1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
|
; SF format is:
;
; [sign] 1.[23bits] E[8bits(n-127)]
;
; SEEEEEEE Emmmmmmm mmmmmmmm mmmmmmmm
;
; [A+0] mmmmmmmm
; [A+1] mmmmmmmm
; [A+2] Emmmmmmm
; [A+3] SEEEEEEE
;
; Special values (xxx != 0):
;
; s1111111 10000000 00000000 00000000 infinity
; s1111111 1xxxxxxx xxxxxxxx xxxxxxxx NaN
; s0000000 00000000 00000000 00000000 zero
; s0000000 0xxxxxxx xxxxxxxx xxxxxxxx denormals
;
; Note that CMPtype is "signed char" for rl78
;
#include "vregs.h"
#define Z PSW.6
START_FUNC ___negsf2
;; Negate the floating point value.
;; Input at [SP+4]..[SP+7].
;; Output to R8..R11.
movw ax, [SP+4]
movw r8, ax
movw ax, [SP+6]
xor a, #0x80
movw r10, ax
ret
END_FUNC ___negsf2
;; ------------------internal functions used by later code --------------
START_FUNC __int_isnan
;; [HL] points to value, returns Z if it's a NaN
mov a, [hl+2]
and a, #0x80
mov x, a
mov a, [hl+3]
and a, #0x7f
cmpw ax, #0x7f80
skz
ret ; return NZ if not NaN
mov a, [hl+2]
and a, #0x7f
or a, [hl+1]
or a, [hl]
bnz $1f
clr1 Z ; Z, normal
ret
1:
set1 Z ; nan
ret
END_FUNC __int_isnan
START_FUNC __int_eithernan
;; call from toplevel functions, returns Z if either number is a NaN,
;; or NZ if both are OK.
movw ax, sp
addw ax, #8
movw hl, ax
call $!__int_isnan
bz $1f
movw ax, sp
addw ax, #12
movw hl, ax
call $!__int_isnan
1:
ret
END_FUNC __int_eithernan
START_FUNC __int_iszero
;; [HL] points to value, returns Z if it's zero
mov a, [hl+3]
and a, #0x7f
or a, [hl+2]
or a, [hl+1]
or a, [hl]
ret
END_FUNC __int_iszero
START_FUNC __int_cmpsf
;; This is always called from some other function here,
;; so the stack offsets are adjusted accordingly.
;; X [SP+8] <=> Y [SP+12] : <a> <=> 0
movw ax, sp
addw ax, #8
movw hl, ax
call $!__int_iszero
bnz $1f
movw ax, sp
addw ax, #12
movw hl, ax
call $!__int_iszero
bnz $2f
;; At this point, both args are zero.
mov a, #0
ret
2:
movw ax, sp
addw ax, #8
movw hl, ax
1:
;; At least one arg is non-zero so we can just compare magnitudes.
;; Args are [HL] and [HL+4].
mov a, [HL+3]
xor a, [HL+7]
mov1 cy, a.7
bnc $1f
mov a, [HL+3]
sar a, 7
or a, #1
ret
1: ;; Signs the same, compare magnitude. It's safe to lump
;; the sign bits, exponent, and mantissa together here, since they're
;; stored in the right sequence.
movw ax, [HL+2]
cmpw ax, [HL+6]
bc $ybig_cmpsf ; branch if X < Y
bnz $xbig_cmpsf ; branch if X > Y
movw ax, [HL]
cmpw ax, [HL+4]
bc $ybig_cmpsf ; branch if X < Y
bnz $xbig_cmpsf ; branch if X > Y
mov a, #0
ret
xbig_cmpsf: ; |X| > |Y| so return A = 1 if pos, 0xff if neg
mov a, [HL+3]
sar a, 7
or a, #1
ret
ybig_cmpsf: ; |X| < |Y| so return A = 0xff if pos, 1 if neg
mov a, [HL+3]
xor a, #0x80
sar a, 7
or a, #1
ret
END_FUNC __int_cmpsf
;; ----------------------------------------------------------
START_FUNC ___cmpsf2
;; This functions calculates "A <=> B". That is, if A is less than B
;; they return -1, if A is greater than B, they return 1, and if A
;; and B are equal they return 0. If either argument is NaN the
;; behaviour is undefined.
