_LIST. */
static void
normalize_one_pred_1 (pred_chain_union *norm_preds,
pred_chain *norm_chain,
pred_info pred,
enum tree_code and_or_code,
vec<pred_info, va_heap, vl_ptr> *work_list,
hash_set<tree> *mark_set)
{
if (!is_neq_zero_form_p (pred))
{
if (and_or_code == BIT_IOR_EXPR)
push_pred (norm_preds, pred);
else
norm_chain->safe_push (pred);
return;
}
gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
if (gimple_code (def_stmt) == GIMPLE_PHI
&& is_degenerated_phi (def_stmt, &pred))
work_list->safe_push (pred);
else if (gimple_code (def_stmt) == GIMPLE_PHI && and_or_code == BIT_IOR_EXPR)
{
int i, n;
n = gimple_phi_num_args (def_stmt);
/* If we see non zero constant, we should punt. The predicate
* should be one guarding the phi edge. */
for (i = 0; i < n; ++i)
{
tree op = gimple_phi_arg_def (def_stmt, i);
if (TREE_CODE (op) == INTEGER_CST && !integer_zerop (op))
{
push_pred (norm_preds, pred);
return;
}
}
for (i = 0; i < n; ++i)
{
tree op = gimple_phi_arg_def (def_stmt, i);
if (integer_zerop (op))
continue;
push_to_worklist (op, work_list, mark_set);
}
}
else if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
{
if (and_or_code == BIT_IOR_EXPR)
push_pred (norm_preds, pred);
else
norm_chain->safe_push (pred);
}
else if (gimple_assign_rhs_code (def_stmt) == and_or_code)
{
/* Avoid splitting up bit manipulations like x & 3 or y | 1. */
if (is_gimple_min_invariant (gimple_assign_rhs2 (def_stmt)))
{
/* But treat x & 3 as condition. */
if (and_or_code == BIT_AND_EXPR)
{
pred_info n_pred;
n_pred.pred_lhs = gimple_assign_rhs1 (def_stmt);
n_pred.pred_rhs = gimple_assign_rhs2 (def_stmt);
n_pred.cond_code = and_or_code;
n_pred.invert = false;
norm_chain->safe_push (n_pred);
}
}
else
{
push_to_worklist (gimple_assign_rhs1 (def_stmt), work_list, mark_set);
push_to_worklist (gimple_assign_rhs2 (def_stmt), work_list, mark_set);
}
}
else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt))
== tcc_comparison)
{
pred_info n_pred = get_pred_info_from_cmp (def_stmt);
if (and_or_code == BIT_IOR_EXPR)
push_pred (norm_preds, n_pred);
else
norm_chain->safe_push (n_pred);
}
else
{
if (and_or_code == BIT_IOR_EXPR)
push_pred (norm_preds, pred);
else
norm_chain->safe_push (pred);
}
}
/* Normalize PRED and store the normalized predicates into NORM_PREDS. */
static void
normalize_one_pred (pred_chain_union *norm_preds, pred_info pred)
{
vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
enum tree_code and_or_code = ERROR_MARK;
pred_chain norm_chain = vNULL;
if (!is_neq_zero_form_p (pred))
{
push_pred (norm_preds, pred);
return;
}
gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
if (gimple_code (def_stmt) == GIMPLE_ASSIGN)
and_or_code = gimple_assign_rhs_code (def_stmt);
if (and_or_code != BIT_IOR_EXPR && and_or_code != BIT_AND_EXPR)
{
if (TREE_CODE_CLASS (and_or_code) == tcc_comparison)
{
pred_info n_pred = get_pred_info_from_cmp (def_stmt);
push_pred (norm_preds, n_pred);
}
else
push_pred (norm_preds, pred);
return;
}
work_list.safe_push (pred);
hash_set<tree> mark_set;
while (!work_list.is_empty ())
{
pred_info a_pred = work_list.pop ();
normalize_one_pred_1 (norm_preds, &norm_chain, a_pred, and_or_code,
&work_list, &mark_set);
}
if (and_or_code == BIT_AND_EXPR)
norm_preds->safe_push (norm_chain);
work_list.release ();
}
static void
normalize_one_pred_chain (pred_chain_union *norm_preds, pred_chain one_chain)
{
vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
hash_set<tree> mark_set;
