1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime_test
import (
"math"
"math/rand"
. "runtime"
"testing"
)
// turn uint64 op into float64 op
func fop(f func(x, y uint64) uint64) func(x, y float64) float64 {
return func(x, y float64) float64 {
bx := math.Float64bits(x)
by := math.Float64bits(y)
return math.Float64frombits(f(bx, by))
}
}
func add(x, y float64) float64 { return x + y }
func sub(x, y float64) float64 { return x - y }
func mul(x, y float64) float64 { return x * y }
func div(x, y float64) float64 { return x / y }
func TestFloat64(t *testing.T) {
base := []float64{
0,
math.Copysign(0, -1),
-1,
1,
math.NaN(),
math.Inf(+1),
math.Inf(-1),
0.1,
1.5,
1.9999999999999998, // all 1s mantissa
1.3333333333333333, // 1.010101010101...
1.1428571428571428, // 1.001001001001...
1.112536929253601e-308, // first normal
2,
4,
8,
16,
32,
64,
128,
256,
3,
12,
1234,
123456,
-0.1,
-1.5,
-1.9999999999999998,
-1.3333333333333333,
-1.1428571428571428,
-2,
-3,
1e-200,
1e-300,
1e-310,
5e-324,
1e-105,
1e-305,
1e+200,
1e+306,
1e+307,
1e+308,
}
all := make([]float64, 200)
copy(all, base)
for i := len(base); i < len(all); i++ {
all[i] = rand.NormFloat64()
}
test(t, "+", add, fop(Fadd64), all)
test(t, "-", sub, fop(Fsub64), all)
if GOARCH != "386" { // 386 is not precise!
test(t, "*", mul, fop(Fmul64), all)
test(t, "/", div, fop(Fdiv64), all)
}
}
// 64 -hw-> 32 -hw-> 64
func trunc32(f float64) float64 {
return float64(float32(f))
}
// 64 -sw->32 -hw-> 64
func to32sw(f float64) float64 {
return float64(math.Float32frombits(F64to32(math.Float64bits(f))))
}
// 64 -hw->32 -sw-> 64
func to64sw(f float64) float64 {
return math.Float64frombits(F32to64(math.Float32bits(float32(f))))
}
// float64 -hw-> int64 -hw-> float64
func hwint64(f float64) float64 {
return float64(int64(f))
}
// float64 -hw-> int32 -hw-> float64
func hwint32(f float64) float64 {
return float64(int32(f))
}
// float64 -sw-> int64 -hw-> float64
func toint64sw(f float64) float64 {
i, ok := F64toint(math.Float64bits(f))
if !ok {
// There's no right answer for out of range.
// Match the hardware to pass the test.
i = int64(f)
}
return float64(i)
}
// float64 -hw-> int64 -sw-> float64
func fromint64sw(f float64) float64 {
return math.Float64frombits(Fintto64(int64(f)))
}
var nerr int
func err(t *testing.T, format string, args ...interface{}) {
t.Errorf(format, args...)
// cut errors off after a while.
// otherwise we spend all our time
// allocating memory to hold the
// formatted output.
if nerr++; nerr >= 10 {
t.Fatal("too many errors")
}
}
func test(t *testing.T, op string, hw, sw func(float64, float64) float64, all []float64) {
for _, f := range all {
for _, g := range all {
h := hw(f, g)
s := sw(f, g)
if !same(h, s) {
err(t, "%g %s %g = sw %g, hw %g\n", f, op, g, s, h)
}
testu(t, "to32", trunc32, to32sw, h)
testu(t, "to64", trunc32, to64sw, h)
testu(t, "toint64", hwint64, toint64sw, h)
testu(t, "fromint64", hwint64, fromint64sw, h)
testcmp(t, f, h)
testcmp(t, h, f)
testcmp(t, g, h)
testcmp(t, h, g)
}
}
}
func testu(t *testing.T, op string, hw, sw func(float64) float64, v float64) {
h := hw(v)
s := sw(v)
if !same(h, s) {
err(t, "%s %g = sw %g, hw %g\n", op, v, s, h)
}
}
func hwcmp(f, g float64) (cmp int, isnan bool) {
switch {
case f < g:
return -1, false
case f > g:
return +1, false
case f == g:
return 0, false
}
return 0, true // must be NaN
}
func testcmp(t *testing.T, f, g float64) {
hcmp, hisnan := hwcmp(f, g)
scmp, sisnan := Fcmp64(math.Float64bits(f), math.Float64bits(g))
if hcmp != scmp || hisnan != sisnan {
err(t, "cmp(%g, %g) = sw %v, %v, hw %v, %v\n", f, g, scmp, sisnan, hcmp, hisnan)
}
}
func same(f, g float64) bool {
if math.IsNaN(f) && math.IsNaN(g) {
return true
}
if math.Copysign(1, f) != math.Copysign(1, g) {
return false
}
return f == g
}
|