;; Input at [SP+4]..[SP+7].
;; Output to R8..R9.
call $!__int_eithernan
bnz $1f
movw r8, #1
ret
1:
call $!__int_cmpsf
mov r8, a
sar a, 7
mov r9, a
ret
END_FUNC ___cmpsf2
;; ----------------------------------------------------------
;; These functions are all basically the same as ___cmpsf2
;; except that they define how they handle NaNs.
START_FUNC ___eqsf2
;; Returns zero iff neither argument is NaN
;; and both arguments are equal.
START_ANOTHER_FUNC ___nesf2
;; Returns non-zero iff either argument is NaN or the arguments are
;; unequal. Effectively __nesf2 is the same as __eqsf2
START_ANOTHER_FUNC ___lesf2
;; Returns a value less than or equal to zero if neither
;; argument is NaN, and the first is less than or equal to the second.
START_ANOTHER_FUNC ___ltsf2
;; Returns a value less than zero if neither argument is
;; NaN, and the first is strictly less than the second.
;; Input at [SP+4]..[SP+7].
;; Output to R8.
mov r8, #1
;;; Fall through
START_ANOTHER_FUNC __int_cmp_common
call $!__int_eithernan
sknz
;; return value (pre-filled-in below) for "either is nan"
ret
call $!__int_cmpsf
mov r8, a
ret
END_ANOTHER_FUNC __int_cmp_common
END_ANOTHER_FUNC ___ltsf2
END_ANOTHER_FUNC ___lesf2
END_ANOTHER_FUNC ___nesf2
END_FUNC ___eqsf2
START_FUNC ___gesf2
;; Returns a value greater than or equal to zero if neither argument
;; is a NaN and the first is greater than or equal to the second.
START_ANOTHER_FUNC ___gtsf2
;; Returns a value greater than zero if neither argument
;; is NaN, and the first is strictly greater than the second.
mov r8, #0xffff
br $__int_cmp_common
END_ANOTHER_FUNC ___gtsf2
END_FUNC ___gesf2
;; ----------------------------------------------------------
START_FUNC ___unordsf2
;; Returns a nonzero value if either argument is NaN, otherwise 0.
call $!__int_eithernan
movw r8, #0
sknz ; this is from the call, not the movw
movw r8, #1
ret
END_FUNC ___unordsf2
;; ----------------------------------------------------------
START_FUNC ___fixsfsi
;; Converts its floating point argument into a signed long,
;; rounding toward zero.
;; The behaviour with NaNs and Infinities is not well defined.
;; We choose to return 0 for NaNs, -INTMAX for -inf and INTMAX for +inf.
;; This matches the behaviour of the C function in libgcc2.c.
;; Input at [SP+4]..[SP+7], result is in (lsb) R8..R11 (msb).
;; Special case handling for infinities as __fixunssfsi
;; will not give us the values that we want.
movw ax, sp
addw ax, #4
movw hl, ax
call !!__int_isinf
bnz $1f
mov a, [SP+7]
bt a.7, $2f
;; +inf
movw r8, #-1
movw r10, #0x7fff
ret
;; -inf
2: mov r8, #0
mov r10, #0x8000
ret
;; Load the value into r10:r11:X:A
1: movw ax, [SP+4]
movw r10, ax
movw ax, [SP+6]
;; If the value is positive we can just use __fixunssfsi
bf a.7, $__int_fixunssfsi
;; Otherwise we negate the value, call __fixunssfsi and
;; then negate its result.
clr1 a.7
call $!__int_fixunssfsi
movw ax, #0
subw ax, r8
movw r8, ax
movw ax, #0
sknc
decw ax
subw ax, r10
movw r10, ax
;; Check for a positive result (which should only happen when
;; __fixunssfsi returns UINTMAX or 0). In such cases just return 0.
mov a, r11
bt a.7, $1f
movw r10,#0x0
movw r8, #0x0
1: ret
END_FUNC ___fixsfsi
START_FUNC ___fixunssfsi
;; Converts its floating point argument into an unsigned long
;; rounding towards zero. Negative arguments all become zero.