pred_chain norm_chain = vNULL;
size_t i;
for (i = 0; i < one_chain.length (); i++)
{
work_list.safe_push (one_chain[i]);
mark_set.add (one_chain[i].pred_lhs);
}
while (!work_list.is_empty ())
{
pred_info a_pred = work_list.pop ();
normalize_one_pred_1 (0, &norm_chain, a_pred, BIT_AND_EXPR, &work_list,
&mark_set);
}
norm_preds->safe_push (norm_chain);
work_list.release ();
}
/* Normalize predicate chains PREDS and returns the normalized one. */
static pred_chain_union
normalize_preds (pred_chain_union preds, gimple *use_or_def, bool is_use)
{
pred_chain_union norm_preds = vNULL;
size_t n = preds.length ();
size_t i;
if (dump_file && dump_flags & TDF_DETAILS)
{
fprintf (dump_file, "[BEFORE NORMALIZATION --");
dump_predicates (use_or_def, preds, is_use ? "[USE]:\n" : "[DEF]:\n");
}
for (i = 0; i < n; i++)
{
if (preds[i].length () != 1)
normalize_one_pred_chain (&norm_preds, preds[i]);
else
{
normalize_one_pred (&norm_preds, preds[i][0]);
preds[i].release ();
}
}
if (dump_file)
{
fprintf (dump_file, "[AFTER NORMALIZATION -- ");
dump_predicates (use_or_def, norm_preds,
is_use ? "[USE]:\n" : "[DEF]:\n");
}
destroy_predicate_vecs (&preds);
return norm_preds;
}
/* Return TRUE if PREDICATE can be invalidated by any individual
predicate in USE_GUARD. */
static bool
can_one_predicate_be_invalidated_p (pred_info predicate,
pred_chain use_guard)
{
if (dump_file && dump_flags & TDF_DETAILS)
{
fprintf (dump_file, "Testing if this predicate: ");
dump_pred_info (predicate);
fprintf (dump_file, "\n...can be invalidated by a USE guard of: ");
dump_pred_chain (use_guard);
}
for (size_t i = 0; i < use_guard.length (); ++i)
{
/* NOTE: This is a very simple check, and only understands an
exact opposite. So, [i == 0] is currently only invalidated
by [.NOT. i == 0] or [i != 0]. Ideally we should also
invalidate with say [i > 5] or [i == 8]. There is certainly
room for improvement here. */
if (pred_neg_p (predicate, use_guard[i]))
{
if (dump_file && dump_flags & TDF_DETAILS)
{
fprintf (dump_file, " Predicate was invalidated by: ");
dump_pred_info (use_guard[i]);
fputc ('\n', dump_file);
}
return true;
}
}
return false;
}
/* Return TRUE if all predicates in UNINIT_PRED are invalidated by
USE_GUARD being true. */
static bool
can_chain_union_be_invalidated_p (pred_chain_union uninit_pred,
pred_chain use_guard)
{
if (uninit_pred.is_empty ())
return false;
if (dump_file && dump_flags & TDF_DETAILS)
dump_predicates (NULL, uninit_pred,
"Testing if anything here can be invalidated: ");
for (size_t i = 0; i < uninit_pred.length (); ++i)
{
pred_chain c = uninit_pred[i];
size_t j;
for (j = 0; j < c.length (); ++j)
if (can_one_predicate_be_invalidated_p (c[j], use_guard))
break;
/* If we were unable to invalidate any predicate in C, then there
is a viable path from entry to the PHI where the PHI takes
an uninitialized value and continues to a use of the PHI. */
if (j == c.length ())
return false;
}
return true;
}
/* Return TRUE if none of the uninitialized operands in UNINT_OPNDS
can actually happen if we arrived at a use for PHI.
PHI_USE_GUARDS are the guard conditions for the use of the PHI. */
static bool
uninit_uses_cannot_happen (gphi *phi, unsigned uninit_opnds,
pred_chain_union phi_use_guards)
{
unsigned phi_args = gimple_phi_num_args (phi);
if (phi_args > max_phi_args)
return false;
/* PHI_USE_GUARDS are OR'ed together. If we have more than one
possible guard, there's no way of knowing which guard was true.
