1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
|
/* intrinsics.cc -- D language compiler intrinsics.
Copyright (C) 2006-2024 Free Software Foundation, Inc.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "dmd/declaration.h"
#include "dmd/expression.h"
#include "dmd/identifier.h"
#include "dmd/mangle.h"
#include "dmd/module.h"
#include "dmd/template.h"
#include "tm.h"
#include "function.h"
#include "tree.h"
#include "diagnostic.h"
#include "langhooks.h"
#include "fold-const.h"
#include "stringpool.h"
#include "builtins.h"
#include "vec-perm-indices.h"
#include "d-tree.h"
/* An internal struct used to hold information on D intrinsics. */
struct intrinsic_decl
{
/* The DECL_INTRINSIC_CODE of this decl. */
intrinsic_code code;
/* The DECL_FUNCTION_CODE of this decl, if it directly maps to any. */
built_in_function built_in;
/* The name of the intrinsic. */
const char *name;
/* The module where the intrinsic is located. */
const char *module;
/* The mangled signature decoration of the intrinsic. */
const char *deco;
/* True if the intrinsic is only handled in CTFE. */
bool ctfeonly;
/* True if the intrinsic has a library implementation. */
bool fallback;
};
static const intrinsic_decl intrinsic_decls[] =
{
#define DEF_D_INTRINSIC(CODE, BUILTIN, NAME, MODULE, DECO, CTFE, FALLBACK) \
{ CODE, BUILTIN, NAME, MODULE, DECO, CTFE, FALLBACK },
#include "intrinsics.def"
#undef DEF_D_INTRINSIC
};
/* Checks if DECL is an intrinsic or run time library function that requires
special processing. Sets DECL_INTRINSIC_CODE so it can be identified
later in maybe_expand_intrinsic. */
void
maybe_set_intrinsic (FuncDeclaration *decl)
{
if (!decl->ident || decl->builtin != BUILTIN::unknown)
return;
/* The builtin flag is updated only if we can evaluate the intrinsic
at compile-time. Such as the math or bitop intrinsics. */
decl->builtin = BUILTIN::unimp;
/* Check if it's a compiler intrinsic. We only require that any
internally recognised intrinsics are declared in a module with
an explicit module declaration. */
Module *m = decl->getModule ();
if (!m || !m->md)
return;
TemplateInstance *ti = decl->isInstantiated ();
TemplateDeclaration *td = ti ? ti->tempdecl->isTemplateDeclaration () : NULL;
const char *tname = decl->ident->toChars ();
const char *tmodule = m->md->toChars ();
const char *tdeco = (td == NULL) ? decl->type->deco : NULL;
/* Look through all D intrinsics. */
for (size_t i = 0; i < (int) INTRINSIC_LAST; i++)
{
if (!intrinsic_decls[i].name)
continue;
if (strcmp (intrinsic_decls[i].name, tname) != 0
|| strcmp (intrinsic_decls[i].module, tmodule) != 0)
continue;
/* Instantiated functions would have the wrong type deco, get it from the
template member instead. */
if (tdeco == NULL)
{
if (!td || !td->onemember)
return;
FuncDeclaration *fd = td->onemember->isFuncDeclaration ();
if (fd == NULL)
return;
OutBuffer buf;
dmd::mangleToBuffer (fd->type, buf);
tdeco = buf.extractChars ();
}
/* Matching the type deco may be a bit too strict, as it means that all
function attributes that end up in the signature must be kept aligned
between the compiler and library declaration. */
if (strcmp (intrinsic_decls[i].deco, tdeco) == 0)
{
intrinsic_code code = intrinsic_decls[i].code;
if (decl->csym == NULL)
get_symbol_decl (decl);
/* If there is no function body, then the implementation is always
provided by the compiler. */
if (!decl->fbody)
set_decl_built_in_function (decl->csym, BUILT_IN_FRONTEND, code);
/* Infer whether the intrinsic can be used for CTFE, let the
front-end know that it can be evaluated at compile-time. */
switch (code)
{
case INTRINSIC_VA_ARG:
case INTRINSIC_C_VA_ARG:
case INTRINSIC_VASTART:
case INTRINSIC_ADDS:
case INTRINSIC_ADDSL:
case INTRINSIC_ADDU:
case INTRINSIC_ADDUL:
case INTRINSIC_SUBS:
case INTRINSIC_SUBSL:
case INTRINSIC_SUBU:
case INTRINSIC_SUBUL:
case INTRINSIC_MULS:
case INTRINSIC_MULSL:
case INTRINSIC_MULU:
case INTRINSIC_MULUI:
case INTRINSIC_MULUL:
case INTRINSIC_NEGS:
case INTRINSIC_NEGSL:
case INTRINSIC_LOADUNALIGNED:
case INTRINSIC_STOREUNALIGNED:
case INTRINSIC_SHUFFLE:
case INTRINSIC_SHUFFLEVECTOR:
case INTRINSIC_CONVERTVECTOR:
case INTRINSIC_BLENDVECTOR:
case INTRINSIC_VLOAD8:
case INTRINSIC_VLOAD16:
case INTRINSIC_VLOAD32:
case INTRINSIC_VLOAD64:
case INTRINSIC_VSTORE8:
case INTRINSIC_VSTORE16:
case INTRINSIC_VSTORE32:
case INTRINSIC_VSTORE64:
/* Cannot interpret function during CTFE. If the library
provides a definition, its body will be used instead. */
break;
case INTRINSIC_POW:
{
/* Check that this overload of pow() is has an equivalent
built-in function. It could be `int pow(int, int)'. */
tree rettype = TREE_TYPE (TREE_TYPE (decl->csym));
if (mathfn_built_in (rettype, BUILT_IN_POW) != NULL_TREE)
decl->builtin = BUILTIN::gcc;
break;
}
default:
decl->builtin = BUILTIN::gcc;
break;
}
/* The intrinsic was marked as CTFE-only. */
if (intrinsic_decls[i].ctfeonly)
DECL_BUILT_IN_CTFE (decl->csym) = 1;
DECL_INTRINSIC_CODE (decl->csym) = code;
break;
}
}
}
/* Helper function for maybe_warn_intrinsic_mismatch. Issue warning about
mismatch in the EXPECTED return type in call to the intrinsic function in
CALLEXP, and return TRUE. */
static bool
warn_mismatched_return_type (tree callexp, const char *expected)
{
warning_at (EXPR_LOCATION (callexp), OPT_Wbuiltin_declaration_mismatch,
"mismatch in return type of intrinsic function %qD "
"(%qT, should be %qs)", get_callee_fndecl (callexp),
TREE_TYPE (callexp), expected);
return true;
}
/* Helper function for maybe_warn_intrinsic_mismatch. Issue warning or error
