1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
/* Implementation of the MATMUL intrinsic
Copyright (C) 2002-2015 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#if defined (HAVE_GFC_LOGICAL_16)
/* Dimensions: retarray(x,y) a(x, count) b(count,y).
Either a or b can be rank 1. In this case x or y is 1. */
extern void matmul_l16 (gfc_array_l16 * const restrict,
gfc_array_l1 * const restrict, gfc_array_l1 * const restrict);
export_proto(matmul_l16);
void
matmul_l16 (gfc_array_l16 * const restrict retarray,
gfc_array_l1 * const restrict a, gfc_array_l1 * const restrict b)
{
const GFC_LOGICAL_1 * restrict abase;
const GFC_LOGICAL_1 * restrict bbase;
GFC_LOGICAL_16 * restrict dest;
index_type rxstride;
index_type rystride;
index_type xcount;
index_type ycount;
index_type xstride;
index_type ystride;
index_type x;
index_type y;
int a_kind;
int b_kind;
const GFC_LOGICAL_1 * restrict pa;
const GFC_LOGICAL_1 * restrict pb;
index_type astride;
index_type bstride;
index_type count;
index_type n;
assert (GFC_DESCRIPTOR_RANK (a) == 2
|| GFC_DESCRIPTOR_RANK (b) == 2);
if (retarray->base_addr == NULL)
{
if (GFC_DESCRIPTOR_RANK (a) == 1)
{
GFC_DIMENSION_SET(retarray->dim[0], 0,
GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
}
else if (GFC_DESCRIPTOR_RANK (b) == 1)
{
GFC_DIMENSION_SET(retarray->dim[0], 0,
GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
}
else
{
GFC_DIMENSION_SET(retarray->dim[0], 0,
GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
GFC_DIMENSION_SET(retarray->dim[1], 0,
GFC_DESCRIPTOR_EXTENT(b,1) - 1,
GFC_DESCRIPTOR_EXTENT(retarray,0));
}
retarray->base_addr
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_LOGICAL_16));
retarray->offset = 0;
}
else if (unlikely (compile_options.bounds_check))
{
index_type ret_extent, arg_extent;
if (GFC_DESCRIPTOR_RANK (a) == 1)
{
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
if (arg_extent != ret_extent)
runtime_error ("Incorrect extent in return array in"
" MATMUL intrinsic: is %ld, should be %ld",
(long int) ret_extent, (long int) arg_extent);
}
else if (GFC_DESCRIPTOR_RANK (b) == 1)
{
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
if (arg_extent != ret_extent)
runtime_error ("Incorrect extent in return array in"
" MATMUL intrinsic: is %ld, should be %ld",
(long int) ret_extent, (long int) arg_extent);
}
else
{
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
if (arg_extent != ret_extent)
runtime_error ("Incorrect extent in return array in"
" MATMUL intrinsic for dimension 1:"
" is %ld, should be %ld",
(long int) ret_extent, (long int) arg_extent);
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
if (arg_extent != ret_extent)
runtime_error ("Incorrect extent in return array in"
" MATMUL intrinsic for dimension 2:"
" is %ld, should be %ld",
(long int) ret_extent, (long int) arg_extent);
}
}
abase = a->base_addr;
a_kind = GFC_DESCRIPTOR_SIZE (a);
if (a_kind == 1 || a_kind == 2 || a_kind == 4 || a_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| a_kind == 16
#endif
)
abase = GFOR_POINTER_TO_L1 (abase, a_kind);
else
internal_error (NULL, "Funny sized logical array");
bbase = b->base_addr;
b_kind = GFC_DESCRIPTOR_SIZE (b);
if (b_kind == 1 || b_kind == 2 || b_kind == 4 || b_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| b_kind == 16
#endif
)
bbase = GFOR_POINTER_TO_L1 (bbase, b_kind);
else
internal_error (NULL, "Funny sized logical array");
dest = retarray->base_addr;
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
{
rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
rystride = rxstride;
}
else
{
rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
}
/* If we have rank 1 parameters, zero the absent stride, and set the size to
one. */
if (GFC_DESCRIPTOR_RANK (a) == 1)
{
astride = GFC_DESCRIPTOR_STRIDE_BYTES(a,0);
count = GFC_DESCRIPTOR_EXTENT(a,0);
xstride = 0;
rxstride = 0;
xcount = 1;
}
else
{
astride = GFC_DESCRIPTOR_STRIDE_BYTES(a,1);
count = GFC_DESCRIPTOR_EXTENT(a,1);
xstride = GFC_DESCRIPTOR_STRIDE_BYTES(a,0);
xcount = GFC_DESCRIPTOR_EXTENT(a,0);
}
if (GFC_DESCRIPTOR_RANK (b) == 1)
{
bstride = GFC_DESCRIPTOR_STRIDE_BYTES(b,0);
assert(count == GFC_DESCRIPTOR_EXTENT(b,0));
ystride = 0;
rystride = 0;
ycount = 1;
}
else
{
bstride = GFC_DESCRIPTOR_STRIDE_BYTES(b,0);
assert(count == GFC_DESCRIPTOR_EXTENT(b,0));
ystride = GFC_DESCRIPTOR_STRIDE_BYTES(b,1);
ycount = GFC_DESCRIPTOR_EXTENT(b,1);
}
for (y = 0; y < ycount; y++)
{
for (x = 0; x < xcount; x++)
{
/* Do the summation for this element. For real and integer types
this is the same as DOT_PRODUCT. For complex types we use do
a*b, not conjg(a)*b. */
pa = abase;
pb = bbase;
*dest = 0;
for (n = 0; n < count; n++)
{
if (*pa && *pb)
{
*dest = 1;
break;
}
pa += astride;
pb += bstride;
}
dest += rxstride;
abase += xstride;
}
abase -= xstride * xcount;
bbase += ystride;
dest += rystride - (rxstride * xcount);
}
}
#endif
|