| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 
 | /* Convert string representing a number to float value, using given locale.
   Copyright (C) 1997-2012 Free Software Foundation, Inc.
   This file is part of the GNU C Library.
   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.
   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.
   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <http://www.gnu.org/licenses/>.  */
#include <config.h>
#include <stdarg.h>
#include <string.h>
#include <stdint.h>
#include <stdbool.h>
#include <float.h>
#include <math.h>
#define NDEBUG 1
#include <assert.h>
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#ifdef HAVE_FENV_H
#include <fenv.h>
#endif
#ifdef HAVE_FENV_H
#include "quadmath-rounding-mode.h"
#endif
#include "../printf/quadmath-printf.h"
#include "../printf/fpioconst.h"
#undef L_
#ifdef USE_WIDE_CHAR
# define STRING_TYPE wchar_t
# define CHAR_TYPE wint_t
# define L_(Ch) L##Ch
# define ISSPACE(Ch) __iswspace_l ((Ch), loc)
# define ISDIGIT(Ch) __iswdigit_l ((Ch), loc)
# define ISXDIGIT(Ch) __iswxdigit_l ((Ch), loc)
# define TOLOWER(Ch) __towlower_l ((Ch), loc)
# define TOLOWER_C(Ch) __towlower_l ((Ch), _nl_C_locobj_ptr)
# define STRNCASECMP(S1, S2, N) \
  __wcsncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
# define STRTOULL(S, E, B) ____wcstoull_l_internal ((S), (E), (B), 0, loc)
#else
# define STRING_TYPE char
# define CHAR_TYPE char
# define L_(Ch) Ch
# define ISSPACE(Ch) isspace (Ch)
# define ISDIGIT(Ch) isdigit (Ch)
# define ISXDIGIT(Ch) isxdigit (Ch)
# define TOLOWER(Ch) tolower (Ch)
# define TOLOWER_C(Ch) \
  ({__typeof(Ch) __tlc = (Ch); \
    (__tlc >= 'A' && __tlc <= 'Z') ? __tlc - 'A' + 'a' : __tlc; })
# define STRNCASECMP(S1, S2, N) \
  __quadmath_strncasecmp_c (S1, S2, N)
# ifdef HAVE_STRTOULL
#  define STRTOULL(S, E, B) strtoull (S, E, B)
# else
#  define STRTOULL(S, E, B) strtoul (S, E, B)
# endif
static inline int
__quadmath_strncasecmp_c (const char *s1, const char *s2, size_t n)
{
  const unsigned char *p1 = (const unsigned char *) s1;
  const unsigned char *p2 = (const unsigned char *) s2;
  int result;
  if (p1 == p2 || n == 0)
    return 0;
  while ((result = TOLOWER_C (*p1) - TOLOWER_C (*p2++)) == 0)
    if (*p1++ == '\0' || --n == 0)
      break;
  return result;
}
#endif
/* Constants we need from float.h; select the set for the FLOAT precision.  */
#define MANT_DIG	PASTE(FLT,_MANT_DIG)
#define	DIG		PASTE(FLT,_DIG)
#define	MAX_EXP		PASTE(FLT,_MAX_EXP)
#define	MIN_EXP		PASTE(FLT,_MIN_EXP)
#define MAX_10_EXP	PASTE(FLT,_MAX_10_EXP)
#define MIN_10_EXP	PASTE(FLT,_MIN_10_EXP)
#define MAX_VALUE	PASTE(FLT,_MAX)
#define MIN_VALUE	PASTE(FLT,_MIN)
/* Extra macros required to get FLT expanded before the pasting.  */
#define PASTE(a,b)	PASTE1(a,b)
#define PASTE1(a,b)	a##b
/* Function to construct a floating point number from an MP integer
   containing the fraction bits, a base 2 exponent, and a sign flag.  */
extern FLOAT MPN2FLOAT (mp_srcptr mpn, int exponent, int negative);
/* Definitions according to limb size used.  */
#if	BITS_PER_MP_LIMB == 32
# define MAX_DIG_PER_LIMB	9
# define MAX_FAC_PER_LIMB	1000000000UL
#elif	BITS_PER_MP_LIMB == 64
# define MAX_DIG_PER_LIMB	19
# define MAX_FAC_PER_LIMB	10000000000000000000ULL
#else
# error "mp_limb_t size " BITS_PER_MP_LIMB "not accounted for"
#endif
#define _tens_in_limb __quadmath_tens_in_limb
extern const mp_limb_t _tens_in_limb[MAX_DIG_PER_LIMB + 1] attribute_hidden;
#ifndef	howmany
#define	howmany(x,y)		(((x)+((y)-1))/(y))
#endif
#define SWAP(x, y)		({ typeof(x) _tmp = x; x = y; y = _tmp; })
#define NDIG			(MAX_10_EXP - MIN_10_EXP + 2 * MANT_DIG)
#define HEXNDIG			((MAX_EXP - MIN_EXP + 7) / 8 + 2 * MANT_DIG)
#define	RETURN_LIMB_SIZE		howmany (MANT_DIG, BITS_PER_MP_LIMB)
#define RETURN(val,end)							      \
    do { if (endptr != NULL) *endptr = (STRING_TYPE *) (end);		      \
	 return val; } while (0)
/* Maximum size necessary for mpn integers to hold floating point
   numbers.  The largest number we need to hold is 10^n where 2^-n is
   1/4 ulp of the smallest representable value (that is, n = MANT_DIG
   - MIN_EXP + 2).  Approximate using 10^3 < 2^10.  */
#define	MPNSIZE		(howmany (1 + ((MANT_DIG - MIN_EXP + 2) * 10) / 3, \
				  BITS_PER_MP_LIMB) + 2)
/* Declare an mpn integer variable that big.  */
#define	MPN_VAR(name)	mp_limb_t name[MPNSIZE]; mp_size_t name##size
/* Copy an mpn integer value.  */
#define MPN_ASSIGN(dst, src) \
	memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
/* Set errno and return an overflowing value with sign specified by
   NEGATIVE.  */
static FLOAT
overflow_value (int negative)
{
#if defined HAVE_ERRNO_H && defined ERANGE
  errno = ERANGE;
#endif
  FLOAT result = (negative ? -MAX_VALUE : MAX_VALUE) * MAX_VALUE;
  return result;
}
/* Set errno and return an underflowing value with sign specified by
   NEGATIVE.  */
static FLOAT
underflow_value (int negative)
{
#if defined HAVE_ERRNO_H && defined ERANGE
  errno = ERANGE;
#endif
  FLOAT result = (negative ? -MIN_VALUE : MIN_VALUE) * MIN_VALUE;
  return result;
}
/* Return a floating point number of the needed type according to the given
   multi-precision number after possible rounding.  */
static FLOAT
round_and_return (mp_limb_t *retval, intmax_t exponent, int negative,
		  mp_limb_t round_limb, mp_size_t round_bit, int more_bits)
{
#ifdef HAVE_FENV_H
  int mode = get_rounding_mode ();
#endif
  if (exponent < MIN_EXP - 1)
    {
      mp_size_t shift;
      bool is_tiny;
      if (exponent < MIN_EXP - 1 - MANT_DIG)
	return underflow_value (negative);
      shift = MIN_EXP - 1 - exponent;
      is_tiny = true;
      more_bits |= (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0;
      if (shift == MANT_DIG)
	/* This is a special case to handle the very seldom case where
	   the mantissa will be empty after the shift.  */
	{
	  int i;
	  round_limb = retval[RETURN_LIMB_SIZE - 1];