about mismatch in the EXPECTED argument type at ARGNO in call to the
intrinsic function in CALLEXP, and return TRUE. */
static bool
warn_mismatched_argument (tree callexp, unsigned argno, const char *expected)
{
warning_at (EXPR_LOCATION (callexp), OPT_Wbuiltin_declaration_mismatch,
"mismatch in argument %u type of intrinsic function %qD "
"(%qT, should be %qs)", argno + 1, get_callee_fndecl (callexp),
TREE_TYPE (CALL_EXPR_ARG (callexp, argno)), expected);
return true;
}
static bool
warn_mismatched_argument (tree callexp, unsigned argno, tree expected,
bool error_p = false)
{
if (error_p)
error_at (EXPR_LOCATION (callexp),
"mismatch in argument %u type of intrinsic function %qD "
"(%qT, should be %qT)", argno + 1, get_callee_fndecl (callexp),
TREE_TYPE (CALL_EXPR_ARG (callexp, argno)), expected);
else
warning_at (EXPR_LOCATION (callexp), OPT_Wbuiltin_declaration_mismatch,
"mismatch in argument %u type of intrinsic function %qD "
"(%qT, should be %qT)", argno + 1, get_callee_fndecl (callexp),
TREE_TYPE (CALL_EXPR_ARG (callexp, argno)), expected);
return true;
}
/* Helper function for maybe_warn_intrinsic_mismatch. Builds a vector integer
type suitable for the mask argument of INTRINSIC_SHUFFLE from the given
input argument TYPE. */
static tree
build_shuffle_mask_type (tree type)
{
const unsigned bits = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (type)));
const int unsignedp = TYPE_UNSIGNED (TREE_TYPE (type));
tree inner = lang_hooks.types.type_for_size (bits, unsignedp);
gcc_assert (inner && TREE_CODE (inner) == INTEGER_TYPE);
/* %% Get the front-end type for the vector so the D type will be
printed (this should really be handled by a D tree printer). */
Type *t = build_frontend_type (inner);
gcc_assert (t != NULL);
unsigned HOST_WIDE_INT nunits = TYPE_VECTOR_SUBPARTS (type).to_constant ();
return build_ctype (TypeVector::create (dmd::sarrayOf (t, nunits)));
}
/* Checks if call to intrinsic FUNCTION in CALLEXP matches the internal
type and value constraints that we expect from the library definitions.
Returns TRUE and issues a warning if there is a mismatch.
Note: The return type and parameters are encoded into the signature `deco'
string that we match on in maybe_set_intrinsic(), so if the deco mangle
string has 'i' in the part that specifies the return type, then the matched
intrinsic will always have the return type `int'.
For templated intrinsics however, we rely on template constraints to ensure
that the generic type matches what we expect it to be. There is still an
enforced relationship between a template argument and its instantiated type.
For example: `T func(T)(T*)' would have the generic return type `@1T' and
generic parameter type `@1PT', so it can be assumed that if the return type
matches what we expect then all parameters are fine as well. Otherwise it
can be assumed that some internal_error has occurred for this to be the case.
Where a templated intrinsic has multiple template arguments, each generic
type will need to be checked for its validity. */
static bool
maybe_warn_intrinsic_mismatch (tree function, tree callexp)
{
switch (DECL_INTRINSIC_CODE (function))
{
case INTRINSIC_NONE:
default:
return false;
case INTRINSIC_LOADUNALIGNED:
{
/* Expects the signature:
vector(T) loadUnaligned (vector(T)*); */
gcc_assert (call_expr_nargs (callexp) == 1);
tree ptr = TREE_TYPE (CALL_EXPR_ARG (callexp, 0));
if (!VECTOR_TYPE_P (TREE_TYPE (callexp))
|| !POINTER_TYPE_P (ptr) || !VECTOR_TYPE_P (TREE_TYPE (ptr)))
return warn_mismatched_return_type (callexp, "__vector(T)");
return false;
}
case INTRINSIC_STOREUNALIGNED:
{
/* Expects the signature:
vector(T) storeUnaligned (vector(T)*, vector(T)); */
gcc_assert (call_expr_nargs (callexp) == 2);
tree ptr = TREE_TYPE (CALL_EXPR_ARG (callexp, 0));
tree val = TREE_TYPE (CALL_EXPR_ARG (callexp, 1));
if (!VECTOR_TYPE_P (TREE_TYPE (callexp))
|| !POINTER_TYPE_P (ptr) || !VECTOR_TYPE_P (TREE_TYPE (ptr))
|| !VECTOR_TYPE_P (val))
return warn_mismatched_return_type (callexp, "__vector(T)");
return false;
}
case INTRINSIC_SHUFFLE:
case INTRINSIC_BLENDVECTOR:
{
/* Expects the signature:
vector(T) shuffle (vector(T), vector(U), vector(V));
vector(T) blendvector (vector(T), vector(U), vector(V)); */
gcc_assert (call_expr_nargs (callexp) == 3);
tree vec0 = TREE_TYPE (CALL_EXPR_ARG (callexp, 0));
if (!VECTOR_TYPE_P (TREE_TYPE (callexp))
|| !VECTOR_TYPE_P (vec0))
return warn_mismatched_return_type (callexp, "__vector(T)");
tree vec1 = TREE_TYPE (CALL_EXPR_ARG (callexp, 1));
if (!VECTOR_TYPE_P (vec1))
return warn_mismatched_argument (callexp, 1, vec0);
tree mask = TREE_TYPE (CALL_EXPR_ARG (callexp, 2));
if (!VECTOR_TYPE_P (mask) || !VECTOR_INTEGER_TYPE_P (mask))
{
tree expected = build_shuffle_mask_type (vec0);
return warn_mismatched_argument (callexp, 2, expected,
VECTOR_TYPE_P (mask));
}
/* Types have been validated, now issue errors about violations on the
constraints of the intrinsic. */
if (TYPE_MAIN_VARIANT (vec0) != TYPE_MAIN_VARIANT (vec1))
return warn_mismatched_argument (callexp, 1, vec0, true);
/* Vector element sizes should be equal between arguments and mask. */
if (GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (vec0)))
!= GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (mask)))
|| maybe_ne (TYPE_VECTOR_SUBPARTS (vec0),
TYPE_VECTOR_SUBPARTS (mask))
|| maybe_ne (TYPE_VECTOR_SUBPARTS (vec1),
TYPE_VECTOR_SUBPARTS (mask)))
{
tree expected = build_shuffle_mask_type (vec0);
return warn_mismatched_argument (callexp, 2, expected, true);
