1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package net
import (
"os"
"syscall"
"unsafe"
)
// If the ifindex is zero, interfaceTable returns mappings of all
// network interfaces. Otherwise it returns a mapping of a specific
// interface.
func interfaceTable(ifindex int) ([]Interface, error) {
tab, err := syscall.NetlinkRIB(syscall.RTM_GETLINK, syscall.AF_UNSPEC)
if err != nil {
return nil, os.NewSyscallError("netlink rib", err)
}
msgs, err := syscall.ParseNetlinkMessage(tab)
if err != nil {
return nil, os.NewSyscallError("netlink message", err)
}
var ift []Interface
loop:
for _, m := range msgs {
switch m.Header.Type {
case syscall.NLMSG_DONE:
break loop
case syscall.RTM_NEWLINK:
ifim := (*syscall.IfInfomsg)(unsafe.Pointer(&m.Data[0]))
if ifindex == 0 || ifindex == int(ifim.Index) {
attrs, err := syscall.ParseNetlinkRouteAttr(&m)
if err != nil {
return nil, os.NewSyscallError("netlink routeattr", err)
}
ift = append(ift, *newLink(ifim, attrs))
if ifindex == int(ifim.Index) {
break loop
}
}
}
}
return ift, nil
}
const (
// See linux/if_arp.h.
// Note that Linux doesn't support IPv4 over IPv6 tunneling.
sysARPHardwareIPv4IPv4 = 768 // IPv4 over IPv4 tunneling
sysARPHardwareIPv6IPv6 = 769 // IPv6 over IPv6 tunneling
sysARPHardwareIPv6IPv4 = 776 // IPv6 over IPv4 tunneling
sysARPHardwareGREIPv4 = 778 // any over GRE over IPv4 tunneling
sysARPHardwareGREIPv6 = 823 // any over GRE over IPv6 tunneling
)
func newLink(ifim *syscall.IfInfomsg, attrs []syscall.NetlinkRouteAttr) *Interface {
ifi := &Interface{Index: int(ifim.Index), Flags: linkFlags(ifim.Flags)}
for _, a := range attrs {
switch a.Attr.Type {
case syscall.IFLA_ADDRESS:
// We never return any /32 or /128 IP address
// prefix on any IP tunnel interface as the
// hardware address.
switch len(a.Value) {
case IPv4len:
switch ifim.Type {
case sysARPHardwareIPv4IPv4, sysARPHardwareGREIPv4, sysARPHardwareIPv6IPv4:
continue
}
case IPv6len:
switch ifim.Type {
case sysARPHardwareIPv6IPv6, sysARPHardwareGREIPv6:
continue
}
}
var nonzero bool
for _, b := range a.Value {
if b != 0 {
nonzero = true
break
}
}
if nonzero {
ifi.HardwareAddr = a.Value[:]
}
case syscall.IFLA_IFNAME:
ifi.Name = string(a.Value[:len(a.Value)-1])
case syscall.IFLA_MTU:
ifi.MTU = int(*(*uint32)(unsafe.Pointer(&a.Value[:4][0])))
}
}
return ifi
}
func linkFlags(rawFlags uint32) Flags {
var f Flags
if rawFlags&syscall.IFF_UP != 0 {
f |= FlagUp
}
if rawFlags&syscall.IFF_BROADCAST != 0 {
f |= FlagBroadcast
}
if rawFlags&syscall.IFF_LOOPBACK != 0 {
f |= FlagLoopback
}
if rawFlags&syscall.IFF_POINTOPOINT != 0 {
f |= FlagPointToPoint
}
if rawFlags&syscall.IFF_MULTICAST != 0 {
f |= FlagMulticast
}
return f
}
// If the ifi is nil, interfaceAddrTable returns addresses for all
// network interfaces. Otherwise it returns addresses for a specific
// interface.