	  round_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
	  for (i = 0; i < RETURN_LIMB_SIZE; ++i)
	    more_bits |= retval[i] != 0;
	  MPN_ZERO (retval, RETURN_LIMB_SIZE);
	}
      else if (shift >= BITS_PER_MP_LIMB)
	{
	  int i;
	  round_limb = retval[(shift - 1) / BITS_PER_MP_LIMB];
	  round_bit = (shift - 1) % BITS_PER_MP_LIMB;
	  for (i = 0; i < (shift - 1) / BITS_PER_MP_LIMB; ++i)
	    more_bits |= retval[i] != 0;
	  more_bits |= ((round_limb & ((((mp_limb_t) 1) << round_bit) - 1))
			!= 0);
	  (void) mpn_rshift (retval, &retval[shift / BITS_PER_MP_LIMB],
			     RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB),
			     shift % BITS_PER_MP_LIMB);
	  MPN_ZERO (&retval[RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB)],
		    shift / BITS_PER_MP_LIMB);
	}
      else if (shift > 0)
	{
#ifdef HAVE_FENV_H
	  if (TININESS_AFTER_ROUNDING && shift == 1)
	    {
	      /* Whether the result counts as tiny depends on whether,
		 after rounding to the normal precision, it still has
		 a subnormal exponent.  */
	      mp_limb_t retval_normal[RETURN_LIMB_SIZE];
	      if (round_away (negative,
			      (retval[0] & 1) != 0,
			      (round_limb
			       & (((mp_limb_t) 1) << round_bit)) != 0,
			      (more_bits
			       || ((round_limb
				    & ((((mp_limb_t) 1) << round_bit) - 1))
				   != 0)),
			      mode))
		{
		  mp_limb_t cy = mpn_add_1 (retval_normal, retval,
					      RETURN_LIMB_SIZE, 1);
		  if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy) ||
		      ((MANT_DIG % BITS_PER_MP_LIMB) != 0 &&
		       ((retval_normal[RETURN_LIMB_SIZE - 1]
			& (((mp_limb_t) 1) << (MANT_DIG % BITS_PER_MP_LIMB)))
			!= 0)))
		    is_tiny = false;
		}
	    }
#endif
	  round_limb = retval[0];
	  round_bit = shift - 1;
	  (void) mpn_rshift (retval, retval, RETURN_LIMB_SIZE, shift);
	}
      /* This is a hook for the m68k long double format, where the
	 exponent bias is the same for normalized and denormalized
	 numbers.  */
#ifndef DENORM_EXP
# define DENORM_EXP (MIN_EXP - 2)
#endif
      exponent = DENORM_EXP;
      if (is_tiny
	  && ((round_limb & (((mp_limb_t) 1) << round_bit)) != 0
	      || more_bits
	      || (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0))
	{
#if defined HAVE_ERRNO_H && defined ERANGE
	  errno = ERANGE;
#endif
	  volatile FLOAT force_underflow_exception = MIN_VALUE * MIN_VALUE;
	  (void) force_underflow_exception;
	}
    }
  if (exponent > MAX_EXP)
    goto overflow;
#ifdef HAVE_FENV_H
  if (round_away (negative,
		  (retval[0] & 1) != 0,
		  (round_limb & (((mp_limb_t) 1) << round_bit)) != 0,
		  (more_bits
		   || (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0),
		  mode))
    {
      mp_limb_t cy = mpn_add_1 (retval, retval, RETURN_LIMB_SIZE, 1);
      if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy) ||
	  ((MANT_DIG % BITS_PER_MP_LIMB) != 0 &&
	   (retval[RETURN_LIMB_SIZE - 1]
	    & (((mp_limb_t) 1) << (MANT_DIG % BITS_PER_MP_LIMB))) != 0))
	{
	  ++exponent;
	  (void) mpn_rshift (retval, retval, RETURN_LIMB_SIZE, 1);
	  retval[RETURN_LIMB_SIZE - 1]
	    |= ((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB);
	}
      else if (exponent == DENORM_EXP
	       && (retval[RETURN_LIMB_SIZE - 1]
		   & (((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB)))
	       != 0)
	  /* The number was denormalized but now normalized.  */
	exponent = MIN_EXP - 1;
    }
#endif
  if (exponent > MAX_EXP)
  overflow:
    return overflow_value (negative);
  return MPN2FLOAT (retval, exponent, negative);
}
/* Read a multi-precision integer starting at STR with exactly DIGCNT digits
   into N.  Return the size of the number limbs in NSIZE at the first
   character od the string that is not part of the integer as the function
   value.  If the EXPONENT is small enough to be taken as an additional
   factor for the resulting number (see code) multiply by it.  */
static const STRING_TYPE *
str_to_mpn (const STRING_TYPE *str, int digcnt, mp_limb_t *n, mp_size_t *nsize,
	    intmax_t *exponent
#ifndef USE_WIDE_CHAR
	    , const char *decimal, size_t decimal_len, const char *thousands
#endif
	    )
{
  /* Number of digits for actual limb.  */
  int cnt = 0;
  mp_limb_t low = 0;
  mp_limb_t start;
  *nsize = 0;
  assert (digcnt > 0);
  do
    {
      if (cnt == MAX_DIG_PER_LIMB)
	{
	  if (*nsize == 0)
	    {
	      n[0] = low;
	      *nsize = 1;
	    }
	  else
	    {
	      mp_limb_t cy;
	      cy = mpn_mul_1 (n, n, *nsize, MAX_FAC_PER_LIMB);
	      cy += mpn_add_1 (n, n, *nsize, low);
	      if (cy != 0)
		{
		  assert (*nsize < MPNSIZE);
		  n[*nsize] = cy;
		  ++(*nsize);
		}
	    }
	  cnt = 0;
	  low = 0;
	}
      /* There might be thousands separators or radix characters in
	 the string.  But these all can be ignored because we know the
	 format of the number is correct and we have an exact number
	 of characters to read.  */
#ifdef USE_WIDE_CHAR
      if (*str < L'0' || *str > L'9')
	++str;
#else
      if (*str < '0' || *str > '9')
	{
	  int inner = 0;
	  if (thousands != NULL && *str == *thousands
	      && ({ for (inner = 1; thousands[inner] != '\0'; ++inner)
		      if (thousands[inner] != str[inner])
			break;
		    thousands[inner] == '\0'; }))
	    str += inner;
	  else
	    str += decimal_len;
	}
#endif
      low = low * 10 + *str++ - L_('0');
      ++cnt;
    }
  while (--digcnt > 0);
  if (*exponent > 0 && *exponent <= MAX_DIG_PER_LIMB - cnt)
    {
      low *= _tens_in_limb[*exponent];
      start = _tens_in_limb[cnt + *exponent];
      *exponent = 0;
    }
  else
    start = _tens_in_limb[cnt];
  if (*nsize == 0)
    {
      n[0] = low;
      *nsize = 1;
    }
  else
    {
      mp_limb_t cy;
      cy = mpn_mul_1 (n, n, *nsize, start);
      cy += mpn_add_1 (n, n, *nsize, low);
      if (cy != 0)
	{
	  assert (*nsize < MPNSIZE);
	  n[(*nsize)++] = cy;
	}
    }
  return str;
}
/* Shift {PTR, SIZE} COUNT bits to the left, and fill the vacated bits
   with the COUNT most significant bits of LIMB.