}
return false;
}
case INTRINSIC_SHUFFLEVECTOR:
{
/* Expects the signature:
vector(T[N]) shufflevector (vector(T), vector(U), N...); */
gcc_assert (call_expr_nargs (callexp) >= 3);
gcc_assert (VECTOR_TYPE_P (TREE_TYPE (callexp)));
tree vec0 = TREE_TYPE (CALL_EXPR_ARG (callexp, 0));
if (!VECTOR_TYPE_P (vec0))
return warn_mismatched_argument (callexp, 0, "__vector(T)");
tree vec1 = TREE_TYPE (CALL_EXPR_ARG (callexp, 1));
if (!VECTOR_TYPE_P (vec1))
return warn_mismatched_argument (callexp, 1, vec0);
for (int i = 2; i < call_expr_nargs (callexp); i++)
{
tree idx = TREE_TYPE (CALL_EXPR_ARG (callexp, i));
if (TREE_CODE (idx) != INTEGER_TYPE)
return warn_mismatched_argument (callexp, i, d_int_type);
}
/* Types have been validated, now issue errors about violations on the
constraints of the intrinsic. */
if (TYPE_MAIN_VARIANT (TREE_TYPE (vec0))
!= TYPE_MAIN_VARIANT (TREE_TYPE (vec1)))
{
/* %% Get the front-end type for the vector so the D type will be
printed (this should really be handled by a D tree printer). */
unsigned HOST_WIDE_INT nunits;
if (!TYPE_VECTOR_SUBPARTS (vec1).is_constant (&nunits))
break;
Type *inner = build_frontend_type (TREE_TYPE (vec0));
Type *vector = TypeVector::create (dmd::sarrayOf (inner, nunits));
return warn_mismatched_argument (callexp, 1,
build_ctype (vector), true);
}
/* Vector sizes should be known, and number of indices a power of 2. */
unsigned HOST_WIDE_INT vec0_length;
unsigned HOST_WIDE_INT vec1_length;
if (!TYPE_VECTOR_SUBPARTS (vec0).is_constant (&vec0_length)
|| !TYPE_VECTOR_SUBPARTS (vec1).is_constant (&vec1_length)
|| !pow2p_hwi (call_expr_nargs (callexp) - 2))
break;
/* All index arguments must be valid constants as well. */
for (int i = 2; i < call_expr_nargs (callexp); i++)
{
tree idx = CALL_EXPR_ARG (callexp, i);
if (!tree_fits_shwi_p (idx))
{
error_at (EXPR_LOCATION (callexp),
"argument %qE cannot be read at compile time", idx);
return true;
}
HOST_WIDE_INT iidx = tree_to_shwi (idx);
if (iidx < 0
|| (unsigned HOST_WIDE_INT) iidx >= vec0_length + vec1_length)
{
error_at (EXPR_LOCATION (callexp),
"element index %qE is out of bounds %<[0 .. %E]%>",
idx, build_integer_cst (vec0_length + vec1_length));
return true;
}
}
return false;
}
case INTRINSIC_CONVERTVECTOR:
{
/* Expects the signature:
vector(T) convertvector (vector(U)); */
gcc_assert (call_expr_nargs (callexp) == 1);
tree ret = TREE_TYPE (callexp);
if (!VECTOR_TYPE_P (ret)
|| (!VECTOR_INTEGER_TYPE_P (ret) && !VECTOR_FLOAT_TYPE_P (ret)))
return warn_mismatched_return_type (callexp, "__vector(T)");
tree arg = TREE_TYPE (CALL_EXPR_ARG (callexp, 0));
if (!VECTOR_TYPE_P (arg)
|| (!VECTOR_INTEGER_TYPE_P (arg) && !VECTOR_FLOAT_TYPE_P (arg)))
return warn_mismatched_argument (callexp, 0, "__vector(T)");
/* Types have been validated, now issue errors about violations on the
constraints of the intrinsic. */
if (maybe_ne (TYPE_VECTOR_SUBPARTS (ret), TYPE_VECTOR_SUBPARTS (arg)))
{
/* %% Get the front-end type for the vector so the D type will be
printed (this should really be handled by a D tree printer). */
unsigned HOST_WIDE_INT nunits;
if (!TYPE_VECTOR_SUBPARTS (ret).is_constant (&nunits))
break;
Type *inner = build_frontend_type (TREE_TYPE (arg));
Type *vector = TypeVector::create (dmd::sarrayOf (inner, nunits));
return warn_mismatched_argument (callexp, 0,
build_ctype (vector), true);
}
return false;
}
}
/* Generic mismatch warning if it hasn't already been handled. */
warning_at (EXPR_LOCATION (callexp), OPT_Wbuiltin_declaration_mismatch,
"mismatch in call of intrinsic function %qD", function);
return true;
}
/* Construct a function call to the built-in function CODE, N is the number of
arguments, and the `...' parameters are the argument expressions.
The original call expression is held in CALLEXP. */
static tree
call_builtin_fn (tree callexp, built_in_function code, int n, ...)
{
tree *argarray = XALLOCAVEC (tree, n);
va_list ap;
va_start (ap, n);
for (int i = 0; i < n; i++)
argarray[i] = va_arg (ap, tree);
va_end (ap);
tree exp = build_call_expr_loc_array (EXPR_LOCATION (callexp),
builtin_decl_explicit (code),
n, argarray);
return convert (TREE_TYPE (callexp), fold (exp));
}
/* Expand a front-end instrinsic call to bsf(). This takes one argument,
the signature to which can be either:
int bsf (uint arg);
int bsf (ulong arg);
This scans all bits in the given argument starting with the first,
returning the bit number of the first bit set. The original call
expression is held in CALLEXP. */
static tree
expand_intrinsic_bsf (tree callexp)
{
/* The bsf() intrinsic gets turned into __builtin_ctz(arg).
The return value is supposed to be undefined if arg is zero. */
tree arg = CALL_EXPR_ARG (callexp, 0);
int argsize = TYPE_PRECISION (TREE_TYPE (arg));
/* Which variant of __builtin_ctz* should we call? */
built_in_function code = (argsize <= INT_TYPE_SIZE) ? BUILT_IN_CTZ
: (argsize <= LONG_TYPE_SIZE) ? BUILT_IN_CTZL
: (argsize <= LONG_LONG_TYPE_SIZE) ? BUILT_IN_CTZLL
: END_BUILTINS;
gcc_assert (code != END_BUILTINS);
return call_builtin_fn (callexp, code, 1, arg);
}
/* Expand a front-end instrinsic call to bsr(). This takes one argument,
the signature to which can be either:
int bsr (uint arg);
int bsr (ulong arg);
This scans all bits in the given argument from the most significant bit
to the least significant, returning the bit number of the first bit set.
The original call expression is held in CALLEXP. */
static tree
expand_intrinsic_bsr (tree callexp)
{
/* The bsr() intrinsic gets turned into __builtin_clz(arg) ^ (size - 1).
