1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
/* Copyright (C) 2009-2015 Free Software Foundation, Inc.
This file is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your option)
any later version.
This file is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include <spu_intrinsics.h>
vector double __divv2df3 (vector double a_in, vector double b_in);
/* __divv2df3 divides the vector dividend a by the vector divisor b and
returns the resulting vector quotient. Maximum error about 0.5 ulp
over entire double range including denorms, compared to true result
in round-to-nearest rounding mode. Handles Inf or NaN operands and
results correctly. */
vector double
__divv2df3 (vector double a_in, vector double b_in)
{
/* Variables */
vec_int4 exp, exp_bias;
vec_uint4 no_underflow, overflow;
vec_float4 mant_bf, inv_bf;
vec_ullong2 exp_a, exp_b;
vec_ullong2 a_nan, a_zero, a_inf, a_denorm, a_denorm0;
vec_ullong2 b_nan, b_zero, b_inf, b_denorm, b_denorm0;
vec_ullong2 nan;
vec_uint4 a_exp, b_exp;
vec_ullong2 a_mant_0, b_mant_0;
vec_ullong2 a_exp_1s, b_exp_1s;
vec_ullong2 sign_exp_mask;
vec_double2 a, b;
vec_double2 mant_a, mant_b, inv_b, q0, q1, q2, mult;
/* Constants */
vec_uint4 exp_mask_u32 = spu_splats((unsigned int)0x7FF00000);
vec_uchar16 splat_hi = (vec_uchar16){0,1,2,3, 0,1,2,3, 8, 9,10,11, 8,9,10,11};
vec_uchar16 swap_32 = (vec_uchar16){4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
vec_ullong2 exp_mask = spu_splats(0x7FF0000000000000ULL);
vec_ullong2 sign_mask = spu_splats(0x8000000000000000ULL);
vec_float4 onef = spu_splats(1.0f);
vec_double2 one = spu_splats(1.0);
vec_double2 exp_53 = (vec_double2)spu_splats(0x0350000000000000ULL);
sign_exp_mask = spu_or(sign_mask, exp_mask);
/* Extract the floating point components from each of the operands including
* exponent and mantissa.
*/
a_exp = (vec_uint4)spu_and((vec_uint4)a_in, exp_mask_u32);
a_exp = spu_shuffle(a_exp, a_exp, splat_hi);
b_exp = (vec_uint4)spu_and((vec_uint4)b_in, exp_mask_u32);
b_exp = spu_shuffle(b_exp, b_exp, splat_hi);
a_mant_0 = (vec_ullong2)spu_cmpeq((vec_uint4)spu_andc((vec_ullong2)a_in, sign_exp_mask), 0);
a_mant_0 = spu_and(a_mant_0, spu_shuffle(a_mant_0, a_mant_0, swap_32));
b_mant_0 = (vec_ullong2)spu_cmpeq((vec_uint4)spu_andc((vec_ullong2)b_in, sign_exp_mask), 0);
b_mant_0 = spu_and(b_mant_0, spu_shuffle(b_mant_0, b_mant_0, swap_32));
a_exp_1s = (vec_ullong2)spu_cmpeq(a_exp, exp_mask_u32);
b_exp_1s = (vec_ullong2)spu_cmpeq(b_exp, exp_mask_u32);
/* Identify all possible special values that must be accommodated including:
* +-denorm, +-0, +-infinity, and NaNs.
*/
a_denorm0= (vec_ullong2)spu_cmpeq(a_exp, 0);
a_nan = spu_andc(a_exp_1s, a_mant_0);
a_zero = spu_and (a_denorm0, a_mant_0);
a_inf = spu_and (a_exp_1s, a_mant_0);
a_denorm = spu_andc(a_denorm0, a_zero);
b_denorm0= (vec_ullong2)spu_cmpeq(b_exp, 0);
b_nan = spu_andc(b_exp_1s, b_mant_0);
b_zero = spu_and (b_denorm0, b_mant_0);
b_inf = spu_and (b_exp_1s, b_mant_0);
b_denorm = spu_andc(b_denorm0, b_zero);
/* Scale denorm inputs to into normalized numbers by conditionally scaling the
* input parameters.