   Implemented as a macro, so that __builtin_constant_p works even at -O0.
   Tege doesn't like this macro so I have to write it here myself. :)
   --drepper */
#define mpn_lshift_1(ptr, size, count, limb) \
  do									\
    {									\
      mp_limb_t *__ptr = (ptr);						\
      if (__builtin_constant_p (count) && count == BITS_PER_MP_LIMB)	\
	{								\
	  mp_size_t i;							\
	  for (i = (size) - 1; i > 0; --i)				\
	    __ptr[i] = __ptr[i - 1];					\
	  __ptr[0] = (limb);						\
	}								\
      else								\
	{								\
	  /* We assume count > 0 && count < BITS_PER_MP_LIMB here.  */	\
	  unsigned int __count = (count);				\
	  (void) mpn_lshift (__ptr, __ptr, size, __count);		\
	  __ptr[0] |= (limb) >> (BITS_PER_MP_LIMB - __count);		\
	}								\
    }									\
  while (0)
#define INTERNAL(x) INTERNAL1(x)
#define INTERNAL1(x) __##x##_internal
#ifndef ____STRTOF_INTERNAL
# define ____STRTOF_INTERNAL INTERNAL (__STRTOF)
#endif
/* This file defines a function to check for correct grouping.  */
#include "grouping.h"
/* Return a floating point number with the value of the given string NPTR.
   Set *ENDPTR to the character after the last used one.  If the number is
   smaller than the smallest representable number, set `errno' to ERANGE and
   return 0.0.  If the number is too big to be represented, set `errno' to
   ERANGE and return HUGE_VAL with the appropriate sign.  */
FLOAT
____STRTOF_INTERNAL (nptr, endptr, group)
     const STRING_TYPE *nptr;
     STRING_TYPE **endptr;
     int group;
{
  int negative;			/* The sign of the number.  */
  MPN_VAR (num);		/* MP representation of the number.  */
  intmax_t exponent;		/* Exponent of the number.  */
  /* Numbers starting `0X' or `0x' have to be processed with base 16.  */
  int base = 10;
  /* When we have to compute fractional digits we form a fraction with a
     second multi-precision number (and we sometimes need a second for
     temporary results).  */
  MPN_VAR (den);
  /* Representation for the return value.  */
  mp_limb_t retval[RETURN_LIMB_SIZE];
  /* Number of bits currently in result value.  */
  int bits;
  /* Running pointer after the last character processed in the string.  */
  const STRING_TYPE *cp, *tp;
  /* Start of significant part of the number.  */
  const STRING_TYPE *startp, *start_of_digits;
  /* Points at the character following the integer and fractional digits.  */
  const STRING_TYPE *expp;
  /* Total number of digit and number of digits in integer part.  */
  size_t dig_no, int_no, lead_zero;
  /* Contains the last character read.  */
  CHAR_TYPE c;
/* We should get wint_t from <stddef.h>, but not all GCC versions define it
   there.  So define it ourselves if it remains undefined.  */
#ifndef _WINT_T
  typedef unsigned int wint_t;
#endif
  /* The radix character of the current locale.  */
#ifdef USE_WIDE_CHAR
  wchar_t decimal;
#else
  const char *decimal;
  size_t decimal_len;
#endif
  /* The thousands character of the current locale.  */
#ifdef USE_WIDE_CHAR
  wchar_t thousands = L'\0';
#else
  const char *thousands = NULL;
#endif
  /* The numeric grouping specification of the current locale,
     in the format described in <locale.h>.  */
  const char *grouping;
  /* Used in several places.  */
  int cnt;
#if defined USE_LOCALECONV && !defined USE_NL_LANGINFO
  const struct lconv *lc = localeconv ();
#endif
  if (__builtin_expect (group, 0))
    {
#ifdef USE_NL_LANGINFO
      grouping = nl_langinfo (GROUPING);
      if (*grouping <= 0 || *grouping == CHAR_MAX)
	grouping = NULL;
      else
	{
	  /* Figure out the thousands separator character.  */
#ifdef USE_WIDE_CHAR
	  thousands = nl_langinfo_wc (_NL_NUMERIC_THOUSANDS_SEP_WC);
	  if (thousands == L'\0')
	    grouping = NULL;
#else
	  thousands = nl_langinfo (THOUSANDS_SEP);
	  if (*thousands == '\0')
	    {
	      thousands = NULL;
	      grouping = NULL;
	    }
#endif
	}
#elif defined USE_LOCALECONV
      grouping = lc->grouping;
      if (grouping == NULL || *grouping <= 0 || *grouping == CHAR_MAX)
	grouping = NULL;
      else
	{
	  /* Figure out the thousands separator character.  */
	  thousands = lc->thousands_sep;
	  if (thousands == NULL || *thousands == '\0')
	    {
	      thousands = NULL;
	      grouping = NULL;
	    }
	}
#else
      grouping = NULL;
#endif
    }
  else
    grouping = NULL;
  /* Find the locale's decimal point character.  */
#ifdef USE_WIDE_CHAR
  decimal = nl_langinfo_wc (_NL_NUMERIC_DECIMAL_POINT_WC);
  assert (decimal != L'\0');
# define decimal_len 1
#else
#ifdef USE_NL_LANGINFO
  decimal = nl_langinfo (DECIMAL_POINT);
  decimal_len = strlen (decimal);
  assert (decimal_len > 0);
#elif defined USE_LOCALECONV
  decimal = lc->decimal_point;
  if (decimal == NULL || *decimal == '\0')
    decimal = ".";
  decimal_len = strlen (decimal);
#else
  decimal = ".";
  decimal_len = 1;
#endif
#endif
  /* Prepare number representation.  */
  exponent = 0;
  negative = 0;
  bits = 0;
  /* Parse string to get maximal legal prefix.  We need the number of
     characters of the integer part, the fractional part and the exponent.  */
  cp = nptr - 1;
  /* Ignore leading white space.  */
  do
    c = *++cp;
  while (ISSPACE (c));
  /* Get sign of the result.  */
  if (c == L_('-'))
    {
      negative = 1;
      c = *++cp;
    }
  else if (c == L_('+'))
    c = *++cp;
  /* Return 0.0 if no legal string is found.
