1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ D I M --
-- --
-- B o d y --
-- --
-- Copyright (C) 2011-2015, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Aspects; use Aspects;
with Atree; use Atree;
with Einfo; use Einfo;
with Errout; use Errout;
with Exp_Util; use Exp_Util;
with Lib; use Lib;
with Namet; use Namet;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Eval; use Sem_Eval;
with Sem_Res; use Sem_Res;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Sinput; use Sinput;
with Snames; use Snames;
with Stand; use Stand;
with Stringt; use Stringt;
with Table;
with Tbuild; use Tbuild;
with Uintp; use Uintp;
with Urealp; use Urealp;
with GNAT.HTable;
package body Sem_Dim is
-------------------------
-- Rational Arithmetic --
-------------------------
type Whole is new Int;
subtype Positive_Whole is Whole range 1 .. Whole'Last;
type Rational is record
Numerator : Whole;
Denominator : Positive_Whole;
end record;
Zero : constant Rational := Rational'(Numerator => 0,
Denominator => 1);
No_Rational : constant Rational := Rational'(Numerator => 0,
Denominator => 2);
-- Used to indicate an expression that cannot be interpreted as a rational
-- Returned value of the Create_Rational_From routine when parameter Expr
-- is not a static representation of a rational.
-- Rational constructors
function "+" (Right : Whole) return Rational;
function GCD (Left, Right : Whole) return Int;
function Reduce (X : Rational) return Rational;
-- Unary operator for Rational
function "-" (Right : Rational) return Rational;
function "abs" (Right : Rational) return Rational;
-- Rational operations for Rationals
function "+" (Left, Right : Rational) return Rational;
function "-" (Left, Right : Rational) return Rational;
function "*" (Left, Right : Rational) return Rational;
function "/" (Left, Right : Rational) return Rational;
------------------
-- System Types --
------------------
Max_Number_Of_Dimensions : constant := 7;
-- Maximum number of dimensions in a dimension system
High_Position_Bound : constant := Max_Number_Of_Dimensions;
Invalid_Position : constant := 0;
Low_Position_Bound : constant := 1;
subtype Dimension_Position is
Nat range Invalid_Position .. High_Position_Bound;
type Name_Array is
array (Dimension_Position range
Low_Position_Bound .. High_Position_Bound) of Name_Id;
-- Store the names of all units within a system
No_Names : constant Name_Array := (others => No_Name);
type Symbol_Array is
array (Dimension_Position range
Low_Position_Bound .. High_Position_Bound) of String_Id;
-- Store the symbols of all units within a system
No_Symbols : constant Symbol_Array := (others => No_String);
-- The following record should be documented field by field
type System_Type is record
Type_Decl : Node_Id;
Unit_Names : Name_Array;
Unit_Symbols : Symbol_Array;
Dim_Symbols : Symbol_Array;
Count : Dimension_Position;
end record;
Null_System : constant System_Type :=
(Empty, No_Names, No_Symbols, No_Symbols, Invalid_Position);
subtype System_Id is Nat;
-- The following table maps types to systems
package System_Table is new Table.Table (
Table_Component_Type => System_Type,
Table_Index_Type => System_Id,
Table_Low_Bound => 1,
Table_Initial => 5,
Table_Increment => 5,
Table_Name => "System_Table");
--------------------
-- Dimension Type --
--------------------
type Dimension_Type is
array (Dimension_Position range
Low_Position_Bound .. High_Position_Bound) of Rational;
Null_Dimension : constant Dimension_Type := (others => Zero);
type Dimension_Table_Range is range 0 .. 510;
function Dimension_Table_Hash (Key : Node_Id) return Dimension_Table_Range;
-- The following table associates nodes with dimensions
package Dimension_Table is new
GNAT.HTable.Simple_HTable
(Header_Num => Dimension_Table_Range,
Element => Dimension_Type,
No_Element => Null_Dimension,
Key => Node_Id,
Hash => Dimension_Table_Hash,
Equal => "=");
------------------
-- Symbol Types --
------------------
type Symbol_Table_Range is range 0 .. 510;
function Symbol_Table_Hash (Key : Entity_Id) return Symbol_Table_Range;
-- Each subtype with a dimension has a symbolic representation of the
-- related unit. This table establishes a relation between the subtype
-- and the symbol.
package Symbol_Table is new
GNAT.HTable.Simple_HTable
(Header_Num => Symbol_Table_Range,
Element => String_Id,
No_Element => No_String,
Key => Entity_Id,
Hash => Symbol_Table_Hash,
Equal => "=");
-- The following array enumerates all contexts which may contain or
-- produce a dimension.