The return value is supposed to be undefined if arg is zero. */
tree arg = CALL_EXPR_ARG (callexp, 0);
tree type = TREE_TYPE (callexp);
int argsize = TYPE_PRECISION (TREE_TYPE (arg));
/* Which variant of __builtin_clz* should we call? */
built_in_function code = (argsize <= INT_TYPE_SIZE) ? BUILT_IN_CLZ
: (argsize <= LONG_TYPE_SIZE) ? BUILT_IN_CLZL
: (argsize <= LONG_LONG_TYPE_SIZE) ? BUILT_IN_CLZLL
: END_BUILTINS;
gcc_assert (code != END_BUILTINS);
tree result = call_builtin_fn (callexp, code, 1, arg);
return fold_build2 (BIT_XOR_EXPR, type, result,
build_integer_cst (argsize - 1, type));
}
/* Expand a front-end intrinsic call to INTRINSIC, which is either a call to
bt(), btc(), btr(), or bts(). These intrinsics expect to take two arguments,
the signature to which is:
int bt (size_t* ptr, size_t bitnum);
All intrinsics test if a bit is set and return the result of that condition.
Variants of `bt' will then update that bit. `btc' compliments the bit, `bts'
sets the bit, and `btr' resets the bit. The original call expression is
held in CALLEXP. */
static tree
expand_intrinsic_bt (intrinsic_code intrinsic, tree callexp)
{
tree ptr = CALL_EXPR_ARG (callexp, 0);
tree bitnum = CALL_EXPR_ARG (callexp, 1);
tree type = TREE_TYPE (TREE_TYPE (ptr));
/* size_t bitsize = sizeof(*ptr) * BITS_PER_UNIT; */
tree bitsize = fold_convert (type, TYPE_SIZE (TREE_TYPE (ptr)));
/* ptr[bitnum / bitsize] */
ptr = build_pointer_index (ptr, fold_build2 (TRUNC_DIV_EXPR, type,
bitnum, bitsize));
ptr = indirect_ref (type, ptr);
/* mask = 1 << (bitnum % bitsize); */
bitnum = fold_build2 (TRUNC_MOD_EXPR, type, bitnum, bitsize);
bitnum = fold_build2 (LSHIFT_EXPR, type, build_one_cst (type), bitnum);
/* cond = ptr[bitnum / size] & mask; */
tree cond = fold_build2 (BIT_AND_EXPR, type, ptr, bitnum);
/* cond ? -1 : 0; */
cond = build_condition (TREE_TYPE (callexp), d_truthvalue_conversion (cond),
build_minus_one_cst (TREE_TYPE (callexp)),
build_zero_cst (TREE_TYPE (callexp)));
/* Update the bit as needed, only testing the bit for bt(). */
tree_code code;
switch (intrinsic)
{
case INTRINSIC_BT:
case INTRINSIC_BT64:
return cond;
case INTRINSIC_BTC:
case INTRINSIC_BTC64:
code = BIT_XOR_EXPR;
break;
case INTRINSIC_BTR:
case INTRINSIC_BTR64:
bitnum = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (bitnum), bitnum);
code = BIT_AND_EXPR;
break;
case INTRINSIC_BTS:
case INTRINSIC_BTS64:
code = BIT_IOR_EXPR;
break;
default:
gcc_unreachable ();
}
/* ptr[bitnum / size] op= mask; */
ptr = modify_expr (ptr, fold_build2 (code, TREE_TYPE (ptr), ptr, bitnum));
/* Store the condition result in a temporary, and return expressions in
correct order of evaluation. */
tree tmp = build_local_temp (TREE_TYPE (callexp));
cond = modify_expr (tmp, cond);
return compound_expr (cond, compound_expr (ptr, tmp));
}
/* Expand a front-end intrinsic call to popcnt(). This takes one argument, the
signature to which can be either:
int popcnt (uint arg);
int popcnt (ulong arg);
Calculates the number of set bits in an integer. The original call
expression is held in CALLEXP. */
static tree
expand_intrinsic_popcnt (tree callexp)
{
tree arg = CALL_EXPR_ARG (callexp, 0);
int argsize = TYPE_PRECISION (TREE_TYPE (arg));
/* Which variant of __builtin_popcount* should we call? */
built_in_function code = (argsize <= INT_TYPE_SIZE) ? BUILT_IN_POPCOUNT
: (argsize <= LONG_TYPE_SIZE) ? BUILT_IN_POPCOUNTL
: (argsize <= LONG_LONG_TYPE_SIZE) ? BUILT_IN_POPCOUNTLL
: END_BUILTINS;
gcc_assert (code != END_BUILTINS);
return call_builtin_fn (callexp, code, 1, arg);
}
/* Expand a front-end intrinsic call to INTRINSIC, which is either a call to
rol() or ror(). These intrinsics expect to take one or two arguments,
the signature to which can be either:
T rol(T) (const T value, const uint count);
T rol(uint count, T) (const T value);
T ror(T) (const T value, const uint count);
T ror(uint count, T) (const T value);
This bitwise rotates VALUE left or right by COUNT bit positions. */
static tree
expand_intrinsic_rotate (intrinsic_code intrinsic, tree callexp)
{
tree type = TREE_TYPE (callexp);
tree value = CALL_EXPR_ARG (callexp, 0);
tree count;
tree_code code;
/* Get the equivalent tree code for the intrinsic. */
if (intrinsic == INTRINSIC_ROL || intrinsic == INTRINSIC_ROL_TIARG)
code = LROTATE_EXPR;
else if (intrinsic == INTRINSIC_ROR || intrinsic == INTRINSIC_ROR_TIARG)
code = RROTATE_EXPR;
else
gcc_unreachable ();
/* Get the COUNT parameter. Either from the call expression arguments or the
template instantiation arguments. */
if (intrinsic == INTRINSIC_ROL || intrinsic == INTRINSIC_ROR)
count = CALL_EXPR_ARG (callexp, 1);
else
{
/* Retrieve from the encoded template instantation. */
tree callee = get_callee_fndecl (callexp);
TemplateInstance *ti = DECL_LANG_FRONTEND (callee)->isInstantiated ();
gcc_assert (ti && ti->tiargs && ti->tiargs->length == 2);
Expression *e = dmd::isExpression ((*ti->tiargs)[0]);
gcc_assert (e && e->op == EXP::int64);
count = build_expr (e, true);
}
return fold_build2 (code, type, value, count);
}
/* Expand a front-end intrinsic call to copysign(). This takes two arguments,
the signature to which can be either:
float copysign (T to, float from);
double copysign (T to, double from);
real copysign (T to, real from);
This computes a value composed of TO with the sign bit of FROM. The original
call expression is held in CALLEXP. */
static tree
expand_intrinsic_copysign (tree callexp)
{
tree to = CALL_EXPR_ARG (callexp, 0);
tree from = CALL_EXPR_ARG (callexp, 1);
tree type = TREE_TYPE (to);
/* Convert parameters to the same type. Prefer the first parameter unless it
is an integral type. */
if (INTEGRAL_TYPE_P (type))
{
to = fold_convert (TREE_TYPE (from), to);
type = TREE_TYPE (to);
}
else
from = fold_convert (type, from);
/* Which variant of __builtin_copysign* should we call? */
built_in_function code = (type == float_type_node) ? BUILT_IN_COPYSIGNF
: (type == double_type_node) ? BUILT_IN_COPYSIGN
: (type == long_double_type_node) ? BUILT_IN_COPYSIGNL
: END_BUILTINS;
gcc_assert (code != END_BUILTINS);
return call_builtin_fn (callexp, code, 2, to, from);
}
/* Expand a front-end intrinsic call to pow(). This takes two arguments, the
signature to which can be either:
float pow (float base, T exponent);
double pow (double base, T exponent);
real pow (real base, T exponent);
This computes the value of BASE raised to the power of EXPONENT.