     No character is used even if a sign was found.  */
#ifdef USE_WIDE_CHAR
  if (c == (wint_t) decimal
      && (wint_t) cp[1] >= L'0' && (wint_t) cp[1] <= L'9')
    {
      /* We accept it.  This funny construct is here only to indent
	 the code correctly.  */
    }
#else
  for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
    if (cp[cnt] != decimal[cnt])
      break;
  if (decimal[cnt] == '\0' && cp[cnt] >= '0' && cp[cnt] <= '9')
    {
      /* We accept it.  This funny construct is here only to indent
	 the code correctly.  */
    }
#endif
  else if (c < L_('0') || c > L_('9'))
    {
      /* Check for `INF' or `INFINITY'.  */
      CHAR_TYPE lowc = TOLOWER_C (c);
      if (lowc == L_('i') && STRNCASECMP (cp, L_("inf"), 3) == 0)
	{
	  /* Return +/- infinity.  */
	  if (endptr != NULL)
	    *endptr = (STRING_TYPE *)
		      (cp + (STRNCASECMP (cp + 3, L_("inity"), 5) == 0
			     ? 8 : 3));
	  return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
	}
      if (lowc == L_('n') && STRNCASECMP (cp, L_("nan"), 3) == 0)
	{
	  /* Return NaN.  */
	  FLOAT retval = NAN;
	  cp += 3;
	  /* Match `(n-char-sequence-digit)'.  */
	  if (*cp == L_('('))
	    {
	      const STRING_TYPE *startp = cp;
	      do
		++cp;
	      while ((*cp >= L_('0') && *cp <= L_('9'))
		     || ({ CHAR_TYPE lo = TOLOWER (*cp);
			   lo >= L_('a') && lo <= L_('z'); })
		     || *cp == L_('_'));
	      if (*cp != L_(')'))
		/* The closing brace is missing.  Only match the NAN
		   part.  */
		cp = startp;
	      else
		{
		  /* This is a system-dependent way to specify the
		     bitmask used for the NaN.  We expect it to be
		     a number which is put in the mantissa of the
		     number.  */
		  STRING_TYPE *endp;
		  unsigned long long int mant;
		  mant = STRTOULL (startp + 1, &endp, 0);
		  if (endp == cp)
		    SET_MANTISSA (retval, mant);
		  /* Consume the closing brace.  */
		  ++cp;
		}
	    }
	  if (endptr != NULL)
	    *endptr = (STRING_TYPE *) cp;
	  return retval;
	}
      /* It is really a text we do not recognize.  */
      RETURN (0.0, nptr);
    }
  /* First look whether we are faced with a hexadecimal number.  */
  if (c == L_('0') && TOLOWER (cp[1]) == L_('x'))
    {
      /* Okay, it is a hexa-decimal number.  Remember this and skip
	 the characters.  BTW: hexadecimal numbers must not be
	 grouped.  */
      base = 16;
      cp += 2;
      c = *cp;
      grouping = NULL;
    }
  /* Record the start of the digits, in case we will check their grouping.  */
  start_of_digits = startp = cp;
  /* Ignore leading zeroes.  This helps us to avoid useless computations.  */
#ifdef USE_WIDE_CHAR
  while (c == L'0' || ((wint_t) thousands != L'\0' && c == (wint_t) thousands))
    c = *++cp;
#else
  if (__builtin_expect (thousands == NULL, 1))
    while (c == '0')
      c = *++cp;
  else
    {
      /* We also have the multibyte thousands string.  */
      while (1)
	{
	  if (c != '0')
	    {
	      for (cnt = 0; thousands[cnt] != '\0'; ++cnt)
		if (thousands[cnt] != cp[cnt])
		  break;
	      if (thousands[cnt] != '\0')
		break;
	      cp += cnt - 1;
	    }
	  c = *++cp;
	}
    }
#endif
  /* If no other digit but a '0' is found the result is 0.0.
     Return current read pointer.  */
  CHAR_TYPE lowc = TOLOWER (c);
  if (!((c >= L_('0') && c <= L_('9'))
	|| (base == 16 && lowc >= L_('a') && lowc <= L_('f'))
	|| (
#ifdef USE_WIDE_CHAR
	    c == (wint_t) decimal
#else
	    ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
		 if (decimal[cnt] != cp[cnt])
		   break;
	       decimal[cnt] == '\0'; })
#endif
	    /* '0x.' alone is not a valid hexadecimal number.
	       '.' alone is not valid either, but that has been checked
	       already earlier.  */
	    && (base != 16
		|| cp != start_of_digits
		|| (cp[decimal_len] >= L_('0') && cp[decimal_len] <= L_('9'))
		|| ({ CHAR_TYPE lo = TOLOWER (cp[decimal_len]);
		      lo >= L_('a') && lo <= L_('f'); })))
	|| (base == 16 && (cp != start_of_digits
			   && lowc == L_('p')))
	|| (base != 16 && lowc == L_('e'))))
    {
#ifdef USE_WIDE_CHAR
      tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands,
					 grouping);
#else
      tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands,
					 grouping);
#endif
      /* If TP is at the start of the digits, there was no correctly
	 grouped prefix of the string; so no number found.  */
      RETURN (negative ? -0.0 : 0.0,
	      tp == start_of_digits ? (base == 16 ? cp - 1 : nptr) : tp);
    }
  /* Remember first significant digit and read following characters until the
     decimal point, exponent character or any non-FP number character.  */
  startp = cp;
  dig_no = 0;
  while (1)
    {
      if ((c >= L_('0') && c <= L_('9'))
	  || (base == 16
	      && ({ CHAR_TYPE lo = TOLOWER (c);
		    lo >= L_('a') && lo <= L_('f'); })))
	++dig_no;
      else
	{
#ifdef USE_WIDE_CHAR
	  if (__builtin_expect ((wint_t) thousands == L'\0', 1)
	      || c != (wint_t) thousands)
	    /* Not a digit or separator: end of the integer part.  */
	    break;
#else
	  if (__builtin_expect (thousands == NULL, 1))
	    break;
	  else
	    {
	      for (cnt = 0; thousands[cnt] != '\0'; ++cnt)
		if (thousands[cnt] != cp[cnt])
		  break;
	      if (thousands[cnt] != '\0')
		break;
	      cp += cnt - 1;
	    }
#endif
	}
      c = *++cp;
    }
  if (__builtin_expect (grouping != NULL, 0) && cp > start_of_digits)
    {
      /* Check the grouping of the digits.  */
#ifdef USE_WIDE_CHAR
      tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands,
					 grouping);
#else
      tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands,
					 grouping);
#endif
      if (cp != tp)
	{
	  /* Less than the entire string was correctly grouped.  */
	  if (tp == start_of_digits)
	    /* No valid group of numbers at all: no valid number.  */
	    RETURN (0.0, nptr);
	  if (tp < startp)
	    /* The number is validly grouped, but consists
	       only of zeroes.  The whole value is zero.  */
	    RETURN (negative ? -0.0 : 0.0, tp);
	  /* Recompute DIG_NO so we won't read more digits than
	     are properly grouped.  */
	  cp = tp;
	  dig_no = 0;
	  for (tp = startp; tp < cp; ++tp)
	    if (*tp >= L_('0') && *tp <= L_('9'))
	      ++dig_no;
	  int_no = dig_no;
	  lead_zero = 0;
	  goto number_parsed;
	}
    }
  /* We have the number of digits in the integer part.  Whether these
     are all or any is really a fractional digit will be decided
     later.  */
  int_no = dig_no;
  lead_zero = int_no == 0 ? (size_t) -1 : 0;
  /* Read the fractional digits.  A special case are the 'american
     style' numbers like `16.' i.e. with decimal point but without
     trailing digits.  */
  if (
#ifdef USE_WIDE_CHAR
