1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
|
// Mathematical Special Functions for -*- C++ -*-
// Copyright (C) 2006-2018 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file bits/specfun.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{cmath}
*/
#ifndef _GLIBCXX_BITS_SPECFUN_H
#define _GLIBCXX_BITS_SPECFUN_H 1
#pragma GCC visibility push(default)
#include <bits/c++config.h>
#define __STDCPP_MATH_SPEC_FUNCS__ 201003L
#define __cpp_lib_math_special_functions 201603L
#if __cplusplus <= 201403L && __STDCPP_WANT_MATH_SPEC_FUNCS__ == 0
# error include <cmath> and define __STDCPP_WANT_MATH_SPEC_FUNCS__
#endif
#include <bits/stl_algobase.h>
#include <limits>
#include <type_traits>
#include <tr1/gamma.tcc>
#include <tr1/bessel_function.tcc>
#include <tr1/beta_function.tcc>
#include <tr1/ell_integral.tcc>
#include <tr1/exp_integral.tcc>
#include <tr1/hypergeometric.tcc>
#include <tr1/legendre_function.tcc>
#include <tr1/modified_bessel_func.tcc>
#include <tr1/poly_hermite.tcc>
#include <tr1/poly_laguerre.tcc>
#include <tr1/riemann_zeta.tcc>
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* @defgroup mathsf Mathematical Special Functions
* @ingroup numerics
*
* A collection of advanced mathematical special functions,
* defined by ISO/IEC IS 29124.
* @{
*/
/**
* @mainpage Mathematical Special Functions
*
* @section intro Introduction and History
* The first significant library upgrade on the road to C++2011,
* <a href="http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf">
* TR1</a>, included a set of 23 mathematical functions that significantly
* extended the standard transcendental functions inherited from C and declared
* in @<cmath@>.
*
* Although most components from TR1 were eventually adopted for C++11 these
* math functions were left behind out of concern for implementability.
* The math functions were published as a separate international standard
* <a href="http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2010/n3060.pdf">
* IS 29124 - Extensions to the C++ Library to Support Mathematical Special
* Functions</a>.
*
* For C++17 these functions were incorporated into the main standard.
*
* @section contents Contents
* The following functions are implemented in namespace @c std:
* - @ref assoc_laguerre "assoc_laguerre - Associated Laguerre functions"
* - @ref assoc_legendre "assoc_legendre - Associated Legendre functions"
* - @ref beta "beta - Beta functions"
* - @ref comp_ellint_1 "comp_ellint_1 - Complete elliptic functions of the first kind"
* - @ref comp_ellint_2 "comp_ellint_2 - Complete elliptic functions of the second kind"
* - @ref comp_ellint_3 "comp_ellint_3 - Complete elliptic functions of the third kind"
* - @ref cyl_bessel_i "cyl_bessel_i - Regular modified cylindrical Bessel functions"
* - @ref cyl_bessel_j "cyl_bessel_j - Cylindrical Bessel functions of the first kind"
* - @ref cyl_bessel_k "cyl_bessel_k - Irregular modified cylindrical Bessel functions"
* - @ref cyl_neumann "cyl_neumann - Cylindrical Neumann functions or Cylindrical Bessel functions of the second kind"
* - @ref ellint_1 "ellint_1 - Incomplete elliptic functions of the first kind"
* - @ref ellint_2 "ellint_2 - Incomplete elliptic functions of the second kind"
* - @ref ellint_3 "ellint_3 - Incomplete elliptic functions of the third kind"
* - @ref expint "expint - The exponential integral"
* - @ref hermite "hermite - Hermite polynomials"
* - @ref laguerre "laguerre - Laguerre functions"
* - @ref legendre "legendre - Legendre polynomials"
* - @ref riemann_zeta "riemann_zeta - The Riemann zeta function"
* - @ref sph_bessel "sph_bessel - Spherical Bessel functions"
* - @ref sph_legendre "sph_legendre - Spherical Legendre functions"
* - @ref sph_neumann "sph_neumann - Spherical Neumann functions"
*
* The hypergeometric functions were stricken from the TR29124 and C++17
* versions of this math library because of implementation concerns.
* However, since they were in the TR1 version and since they are popular
* we kept them as an extension in namespace @c __gnu_cxx:
* - @ref __gnu_cxx::conf_hyperg "conf_hyperg - Confluent hypergeometric functions"
* - @ref __gnu_cxx::hyperg "hyperg - Hypergeometric functions"
*
* @section general General Features
*
* @subsection promotion Argument Promotion
* The arguments suppled to the non-suffixed functions will be promoted
* according to the following rules:
* 1. If any argument intended to be floating point is given an integral value
* That integral value is promoted to double.
* 2. All floating point arguments are promoted up to the largest floating
* point precision among them.
*
* @subsection NaN NaN Arguments
* If any of the floating point arguments supplied to these functions is
* invalid or NaN (std::numeric_limits<Tp>::quiet_NaN),
* the value NaN is returned.
*
* @section impl Implementation
*
* We strive to implement the underlying math with type generic algorithms
* to the greatest extent possible. In practice, the functions are thin
* wrappers that dispatch to function templates. Type dependence is
* controlled with std::numeric_limits and functions thereof.
*
* We don't promote @c float to @c double or @c double to <tt>long double</tt>
* reflexively. The goal is for @c float functions to operate more quickly,
* at the cost of @c float accuracy and possibly a smaller domain of validity.
* Similaryly, <tt>long double</tt> should give you more dynamic range
* and slightly more pecision than @c double on many systems.