*/
a = spu_sub(spu_or(a_in, exp_53), spu_sel(exp_53, a_in, sign_mask));
a = spu_sel(a_in, a, a_denorm);
b = spu_sub(spu_or(b_in, exp_53), spu_sel(exp_53, b_in, sign_mask));
b = spu_sel(b_in, b, b_denorm);
/* Extract the divisor and dividend exponent and force parameters into the signed
* range [1.0,2.0) or [-1.0,2.0).
*/
exp_a = spu_and((vec_ullong2)a, exp_mask);
exp_b = spu_and((vec_ullong2)b, exp_mask);
mant_a = spu_sel(a, one, (vec_ullong2)exp_mask);
mant_b = spu_sel(b, one, (vec_ullong2)exp_mask);
/* Approximate the single reciprocal of b by using
* the single precision reciprocal estimate followed by one
* single precision iteration of Newton-Raphson.
*/
mant_bf = spu_roundtf(mant_b);
inv_bf = spu_re(mant_bf);
inv_bf = spu_madd(spu_nmsub(mant_bf, inv_bf, onef), inv_bf, inv_bf);
/* Perform 2 more Newton-Raphson iterations in double precision. The
* result (q1) is in the range (0.5, 2.0).
*/
inv_b = spu_extend(inv_bf);
inv_b = spu_madd(spu_nmsub(mant_b, inv_b, one), inv_b, inv_b);
q0 = spu_mul(mant_a, inv_b);
q1 = spu_madd(spu_nmsub(mant_b, q0, mant_a), inv_b, q0);
/* Determine the exponent correction factor that must be applied
* to q1 by taking into account the exponent of the normalized inputs
* and the scale factors that were applied to normalize them.
*/
exp = spu_rlmaska(spu_sub((vec_int4)exp_a, (vec_int4)exp_b), -20);
exp = spu_add(exp, (vec_int4)spu_add(spu_and((vec_int4)a_denorm, -0x34), spu_and((vec_int4)b_denorm, 0x34)));
/* Bias the quotient exponent depending on the sign of the exponent correction
* factor so that a single multiplier will ensure the entire double precision
* domain (including denorms) can be achieved.
*
* exp bias q1 adjust exp
* ===== ======== ==========
* positive 2^+65 -65
* negative 2^-64 +64
*/
exp_bias = spu_xor(spu_rlmaska(exp, -31), 64);
exp = spu_sub(exp, exp_bias);
q1 = spu_sel(q1, (vec_double2)spu_add((vec_int4)q1, spu_sl(exp_bias, 20)), exp_mask);
/* Compute a multiplier (mult) to applied to the quotient (q1) to produce the
* expected result. On overflow, clamp the multiplier to the maximum non-infinite
* number in case the rounding mode is not round-to-nearest.
*/
exp = spu_add(exp, 0x3FF);
no_underflow = spu_cmpgt(exp, 0);
overflow = spu_cmpgt(exp, 0x7FE);
exp = spu_and(spu_sl(exp, 20), (vec_int4)no_underflow);
exp = spu_and(exp, (vec_int4)exp_mask);
mult = spu_sel((vec_double2)exp, (vec_double2)(spu_add((vec_uint4)exp_mask, -1)), (vec_ullong2)overflow);
/* Handle special value conditions. These include:
*
* 1) IF either operand is a NaN OR both operands are 0 or INFINITY THEN a NaN
* results.
* 2) ELSE IF the dividend is an INFINITY OR the divisor is 0 THEN a INFINITY results.
* 3) ELSE IF the dividend is 0 OR the divisor is INFINITY THEN a 0 results.
*/
mult = spu_andc(mult, (vec_double2)spu_or(a_zero, b_inf));
mult = spu_sel(mult, (vec_double2)exp_mask, spu_or(a_inf, b_zero));
nan = spu_or(a_nan, b_nan);
nan = spu_or(nan, spu_and(a_zero, b_zero));
nan = spu_or(nan, spu_and(a_inf, b_inf));
mult = spu_or(mult, (vec_double2)nan);
/* Scale the final quotient */
q2 = spu_mul(q1, mult);
return (q2);
}
/* We use the same function for vector and scalar division. Provide the
scalar entry point as an alias. */
double __divdf3 (double a, double b)
__attribute__ ((__alias__ ("__divv2df3")));
/* Some toolchain builds used the __fast_divdf3 name for this helper function.
Provide this as another alternate entry point for compatibility. */
double __fast_divdf3 (double a, double b)
__attribute__ ((__alias__ ("__divv2df3")));
|