      c == (wint_t) decimal
#else
      ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
	   if (decimal[cnt] != cp[cnt])
	     break;
	 decimal[cnt] == '\0'; })
#endif
      )
    {
      cp += decimal_len;
      c = *cp;
      while ((c >= L_('0') && c <= L_('9')) ||
	     (base == 16 && ({ CHAR_TYPE lo = TOLOWER (c);
			       lo >= L_('a') && lo <= L_('f'); })))
	{
	  if (c != L_('0') && lead_zero == (size_t) -1)
	    lead_zero = dig_no - int_no;
	  ++dig_no;
	  c = *++cp;
	}
    }
  assert (dig_no <= (uintmax_t) INTMAX_MAX);
  /* Remember start of exponent (if any).  */
  expp = cp;
  /* Read exponent.  */
  lowc = TOLOWER (c);
  if ((base == 16 && lowc == L_('p'))
      || (base != 16 && lowc == L_('e')))
    {
      int exp_negative = 0;
      c = *++cp;
      if (c == L_('-'))
	{
	  exp_negative = 1;
	  c = *++cp;
	}
      else if (c == L_('+'))
	c = *++cp;
      if (c >= L_('0') && c <= L_('9'))
	{
	  intmax_t exp_limit;
	  /* Get the exponent limit. */
	  if (base == 16)
	    {
	      if (exp_negative)
		{
		  assert (int_no <= (uintmax_t) (INTMAX_MAX
						 + MIN_EXP - MANT_DIG) / 4);
		  exp_limit = -MIN_EXP + MANT_DIG + 4 * (intmax_t) int_no;
		}
	      else
		{
		  if (int_no)
		    {
		      assert (lead_zero == 0
			      && int_no <= (uintmax_t) INTMAX_MAX / 4);
		      exp_limit = MAX_EXP - 4 * (intmax_t) int_no + 3;
		    }
		  else if (lead_zero == (size_t) -1)
		    {
		      /* The number is zero and this limit is
			 arbitrary.  */
		      exp_limit = MAX_EXP + 3;
		    }
		  else
		    {
		      assert (lead_zero
			      <= (uintmax_t) (INTMAX_MAX - MAX_EXP - 3) / 4);
		      exp_limit = (MAX_EXP
				   + 4 * (intmax_t) lead_zero
				   + 3);
		    }
		}
	    }
	  else
	    {
	      if (exp_negative)
		{
		  assert (int_no
			  <= (uintmax_t) (INTMAX_MAX + MIN_10_EXP - MANT_DIG));
		  exp_limit = -MIN_10_EXP + MANT_DIG + (intmax_t) int_no;
		}
	      else
		{
		  if (int_no)
		    {
		      assert (lead_zero == 0
			      && int_no <= (uintmax_t) INTMAX_MAX);
		      exp_limit = MAX_10_EXP - (intmax_t) int_no + 1;
		    }
		  else if (lead_zero == (size_t) -1)
		    {
		      /* The number is zero and this limit is
			 arbitrary.  */
		      exp_limit = MAX_10_EXP + 1;
		    }
		  else
		    {
		      assert (lead_zero
			      <= (uintmax_t) (INTMAX_MAX - MAX_10_EXP - 1));
		      exp_limit = MAX_10_EXP + (intmax_t) lead_zero + 1;
		    }
		}
	    }
	  if (exp_limit < 0)
	    exp_limit = 0;
	  do
	    {
	      if (__builtin_expect ((exponent > exp_limit / 10
				     || (exponent == exp_limit / 10
					 && c - L_('0') > exp_limit % 10)), 0))
		/* The exponent is too large/small to represent a valid
		   number.  */
		{
	 	  FLOAT result;
		  /* We have to take care for special situation: a joker
		     might have written "0.0e100000" which is in fact
		     zero.  */
		  if (lead_zero == (size_t) -1)
		    result = negative ? -0.0 : 0.0;
		  else
		    {
		      /* Overflow or underflow.  */
#if defined HAVE_ERRNO_H && defined ERANGE
		      errno = ERANGE;
#endif
		      result = (exp_negative ? (negative ? -0.0 : 0.0) :
				negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL);
		    }
		  /* Accept all following digits as part of the exponent.  */
		  do
		    ++cp;
		  while (*cp >= L_('0') && *cp <= L_('9'));
		  RETURN (result, cp);
		  /* NOTREACHED */
		}
	      exponent *= 10;
	      exponent += c - L_('0');
	      c = *++cp;
	    }
	  while (c >= L_('0') && c <= L_('9'));
	  if (exp_negative)
	    exponent = -exponent;
	}
      else
	cp = expp;
    }
  /* We don't want to have to work with trailing zeroes after the radix.  */
  if (dig_no > int_no)
    {
      while (expp[-1] == L_('0'))
	{
	  --expp;
	  --dig_no;
	}
      assert (dig_no >= int_no);
    }
  if (dig_no == int_no && dig_no > 0 && exponent < 0)
    do
      {
	while (! (base == 16 ? ISXDIGIT (expp[-1]) : ISDIGIT (expp[-1])))
	  --expp;
	if (expp[-1] != L_('0'))
	  break;
	--expp;
	--dig_no;
	--int_no;
	exponent += base == 16 ? 4 : 1;
      }
    while (dig_no > 0 && exponent < 0);
 number_parsed:
  /* The whole string is parsed.  Store the address of the next character.  */
  if (endptr)
    *endptr = (STRING_TYPE *) cp;
  if (dig_no == 0)
    return negative ? -0.0 : 0.0;
  if (lead_zero)
    {
      /* Find the decimal point */
#ifdef USE_WIDE_CHAR
      while (*startp != decimal)
	++startp;
#else
      while (1)
	{
	  if (*startp == decimal[0])
	    {
	      for (cnt = 1; decimal[cnt] != '\0'; ++cnt)
		if (decimal[cnt] != startp[cnt])
		  break;
	      if (decimal[cnt] == '\0')
		break;
	    }
	  ++startp;
	}
#endif
      startp += lead_zero + decimal_len;
      assert (lead_zero <= (base == 16
			    ? (uintmax_t) INTMAX_MAX / 4
			    : (uintmax_t) INTMAX_MAX));
      assert (lead_zero <= (base == 16
			    ? ((uintmax_t) exponent
			       - (uintmax_t) INTMAX_MIN) / 4
			    : ((uintmax_t) exponent - (uintmax_t) INTMAX_MIN)));
      exponent -= base == 16 ? 4 * (intmax_t) lead_zero : (intmax_t) lead_zero;
      dig_no -= lead_zero;
    }
  /* If the BASE is 16 we can use a simpler algorithm.  */
  if (base == 16)
    {
      static const int nbits[16] = { 0, 1, 2, 2, 3, 3, 3, 3,
				     4, 4, 4, 4, 4, 4, 4, 4 };
      int idx = (MANT_DIG - 1) / BITS_PER_MP_LIMB;
      int pos = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
      mp_limb_t val;
      while (!ISXDIGIT (*startp))
	++startp;
      while (*startp == L_('0'))
	++startp;
      if (ISDIGIT (*startp))
	val = *startp++ - L_('0');
      else
	val = 10 + TOLOWER (*startp++) - L_('a');
      bits = nbits[val];
      /* We cannot have a leading zero.  */
      assert (bits != 0);
      if (pos + 1 >= 4 || pos + 1 >= bits)
	{
	  /* We don't have to care for wrapping.  This is the normal
	     case so we add the first clause in the `if' expression as
	     an optimization.  It is a compile-time constant and so does
	     not cost anything.  */
	  retval[idx] = val << (pos - bits + 1);
	  pos -= bits;
	}
      else
	{
	  retval[idx--] = val >> (bits - pos - 1);
	  retval[idx] = val << (BITS_PER_MP_LIMB - (bits - pos - 1));
	  pos = BITS_PER_MP_LIMB - 1 - (bits - pos - 1);
	}
      /* Adjust the exponent for the bits we are shifting in.  */
      assert (int_no <= (uintmax_t) (exponent < 0
				     ? (INTMAX_MAX - bits + 1) / 4
				     : (INTMAX_MAX - exponent - bits + 1) / 4));
      exponent += bits - 1 + ((intmax_t) int_no - 1) * 4;
      while (--dig_no > 0 && idx >= 0)
	{
	  if (!ISXDIGIT (*startp))
	    startp += decimal_len;
	  if (ISDIGIT (*startp))
	    val = *startp++ - L_('0');
	  else
	    val = 10 + TOLOWER (*startp++) - L_('a');
	  if (pos + 1 >= 4)
	    {