*
* @section testing Testing
*
* These functions have been tested against equivalent implementations
* from the <a href="http://www.gnu.org/software/gsl">
* Gnu Scientific Library, GSL</a> and
* <a href="http://www.boost.org/doc/libs/1_60_0/libs/math/doc/html/index.html>Boost</a>
* and the ratio
* @f[
* \frac{|f - f_{test}|}{|f_{test}|}
* @f]
* is generally found to be within 10^-15 for 64-bit double on linux-x86_64 systems
* over most of the ranges of validity.
*
* @todo Provide accuracy comparisons on a per-function basis for a small
* number of targets.
*
* @section bibliography General Bibliography
*
* @see Abramowitz and Stegun: Handbook of Mathematical Functions,
* with Formulas, Graphs, and Mathematical Tables
* Edited by Milton Abramowitz and Irene A. Stegun,
* National Bureau of Standards Applied Mathematics Series - 55
* Issued June 1964, Tenth Printing, December 1972, with corrections
* Electronic versions of A&S abound including both pdf and navigable html.
* @see for example http://people.math.sfu.ca/~cbm/aands/
*
* @see The old A&S has been redone as the
* NIST Digital Library of Mathematical Functions: http://dlmf.nist.gov/
* This version is far more navigable and includes more recent work.
*
* @see An Atlas of Functions: with Equator, the Atlas Function Calculator
* 2nd Edition, by Oldham, Keith B., Myland, Jan, Spanier, Jerome
*
* @see Asymptotics and Special Functions by Frank W. J. Olver,
* Academic Press, 1974
*
* @see Numerical Recipes in C, The Art of Scientific Computing,
* by William H. Press, Second Ed., Saul A. Teukolsky,
* William T. Vetterling, and Brian P. Flannery,
* Cambridge University Press, 1992
*
* @see The Special Functions and Their Approximations: Volumes 1 and 2,
* by Yudell L. Luke, Academic Press, 1969
*/
// Associated Laguerre polynomials
/**
* Return the associated Laguerre polynomial of order @c n,
* degree @c m: @f$ L_n^m(x) @f$ for @c float argument.
*
* @see assoc_laguerre for more details.
*/
inline float
assoc_laguerref(unsigned int __n, unsigned int __m, float __x)
{ return __detail::__assoc_laguerre<float>(__n, __m, __x); }
/**
* Return the associated Laguerre polynomial of order @c n,
* degree @c m: @f$ L_n^m(x) @f$.
*
* @see assoc_laguerre for more details.
*/
inline long double
assoc_laguerrel(unsigned int __n, unsigned int __m, long double __x)
{ return __detail::__assoc_laguerre<long double>(__n, __m, __x); }
/**
* Return the associated Laguerre polynomial of nonnegative order @c n,
* nonnegative degree @c m and real argument @c x: @f$ L_n^m(x) @f$.
*
* The associated Laguerre function of real degree @f$ \alpha @f$,
* @f$ L_n^\alpha(x) @f$, is defined by
* @f[
* L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
* {}_1F_1(-n; \alpha + 1; x)
* @f]
* where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
* @f$ {}_1F_1(a; c; x) @f$ is the confluent hypergeometric function.
*
* The associated Laguerre polynomial is defined for integral
* degree @f$ \alpha = m @f$ by:
* @f[
* L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
* @f]
* where the Laguerre polynomial is defined by:
* @f[
* L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
* @f]
* and @f$ x >= 0 @f$.
* @see laguerre for details of the Laguerre function of degree @c n
*
* @tparam _Tp The floating-point type of the argument @c __x.
* @param __n The order of the Laguerre function, <tt>__n >= 0</tt>.
* @param __m The degree of the Laguerre function, <tt>__m >= 0</tt>.
* @param __x The argument of the Laguerre function, <tt>__x >= 0</tt>.
* @throw std::domain_error if <tt>__x < 0</tt>.
*/
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__assoc_laguerre<__type>(__n, __m, __x);
}
// Associated Legendre functions
/**
* Return the associated Legendre function of degree @c l and order @c m
* for @c float argument.
*
* @see assoc_legendre for more details.
*/
inline float
assoc_legendref(unsigned int __l, unsigned int __m, float __x)
{ return __detail::__assoc_legendre_p<float>(__l, __m, __x); }
/**
* Return the associated Legendre function of degree @c l and order @c m.
*
* @see assoc_legendre for more details.
*/
inline long double
assoc_legendrel(unsigned int __l, unsigned int __m, long double __x)
{ return __detail::__assoc_legendre_p<long double>(__l, __m, __x); }
/**
* Return the associated Legendre function of degree @c l and order @c m.
*
* The associated Legendre function is derived from the Legendre function
* @f$ P_l(x) @f$ by the Rodrigues formula:
* @f[
* P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x)
* @f]
* @see legendre for details of the Legendre function of degree @c l
*
* @tparam _Tp The floating-point type of the argument @c __x.
* @param __l The degree <tt>__l >= 0</tt>.
* @param __m The order <tt>__m <= l</tt>.
* @param __x The argument, <tt>abs(__x) <= 1</tt>.
* @throw std::domain_error if <tt>abs(__x) > 1</tt>.
*/
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
assoc_legendre(unsigned int __l, unsigned int __m, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__assoc_legendre_p<__type>(__l, __m, __x);
}
// Beta functions
/**
* Return the beta function, @f$ B(a,b) @f$, for @c float parameters @c a, @c b.
*
* @see beta for more details.
*/
inline float
betaf(float __a, float __b)
{ return __detail::__beta<float>(__a, __b); }
/**
* Return the beta function, @f$B(a,b)@f$, for long double
* parameters @c a, @c b.
*
* @see beta for more details.
*/
inline long double
betal(long double __a, long double __b)
{ return __detail::__beta<long double>(__a, __b); }
/**
* Return the beta function, @f$B(a,b)@f$, for real parameters @c a, @c b.