;; We choose to return 0 for NaNs and -inf, but UINTMAX for +inf.
;; This matches the behaviour of the C function in libgcc2.c.
;; Input at [SP+4]..[SP+7], result is in (lsb) R8..R11 (msb)
;; Get the input value.
movw ax, [SP+4]
movw r10, ax
movw ax, [SP+6]
;; Fall through into the internal function.
.global __int_fixunssfsi
__int_fixunssfsi:
;; Input in (lsb) r10.r11.x.a (msb).
;; Test for a negative input. We shift the other bits at the
;; same time so that A ends up holding the whole exponent:
;;
;; before:
;; SEEEEEEE EMMMMMMM MMMMMMMM MMMMMMMM
;; A X R11 R10
;;
;; after:
;; EEEEEEEE MMMMMMM0 MMMMMMMM MMMMMMMM
;; A X R11 R10
shlw ax, 1
bnc $1f
;; Return zero.
2: movw r8, #0
movw r10, #0
ret
;; An exponent of -1 is either a NaN or infinity.
1: cmp a, #-1
bnz $3f
;; For NaN we return 0. For infinity we return UINTMAX.
mov a, x
or a, r10
or a, r11
cmp0 a
bnz $2b
6: movw r8, #-1 ; -1 => UINT_MAX
movw r10, #-1
ret
;; If the exponent is negative the value is < 1 and so the
;; converted value is 0. Note we must allow for the bias
;; applied to the exponent. Thus a value of 127 in the
;; EEEEEEEE bits actually represents an exponent of 0, whilst
;; a value less than 127 actually represents a negative exponent.
;; Also if the EEEEEEEE bits are all zero then this represents
;; either a denormal value or 0.0. Either way for these values
;; we return 0.
3: sub a, #127
bc $2b
;; A now holds the bias adjusted exponent, which is known to be >= 0.
;; If the exponent is > 31 then the conversion will overflow.
cmp a, #32
bnc $6b
4:
;; Save the exponent in H. We increment it by one because we want
;; to be sure that the loop below will always execute at least once.
inc a
mov h, a
;; Get the top 24 bits of the mantissa into A:X:R10
;; Include the implicit 1-bit that is inherent in the IEEE fp format.
;;
;; before:
;; EEEEEEEE MMMMMMM0 MMMMMMMM MMMMMMMM
;; H X R11 R10
;; after:
;; EEEEEEEE 1MMMMMMM MMMMMMMM MMMMMMMM
;; H A X R10
mov a, r11
xch a, x
shr a, 1
set1 a.7
;; Clear B:C:R12:R13
movw bc, #0
movw r12, #0
;; Shift bits from the mantissa (A:X:R10) into (B:C:R12:R13),
;; decrementing the exponent as we go.
;; before:
;; MMMMMMMM MMMMMMMM MMMMMMMM xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
;; A X R10 B C R12 R13
;; first iter:
;; MMMMMMMM MMMMMMMM MMMMMMM0 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxM
;; A X R10 B C R12 R13
;; second iter:
;; MMMMMMMM MMMMMMMM MMMMMM00 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxMM
;; A X R10 B C R12 R13
;; etc.