Since we need to be absolutely sure that the uninitialized
operands will be invalidated, bail. */
if (phi_use_guards.length () != 1)
return false;
/* Look for the control dependencies of all the uninitialized
operands and build guard predicates describing them. */
pred_chain_union uninit_preds;
bool ret = true;
for (unsigned i = 0; i < phi_args; ++i)
{
if (!MASK_TEST_BIT (uninit_opnds, i))
continue;
edge e = gimple_phi_arg_edge (phi, i);
vec<edge> dep_chains[MAX_NUM_CHAINS];
auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
size_t num_chains = 0;
int num_calls = 0;
/* Build the control dependency chain for uninit operand `i'... */
uninit_preds = vNULL;
if (!compute_control_dep_chain (ENTRY_BLOCK_PTR_FOR_FN (cfun),
e->src, dep_chains, &num_chains,
&cur_chain, &num_calls))
{
ret = false;
break;
}
/* ...and convert it into a set of predicates. */
bool has_valid_preds
= convert_control_dep_chain_into_preds (dep_chains, num_chains,
&uninit_preds);
for (size_t j = 0; j < num_chains; ++j)
dep_chains[j].release ();
if (!has_valid_preds)
{
ret = false;
break;
}
simplify_preds (&uninit_preds, NULL, false);
uninit_preds = normalize_preds (uninit_preds, NULL, false);
/* Can the guard for this uninitialized operand be invalidated
by the PHI use? */
if (!can_chain_union_be_invalidated_p (uninit_preds, phi_use_guards[0]))
{
ret = false;
break;
}
}
destroy_predicate_vecs (&uninit_preds);
return ret;
}
/* Computes the predicates that guard the use and checks
if the incoming paths that have empty (or possibly
empty) definition can be pruned/filtered. The function returns
true if it can be determined that the use of PHI's def in
USE_STMT is guarded with a predicate set not overlapping with
predicate sets of all runtime paths that do not have a definition.
Returns false if it is not or it can not be determined. USE_BB is
the bb of the use (for phi operand use, the bb is not the bb of
the phi stmt, but the src bb of the operand edge).
UNINIT_OPNDS is a bit vector. If an operand of PHI is uninitialized, the
corresponding bit in the vector is 1. VISITED_PHIS is a pointer
set of phis being visited.
*DEF_PREDS contains the (memoized) defining predicate chains of PHI.
If *DEF_PREDS is the empty vector, the defining predicate chains of
PHI will be computed and stored into *DEF_PREDS as needed.
VISITED_PHIS is a pointer set of phis being visited. */
static bool
is_use_properly_guarded (gimple *use_stmt,
basic_block use_bb,
gphi *phi,
unsigned uninit_opnds,
pred_chain_union *def_preds,
hash_set<gphi *> *visited_phis)
{
basic_block phi_bb;
pred_chain_union preds = vNULL;
bool has_valid_preds = false;
bool is_properly_guarded = false;
if (visited_phis->add (phi))
return false;
phi_bb = gimple_bb (phi);
if (is_non_loop_exit_postdominating (use_bb, phi_bb))
return false;
has_valid_preds = find_predicates (&preds, phi_bb, use_bb);
if (!has_valid_preds)
{
destroy_predicate_vecs (&preds);
return false;
}
/* Try to prune the dead incoming phi edges. */
is_properly_guarded
= use_pred_not_overlap_with_undef_path_pred (preds, phi, uninit_opnds,
visited_phis);
/* We might be able to prove that if the control dependencies
for UNINIT_OPNDS are true, that the control dependencies for
USE_STMT can never be true. */
if (!is_properly_guarded)
is_properly_guarded |= uninit_uses_cannot_happen (phi, uninit_opnds,
preds);
if (is_properly_guarded)
{
destroy_predicate_vecs (&preds);
return true;
}
if (def_preds->is_empty ())
{
has_valid_preds = find_def_preds (def_preds, phi);
if (!has_valid_preds)
{
destroy_predicate_vecs (&preds);
return false;
}
simplify_preds (def_preds, phi, false);
*def_preds = normalize_preds (*def_preds, phi, false);
}
simplify_preds (&preds, use_stmt, true);