*
* The beta function is defined by
* @f[
* B(a,b) = \int_0^1 t^{a - 1} (1 - t)^{b - 1} dt
* = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}
* @f]
* where @f$ a > 0 @f$ and @f$ b > 0 @f$
*
* @tparam _Tpa The floating-point type of the parameter @c __a.
* @tparam _Tpb The floating-point type of the parameter @c __b.
* @param __a The first argument of the beta function, <tt> __a > 0 </tt>.
* @param __b The second argument of the beta function, <tt> __b > 0 </tt>.
* @throw std::domain_error if <tt> __a < 0 </tt> or <tt> __b < 0 </tt>.
*/
template<typename _Tpa, typename _Tpb>
inline typename __gnu_cxx::__promote_2<_Tpa, _Tpb>::__type
beta(_Tpa __a, _Tpb __b)
{
typedef typename __gnu_cxx::__promote_2<_Tpa, _Tpb>::__type __type;
return __detail::__beta<__type>(__a, __b);
}
// Complete elliptic integrals of the first kind
/**
* Return the complete elliptic integral of the first kind @f$ E(k) @f$
* for @c float modulus @c k.
*
* @see comp_ellint_1 for details.
*/
inline float
comp_ellint_1f(float __k)
{ return __detail::__comp_ellint_1<float>(__k); }
/**
* Return the complete elliptic integral of the first kind @f$ E(k) @f$
* for long double modulus @c k.
*
* @see comp_ellint_1 for details.
*/
inline long double
comp_ellint_1l(long double __k)
{ return __detail::__comp_ellint_1<long double>(__k); }
/**
* Return the complete elliptic integral of the first kind
* @f$ K(k) @f$ for real modulus @c k.
*
* The complete elliptic integral of the first kind is defined as
* @f[
* K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}
* {\sqrt{1 - k^2 sin^2\theta}}
* @f]
* where @f$ F(k,\phi) @f$ is the incomplete elliptic integral of the
* first kind and the modulus @f$ |k| <= 1 @f$.
* @see ellint_1 for details of the incomplete elliptic function
* of the first kind.
*
* @tparam _Tp The floating-point type of the modulus @c __k.
* @param __k The modulus, <tt> abs(__k) <= 1 </tt>
* @throw std::domain_error if <tt> abs(__k) > 1 </tt>.
*/
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
comp_ellint_1(_Tp __k)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__comp_ellint_1<__type>(__k);
}
// Complete elliptic integrals of the second kind
/**
* Return the complete elliptic integral of the second kind @f$ E(k) @f$
* for @c float modulus @c k.
*
* @see comp_ellint_2 for details.
*/
inline float
comp_ellint_2f(float __k)
{ return __detail::__comp_ellint_2<float>(__k); }
/**
* Return the complete elliptic integral of the second kind @f$ E(k) @f$
* for long double modulus @c k.
*
* @see comp_ellint_2 for details.
*/
inline long double
comp_ellint_2l(long double __k)
{ return __detail::__comp_ellint_2<long double>(__k); }
/**
* Return the complete elliptic integral of the second kind @f$ E(k) @f$
* for real modulus @c k.
*
* The complete elliptic integral of the second kind is defined as
* @f[
* E(k) = E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}
* @f]
* where @f$ E(k,\phi) @f$ is the incomplete elliptic integral of the
* second kind and the modulus @f$ |k| <= 1 @f$.
* @see ellint_2 for details of the incomplete elliptic function
* of the second kind.
*
* @tparam _Tp The floating-point type of the modulus @c __k.
* @param __k The modulus, @c abs(__k) <= 1
* @throw std::domain_error if @c abs(__k) > 1.
*/
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
comp_ellint_2(_Tp __k)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__comp_ellint_2<__type>(__k);
}
// Complete elliptic integrals of the third kind
/**
* @brief Return the complete elliptic integral of the third kind
* @f$ \Pi(k,\nu) @f$ for @c float modulus @c k.
*
* @see comp_ellint_3 for details.
*/
inline float
comp_ellint_3f(float __k, float __nu)
{ return __detail::__comp_ellint_3<float>(__k, __nu); }
/**
* @brief Return the complete elliptic integral of the third kind
* @f$ \Pi(k,\nu) @f$ for <tt>long double</tt> modulus @c k.
*
* @see comp_ellint_3 for details.
*/
inline long double
comp_ellint_3l(long double __k, long double __nu)
{ return __detail::__comp_ellint_3<long double>(__k, __nu); }
/**
* Return the complete elliptic integral of the third kind
* @f$ \Pi(k,\nu) = \Pi(k,\nu,\pi/2) @f$ for real modulus @c k.
*
* The complete elliptic integral of the third kind is defined as
* @f[
* \Pi(k,\nu) = \Pi(k,\nu,\pi/2) = \int_0^{\pi/2}
* \frac{d\theta}
* {(1 - \nu \sin^2\theta)\sqrt{1 - k^2 \sin^2\theta}}
* @f]
* where @f$ \Pi(k,\nu,\phi) @f$ is the incomplete elliptic integral of the
* second kind and the modulus @f$ |k| <= 1 @f$.
* @see ellint_3 for details of the incomplete elliptic function
* of the third kind.
*
* @tparam _Tp The floating-point type of the modulus @c __k.
* @tparam _Tpn The floating-point type of the argument @c __nu.
* @param __k The modulus, @c abs(__k) <= 1
* @param __nu The argument
* @throw std::domain_error if @c abs(__k) > 1.
*/
template<typename _Tp, typename _Tpn>
inline typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type
comp_ellint_3(_Tp __k, _Tpn __nu)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type __type;
return __detail::__comp_ellint_3<__type>(__k, __nu);
}
// Regular modified cylindrical Bessel functions
/**
* Return the regular modified Bessel function @f$ I_{\nu}(x) @f$
* for @c float order @f$ \nu @f$ and argument @f$ x >= 0 @f$.