	      retval[idx] |= val << (pos - 4 + 1);
	      pos -= 4;
	    }
	  else
	    {
	      retval[idx--] |= val >> (4 - pos - 1);
	      val <<= BITS_PER_MP_LIMB - (4 - pos - 1);
	      if (idx < 0)
		{
		  int rest_nonzero = 0;
		  while (--dig_no > 0)
		    {
		      if (*startp != L_('0'))
			{
			  rest_nonzero = 1;
			  break;
			}
		      startp++;
		    }
		  return round_and_return (retval, exponent, negative, val,
					   BITS_PER_MP_LIMB - 1, rest_nonzero);
		}
	      retval[idx] = val;
	      pos = BITS_PER_MP_LIMB - 1 - (4 - pos - 1);
	    }
	}
      /* We ran out of digits.  */
      MPN_ZERO (retval, idx);
      return round_and_return (retval, exponent, negative, 0, 0, 0);
    }
  /* Now we have the number of digits in total and the integer digits as well
     as the exponent and its sign.  We can decide whether the read digits are
     really integer digits or belong to the fractional part; i.e. we normalize
     123e-2 to 1.23.  */
  {
    register intmax_t incr = (exponent < 0
			      ? MAX (-(intmax_t) int_no, exponent)
			      : MIN ((intmax_t) dig_no - (intmax_t) int_no,
				     exponent));
    int_no += incr;
    exponent -= incr;
  }
  if (__builtin_expect (exponent > MAX_10_EXP + 1 - (intmax_t) int_no, 0))
    return overflow_value (negative);
  if (__builtin_expect (exponent < MIN_10_EXP - (DIG + 1), 0))
    return underflow_value (negative);
  if (int_no > 0)
    {
      /* Read the integer part as a multi-precision number to NUM.  */
      startp = str_to_mpn (startp, int_no, num, &numsize, &exponent
#ifndef USE_WIDE_CHAR
			   , decimal, decimal_len, thousands
#endif
			   );
      if (exponent > 0)
	{
	  /* We now multiply the gained number by the given power of ten.  */
	  mp_limb_t *psrc = num;
	  mp_limb_t *pdest = den;
	  int expbit = 1;
	  const struct mp_power *ttab = &_fpioconst_pow10[0];
	  do
	    {
	      if ((exponent & expbit) != 0)
		{
		  size_t size = ttab->arraysize - _FPIO_CONST_OFFSET;
		  mp_limb_t cy;
		  exponent ^= expbit;
		  /* FIXME: not the whole multiplication has to be
		     done.  If we have the needed number of bits we
		     only need the information whether more non-zero
		     bits follow.  */
		  if (numsize >= ttab->arraysize - _FPIO_CONST_OFFSET)
		    cy = mpn_mul (pdest, psrc, numsize,
				  &__tens[ttab->arrayoff
					  + _FPIO_CONST_OFFSET],
				  size);
		  else
		    cy = mpn_mul (pdest, &__tens[ttab->arrayoff
						 + _FPIO_CONST_OFFSET],
				  size, psrc, numsize);
		  numsize += size;
		  if (cy == 0)
		    --numsize;
		  (void) SWAP (psrc, pdest);
		}
	      expbit <<= 1;
	      ++ttab;
	    }
	  while (exponent != 0);
	  if (psrc == den)
	    memcpy (num, den, numsize * sizeof (mp_limb_t));
	}
      /* Determine how many bits of the result we already have.  */
      count_leading_zeros (bits, num[numsize - 1]);
      bits = numsize * BITS_PER_MP_LIMB - bits;
      /* Now we know the exponent of the number in base two.
	 Check it against the maximum possible exponent.  */
      if (__builtin_expect (bits > MAX_EXP, 0))
	return overflow_value (negative);
      /* We have already the first BITS bits of the result.  Together with
	 the information whether more non-zero bits follow this is enough
	 to determine the result.  */
      if (bits > MANT_DIG)
	{
	  int i;
	  const mp_size_t least_idx = (bits - MANT_DIG) / BITS_PER_MP_LIMB;
	  const mp_size_t least_bit = (bits - MANT_DIG) % BITS_PER_MP_LIMB;
	  const mp_size_t round_idx = least_bit == 0 ? least_idx - 1
						     : least_idx;
	  const mp_size_t round_bit = least_bit == 0 ? BITS_PER_MP_LIMB - 1
						     : least_bit - 1;
	  if (least_bit == 0)
	    memcpy (retval, &num[least_idx],
		    RETURN_LIMB_SIZE * sizeof (mp_limb_t));
	  else
	    {
	      for (i = least_idx; i < numsize - 1; ++i)
		retval[i - least_idx] = (num[i] >> least_bit)
					| (num[i + 1]
					   << (BITS_PER_MP_LIMB - least_bit));
	      if (i - least_idx < RETURN_LIMB_SIZE)
		retval[RETURN_LIMB_SIZE - 1] = num[i] >> least_bit;
	    }
	  /* Check whether any limb beside the ones in RETVAL are non-zero.  */
	  for (i = 0; num[i] == 0; ++i)
	    ;
	  return round_and_return (retval, bits - 1, negative,
				   num[round_idx], round_bit,
				   int_no < dig_no || i < round_idx);
	  /* NOTREACHED */
	}
      else if (dig_no == int_no)
	{
	  const mp_size_t target_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
	  const mp_size_t is_bit = (bits - 1) % BITS_PER_MP_LIMB;
	  if (target_bit == is_bit)
	    {
	      memcpy (&retval[RETURN_LIMB_SIZE - numsize], num,
		      numsize * sizeof (mp_limb_t));
	      /* FIXME: the following loop can be avoided if we assume a
		 maximal MANT_DIG value.  */
	      MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
	    }
	  else if (target_bit > is_bit)
	    {
	      (void) mpn_lshift (&retval[RETURN_LIMB_SIZE - numsize],
				 num, numsize, target_bit - is_bit);
	      /* FIXME: the following loop can be avoided if we assume a
		 maximal MANT_DIG value.  */
	      MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
	    }
	  else
	    {
	      mp_limb_t cy;
	      assert (numsize < RETURN_LIMB_SIZE);
	      cy = mpn_rshift (&retval[RETURN_LIMB_SIZE - numsize],
			       num, numsize, is_bit - target_bit);
	      retval[RETURN_LIMB_SIZE - numsize - 1] = cy;
	      /* FIXME: the following loop can be avoided if we assume a
		 maximal MANT_DIG value.  */
	      MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize - 1);
	    }
	  return round_and_return (retval, bits - 1, negative, 0, 0, 0);
	  /* NOTREACHED */
	}
      /* Store the bits we already have.  */
      memcpy (retval, num, numsize * sizeof (mp_limb_t));
#if RETURN_LIMB_SIZE > 1
      if (numsize < RETURN_LIMB_SIZE)
# if RETURN_LIMB_SIZE == 2
	retval[numsize] = 0;
# else
	MPN_ZERO (retval + numsize, RETURN_LIMB_SIZE - numsize);
# endif
#endif
    }
  /* We have to compute at least some of the fractional digits.  */
  {
    /* We construct a fraction and the result of the division gives us
       the needed digits.  The denominator is 1.0 multiplied by the
       exponent of the lowest digit; i.e. 0.123 gives 123 / 1000 and
       123e-6 gives 123 / 1000000.  */
    int expbit;
    int neg_exp;
    int more_bits;
    int need_frac_digits;
    mp_limb_t cy;
    mp_limb_t *psrc = den;
    mp_limb_t *pdest = num;
    const struct mp_power *ttab = &_fpioconst_pow10[0];
    assert (dig_no > int_no
	    && exponent <= 0
	    && exponent >= MIN_10_EXP - (DIG + 1));
    /* We need to compute MANT_DIG - BITS fractional bits that lie
       within the mantissa of the result, the following bit for
       rounding, and to know whether any subsequent bit is 0.