OK_For_Dimension : constant array (Node_Kind) of Boolean :=
(N_Attribute_Reference => True,
N_Expanded_Name => True,
N_Defining_Identifier => True,
N_Function_Call => True,
N_Identifier => True,
N_Indexed_Component => True,
N_Integer_Literal => True,
N_Op_Abs => True,
N_Op_Add => True,
N_Op_Divide => True,
N_Op_Expon => True,
N_Op_Minus => True,
N_Op_Mod => True,
N_Op_Multiply => True,
N_Op_Plus => True,
N_Op_Rem => True,
N_Op_Subtract => True,
N_Qualified_Expression => True,
N_Real_Literal => True,
N_Selected_Component => True,
N_Slice => True,
N_Type_Conversion => True,
N_Unchecked_Type_Conversion => True,
others => False);
-----------------------
-- Local Subprograms --
-----------------------
procedure Analyze_Dimension_Assignment_Statement (N : Node_Id);
-- Subroutine of Analyze_Dimension for assignment statement. Check that the
-- dimensions of the left-hand side and the right-hand side of N match.
procedure Analyze_Dimension_Binary_Op (N : Node_Id);
-- Subroutine of Analyze_Dimension for binary operators. Check the
-- dimensions of the right and the left operand permit the operation.
-- Then, evaluate the resulting dimensions for each binary operator.
procedure Analyze_Dimension_Component_Declaration (N : Node_Id);
-- Subroutine of Analyze_Dimension for component declaration. Check that
-- the dimensions of the type of N and of the expression match.
procedure Analyze_Dimension_Extended_Return_Statement (N : Node_Id);
-- Subroutine of Analyze_Dimension for extended return statement. Check
-- that the dimensions of the returned type and of the returned object
-- match.
procedure Analyze_Dimension_Has_Etype (N : Node_Id);
-- Subroutine of Analyze_Dimension for a subset of N_Has_Etype denoted by
-- the list below:
-- N_Attribute_Reference
-- N_Identifier
-- N_Indexed_Component
-- N_Qualified_Expression
-- N_Selected_Component
-- N_Slice
-- N_Type_Conversion
-- N_Unchecked_Type_Conversion
procedure Analyze_Dimension_Object_Declaration (N : Node_Id);
-- Subroutine of Analyze_Dimension for object declaration. Check that
-- the dimensions of the object type and the dimensions of the expression
-- (if expression is present) match. Note that when the expression is
-- a literal, no error is returned. This special case allows object
-- declaration such as: m : constant Length := 1.0;
procedure Analyze_Dimension_Object_Renaming_Declaration (N : Node_Id);
-- Subroutine of Analyze_Dimension for object renaming declaration. Check
-- the dimensions of the type and of the renamed object name of N match.
procedure Analyze_Dimension_Simple_Return_Statement (N : Node_Id);
-- Subroutine of Analyze_Dimension for simple return statement
-- Check that the dimensions of the returned type and of the returned
-- expression match.
procedure Analyze_Dimension_Subtype_Declaration (N : Node_Id);
-- Subroutine of Analyze_Dimension for subtype declaration. Propagate the
-- dimensions from the parent type to the identifier of N. Note that if
-- both the identifier and the parent type of N are not dimensionless,
-- return an error.
procedure Analyze_Dimension_Unary_Op (N : Node_Id);
-- Subroutine of Analyze_Dimension for unary operators. For Plus, Minus and
-- Abs operators, propagate the dimensions from the operand to N.
function Create_Rational_From
(Expr : Node_Id;
Complain : Boolean) return Rational;
-- Given an arbitrary expression Expr, return a valid rational if Expr can
-- be interpreted as a rational. Otherwise return No_Rational and also an
-- error message if Complain is set to True.