*
* @see cyl_bessel_i for setails.
*/
inline float
cyl_bessel_if(float __nu, float __x)
{ return __detail::__cyl_bessel_i<float>(__nu, __x); }
/**
* Return the regular modified Bessel function @f$ I_{\nu}(x) @f$
* for <tt>long double</tt> order @f$ \nu @f$ and argument @f$ x >= 0 @f$.
*
* @see cyl_bessel_i for setails.
*/
inline long double
cyl_bessel_il(long double __nu, long double __x)
{ return __detail::__cyl_bessel_i<long double>(__nu, __x); }
/**
* Return the regular modified Bessel function @f$ I_{\nu}(x) @f$
* for real order @f$ \nu @f$ and argument @f$ x >= 0 @f$.
*
* The regular modified cylindrical Bessel function is:
* @f[
* I_{\nu}(x) = i^{-\nu}J_\nu(ix) = \sum_{k=0}^{\infty}
* \frac{(x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
* @f]
*
* @tparam _Tpnu The floating-point type of the order @c __nu.
* @tparam _Tp The floating-point type of the argument @c __x.
* @param __nu The order
* @param __x The argument, <tt> __x >= 0 </tt>
* @throw std::domain_error if <tt> __x < 0 </tt>.
*/
template<typename _Tpnu, typename _Tp>
inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
cyl_bessel_i(_Tpnu __nu, _Tp __x)
{
typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
return __detail::__cyl_bessel_i<__type>(__nu, __x);
}
// Cylindrical Bessel functions (of the first kind)
/**
* Return the Bessel function of the first kind @f$ J_{\nu}(x) @f$
* for @c float order @f$ \nu @f$ and argument @f$ x >= 0 @f$.
*
* @see cyl_bessel_j for setails.
*/
inline float
cyl_bessel_jf(float __nu, float __x)
{ return __detail::__cyl_bessel_j<float>(__nu, __x); }
/**
* Return the Bessel function of the first kind @f$ J_{\nu}(x) @f$
* for <tt>long double</tt> order @f$ \nu @f$ and argument @f$ x >= 0 @f$.
*
* @see cyl_bessel_j for setails.
*/
inline long double
cyl_bessel_jl(long double __nu, long double __x)
{ return __detail::__cyl_bessel_j<long double>(__nu, __x); }
/**
* Return the Bessel function @f$ J_{\nu}(x) @f$ of real order @f$ \nu @f$
* and argument @f$ x >= 0 @f$.
*
* The cylindrical Bessel function is:
* @f[
* J_{\nu}(x) = \sum_{k=0}^{\infty}
* \frac{(-1)^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
* @f]
*
* @tparam _Tpnu The floating-point type of the order @c __nu.
* @tparam _Tp The floating-point type of the argument @c __x.
* @param __nu The order
* @param __x The argument, <tt> __x >= 0 </tt>
* @throw std::domain_error if <tt> __x < 0 </tt>.
*/
template<typename _Tpnu, typename _Tp>
inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
cyl_bessel_j(_Tpnu __nu, _Tp __x)
{
typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
return __detail::__cyl_bessel_j<__type>(__nu, __x);
}
// Irregular modified cylindrical Bessel functions
/**
* Return the irregular modified Bessel function @f$ K_{\nu}(x) @f$
* for @c float order @f$ \nu @f$ and argument @f$ x >= 0 @f$.
*
* @see cyl_bessel_k for setails.
*/
inline float
cyl_bessel_kf(float __nu, float __x)
{ return __detail::__cyl_bessel_k<float>(__nu, __x); }
/**
* Return the irregular modified Bessel function @f$ K_{\nu}(x) @f$
* for <tt>long double</tt> order @f$ \nu @f$ and argument @f$ x >= 0 @f$.
*
* @see cyl_bessel_k for setails.
*/
inline long double
cyl_bessel_kl(long double __nu, long double __x)
{ return __detail::__cyl_bessel_k<long double>(__nu, __x); }
/**
* Return the irregular modified Bessel function @f$ K_{\nu}(x) @f$
* of real order @f$ \nu @f$ and argument @f$ x @f$.
*
* The irregular modified Bessel function is defined by:
* @f[
* K_{\nu}(x) = \frac{\pi}{2}
* \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \nu\pi}
* @f]
* where for integral @f$ \nu = n @f$ a limit is taken:
* @f$ lim_{\nu \to n} @f$.
* For negative argument we have simply:
* @f[
* K_{-\nu}(x) = K_{\nu}(x)
* @f]
*
* @tparam _Tpnu The floating-point type of the order @c __nu.
* @tparam _Tp The floating-point type of the argument @c __x.
* @param __nu The order
* @param __x The argument, <tt> __x >= 0 </tt>
* @throw std::domain_error if <tt> __x < 0 </tt>.
*/
template<typename _Tpnu, typename _Tp>
inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
cyl_bessel_k(_Tpnu __nu, _Tp __x)
{
typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
return __detail::__cyl_bessel_k<__type>(__nu, __x);
}
// Cylindrical Neumann functions
/**
* Return the Neumann function @f$ N_{\nu}(x) @f$
* of @c float order @f$ \nu @f$ and argument @f$ x @f$.
*
* @see cyl_neumann for setails.
*/
inline float
cyl_neumannf(float __nu, float __x)
{ return __detail::__cyl_neumann_n<float>(__nu, __x); }
/**
* Return the Neumann function @f$ N_{\nu}(x) @f$
* of <tt>long double</tt> order @f$ \nu @f$ and argument @f$ x @f$.