5:
xch a, r10
shl a, 1
xch a, r10
rolwc ax, 1
xch a, r13
rolc a, 1
xch a, r13
xch a, r12
rolc a, 1
xch a, r12
rolwc bc, 1
dec h
bnz $5b
;; Result is currently in (lsb) r13.r12. c. b. (msb),
;; Move it into (lsb) r8. r9. r10. r11 (msb).
mov a, r13
mov r8, a
mov a, r12
mov r9, a
mov a, c
mov r10, a
mov a, b
mov r11, a
ret
END_FUNC ___fixunssfsi
;; ------------------------------------------------------------------------
START_FUNC ___floatsisf
;; Converts its signed long argument into a floating point.
;; Argument in [SP+4]..[SP+7]. Result in R8..R11.
;; Get the argument.
movw ax, [SP+4]
movw bc, ax
movw ax, [SP+6]
;; Test the sign bit. If the value is positive then drop into
;; the unsigned conversion routine.
bf a.7, $2f
;; If negative convert to positive ...
movw hl, ax
movw ax, #0
subw ax, bc
movw bc, ax
movw ax, #0
sknc
decw ax
subw ax, hl
;; If the result is negative then the input was 0x80000000 and
;; we want to return -0.0, which will not happen if we call
;; __int_floatunsisf.
bt a.7, $1f
;; Call the unsigned conversion routine.
call $!__int_floatunsisf
;; Negate the result.
set1 r11.7
;; Done.
ret
1: ;; Return -0.0 aka 0xcf000000
clrb a
mov r8, a
mov r9, a
mov r10, a
mov a, #0xcf
mov r11, a
ret
START_ANOTHER_FUNC ___floatunsisf
;; Converts its unsigned long argument into a floating point.
;; Argument in [SP+4]..[SP+7]. Result in R8..R11.
;; Get the argument.
movw ax, [SP+4]
movw bc, ax
movw ax, [SP+6]
2: ;; Internal entry point from __floatsisf
;; Input in AX (high) and BC (low)
.global __int_floatunsisf
__int_floatunsisf:
;; Special case handling for zero.
cmpw ax, #0
bnz $1f
movw ax, bc
cmpw ax, #0
movw ax, #0
bnz $1f
;; Return 0.0
movw r8, ax
movw r10, ax
ret
1: ;; Pre-load the loop count/exponent.
;; Exponents are biased by 0x80 and we start the loop knowing that
;; we are going to skip the highest set bit. Hence the highest value
;; that we can get for the exponent is 0x1e (bits from input) + 0x80 = 0x9e.
mov h, #0x9e
;; Move bits off the top of AX:BC until we hit a 1 bit.
;; Decrement the count of remaining bits as we go.
2: shlw bc, 1
rolwc ax, 1
bc $3f
dec h
br $2b
;; Ignore the first one bit - it is implicit in the IEEE format.
;; The count of remaining bits is the exponent.
;; Assemble the final floating point value. We have...
;; before:
;; EEEEEEEE MMMMMMMM MMMMMMMM MMMMMMMM xxxxxxxx
;; H A X B C
;; after:
;; 0EEEEEEE EMMMMMMM MMMMMMMM MMMMMMMM
;; R11 R10 R9 R8
3: shrw ax, 1
mov r10, a
mov a, x
mov r9, a
mov a, b
rorc a, 1
;; If the bottom bit of B was set before we shifted it out then we
;; need to round the result up. Unless none of the bits in C are set.
;; In this case we are exactly half-way between two values, and we
;; round towards an even value. We round up by increasing the
;; mantissa by 1. If this results in a zero mantissa we have to
;; increment the exponent. We round down by ignoring the dropped bits.
bnc $4f
cmp0 c
sknz
bf a.0, $4f
5: ;; Round the mantissa up by 1.
add a, #1
addc r9, #0
addc r10, #0
bf r10.7, $4f
inc h
clr1 r10.7
4: mov r8, a
mov a, h
shr a, 1
mov r11, a
sknc
set1 r10.7
ret
END_ANOTHER_FUNC ___floatunsisf
END_FUNC ___floatsisf
|