1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as
// defined in FIPS 186-3.
package ecdsa
// References:
// [NSA]: Suite B implementer's guide to FIPS 186-3,
// http://www.nsa.gov/ia/_files/ecdsa.pdf
// [SECG]: SECG, SEC1
// http://www.secg.org/download/aid-780/sec1-v2.pdf
import (
"crypto"
"crypto/elliptic"
"encoding/asn1"
"io"
"math/big"
)
// PublicKey represents an ECDSA public key.
type PublicKey struct {
elliptic.Curve
X, Y *big.Int
}
// PrivateKey represents a ECDSA private key.
type PrivateKey struct {
PublicKey
D *big.Int
}
type ecdsaSignature struct {
R, S *big.Int
}
// Public returns the public key corresponding to priv.
func (priv *PrivateKey) Public() crypto.PublicKey {
return &priv.PublicKey
}
// Sign signs msg with priv, reading randomness from rand. This method is
// intended to support keys where the private part is kept in, for example, a
// hardware module. Common uses should use the Sign function in this package
// directly.
func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) {
r, s, err := Sign(rand, priv, msg)
if err != nil {
return nil, err
}
return asn1.Marshal(ecdsaSignature{r, s})
}
var one = new(big.Int).SetInt64(1)
// randFieldElement returns a random element of the field underlying the given
// curve using the procedure given in [NSA] A.2.1.
func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
params := c.Params()
b := make([]byte, params.BitSize/8+8)
_, err = io.ReadFull(rand, b)
if err != nil {
return
}
k = new(big.Int).SetBytes(b)
n := new(big.Int).Sub(params.N, one)
k.Mod(k, n)
k.Add(k, one)
return
}
// GenerateKey generates a public and private key pair.
func GenerateKey(c elliptic.Curve, rand io.Reader) (priv *PrivateKey, err error) {
k, err := randFieldElement(c, rand)
if err != nil {
return
}
priv = new(PrivateKey)
priv.PublicKey.Curve = c
priv.D = k
priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
return
}
// hashToInt converts a hash value to an integer. There is some disagreement
// about how this is done. [NSA] suggests that this is done in the obvious
// manner, but [SECG] truncates the hash to the bit-length of the curve order
// first. We follow [SECG] because that's what OpenSSL does. Additionally,
// OpenSSL right shifts excess bits from the number if the hash is too large
// and we mirror that too.
func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
orderBits := c.Params().N.BitLen()
orderBytes := (orderBits + 7) / 8
if len(hash) > orderBytes {
hash = hash[:orderBytes]
}
ret := new(big.Int).SetBytes(hash)
excess := len(hash)*8 - orderBits
if excess > 0 {
ret.Rsh(ret, uint(excess))
}
return ret
}
// fermatInverse calculates the inverse of k in GF(P) using Fermat's method.
// This has better constant-time properties than Euclid's method (implemented
// in math/big.Int.ModInverse) although math/big itself isn't strictly
// constant-time so it's not perfect.
func fermatInverse(k, N *big.Int) *big.Int {
two := big.NewInt(2)
nMinus2 := new(big.Int).Sub(N, two)
return new(big.Int).Exp(k, nMinus2, N)
}
// Sign signs an arbitrary length hash (which should be the result of hashing a
// larger message) using the private key, priv. It returns the signature as a
// pair of integers. The security of the private key depends on the entropy of
// rand.
func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
// See [NSA] 3.4.1
c := priv.PublicKey.Curve
N := c.Params().N
var k, kInv *big.Int
for {
for {
k, err = randFieldElement(c, rand)
if err != nil {
r = nil
return
}
kInv = fermatInverse(k, N)
r, _ = priv.Curve.ScalarBaseMult(k.Bytes())
r.Mod(r, N)
if r.Sign() != 0 {
break
}
}
e := hashToInt(hash, c)
s = new(big.Int).Mul(priv.D, r)
s.Add(s, e)
s.Mul(s, kInv)
s.Mod(s, N)
if s.Sign() != 0 {
break
}
}
return
}
// Verify verifies the signature in r, s of hash using the public key, pub. Its
// return value records whether the signature is valid.
func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
// See [NSA] 3.4.2
c := pub.Curve
N := c.Params().N
if r.Sign() == 0 || s.Sign() == 0 {
return false
}
if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
return false
}
e := hashToInt(hash, c)
w := new(big.Int).ModInverse(s, N)
u1 := e.Mul(e, w)
u1.Mod(u1, N)
u2 := w.Mul(r, w)
u2.Mod(u2, N)
x1, y1 := c.ScalarBaseMult(u1.Bytes())
x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes())
x, y := c.Add(x1, y1, x2, y2)
if x.Sign() == 0 && y.Sign() == 0 {
return false
}
x.Mod(x, N)
return x.Cmp(r) == 0
}
|