The original call expression is held in CALLEXP. */
static tree
expand_intrinsic_pow (tree callexp)
{
tree base = CALL_EXPR_ARG (callexp, 0);
tree exponent = CALL_EXPR_ARG (callexp, 1);
tree exptype = TREE_TYPE (exponent);
/* Which variant of __builtin_pow* should we call? */
built_in_function code = SCALAR_FLOAT_TYPE_P (exptype) ? BUILT_IN_POW
: INTEGRAL_TYPE_P (exptype) ? BUILT_IN_POWI
: END_BUILTINS;
gcc_assert (code != END_BUILTINS);
tree builtin = mathfn_built_in (TREE_TYPE (base), code);
gcc_assert (builtin != NULL_TREE);
return call_builtin_fn (callexp, DECL_FUNCTION_CODE (builtin), 2,
base, exponent);
}
/* Expand a front-end intrinsic call to toPrec(). This takes one argument, the
signature to which can be either:
T toPrec(T)(float f);
T toPrec(T)(double f);
T toPrec(T)(real f);
This rounds the argument F to the precision of the specified floating
point type T. The original call expression is held in CALLEXP. */
static tree
expand_intrinsic_toprec (tree callexp)
{
tree f = CALL_EXPR_ARG (callexp, 0);
tree type = TREE_TYPE (callexp);
return convert (type, f);
}
/* Expand a front-end intrinsic call to va_arg(). This takes either one or two
arguments, the signature to which can be either:
T va_arg(T) (ref va_list ap);
void va_arg(T) (va_list ap, ref T parmn);
This retrieves the next variadic parameter that is type T from the given
va_list. If also given, store the value into parmn, otherwise return it.
The original call expression is held in CALLEXP. */
static tree
expand_intrinsic_vaarg (tree callexp)
{
tree ap = CALL_EXPR_ARG (callexp, 0);
tree parmn = NULL_TREE;
tree type;
STRIP_NOPS (ap);
if (call_expr_nargs (callexp) == 1)
type = TREE_TYPE (callexp);
else
{
parmn = CALL_EXPR_ARG (callexp, 1);
STRIP_NOPS (parmn);
/* The `ref' argument to va_arg is either an address or reference,
get the value of it. */
if (TREE_CODE (parmn) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (parmn)))
parmn = build_deref (parmn);
else
{
gcc_assert (TREE_CODE (parmn) == ADDR_EXPR);
parmn = TREE_OPERAND (parmn, 0);
}
type = TREE_TYPE (parmn);
}
/* (T) VA_ARG_EXP<ap>; */
tree exp = build1_loc (EXPR_LOCATION (callexp), VA_ARG_EXPR, type, ap);
/* parmn = (T) VA_ARG_EXP<ap>; */
if (parmn != NULL_TREE)
exp = modify_expr (parmn, exp);
return exp;
}
/* Expand a front-end intrinsic call to va_start(), which takes two arguments,
the signature to which is:
void va_start(T) (out va_list ap, ref T parmn);
This initializes the va_list type, where parmn should be the last named
parameter. The original call expression is held in CALLEXP. */
static tree
expand_intrinsic_vastart (tree callexp)
{
tree ap = CALL_EXPR_ARG (callexp, 0);
tree parmn = CALL_EXPR_ARG (callexp, 1);
STRIP_NOPS (ap);
STRIP_NOPS (parmn);
/* The va_list argument should already have its address taken. The second
argument, however, is inout and that needs to be fixed to prevent a
warning. Could be casting, so need to check type too? */
gcc_assert (TREE_CODE (ap) == ADDR_EXPR
|| (TREE_CODE (ap) == PARM_DECL
&& POINTER_TYPE_P (TREE_TYPE (ap))));
/* Assuming nobody tries to change the return type. */
if (TREE_CODE (parmn) != PARM_DECL)
{
gcc_assert (TREE_CODE (parmn) == ADDR_EXPR);
parmn = TREE_OPERAND (parmn, 0);
}
return call_builtin_fn (callexp, BUILT_IN_VA_START, 2, ap, parmn);
}
/* Expand a front-end instrinsic call to INTRINSIC, which is either a call to
adds(), addu(), subs(), subu(), negs(), muls(), or mulu(). These intrinsics
expect to take two or three arguments, the signature to which can be either:
int adds (int x, int y, ref bool overflow);
long adds (long x, long y, ref bool overflow);
int negs (int x, ref bool overflow);
long negs (long x, ref bool overflow);
This performs an operation on two signed or unsigned integers, checking for
overflow. The overflow is sticky, meaning that a sequence of operations
can be done and overflow need only be checked at the end. The original call
expression is held in CALLEXP. */
static tree
expand_intrinsic_checkedint (intrinsic_code intrinsic, tree callexp)
{
tree type = TREE_TYPE (callexp);
tree x;
tree y;
tree overflow;
internal_fn icode;
/* Which variant of *_OVERFLOW should we generate? */
switch (intrinsic)
{
case INTRINSIC_ADDS:
case INTRINSIC_ADDSL:
case INTRINSIC_ADDU:
case INTRINSIC_ADDUL:
x = CALL_EXPR_ARG (callexp, 0);
y = CALL_EXPR_ARG (callexp, 1);
overflow = CALL_EXPR_ARG (callexp, 2);
icode = IFN_ADD_OVERFLOW;
break;
case INTRINSIC_SUBS:
case INTRINSIC_SUBSL:
case INTRINSIC_SUBU:
case INTRINSIC_SUBUL:
x = CALL_EXPR_ARG (callexp, 0);
y = CALL_EXPR_ARG (callexp, 1);
overflow = CALL_EXPR_ARG (callexp, 2);
icode = IFN_SUB_OVERFLOW;
break;
case INTRINSIC_MULS:
case INTRINSIC_MULSL:
case INTRINSIC_MULU:
case INTRINSIC_MULUI:
case INTRINSIC_MULUL:
x = CALL_EXPR_ARG (callexp, 0);
y = CALL_EXPR_ARG (callexp, 1);
overflow = CALL_EXPR_ARG (callexp, 2);
icode = IFN_MUL_OVERFLOW;
break;
case INTRINSIC_NEGS:
case INTRINSIC_NEGSL:
/* The negs() intrinsic gets turned into SUB_OVERFLOW (0, y). */
x = fold_convert (type, integer_zero_node);