preds = normalize_preds (preds, use_stmt, true);
is_properly_guarded = is_superset_of (*def_preds, preds);
destroy_predicate_vecs (&preds);
return is_properly_guarded;
}
/* Searches through all uses of a potentially
uninitialized variable defined by PHI and returns a use
statement if the use is not properly guarded. It returns
NULL if all uses are guarded. UNINIT_OPNDS is a bitvector
holding the position(s) of uninit PHI operands. WORKLIST
is the vector of candidate phis that may be updated by this
function. ADDED_TO_WORKLIST is the pointer set tracking
if the new phi is already in the worklist. */
static gimple *
find_uninit_use (gphi *phi, unsigned uninit_opnds,
vec<gphi *> *worklist,
hash_set<gphi *> *added_to_worklist)
{
tree phi_result;
use_operand_p use_p;
gimple *use_stmt;
imm_use_iterator iter;
pred_chain_union def_preds = vNULL;
gimple *ret = NULL;
phi_result = gimple_phi_result (phi);
FOR_EACH_IMM_USE_FAST (use_p, iter, phi_result)
{
basic_block use_bb;
use_stmt = USE_STMT (use_p);
if (is_gimple_debug (use_stmt))
continue;
if (gphi *use_phi = dyn_cast<gphi *> (use_stmt))
use_bb = gimple_phi_arg_edge (use_phi,
PHI_ARG_INDEX_FROM_USE (use_p))->src;
else
use_bb = gimple_bb (use_stmt);
hash_set<gphi *> visited_phis;
if (is_use_properly_guarded (use_stmt, use_bb, phi, uninit_opnds,
&def_preds, &visited_phis))
continue;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "[CHECK]: Found unguarded use: ");
print_gimple_stmt (dump_file, use_stmt, 0);
}
/* Found one real use, return. */
if (gimple_code (use_stmt) != GIMPLE_PHI)
{
ret = use_stmt;
break;
}
/* Found a phi use that is not guarded,
add the phi to the worklist. */
if (!added_to_worklist->add (as_a<gphi *> (use_stmt)))
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "[WORKLIST]: Update worklist with phi: ");
print_gimple_stmt (dump_file, use_stmt, 0);
}
worklist->safe_push (as_a<gphi *> (use_stmt));
possibly_undefined_names->add (phi_result);
}
}
destroy_predicate_vecs (&def_preds);
return ret;
}
/* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
and gives warning if there exists a runtime path from the entry to a
use of the PHI def that does not contain a definition. In other words,
the warning is on the real use. The more dead paths that can be pruned
by the compiler, the fewer false positives the warning is. WORKLIST
is a vector of candidate phis to be examined. ADDED_TO_WORKLIST is
a pointer set tracking if the new phi is added to the worklist or not. */
static void
warn_uninitialized_phi (gphi *phi, vec<gphi *> *worklist,
hash_set<gphi *> *added_to_worklist)
{
unsigned uninit_opnds;
gimple *uninit_use_stmt = 0;
tree uninit_op;
int phiarg_index;
location_t loc;
/* Don't look at virtual operands. */
if (virtual_operand_p (gimple_phi_result (phi)))
return;
uninit_opnds = compute_uninit_opnds_pos (phi);
if (MASK_EMPTY (uninit_opnds))
return;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "[CHECK]: examining phi: ");
print_gimple_stmt (dump_file, phi, 0);
}
/* Now check if we have any use of the value without proper guard. */
uninit_use_stmt = find_uninit_use (phi, uninit_opnds,
worklist, added_to_worklist);
/* All uses are properly guarded. */
if (!uninit_use_stmt)
return;
phiarg_index = MASK_FIRST_SET_BIT (uninit_opnds);
uninit_op = gimple_phi_arg_def (phi, phiarg_index);
if (SSA_NAME_VAR (uninit_op) == NULL_TREE)
return;
if (gimple_phi_arg_has_location (phi, phiarg_index))
loc = gimple_phi_arg_location (phi, phiarg_index);
else
loc = UNKNOWN_LOCATION;
warn_uninit (OPT_Wmaybe_uninitialized, uninit_op, SSA_NAME_VAR (uninit_op),
SSA_NAME_VAR (uninit_op),
"%qD may be used uninitialized in this function",
uninit_use_stmt, loc);
}
static bool
gate_warn_uninitialized (void)