func interfaceAddrTable(ifi *Interface) ([]Addr, error) {
tab, err := syscall.NetlinkRIB(syscall.RTM_GETADDR, syscall.AF_UNSPEC)
if err != nil {
return nil, os.NewSyscallError("netlink rib", err)
}
msgs, err := syscall.ParseNetlinkMessage(tab)
if err != nil {
return nil, os.NewSyscallError("netlink message", err)
}
var ift []Interface
if ifi == nil {
var err error
ift, err = interfaceTable(0)
if err != nil {
return nil, err
}
}
ifat, err := addrTable(ift, ifi, msgs)
if err != nil {
return nil, err
}
return ifat, nil
}
func addrTable(ift []Interface, ifi *Interface, msgs []syscall.NetlinkMessage) ([]Addr, error) {
var ifat []Addr
loop:
for _, m := range msgs {
switch m.Header.Type {
case syscall.NLMSG_DONE:
break loop
case syscall.RTM_NEWADDR:
ifam := (*syscall.IfAddrmsg)(unsafe.Pointer(&m.Data[0]))
if len(ift) != 0 || ifi.Index == int(ifam.Index) {
if len(ift) != 0 {
var err error
ifi, err = interfaceByIndex(ift, int(ifam.Index))
if err != nil {
return nil, err
}
}
attrs, err := syscall.ParseNetlinkRouteAttr(&m)
if err != nil {
return nil, os.NewSyscallError("netlink routeattr", err)
}
ifa := newAddr(ifi, ifam, attrs)
if ifa != nil {
ifat = append(ifat, ifa)
}
}
}
}
return ifat, nil
}
func newAddr(ifi *Interface, ifam *syscall.IfAddrmsg, attrs []syscall.NetlinkRouteAttr) Addr {
var ipPointToPoint bool
// Seems like we need to make sure whether the IP interface
// stack consists of IP point-to-point numbered or unnumbered
// addressing over point-to-point link encapsulation.
if ifi.Flags&FlagPointToPoint != 0 {
for _, a := range attrs {
if a.Attr.Type == syscall.IFA_LOCAL {
ipPointToPoint = true
break
}
}
}
for _, a := range attrs {
if ipPointToPoint && a.Attr.Type == syscall.IFA_ADDRESS || !ipPointToPoint && a.Attr.Type == syscall.IFA_LOCAL {
continue
}
switch ifam.Family {
case syscall.AF_INET:
return &IPNet{IP: IPv4(a.Value[0], a.Value[1], a.Value[2], a.Value[3]), Mask: CIDRMask(int(ifam.Prefixlen), 8*IPv4len)}
case syscall.AF_INET6:
ifa := &IPNet{IP: make(IP, IPv6len), Mask: CIDRMask(int(ifam.Prefixlen), 8*IPv6len)}
copy(ifa.IP, a.Value[:])
return ifa
}
}
return nil
}
// interfaceMulticastAddrTable returns addresses for a specific
// interface.
func interfaceMulticastAddrTable(ifi *Interface) ([]Addr, error) {
ifmat4 := parseProcNetIGMP("/proc/net/igmp", ifi)
ifmat6 := parseProcNetIGMP6("/proc/net/igmp6", ifi)
return append(ifmat4, ifmat6...), nil
}
func parseProcNetIGMP(path string, ifi *Interface) []Addr {
fd, err := open(path)
if err != nil {
return nil
}
defer fd.close()
var (
ifmat []Addr
name string
)
fd.readLine() // skip first line
b := make([]byte, IPv4len)
for l, ok := fd.readLine(); ok; l, ok = fd.readLine() {
f := splitAtBytes(l, " :\r\t\n")
if len(f) < 4 {
continue
}
switch {
case l[0] != ' ' && l[0] != '\t': // new interface line
name = f[1]
case len(f[0]) == 8:
if ifi == nil || name == ifi.Name {
// The Linux kernel puts the IP
// address in /proc/net/igmp in native
// endianness.
for i := 0; i+1 < len(f[0]); i += 2 {
b[i/2], _ = xtoi2(f[0][i:i+2], 0)
}
i := *(*uint32)(unsafe.Pointer(&b[:4][0]))
ifma := IPAddr{IP: IPv4(byte(i>>24), byte(i>>16), byte(i>>8), byte(i))}
ifmat = append(ifmat, ifma.toAddr())
}
}
}
return ifmat
}
func parseProcNetIGMP6(path string, ifi *Interface) []Addr {
fd, err := open(path)
if err != nil {
return nil
}
defer fd.close()
var ifmat []Addr
b := make([]byte, IPv6len)
for l, ok := fd.readLine(); ok; l, ok = fd.readLine() {
f := splitAtBytes(l, " \r\t\n")
if len(f) < 6 {
continue
}
if ifi == nil || f[1] == ifi.Name {
for i := 0; i+1 < len(f[2]); i += 2 {
b[i/2], _ = xtoi2(f[2][i:i+2], 0)
}
ifma := IPAddr{IP: IP{b[0], b[1], b[2], b[3], b[4], b[5], b[6], b[7], b[8], b[9], b[10], b[11], b[12], b[13], b[14], b[15]}}
ifmat = append(ifmat, ifma.toAddr())
}
}
return ifmat
}
|