y = CALL_EXPR_ARG (callexp, 0);
overflow = CALL_EXPR_ARG (callexp, 1);
icode = IFN_SUB_OVERFLOW;
break;
default:
gcc_unreachable ();
}
tree result
= build_call_expr_internal_loc (EXPR_LOCATION (callexp), icode,
build_complex_type (type), 2, x, y);
STRIP_NOPS (overflow);
overflow = build_deref (overflow);
/* Assign returned result to overflow parameter, however if overflow is
already true, maintain its value. */
type = TREE_TYPE (overflow);
result = save_expr (result);
tree exp = fold_build2 (BIT_IOR_EXPR, type, overflow,
fold_convert (type, imaginary_part (result)));
exp = modify_expr (overflow, exp);
/* Return the value of result. */
return compound_expr (exp, real_part (result));
}
/* Expand a front-end instrinsic call to volatileLoad(). This takes one
argument, the signature to which can be either:
ubyte volatileLoad (ubyte* ptr);
ushort volatileLoad (ushort* ptr);
uint volatileLoad (uint* ptr);
ulong volatileLoad (ulong* ptr);
This reads a value from the memory location indicated by ptr. Calls to
them are be guaranteed to not be removed (such as during DCE) or reordered
in the same thread. The original call expression is held in CALLEXP. */
static tree
expand_volatile_load (tree callexp)
{
tree ptr = CALL_EXPR_ARG (callexp, 0);
tree ptrtype = TREE_TYPE (ptr);
gcc_assert (POINTER_TYPE_P (ptrtype));
/* (T) *(volatile T *) ptr; */
tree type = build_qualified_type (TREE_TYPE (ptrtype), TYPE_QUAL_VOLATILE);
tree result = indirect_ref (type, ptr);
TREE_THIS_VOLATILE (result) = 1;
TREE_SIDE_EFFECTS (result) = 1;
return result;
}
/* Expand a front-end instrinsic call to volatileStore(). This takes two
arguments, the signature to which can be either:
void volatileStore (ubyte* ptr, ubyte value);
void volatileStore (ushort* ptr, ushort value);
void volatileStore (uint* ptr, uint value);
void volatileStore (ulong* ptr, ulong value);
This writes a value to the memory location indicated by ptr. Calls to
them are be guaranteed to not be removed (such as during DCE) or reordered
in the same thread. The original call expression is held in CALLEXP. */
static tree
expand_volatile_store (tree callexp)
{
tree ptr = CALL_EXPR_ARG (callexp, 0);
tree ptrtype = TREE_TYPE (ptr);
gcc_assert (POINTER_TYPE_P (ptrtype));
/* (T) *(volatile T *) ptr; */
tree type = build_qualified_type (TREE_TYPE (ptrtype), TYPE_QUAL_VOLATILE);
tree result = indirect_ref (type, ptr);
TREE_THIS_VOLATILE (result) = 1;
TREE_SIDE_EFFECTS (result) = 1;
/* (*(volatile T *) ptr) = value; */
tree value = CALL_EXPR_ARG (callexp, 1);
return modify_expr (result, value);
}
/* Expand a front-end instrinsic call to convertvector(). This takes one
argument, the signature to which is:
vector(T) convertvector (vector(F) vec);
This converts a vector VEC to TYPE by casting every element in VEC to the
element type of TYPE. The original call expression is held in CALLEXP. */
static tree
expand_intrinsic_vec_convert (tree callexp)
{
tree vec = CALL_EXPR_ARG (callexp, 0);
tree type = TREE_TYPE (callexp);
/* Use VIEW_CONVERT for simple vector conversions. */
if ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (vec)))
== TYPE_MAIN_VARIANT (TREE_TYPE (type)))
|| (VECTOR_INTEGER_TYPE_P (TREE_TYPE (vec))
&& VECTOR_INTEGER_TYPE_P (type)
&& (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (vec)))
== TYPE_PRECISION (TREE_TYPE (type)))))
return build1_loc (EXPR_LOCATION (callexp), VIEW_CONVERT_EXPR, type, vec);
return build_call_expr_internal_loc (EXPR_LOCATION (callexp), IFN_VEC_CONVERT,
type, 1, vec);
}
/* Expand a front-end instrinsic call to blendvector(). This expects to take
three arguments, the signature to which is:
vector(T) blendvector (vector(T) vec0, vector(U) vec1, vector(M) mask);
This builds a VEC_COND_EXPR if VEC0, VEC1, and MASK are vector types, VEC0
has the same type as VEC1, and the number of elements of VEC0, VEC1, and MASK
are the same. The original call expression is held in CALLEXP. */
static tree
expand_intrinsic_vec_blend (tree callexp)
{
tree vec0 = CALL_EXPR_ARG (callexp, 0);
tree vec1 = CALL_EXPR_ARG (callexp, 1);
tree mask = CALL_EXPR_ARG (callexp, 2);
tree cmp = fold_build2_loc (EXPR_LOCATION (callexp), NE_EXPR,
truth_type_for (TREE_TYPE (mask)),
mask, build_zero_cst (TREE_TYPE (mask)));
tree ret = fold_build3_loc (EXPR_LOCATION (callexp), VEC_COND_EXPR,
TREE_TYPE (callexp), cmp, vec0, vec1);
if (!CONSTANT_CLASS_P (vec0) || !CONSTANT_CLASS_P (vec1))
ret = force_target_expr (ret);
return ret;
}
/* Expand a front-end instrinsic call to shuffle(). This expects to take three
arguments, the signature to which is:
vector(T) shuffle (vector(T) vec0, vector(T) vec1, vector(M) mask);
This builds a VEC_PERM_EXPR if VEC0, VEC1, and MASK are vector types, VEC0
has the same type as VEC1, and the number of elements of VEC0, VEC1, and MASK
are the same. The original call expression is held in CALLEXP. */
static tree
expand_intrinsic_vec_shuffle (tree callexp)
{
tree vec0 = CALL_EXPR_ARG (callexp, 0);
tree vec1 = CALL_EXPR_ARG (callexp, 1);
tree mask = CALL_EXPR_ARG (callexp, 2);