       Computing a bit with value 2^-n means looking at n digits after
       the decimal point.  */
    if (bits > 0)
      {
	/* The bits required are those immediately after the point.  */
	assert (int_no > 0 && exponent == 0);
	need_frac_digits = 1 + MANT_DIG - bits;
      }
    else
      {
	/* The number is in the form .123eEXPONENT.  */
	assert (int_no == 0 && *startp != L_('0'));
	/* The number is at least 10^(EXPONENT-1), and 10^3 <
	   2^10.  */
	int neg_exp_2 = ((1 - exponent) * 10) / 3 + 1;
	/* The number is at least 2^-NEG_EXP_2.  We need up to
	   MANT_DIG bits following that bit.  */
	need_frac_digits = neg_exp_2 + MANT_DIG;
	/* However, we never need bits beyond 1/4 ulp of the smallest
	   representable value.  (That 1/4 ulp bit is only needed to
	   determine tinyness on machines where tinyness is determined
	   after rounding.)  */
	if (need_frac_digits > MANT_DIG - MIN_EXP + 2)
	  need_frac_digits = MANT_DIG - MIN_EXP + 2;
	/* At this point, NEED_FRAC_DIGITS is the total number of
	   digits needed after the point, but some of those may be
	   leading 0s.  */
	need_frac_digits += exponent;
	/* Any cases underflowing enough that none of the fractional
	   digits are needed should have been caught earlier (such
	   cases are on the order of 10^-n or smaller where 2^-n is
	   the least subnormal).  */
	assert (need_frac_digits > 0);
      }
    if (need_frac_digits > (intmax_t) dig_no - (intmax_t) int_no)
      need_frac_digits = (intmax_t) dig_no - (intmax_t) int_no;
    if ((intmax_t) dig_no > (intmax_t) int_no + need_frac_digits)
      {
	dig_no = int_no + need_frac_digits;
	more_bits = 1;
      }
    else
      more_bits = 0;
    neg_exp = (intmax_t) dig_no - (intmax_t) int_no - exponent;
    /* Construct the denominator.  */
    densize = 0;
    expbit = 1;
    do
      {
	if ((neg_exp & expbit) != 0)
	  {
	    mp_limb_t cy;
	    neg_exp ^= expbit;
	    if (densize == 0)
	      {
		densize = ttab->arraysize - _FPIO_CONST_OFFSET;
		memcpy (psrc, &__tens[ttab->arrayoff + _FPIO_CONST_OFFSET],
			densize * sizeof (mp_limb_t));
	      }
	    else
	      {
		cy = mpn_mul (pdest, &__tens[ttab->arrayoff
					     + _FPIO_CONST_OFFSET],
			      ttab->arraysize - _FPIO_CONST_OFFSET,
			      psrc, densize);
		densize += ttab->arraysize - _FPIO_CONST_OFFSET;
		if (cy == 0)
		  --densize;
		(void) SWAP (psrc, pdest);
	      }
	  }
	expbit <<= 1;
	++ttab;
      }
    while (neg_exp != 0);
    if (psrc == num)
      memcpy (den, num, densize * sizeof (mp_limb_t));
    /* Read the fractional digits from the string.  */
    (void) str_to_mpn (startp, dig_no - int_no, num, &numsize, &exponent
#ifndef USE_WIDE_CHAR
		       , decimal, decimal_len, thousands
#endif
		       );
    /* We now have to shift both numbers so that the highest bit in the
       denominator is set.  In the same process we copy the numerator to
       a high place in the array so that the division constructs the wanted
       digits.  This is done by a "quasi fix point" number representation.