*
* @see cyl_neumann for setails.
*/
inline long double
cyl_neumannl(long double __nu, long double __x)
{ return __detail::__cyl_neumann_n<long double>(__nu, __x); }
/**
* Return the Neumann function @f$ N_{\nu}(x) @f$
* of real order @f$ \nu @f$ and argument @f$ x >= 0 @f$.
*
* The Neumann function is defined by:
* @f[
* N_{\nu}(x) = \frac{J_{\nu}(x) \cos \nu\pi - J_{-\nu}(x)}
* {\sin \nu\pi}
* @f]
* where @f$ x >= 0 @f$ and for integral order @f$ \nu = n @f$
* a limit is taken: @f$ lim_{\nu \to n} @f$.
*
* @tparam _Tpnu The floating-point type of the order @c __nu.
* @tparam _Tp The floating-point type of the argument @c __x.
* @param __nu The order
* @param __x The argument, <tt> __x >= 0 </tt>
* @throw std::domain_error if <tt> __x < 0 </tt>.
*/
template<typename _Tpnu, typename _Tp>
inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
cyl_neumann(_Tpnu __nu, _Tp __x)
{
typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
return __detail::__cyl_neumann_n<__type>(__nu, __x);
}
// Incomplete elliptic integrals of the first kind
/**
* Return the incomplete elliptic integral of the first kind @f$ E(k,\phi) @f$
* for @c float modulus @f$ k @f$ and angle @f$ \phi @f$.
*
* @see ellint_1 for details.
*/
inline float
ellint_1f(float __k, float __phi)
{ return __detail::__ellint_1<float>(__k, __phi); }
/**
* Return the incomplete elliptic integral of the first kind @f$ E(k,\phi) @f$
* for <tt>long double</tt> modulus @f$ k @f$ and angle @f$ \phi @f$.
*
* @see ellint_1 for details.
*/
inline long double
ellint_1l(long double __k, long double __phi)
{ return __detail::__ellint_1<long double>(__k, __phi); }
/**
* Return the incomplete elliptic integral of the first kind @f$ F(k,\phi) @f$
* for @c real modulus @f$ k @f$ and angle @f$ \phi @f$.
*
* The incomplete elliptic integral of the first kind is defined as
* @f[
* F(k,\phi) = \int_0^{\phi}\frac{d\theta}
* {\sqrt{1 - k^2 sin^2\theta}}
* @f]
* For @f$ \phi= \pi/2 @f$ this becomes the complete elliptic integral of
* the first kind, @f$ K(k) @f$. @see comp_ellint_1.
*
* @tparam _Tp The floating-point type of the modulus @c __k.
* @tparam _Tpp The floating-point type of the angle @c __phi.
* @param __k The modulus, <tt> abs(__k) <= 1 </tt>
* @param __phi The integral limit argument in radians
* @throw std::domain_error if <tt> abs(__k) > 1 </tt>.
*/
template<typename _Tp, typename _Tpp>
inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type
ellint_1(_Tp __k, _Tpp __phi)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type;
return __detail::__ellint_1<__type>(__k, __phi);
}
// Incomplete elliptic integrals of the second kind
/**
* @brief Return the incomplete elliptic integral of the second kind
* @f$ E(k,\phi) @f$ for @c float argument.
*
* @see ellint_2 for details.
*/
inline float
ellint_2f(float __k, float __phi)
{ return __detail::__ellint_2<float>(__k, __phi); }
/**
* @brief Return the incomplete elliptic integral of the second kind
* @f$ E(k,\phi) @f$.
*
* @see ellint_2 for details.
*/
inline long double
ellint_2l(long double __k, long double __phi)
{ return __detail::__ellint_2<long double>(__k, __phi); }
/**
* Return the incomplete elliptic integral of the second kind
* @f$ E(k,\phi) @f$.
*
* The incomplete elliptic integral of the second kind is defined as
* @f[
* E(k,\phi) = \int_0^{\phi} \sqrt{1 - k^2 sin^2\theta}
* @f]
* For @f$ \phi= \pi/2 @f$ this becomes the complete elliptic integral of
* the second kind, @f$ E(k) @f$. @see comp_ellint_2.
*
* @tparam _Tp The floating-point type of the modulus @c __k.
* @tparam _Tpp The floating-point type of the angle @c __phi.
* @param __k The modulus, <tt> abs(__k) <= 1 </tt>
* @param __phi The integral limit argument in radians
* @return The elliptic function of the second kind.
* @throw std::domain_error if <tt> abs(__k) > 1 </tt>.
*/
template<typename _Tp, typename _Tpp>
inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type
ellint_2(_Tp __k, _Tpp __phi)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type;
return __detail::__ellint_2<__type>(__k, __phi);
}
// Incomplete elliptic integrals of the third kind
/**
* @brief Return the incomplete elliptic integral of the third kind
* @f$ \Pi(k,\nu,\phi) @f$ for @c float argument.
*
* @see ellint_3 for details.
*/
inline float
ellint_3f(float __k, float __nu, float __phi)
{ return __detail::__ellint_3<float>(__k, __nu, __phi); }
/**
* @brief Return the incomplete elliptic integral of the third kind
* @f$ \Pi(k,\nu,\phi) @f$.
*
* @see ellint_3 for details.
*/
inline long double
ellint_3l(long double __k, long double __nu, long double __phi)
{ return __detail::__ellint_3<long double>(__k, __nu, __phi); }
/**
* @brief Return the incomplete elliptic integral of the third kind
* @f$ \Pi(k,\nu,\phi) @f$.