return build3_loc (EXPR_LOCATION (callexp), VEC_PERM_EXPR,
TREE_TYPE (callexp), vec0, vec1, mask);
}
/* Expand a front-end instrinsic call to shufflevector(). This takes two
positional arguments and a variadic list, the signature to which is:
vector(TM) shuffle (vector(T) vec1, vector(T) vec2, index...);
This builds a VEC_PERM_EXPR if VEC0 and VEC1 are vector types, VEC0 has the
same element type as VEC1, and the number of elements in INDEX is a valid
power of two. The original call expression is held in CALLEXP. */
static tree
expand_intrinsic_vec_shufflevector (tree callexp)
{
tree vec0 = CALL_EXPR_ARG (callexp, 0);
tree vec1 = CALL_EXPR_ARG (callexp, 1);
unsigned HOST_WIDE_INT v0elems =
TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec0)).to_constant ();
unsigned HOST_WIDE_INT v1elems =
TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec1)).to_constant ();
unsigned HOST_WIDE_INT num_indices = call_expr_nargs (callexp) - 2;
unsigned HOST_WIDE_INT masklen = MAX (num_indices, MAX (v0elems, v1elems));
unsigned HOST_WIDE_INT pad_size = (v0elems < masklen ? masklen - v0elems : 0);
vec_perm_builder sel (masklen, masklen, 1);
unsigned n = 0;
for (; n < num_indices; ++n)
{
tree idx = CALL_EXPR_ARG (callexp, n + 2);
HOST_WIDE_INT iidx = tree_to_shwi (idx);
/* VEC_PERM_EXPR does not allow different sized inputs. */
if ((unsigned HOST_WIDE_INT) iidx >= v0elems)
iidx += pad_size;
sel.quick_push (iidx);
}
/* VEC_PERM_EXPR does not support a result that is smaller than the inputs. */
for (; n < masklen; ++n)
sel.quick_push (n);
vec_perm_indices indices (sel, 2, masklen);
/* Pad out arguments to the common vector size. */
tree ret_type = build_vector_type (TREE_TYPE (TREE_TYPE (vec0)), masklen);
if (v0elems < masklen)
{
constructor_elt elt = { NULL_TREE, build_zero_cst (TREE_TYPE (vec0)) };
vec0 = build_constructor_single (ret_type, NULL_TREE, vec0);
for (unsigned i = 1; i < masklen / v0elems; ++i)
vec_safe_push (CONSTRUCTOR_ELTS (vec0), elt);
}
if (v1elems < masklen)
{
constructor_elt elt = { NULL_TREE, build_zero_cst (TREE_TYPE (vec1)) };
vec1 = build_constructor_single (ret_type, NULL_TREE, vec1);
for (unsigned i = 1; i < masklen / v1elems; ++i)
vec_safe_push (CONSTRUCTOR_ELTS (vec1), elt);
}
tree mask_type = build_vector_type (build_nonstandard_integer_type
(TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (ret_type))), 1),
masklen);
tree ret = build3_loc (EXPR_LOCATION (callexp), VEC_PERM_EXPR, ret_type, vec0,
vec1, vec_perm_indices_to_tree (mask_type, indices));
/* Get the low part we are interested in. */
if (num_indices < masklen)
{
ret = build3_loc (EXPR_LOCATION (callexp), BIT_FIELD_REF,
TREE_TYPE (callexp), ret,
TYPE_SIZE (TREE_TYPE (callexp)), bitsize_zero_node);
/* Wrap the low part operation in a TARGET_EXPR so it gets a separate
temporary during gimplification. */
ret = force_target_expr (ret);
}
return ret;
}
/* Expand a front-end instrinsic call to loadUnaligned(). This takes one
argument, the signature to which is:
vector(T) loadUnaligned (vector(T)* ptr)
This generates a load of a vector from an unaligned address PTR.
The original call expression is held in CALLEXP. */
static tree
expand_intrinsic_vec_load_unaligned (tree callexp)
{
tree ptr = CALL_EXPR_ARG (callexp, 0);
tree unaligned_type = build_variant_type_copy (TREE_TYPE (TREE_TYPE (ptr)));
SET_TYPE_ALIGN (unaligned_type, 1 * BITS_PER_UNIT);
TYPE_USER_ALIGN (unaligned_type) = 1;
tree load = indirect_ref (unaligned_type, ptr);
return convert (TREE_TYPE (callexp), load);
}
/* Expand a front-end instrinsic call to storeUnaligned(). This takes two
arguments, the signature to which is:
vector(T) storeUnaligned (vector(T)* ptr, vector(T) value)
This generates an assignment of a vector VALUE to an unaligned address PTR.
The original call expression is held in CALLEXP. */
static tree
expand_intrinsic_vec_store_unaligned (tree callexp)
{
tree ptr = CALL_EXPR_ARG (callexp, 0);
tree vec = CALL_EXPR_ARG (callexp, 1);
tree unaligned_type = build_variant_type_copy (TREE_TYPE (TREE_TYPE (ptr)));
SET_TYPE_ALIGN (unaligned_type, 1 * BITS_PER_UNIT);
TYPE_USER_ALIGN (unaligned_type) = 1;
tree load = indirect_ref (unaligned_type, ptr);
return build_assign (MODIFY_EXPR, load, vec);
}
/* If CALLEXP is for an intrinsic , expand and return inlined compiler
generated instructions. Most map directly to GCC builtins, others
require a little extra work around them. */
tree
maybe_expand_intrinsic (tree callexp)
{
tree callee = get_callee_fndecl (callexp);
if (callee == NULL_TREE || TREE_CODE (callee) != FUNCTION_DECL)
return callexp;
/* Don't expand CTFE-only intrinsics outside of semantic processing. */
if (DECL_BUILT_IN_CTFE (callee) && !doing_semantic_analysis_p)
return callexp;
/* Gate the expansion of the intrinsic with constraint checks, if any fail
then bail out without any lowering. */
if (maybe_warn_intrinsic_mismatch (callee, callexp))
{
/* Reset the built-in flag so that we don't trip fold_builtin. */
set_decl_built_in_function (callee, NOT_BUILT_IN, 0);
return callexp;
}