       num:   ddddddddddd . 0000000000000000000000
	      |--- m ---|
       den:                            ddddddddddd      n >= m
				       |--- n ---|
     */
    count_leading_zeros (cnt, den[densize - 1]);
    if (cnt > 0)
      {
	/* Don't call `mpn_shift' with a count of zero since the specification
	   does not allow this.  */
	(void) mpn_lshift (den, den, densize, cnt);
	cy = mpn_lshift (num, num, numsize, cnt);
	if (cy != 0)
	  num[numsize++] = cy;
      }
    /* Now we are ready for the division.  But it is not necessary to
       do a full multi-precision division because we only need a small
       number of bits for the result.  So we do not use mpn_divmod
       here but instead do the division here by hand and stop whenever
       the needed number of bits is reached.  The code itself comes
       from the GNU MP Library by Torbj\"orn Granlund.  */
    exponent = bits;
    switch (densize)
      {
      case 1:
	{
	  mp_limb_t d, n, quot;
	  int used = 0;
	  n = num[0];
	  d = den[0];
	  assert (numsize == 1 && n < d);
	  do
	    {
	      udiv_qrnnd (quot, n, n, 0, d);
#define got_limb							      \
	      if (bits == 0)						      \
		{							      \
		  register int cnt;					      \
		  if (quot == 0)					      \
		    cnt = BITS_PER_MP_LIMB;				      \
		  else							      \
		    count_leading_zeros (cnt, quot);			      \
		  exponent -= cnt;					      \
		  if (BITS_PER_MP_LIMB - cnt > MANT_DIG)		      \
		    {							      \
		      used = MANT_DIG + cnt;				      \
		      retval[0] = quot >> (BITS_PER_MP_LIMB - used);	      \
		      bits = MANT_DIG + 1;				      \
		    }							      \
		  else							      \
		    {							      \
		      /* Note that we only clear the second element.  */      \
		      /* The conditional is determined at compile time.  */   \
		      if (RETURN_LIMB_SIZE > 1)				      \
			retval[1] = 0;					      \
		      retval[0] = quot;					      \
		      bits = -cnt;					      \
		    }							      \
		}							      \
	      else if (bits + BITS_PER_MP_LIMB <= MANT_DIG)		      \
		mpn_lshift_1 (retval, RETURN_LIMB_SIZE, BITS_PER_MP_LIMB,     \
			      quot);					      \
	      else							      \
		{							      \
		  used = MANT_DIG - bits;				      \
		  if (used > 0)						      \
		    mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, quot);      \
		}							      \
	      bits += BITS_PER_MP_LIMB
	      got_limb;
	    }
	  while (bits <= MANT_DIG);
	  return round_and_return (retval, exponent - 1, negative,
				   quot, BITS_PER_MP_LIMB - 1 - used,
				   more_bits || n != 0);
	}
      case 2:
	{
	  mp_limb_t d0, d1, n0, n1;
	  mp_limb_t quot = 0;
	  int used = 0;
	  d0 = den[0];
	  d1 = den[1];
	  if (numsize < densize)
	    {
	      if (num[0] >= d1)
		{
		  /* The numerator of the number occupies fewer bits than
		     the denominator but the one limb is bigger than the
		     high limb of the numerator.  */
		  n1 = 0;
		  n0 = num[0];
		}
	      else
		{
		  if (bits <= 0)
		    exponent -= BITS_PER_MP_LIMB;
		  else
		    {
		      if (bits + BITS_PER_MP_LIMB <= MANT_DIG)
			mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
				      BITS_PER_MP_LIMB, 0);
		      else
			{
			  used = MANT_DIG - bits;
			  if (used > 0)
			    mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
			}
		      bits += BITS_PER_MP_LIMB;
		    }
		  n1 = num[0];
		  n0 = 0;
		}
	    }
	  else
	    {
	      n1 = num[1];
	      n0 = num[0];
	    }
	  while (bits <= MANT_DIG)
	    {
	      mp_limb_t r;
	      if (n1 == d1)
		{
		  /* QUOT should be either 111..111 or 111..110.  We need
		     special treatment of this rare case as normal division
		     would give overflow.  */
		  quot = ~(mp_limb_t) 0;
		  r = n0 + d1;
		  if (r < d1)	/* Carry in the addition?  */
		    {
		      add_ssaaaa (n1, n0, r - d0, 0, 0, d0);
		      goto have_quot;
		    }
		  n1 = d0 - (d0 != 0);
		  n0 = -d0;
		}
	      else
		{
		  udiv_qrnnd (quot, r, n1, n0, d1);
		  umul_ppmm (n1, n0, d0, quot);
		}
	    q_test:
	      if (n1 > r || (n1 == r && n0 > 0))
		{
		  /* The estimated QUOT was too large.  */
		  --quot;
		  sub_ddmmss (n1, n0, n1, n0, 0, d0);
		  r += d1;
		  if (r >= d1)	/* If not carry, test QUOT again.  */
		    goto q_test;
		}
	      sub_ddmmss (n1, n0, r, 0, n1, n0);
	    have_quot:
	      got_limb;
	    }
	  return round_and_return (retval, exponent - 1, negative,
				   quot, BITS_PER_MP_LIMB - 1 - used,
				   more_bits || n1 != 0 || n0 != 0);
	}
      default:
	{
	  int i;
	  mp_limb_t cy, dX, d1, n0, n1;
	  mp_limb_t quot = 0;
	  int used = 0;
	  dX = den[densize - 1];
	  d1 = den[densize - 2];
	  /* The division does not work if the upper limb of the two-limb
	     numerator is greater than the denominator.  */
	  if (mpn_cmp (num, &den[densize - numsize], numsize) > 0)
	    num[numsize++] = 0;
	  if (numsize < densize)
	    {
	      mp_size_t empty = densize - numsize;
	      register int i;
	      if (bits <= 0)
		exponent -= empty * BITS_PER_MP_LIMB;
	      else
		{
		  if (bits + empty * BITS_PER_MP_LIMB <= MANT_DIG)
		    {
		      /* We make a difference here because the compiler
			 cannot optimize the `else' case that good and
			 this reflects all currently used FLOAT types
			 and GMP implementations.  */
#if RETURN_LIMB_SIZE <= 2
		      assert (empty == 1);
		      mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
				    BITS_PER_MP_LIMB, 0);
#else
		      for (i = RETURN_LIMB_SIZE - 1; i >= empty; --i)
			retval[i] = retval[i - empty];
		      while (i >= 0)
			retval[i--] = 0;
#endif
		    }
		  else
		    {
		      used = MANT_DIG - bits;
		      if (used >= BITS_PER_MP_LIMB)
			{
			  register int i;
			  (void) mpn_lshift (&retval[used
						     / BITS_PER_MP_LIMB],
					     retval,
					     (RETURN_LIMB_SIZE
					      - used / BITS_PER_MP_LIMB),
					     used % BITS_PER_MP_LIMB);
			  for (i = used / BITS_PER_MP_LIMB - 1; i >= 0; --i)
			    retval[i] = 0;
			}
		      else if (used > 0)
			mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
		    }
		  bits += empty * BITS_PER_MP_LIMB;
		}
	      for (i = numsize; i > 0; --i)
		num[i + empty] = num[i - 1];
	      MPN_ZERO (num, empty + 1);
	    }
	  else
	    {
	      int i;
	      assert (numsize == densize);
	      for (i = numsize; i > 0; --i)
		num[i] = num[i - 1];
	      num[0] = 0;
	    }
	  den[densize] = 0;
	  n0 = num[densize];
	  while (bits <= MANT_DIG)
	    {
	      if (n0 == dX)
		/* This might over-estimate QUOT, but it's probably not
		   worth the extra code here to find out.  */
		quot = ~(mp_limb_t) 0;
	      else
		{
		  mp_limb_t r;
		  udiv_qrnnd (quot, r, n0, num[densize - 1], dX);
		  umul_ppmm (n1, n0, d1, quot);
		  while (n1 > r || (n1 == r && n0 > num[densize - 2]))
		    {
		      --quot;
		      r += dX;
		      if (r < dX) /* I.e. "carry in previous addition?" */
			break;
		      n1 -= n0 < d1;
		      n0 -= d1;
		    }
		}
	      /* Possible optimization: We already have (q * n0) and (1 * n1)
		 after the calculation of QUOT.  Taking advantage of this, we
		 could make this loop make two iterations less.  */
	      cy = mpn_submul_1 (num, den, densize + 1, quot);
	      if (num[densize] != cy)
		{
		  cy = mpn_add_n (num, num, den, densize);
		  assert (cy != 0);
		  --quot;
		}
	      n0 = num[densize] = num[densize - 1];
	      for (i = densize - 1; i > 0; --i)
		num[i] = num[i - 1];
	      num[0] = 0;
	      got_limb;
	    }
	  for (i = densize; num[i] == 0 && i >= 0; --i)
	    ;
	  return round_and_return (retval, exponent - 1, negative,
				   quot, BITS_PER_MP_LIMB - 1 - used,
				   more_bits || i >= 0);
	}
      }
  }
  /* NOTREACHED */
}
 |