*
* The incomplete elliptic integral of the third kind is defined by:
* @f[
* \Pi(k,\nu,\phi) = \int_0^{\phi}
* \frac{d\theta}
* {(1 - \nu \sin^2\theta)
* \sqrt{1 - k^2 \sin^2\theta}}
* @f]
* For @f$ \phi= \pi/2 @f$ this becomes the complete elliptic integral of
* the third kind, @f$ \Pi(k,\nu) @f$. @see comp_ellint_3.
*
* @tparam _Tp The floating-point type of the modulus @c __k.
* @tparam _Tpn The floating-point type of the argument @c __nu.
* @tparam _Tpp The floating-point type of the angle @c __phi.
* @param __k The modulus, <tt> abs(__k) <= 1 </tt>
* @param __nu The second argument
* @param __phi The integral limit argument in radians
* @return The elliptic function of the third kind.
* @throw std::domain_error if <tt> abs(__k) > 1 </tt>.
*/
template<typename _Tp, typename _Tpn, typename _Tpp>
inline typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type
ellint_3(_Tp __k, _Tpn __nu, _Tpp __phi)
{
typedef typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type __type;
return __detail::__ellint_3<__type>(__k, __nu, __phi);
}
// Exponential integrals
/**
* Return the exponential integral @f$ Ei(x) @f$ for @c float argument @c x.
*
* @see expint for details.
*/
inline float
expintf(float __x)
{ return __detail::__expint<float>(__x); }
/**
* Return the exponential integral @f$ Ei(x) @f$
* for <tt>long double</tt> argument @c x.
*
* @see expint for details.
*/
inline long double
expintl(long double __x)
{ return __detail::__expint<long double>(__x); }
/**
* Return the exponential integral @f$ Ei(x) @f$ for @c real argument @c x.
*
* The exponential integral is given by
* \f[
* Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
* \f]
*
* @tparam _Tp The floating-point type of the argument @c __x.
* @param __x The argument of the exponential integral function.
*/
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
expint(_Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__expint<__type>(__x);
}
// Hermite polynomials
/**
* Return the Hermite polynomial @f$ H_n(x) @f$ of nonnegative order n
* and float argument @c x.
*
* @see hermite for details.
*/
inline float
hermitef(unsigned int __n, float __x)
{ return __detail::__poly_hermite<float>(__n, __x); }
/**
* Return the Hermite polynomial @f$ H_n(x) @f$ of nonnegative order n
* and <tt>long double</tt> argument @c x.
*
* @see hermite for details.
*/
inline long double
hermitel(unsigned int __n, long double __x)
{ return __detail::__poly_hermite<long double>(__n, __x); }
/**
* Return the Hermite polynomial @f$ H_n(x) @f$ of order n
* and @c real argument @c x.
*
* The Hermite polynomial is defined by:
* @f[
* H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}
* @f]
*
* The Hermite polynomial obeys a reflection formula:
* @f[
* H_n(-x) = (-1)^n H_n(x)
* @f]
*
* @tparam _Tp The floating-point type of the argument @c __x.
* @param __n The order
* @param __x The argument
*/
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
hermite(unsigned int __n, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__poly_hermite<__type>(__n, __x);
}
// Laguerre polynomials
/**
* Returns the Laguerre polynomial @f$ L_n(x) @f$ of nonnegative degree @c n
* and @c float argument @f$ x >= 0 @f$.
*
* @see laguerre for more details.
*/
inline float
laguerref(unsigned int __n, float __x)
{ return __detail::__laguerre<float>(__n, __x); }
/**
* Returns the Laguerre polynomial @f$ L_n(x) @f$ of nonnegative degree @c n
* and <tt>long double</tt> argument @f$ x >= 0 @f$.
*
* @see laguerre for more details.
*/
inline long double
laguerrel(unsigned int __n, long double __x)
{ return __detail::__laguerre<long double>(__n, __x); }
/**
* Returns the Laguerre polynomial @f$ L_n(x) @f$
* of nonnegative degree @c n and real argument @f$ x >= 0 @f$.
*
* The Laguerre polynomial is defined by:
* @f[
* L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
* @f]
*
* @tparam _Tp The floating-point type of the argument @c __x.
* @param __n The nonnegative order
* @param __x The argument <tt> __x >= 0 </tt>
* @throw std::domain_error if <tt> __x < 0 </tt>.
*/
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
laguerre(unsigned int __n, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__laguerre<__type>(__n, __x);
}
// Legendre polynomials
/**
* Return the Legendre polynomial @f$ P_l(x) @f$ of nonnegative
* degree @f$ l @f$ and @c float argument @f$ |x| <= 0 @f$.
*
* @see legendre for more details.
*/
inline float
legendref(unsigned int __l, float __x)
{ return __detail::__poly_legendre_p<float>(__l, __x); }
/**
* Return the Legendre polynomial @f$ P_l(x) @f$ of nonnegative
* degree @f$ l @f$ and <tt>long double</tt> argument @f$ |x| <= 0 @f$.
*
* @see legendre for more details.
*/
inline long double
legendrel(unsigned int __l, long double __x)
{ return __detail::__poly_legendre_p<long double>(__l, __x); }
/**
* Return the Legendre polynomial @f$ P_l(x) @f$ of nonnegative
* degree @f$ l @f$ and real argument @f$ |x| <= 0 @f$.
*
* The Legendre function of order @f$ l @f$ and argument @f$ x @f$,
* @f$ P_l(x) @f$, is defined by:
* @f[
* P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l}
* @f]
*
* @tparam _Tp The floating-point type of the argument @c __x.
* @param __l The degree @f$ l >= 0 @f$
* @param __x The argument @c abs(__x) <= 1
* @throw std::domain_error if @c abs(__x) > 1
*/
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
legendre(unsigned int __l, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__poly_legendre_p<__type>(__l, __x);
}
// Riemann zeta functions
/**
* Return the Riemann zeta function @f$ \zeta(s) @f$
* for @c float argument @f$ s @f$.
