1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Time-related runtime and pieces of package time.
package time
#include <sys/time.h>
#include "runtime.h"
#include "defs.h"
#include "arch.h"
#include "malloc.h"
enum {
debug = 0,
};
static Timers timers;
static void addtimer(Timer*);
static void dumptimers(const char*);
// nacl fake time support.
int64 runtime_timens;
// Package time APIs.
// Godoc uses the comments in package time, not these.
// time.now is implemented in assembly.
// runtimeNano returns the current value of the runtime clock in nanoseconds.
func runtimeNano() (ns int64) {
ns = runtime_nanotime();
}
// Sleep puts the current goroutine to sleep for at least ns nanoseconds.
func Sleep(ns int64) {
runtime_tsleep(ns, "sleep");
}
// startTimer adds t to the timer heap.
func startTimer(t *Timer) {
runtime_addtimer(t);
}
// stopTimer removes t from the timer heap if it is there.
// It returns true if t was removed, false if t wasn't even there.
func stopTimer(t *Timer) (stopped bool) {
stopped = runtime_deltimer(t);
}
// C runtime.
int64 runtime_unixnanotime(void)
{
struct time_now_ret r;
r = now();
return r.sec*1000000000 + r.nsec;
}
static void timerproc(void*);
static void siftup(int32);
static void siftdown(int32);
// Ready the goroutine e.data.
static void
ready(Eface e, uintptr seq)
{
USED(seq);
runtime_ready(e.__object);
}
static FuncVal readyv = {(void(*)(void))ready};
// Put the current goroutine to sleep for ns nanoseconds.
void
runtime_tsleep(int64 ns, const char *reason)
{
G* g;
Timer t;
g = runtime_g();
if(ns <= 0)
return;
t.when = runtime_nanotime() + ns;
t.period = 0;
t.fv = &readyv;
t.arg.__object = g;
t.seq = 0;
runtime_lock(&timers);
addtimer(&t);
runtime_parkunlock(&timers, reason);
}
void
runtime_addtimer(Timer *t)
{
runtime_lock(&timers);
addtimer(t);
runtime_unlock(&timers);
}
// Add a timer to the heap and start or kick the timer proc
// if the new timer is earlier than any of the others.
static void
addtimer(Timer *t)
{
int32 n;
Timer **nt;
// when must never be negative; otherwise timerproc will overflow
// during its delta calculation and never expire other timers.
if(t->when < 0)
t->when = (int64)((1ULL<<63)-1);
if(timers.len >= timers.cap) {
// Grow slice.
n = 16;
if(n <= timers.cap)
n = timers.cap*3 / 2;
nt = runtime_malloc(n*sizeof nt[0]);
runtime_memmove(nt, timers.t, timers.len*sizeof nt[0]);
runtime_free(timers.t);
timers.t = nt;
timers.cap = n;
}
t->i = timers.len++;
timers.t[t->i] = t;
siftup(t->i);
if(t->i == 0) {
// siftup moved to top: new earliest deadline.
if(timers.sleeping) {
timers.sleeping = false;
runtime_notewakeup(&timers.waitnote);
}
if(timers.rescheduling) {
timers.rescheduling = false;
runtime_ready(timers.timerproc);
}
}
if(timers.timerproc == nil) {
timers.timerproc = __go_go(timerproc, nil);
timers.timerproc->issystem = true;
}
if(debug)
dumptimers("addtimer");
}
// Used to force a dereference before the lock is acquired.
static int32 gi;
// Delete timer t from the heap.
// Do not need to update the timerproc:
// if it wakes up early, no big deal.
bool
runtime_deltimer(Timer *t)
{
int32 i;
// Dereference t so that any panic happens before the lock is held.
// Discard result, because t might be moving in the heap.
i = t->i;
gi = i;
runtime_lock(&timers);
// t may not be registered anymore and may have
// a bogus i (typically 0, if generated by Go).