{
return warn_uninitialized || warn_maybe_uninitialized;
}
namespace {
const pass_data pass_data_late_warn_uninitialized =
{
GIMPLE_PASS, /* type */
"uninit", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_late_warn_uninitialized : public gimple_opt_pass
{
public:
pass_late_warn_uninitialized (gcc::context *ctxt)
: gimple_opt_pass (pass_data_late_warn_uninitialized, ctxt)
{}
/* opt_pass methods: */
opt_pass *clone () { return new pass_late_warn_uninitialized (m_ctxt); }
virtual bool gate (function *) { return gate_warn_uninitialized (); }
virtual unsigned int execute (function *);
}; // class pass_late_warn_uninitialized
unsigned int
pass_late_warn_uninitialized::execute (function *fun)
{
basic_block bb;
gphi_iterator gsi;
vec<gphi *> worklist = vNULL;
calculate_dominance_info (CDI_DOMINATORS);
calculate_dominance_info (CDI_POST_DOMINATORS);
/* Re-do the plain uninitialized variable check, as optimization may have
straightened control flow. Do this first so that we don't accidentally
get a "may be" warning when we'd have seen an "is" warning later. */
warn_uninitialized_vars (/*warn_possibly_uninitialized=*/1);
timevar_push (TV_TREE_UNINIT);
possibly_undefined_names = new hash_set<tree>;
hash_set<gphi *> added_to_worklist;
/* Initialize worklist */
FOR_EACH_BB_FN (bb, fun)
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
size_t n, i;
n = gimple_phi_num_args (phi);
/* Don't look at virtual operands. */
if (virtual_operand_p (gimple_phi_result (phi)))
continue;
for (i = 0; i < n; ++i)
{
tree op = gimple_phi_arg_def (phi, i);
if (TREE_CODE (op) == SSA_NAME && uninit_undefined_value_p (op))
{
worklist.safe_push (phi);
added_to_worklist.add (phi);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "[WORKLIST]: add to initial list: ");
print_gimple_stmt (dump_file, phi, 0);
}
break;
}
}
}
while (worklist.length () != 0)
{
gphi *cur_phi = 0;
cur_phi = worklist.pop ();
warn_uninitialized_phi (cur_phi, &worklist, &added_to_worklist);
}
worklist.release ();
delete possibly_undefined_names;
possibly_undefined_names = NULL;
free_dominance_info (CDI_POST_DOMINATORS);
timevar_pop (TV_TREE_UNINIT);
return 0;
}
} // anon namespace
gimple_opt_pass *
make_pass_late_warn_uninitialized (gcc::context *ctxt)
{
return new pass_late_warn_uninitialized (ctxt);
}
static unsigned int
execute_early_warn_uninitialized (void)
{
/* Currently, this pass runs always but
execute_late_warn_uninitialized only runs with optimization. With
optimization we want to warn about possible uninitialized as late
as possible, thus don't do it here. However, without
optimization we need to warn here about "may be uninitialized". */
calculate_dominance_info (CDI_POST_DOMINATORS);
warn_uninitialized_vars (/*warn_possibly_uninitialized=*/!optimize);
/* Post-dominator information can not be reliably updated. Free it
after the use. */
free_dominance_info (CDI_POST_DOMINATORS);
return 0;
}
namespace {
const pass_data pass_data_early_warn_uninitialized =
{
GIMPLE_PASS, /* type */
"*early_warn_uninitialized", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_TREE_UNINIT, /* tv_id */
PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_early_warn_uninitialized : public gimple_opt_pass
{
public:
pass_early_warn_uninitialized (gcc::context *ctxt)
: gimple_opt_pass (pass_data_early_warn_uninitialized, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *) { return gate_warn_uninitialized (); }
virtual unsigned int execute (function *)
{
return execute_early_warn_uninitialized ();
}
}; // class pass_early_warn_uninitialized
} // anon namespace
gimple_opt_pass *
make_pass_early_warn_uninitialized (gcc::context *ctxt)
{
return new pass_early_warn_uninitialized (ctxt);
}
|