intrinsic_code intrinsic = DECL_INTRINSIC_CODE (callee);
built_in_function code;
switch (intrinsic)
{
case INTRINSIC_NONE:
return callexp;
case INTRINSIC_BSF:
case INTRINSIC_BSF64:
return expand_intrinsic_bsf (callexp);
case INTRINSIC_BSR:
case INTRINSIC_BSR64:
return expand_intrinsic_bsr (callexp);
case INTRINSIC_BT:
case INTRINSIC_BT64:
case INTRINSIC_BTC:
case INTRINSIC_BTC64:
case INTRINSIC_BTR:
case INTRINSIC_BTR64:
case INTRINSIC_BTS:
case INTRINSIC_BTS64:
return expand_intrinsic_bt (intrinsic, callexp);
case INTRINSIC_POPCNT32:
case INTRINSIC_POPCNT64:
return expand_intrinsic_popcnt (callexp);
case INTRINSIC_ROL:
case INTRINSIC_ROL_TIARG:
case INTRINSIC_ROR:
case INTRINSIC_ROR_TIARG:
return expand_intrinsic_rotate (intrinsic, callexp);
case INTRINSIC_BSWAP16:
case INTRINSIC_BSWAP32:
case INTRINSIC_BSWAP64:
case INTRINSIC_CEIL:
case INTRINSIC_CEILF:
case INTRINSIC_CEILL:
case INTRINSIC_COS:
case INTRINSIC_COSF:
case INTRINSIC_COSL:
case INTRINSIC_EXP:
case INTRINSIC_EXP2:
case INTRINSIC_EXPM1:
case INTRINSIC_FABS:
case INTRINSIC_FABSF:
case INTRINSIC_FABSL:
case INTRINSIC_FLOOR:
case INTRINSIC_FLOORF:
case INTRINSIC_FLOORL:
case INTRINSIC_ISFINITE:
case INTRINSIC_ISINFINITY:
case INTRINSIC_ISNAN:
case INTRINSIC_LOG:
case INTRINSIC_LOG10:
case INTRINSIC_LOG2:
case INTRINSIC_RINT:
case INTRINSIC_RINTF:
case INTRINSIC_RINTL:
case INTRINSIC_RNDTOL:
case INTRINSIC_RNDTOLF:
case INTRINSIC_RNDTOLL:
case INTRINSIC_ROUND:
case INTRINSIC_SIN:
case INTRINSIC_SINF:
case INTRINSIC_SINL:
case INTRINSIC_SQRT:
case INTRINSIC_SQRTF:
case INTRINSIC_SQRTL:
case INTRINSIC_TAN:
case INTRINSIC_TRUNC:
code = intrinsic_decls[intrinsic].built_in;
gcc_assert (code != BUILT_IN_NONE);
return call_builtin_fn (callexp, code, 1,
CALL_EXPR_ARG (callexp, 0));
case INTRINSIC_FMAX:
case INTRINSIC_FMIN:
case INTRINSIC_LDEXP:
case INTRINSIC_LDEXPF:
case INTRINSIC_LDEXPL:
code = intrinsic_decls[intrinsic].built_in;
gcc_assert (code != BUILT_IN_NONE);
return call_builtin_fn (callexp, code, 2,
CALL_EXPR_ARG (callexp, 0),
CALL_EXPR_ARG (callexp, 1));
case INTRINSIC_FMA:
code = intrinsic_decls[intrinsic].built_in;
gcc_assert (code != BUILT_IN_NONE);
return call_builtin_fn (callexp, code, 3,
CALL_EXPR_ARG (callexp, 0),
CALL_EXPR_ARG (callexp, 1),
CALL_EXPR_ARG (callexp, 2));
case INTRINSIC_COPYSIGN:
case INTRINSIC_COPYSIGNI:
return expand_intrinsic_copysign (callexp);
case INTRINSIC_POW:
return expand_intrinsic_pow (callexp);
case INTRINSIC_TOPREC:
case INTRINSIC_TOPRECF:
case INTRINSIC_TOPRECL:
return expand_intrinsic_toprec (callexp);
case INTRINSIC_VA_ARG:
case INTRINSIC_C_VA_ARG:
return expand_intrinsic_vaarg (callexp);
case INTRINSIC_VASTART:
return expand_intrinsic_vastart (callexp);
case INTRINSIC_ADDS:
case INTRINSIC_ADDSL:
case INTRINSIC_ADDU:
case INTRINSIC_ADDUL:
case INTRINSIC_SUBS:
case INTRINSIC_SUBSL:
case INTRINSIC_SUBU:
case INTRINSIC_SUBUL:
case INTRINSIC_MULS:
case INTRINSIC_MULSL:
case INTRINSIC_MULU:
case INTRINSIC_MULUI:
case INTRINSIC_MULUL:
case INTRINSIC_NEGS:
case INTRINSIC_NEGSL:
return expand_intrinsic_checkedint (intrinsic, callexp);
case INTRINSIC_VLOAD8:
case INTRINSIC_VLOAD16:
case INTRINSIC_VLOAD32:
case INTRINSIC_VLOAD64:
return expand_volatile_load (callexp);
case INTRINSIC_VSTORE8:
case INTRINSIC_VSTORE16:
case INTRINSIC_VSTORE32:
case INTRINSIC_VSTORE64:
return expand_volatile_store (callexp);
case INTRINSIC_LOADUNALIGNED:
return expand_intrinsic_vec_load_unaligned (callexp);
case INTRINSIC_STOREUNALIGNED:
return expand_intrinsic_vec_store_unaligned (callexp);
case INTRINSIC_SHUFFLE:
return expand_intrinsic_vec_shuffle (callexp);
case INTRINSIC_SHUFFLEVECTOR:
return expand_intrinsic_vec_shufflevector (callexp);
case INTRINSIC_CONVERTVECTOR:
return expand_intrinsic_vec_convert (callexp);
case INTRINSIC_BLENDVECTOR:
return expand_intrinsic_vec_blend (callexp);
default:
gcc_unreachable ();
}
}
/* If FNDECL is an intrinsic, return the FUNCTION_DECL that has a library
fallback implementation of it, otherwise raise an error. */
tree
maybe_reject_intrinsic (tree fndecl)
{
gcc_assert (TREE_CODE (fndecl) == FUNCTION_DECL);
intrinsic_code intrinsic = DECL_INTRINSIC_CODE (fndecl);
if (intrinsic == INTRINSIC_NONE)
{
/* Not an intrinsic, but it still might be a declaration from the
`gcc.builtins' module. */
if (fndecl_built_in_p (fndecl) && DECL_IS_UNDECLARED_BUILTIN (fndecl)
&& !DECL_ASSEMBLER_NAME_SET_P (fndecl))
error ("built-in function %qE must be directly called", fndecl);
return fndecl;
}
/* Nothing to do if the intrinsic has a D library implementation. */
if (intrinsic_decls[intrinsic].fallback)
return fndecl;
/* Check the GCC built-in decl if the intrinsic maps to one. */
built_in_function code = intrinsic_decls[intrinsic].built_in;
if (code != BUILT_IN_NONE)
{
tree builtin = builtin_decl_explicit (code);
if (!DECL_IS_UNDECLARED_BUILTIN (builtin)
|| DECL_ASSEMBLER_NAME_SET_P (builtin))
return builtin;
}
/* It's a D language intrinsic with no library implementation. */
error ("intrinsic function %qE must be directly called", fndecl);
return fndecl;
}
|