// Verify it before proceeding.
i = t->i;
if(i < 0 || i >= timers.len || timers.t[i] != t) {
runtime_unlock(&timers);
return false;
}
timers.len--;
if(i == timers.len) {
timers.t[i] = nil;
} else {
timers.t[i] = timers.t[timers.len];
timers.t[timers.len] = nil;
timers.t[i]->i = i;
siftup(i);
siftdown(i);
}
if(debug)
dumptimers("deltimer");
runtime_unlock(&timers);
return true;
}
// Timerproc runs the time-driven events.
// It sleeps until the next event in the timers heap.
// If addtimer inserts a new earlier event, addtimer
// wakes timerproc early.
static void
timerproc(void* dummy __attribute__ ((unused)))
{
int64 delta, now;
Timer *t;
FuncVal *fv;
void (*f)(Eface, uintptr);
Eface arg;
uintptr seq;
for(;;) {
runtime_lock(&timers);
timers.sleeping = false;
now = runtime_nanotime();
for(;;) {
if(timers.len == 0) {
delta = -1;
break;
}
t = timers.t[0];
delta = t->when - now;
if(delta > 0)
break;
if(t->period > 0) {
// leave in heap but adjust next time to fire
t->when += t->period * (1 + -delta/t->period);
siftdown(0);
} else {
// remove from heap
timers.t[0] = timers.t[--timers.len];
timers.t[0]->i = 0;
siftdown(0);
t->i = -1; // mark as removed
}
fv = t->fv;
f = (void*)t->fv->fn;
arg = t->arg;
seq = t->seq;
runtime_unlock(&timers);
__builtin_call_with_static_chain(f(arg, seq), fv);
// clear f and arg to avoid leak while sleeping for next timer
f = nil;
USED(f);
arg.__type_descriptor = nil;
arg.__object = nil;
USED(&arg);
runtime_lock(&timers);
}
if(delta < 0) {
// No timers left - put goroutine to sleep.
timers.rescheduling = true;
runtime_g()->isbackground = true;
runtime_parkunlock(&timers, "timer goroutine (idle)");
runtime_g()->isbackground = false;
continue;
}
// At least one timer pending. Sleep until then.
timers.sleeping = true;
runtime_noteclear(&timers.waitnote);
runtime_unlock(&timers);
runtime_notetsleepg(&timers.waitnote, delta);
}
}
// heap maintenance algorithms.
static void
siftup(int32 i)
{
int32 p;
int64 when;
Timer **t, *tmp;
t = timers.t;
when = t[i]->when;
tmp = t[i];
while(i > 0) {
p = (i-1)/4; // parent
if(when >= t[p]->when)
break;
t[i] = t[p];
t[i]->i = i;
t[p] = tmp;
tmp->i = p;
i = p;
}
}
static void
siftdown(int32 i)
{
int32 c, c3, len;
int64 when, w, w3;
Timer **t, *tmp;
t = timers.t;
len = timers.len;
when = t[i]->when;
tmp = t[i];
for(;;) {
c = i*4 + 1; // left child
c3 = c + 2; // mid child
if(c >= len) {
break;
}
w = t[c]->when;
if(c+1 < len && t[c+1]->when < w) {
w = t[c+1]->when;
c++;
}
if(c3 < len) {
w3 = t[c3]->when;
if(c3+1 < len && t[c3+1]->when < w3) {
w3 = t[c3+1]->when;
c3++;
}
if(w3 < w) {
w = w3;
c = c3;
}
}
if(w >= when)
break;
t[i] = t[c];
t[i]->i = i;
t[c] = tmp;
tmp->i = c;
i = c;
}
}
static void
dumptimers(const char *msg)
{
Timer *t;
int32 i;
runtime_printf("timers: %s\n", msg);
for(i = 0; i < timers.len; i++) {
t = timers.t[i];
runtime_printf("\t%d\t%p:\ti %d when %D period %D fn %p\n",
i, t, t->i, t->when, t->period, t->fv->fn);
}
runtime_printf("\n");
}
void
runtime_time_scan(struct Workbuf** wbufp, void (*enqueue1)(struct Workbuf**, Obj))
{
enqueue1(wbufp, (Obj){(byte*)&timers, sizeof timers, 0});
}
|