*
* @see riemann_zeta for more details.
*/
inline float
riemann_zetaf(float __s)
{ return __detail::__riemann_zeta<float>(__s); }
/**
* Return the Riemann zeta function @f$ \zeta(s) @f$
* for <tt>long double</tt> argument @f$ s @f$.
*
* @see riemann_zeta for more details.
*/
inline long double
riemann_zetal(long double __s)
{ return __detail::__riemann_zeta<long double>(__s); }
/**
* Return the Riemann zeta function @f$ \zeta(s) @f$
* for real argument @f$ s @f$.
*
* The Riemann zeta function is defined by:
* @f[
* \zeta(s) = \sum_{k=1}^{\infty} k^{-s} \hbox{ for } s > 1
* @f]
* and
* @f[
* \zeta(s) = \frac{1}{1-2^{1-s}}\sum_{k=1}^{\infty}(-1)^{k-1}k^{-s}
* \hbox{ for } 0 <= s <= 1
* @f]
* For s < 1 use the reflection formula:
* @f[
* \zeta(s) = 2^s \pi^{s-1} \sin(\frac{\pi s}{2}) \Gamma(1-s) \zeta(1-s)
* @f]
*
* @tparam _Tp The floating-point type of the argument @c __s.
* @param __s The argument <tt> s != 1 </tt>
*/
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
riemann_zeta(_Tp __s)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__riemann_zeta<__type>(__s);
}
// Spherical Bessel functions
/**
* Return the spherical Bessel function @f$ j_n(x) @f$ of nonnegative order n
* and @c float argument @f$ x >= 0 @f$.
*
* @see sph_bessel for more details.
*/
inline float
sph_besself(unsigned int __n, float __x)
{ return __detail::__sph_bessel<float>(__n, __x); }
/**
* Return the spherical Bessel function @f$ j_n(x) @f$ of nonnegative order n
* and <tt>long double</tt> argument @f$ x >= 0 @f$.
*
* @see sph_bessel for more details.
*/
inline long double
sph_bessell(unsigned int __n, long double __x)
{ return __detail::__sph_bessel<long double>(__n, __x); }
/**
* Return the spherical Bessel function @f$ j_n(x) @f$ of nonnegative order n
* and real argument @f$ x >= 0 @f$.
*
* The spherical Bessel function is defined by:
* @f[
* j_n(x) = \left(\frac{\pi}{2x} \right) ^{1/2} J_{n+1/2}(x)
* @f]
*
* @tparam _Tp The floating-point type of the argument @c __x.
* @param __n The integral order <tt> n >= 0 </tt>
* @param __x The real argument <tt> x >= 0 </tt>
* @throw std::domain_error if <tt> __x < 0 </tt>.
*/
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
sph_bessel(unsigned int __n, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__sph_bessel<__type>(__n, __x);
}
// Spherical associated Legendre functions
/**
* Return the spherical Legendre function of nonnegative integral
* degree @c l and order @c m and float angle @f$ \theta @f$ in radians.
*
* @see sph_legendre for details.
*/
inline float
sph_legendref(unsigned int __l, unsigned int __m, float __theta)
{ return __detail::__sph_legendre<float>(__l, __m, __theta); }
/**
* Return the spherical Legendre function of nonnegative integral
* degree @c l and order @c m and <tt>long double</tt> angle @f$ \theta @f$
* in radians.
*
* @see sph_legendre for details.
*/
inline long double
sph_legendrel(unsigned int __l, unsigned int __m, long double __theta)
{ return __detail::__sph_legendre<long double>(__l, __m, __theta); }
/**
* Return the spherical Legendre function of nonnegative integral
* degree @c l and order @c m and real angle @f$ \theta @f$ in radians.
*
* The spherical Legendre function is defined by
* @f[
* Y_l^m(\theta,\phi) = (-1)^m[\frac{(2l+1)}{4\pi}
* \frac{(l-m)!}{(l+m)!}]
* P_l^m(\cos\theta) \exp^{im\phi}
* @f]
*
* @tparam _Tp The floating-point type of the angle @c __theta.
* @param __l The order <tt> __l >= 0 </tt>
* @param __m The degree <tt> __m >= 0 </tt> and <tt> __m <= __l </tt>
* @param __theta The radian polar angle argument
*/
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__sph_legendre<__type>(__l, __m, __theta);
}
// Spherical Neumann functions
/**
* Return the spherical Neumann function of integral order @f$ n >= 0 @f$
* and @c float argument @f$ x >= 0 @f$.
*
* @see sph_neumann for details.
*/
inline float
sph_neumannf(unsigned int __n, float __x)
{ return __detail::__sph_neumann<float>(__n, __x); }
/**
* Return the spherical Neumann function of integral order @f$ n >= 0 @f$
* and <tt>long double</tt> @f$ x >= 0 @f$.
*
* @see sph_neumann for details.
*/
inline long double
sph_neumannl(unsigned int __n, long double __x)
{ return __detail::__sph_neumann<long double>(__n, __x); }
/**
* Return the spherical Neumann function of integral order @f$ n >= 0 @f$
* and real argument @f$ x >= 0 @f$.
*
* The spherical Neumann function is defined by
* @f[
* n_n(x) = \left(\frac{\pi}{2x} \right) ^{1/2} N_{n+1/2}(x)
* @f]
*
* @tparam _Tp The floating-point type of the argument @c __x.
* @param __n The integral order <tt> n >= 0 </tt>
* @param __x The real argument <tt> __x >= 0 </tt>
* @throw std::domain_error if <tt> __x < 0 </tt>.
*/
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
sph_neumann(unsigned int __n, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__sph_neumann<__type>(__n, __x);
}
// @} group mathsf
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std
#ifndef __STRICT_ANSI__
namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
// Airy functions
/**
* Return the Airy function @f$ Ai(x) @f$ of @c float argument x.
*/
inline float
airy_aif(float __x)
{
float __Ai, __Bi, __Aip, __Bip;
std::__detail::__airy<float>(__x, __Ai, __Bi, __Aip, __Bip);
return __Ai;
}
/**
* Return the Airy function @f$ Ai(x) @f$ of <tt>long double</tt> argument x.
*/
inline long double
airy_ail(long double __x)
{
long double __Ai, __Bi, __Aip, __Bip;
std::__detail::__airy<long double>(__x, __Ai, __Bi, __Aip, __Bip);
return __Ai;
}
/**
* Return the Airy function @f$ Ai(x) @f$ of real argument x.
*/
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
airy_ai(_Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
__type __Ai, __Bi, __Aip, __Bip;
std::__detail::__airy<__type>(__x, __Ai, __Bi, __Aip, __Bip);
return __Ai;
}
/**
* Return the Airy function @f$ Bi(x) @f$ of @c float argument x.
*/
inline float
airy_bif(float __x)
{
float __Ai, __Bi, __Aip, __Bip;
std::__detail::__airy<float>(__x, __Ai, __Bi, __Aip, __Bip);
return __Bi;
}
/**
* Return the Airy function @f$ Bi(x) @f$ of <tt>long double</tt> argument x.
*/
inline long double
airy_bil(long double __x)
{
long double __Ai, __Bi, __Aip, __Bip;
std::__detail::__airy<long double>(__x, __Ai, __Bi, __Aip, __Bip);
return __Bi;
}
/**
* Return the Airy function @f$ Bi(x) @f$ of real argument x.
*/
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
airy_bi(_Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
__type __Ai, __Bi, __Aip, __Bip;
std::__detail::__airy<__type>(__x, __Ai, __Bi, __Aip, __Bip);
return __Bi;
}
// Confluent hypergeometric functions
/**
* Return the confluent hypergeometric function @f$ {}_1F_1(a;c;x) @f$
* of @c float numeratorial parameter @c a, denominatorial parameter @c c,
* and argument @c x.
*
* @see conf_hyperg for details.
*/
inline float
conf_hypergf(float __a, float __c, float __x)
{ return std::__detail::__conf_hyperg<float>(__a, __c, __x); }
/**
* Return the confluent hypergeometric function @f$ {}_1F_1(a;c;x) @f$
* of <tt>long double</tt> numeratorial parameter @c a,
* denominatorial parameter @c c, and argument @c x.
*
* @see conf_hyperg for details.
*/
inline long double
conf_hypergl(long double __a, long double __c, long double __x)
{ return std::__detail::__conf_hyperg<long double>(__a, __c, __x); }
/**
* Return the confluent hypergeometric function @f$ {}_1F_1(a;c;x) @f$
* of real numeratorial parameter @c a, denominatorial parameter @c c,
* and argument @c x.
*
* The confluent hypergeometric function is defined by
* @f[
* {}_1F_1(a;c;x) = \sum_{n=0}^{\infty} \frac{(a)_n x^n}{(c)_n n!}
* @f]
* where the Pochhammer symbol is @f$ (x)_k = (x)(x+1)...(x+k-1) @f$,
* @f$ (x)_0 = 1 @f$
*
* @param __a The numeratorial parameter
* @param __c The denominatorial parameter
* @param __x The argument
*/
template<typename _Tpa, typename _Tpc, typename _Tp>
inline typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type
conf_hyperg(_Tpa __a, _Tpc __c, _Tp __x)
{
typedef typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type __type;
return std::__detail::__conf_hyperg<__type>(__a, __c, __x);
}
// Hypergeometric functions
/**
* Return the hypergeometric function @f$ {}_2F_1(a,b;c;x) @f$
* of @ float numeratorial parameters @c a and @c b,
* denominatorial parameter @c c, and argument @c x.
*
* @see hyperg for details.
*/
inline float
hypergf(float __a, float __b, float __c, float __x)
{ return std::__detail::__hyperg<float>(__a, __b, __c, __x); }
/**
* Return the hypergeometric function @f$ {}_2F_1(a,b;c;x) @f$
* of <tt>long double</tt> numeratorial parameters @c a and @c b,
* denominatorial parameter @c c, and argument @c x.
*
* @see hyperg for details.
*/
inline long double
hypergl(long double __a, long double __b, long double __c, long double __x)
{ return std::__detail::__hyperg<long double>(__a, __b, __c, __x); }
/**
* Return the hypergeometric function @f$ {}_2F_1(a,b;c;x) @f$
* of real numeratorial parameters @c a and @c b,
* denominatorial parameter @c c, and argument @c x.
*
* The hypergeometric function is defined by
* @f[
* {}_2F_1(a;c;x) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n x^n}{(c)_n n!}
* @f]
* where the Pochhammer symbol is @f$ (x)_k = (x)(x+1)...(x+k-1) @f$,
* @f$ (x)_0 = 1 @f$
*
* @param __a The first numeratorial parameter
* @param __b The second numeratorial parameter
* @param __c The denominatorial parameter
* @param __x The argument
*/
template<typename _Tpa, typename _Tpb, typename _Tpc, typename _Tp>
inline typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp>::__type
hyperg(_Tpa __a, _Tpb __b, _Tpc __c, _Tp __x)
{
typedef typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp>
::__type __type;
return std::__detail::__hyperg<__type>(__a, __b, __c, __x);
}
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace __gnu_cxx
#endif // __STRICT_ANSI__
#pragma GCC visibility pop
#endif // _GLIBCXX_BITS_SPECFUN_H
|