function Dimensions_Of (N : Node_Id) return Dimension_Type;
-- Return the dimension vector of node N
function Dimensions_Msg_Of
(N : Node_Id;
Description_Needed : Boolean := False) return String;
-- Given a node N, return the dimension symbols of N, preceded by "has
-- dimension" if Description_Needed. if N is dimensionless, return "'[']",
-- or "is dimensionless" if Description_Needed.
procedure Dim_Warning_For_Numeric_Literal (N : Node_Id; Typ : Entity_Id);
-- Issue a warning on the given numeric literal N to indicate that the
-- compiler made the assumption that the literal is not dimensionless
-- but has the dimension of Typ.
procedure Eval_Op_Expon_With_Rational_Exponent
(N : Node_Id;
Exponent_Value : Rational);
-- Evaluate the exponent it is a rational and the operand has a dimension
function Exists (Dim : Dimension_Type) return Boolean;
-- Returns True iff Dim does not denote the null dimension
function Exists (Str : String_Id) return Boolean;
-- Returns True iff Str does not denote No_String
function Exists (Sys : System_Type) return Boolean;
-- Returns True iff Sys does not denote the null system
function From_Dim_To_Str_Of_Dim_Symbols
(Dims : Dimension_Type;
System : System_Type;
In_Error_Msg : Boolean := False) return String_Id;
-- Given a dimension vector and a dimension system, return the proper
-- string of dimension symbols. If In_Error_Msg is True (i.e. the String_Id
-- will be used to issue an error message) then this routine has a special
-- handling for the insertion characters * or [ which must be preceded by
-- a quote ' to to be placed literally into the message.
function From_Dim_To_Str_Of_Unit_Symbols
(Dims : Dimension_Type;
System : System_Type) return String_Id;
-- Given a dimension vector and a dimension system, return the proper
-- string of unit symbols.
function Is_Dim_IO_Package_Entity (E : Entity_Id) return Boolean;
-- Return True if E is the package entity of System.Dim.Float_IO or
-- System.Dim.Integer_IO.
function Is_Invalid (Position : Dimension_Position) return Boolean;
-- Return True if Pos denotes the invalid position
procedure Move_Dimensions (From : Node_Id; To : Node_Id);
-- Copy dimension vector of From to To and delete dimension vector of From
procedure Remove_Dimensions (N : Node_Id);
-- Remove the dimension vector of node N
procedure Set_Dimensions (N : Node_Id; Val : Dimension_Type);
-- Associate a dimension vector with a node
procedure Set_Symbol (E : Entity_Id; Val : String_Id);
-- Associate a symbol representation of a dimension vector with a subtype
function String_From_Numeric_Literal (N : Node_Id) return String_Id;
-- Return the string that corresponds to the numeric litteral N as it
-- appears in the source.
function Symbol_Of (E : Entity_Id) return String_Id;
-- E denotes a subtype with a dimension. Return the symbol representation
-- of the dimension vector.
function System_Of (E : Entity_Id) return System_Type;
-- E denotes a type, return associated system of the type if it has one
---------
-- "+" --
---------
function "+" (Right : Whole) return Rational is
begin
return Rational'(Numerator => Right, Denominator => 1);
end "+";
function "+" (Left, Right : Rational) return Rational is
R : constant Rational :=
Rational'(Numerator => Left.Numerator * Right.Denominator +
Left.Denominator * Right.Numerator,
Denominator => Left.Denominator * Right.Denominator);
begin
return Reduce (R);
end "+";
---------
-- "-" --
---------
function "-" (Right : Rational) return Rational is
begin
return Rational'(Numerator => -Right.Numerator,
Denominator => Right.Denominator);
end "-";
function "-" (Left, Right : Rational) return Rational is
R : constant Rational :=
Rational'(Numerator => Left.Numerator * Right.Denominator -
Left.Denominator * Right.Numerator,
Denominator => Left.Denominator * Right.Denominator);
begin
return Reduce (R);
end "-";
---------
-- "*" --
---------
function "*" (Left, Right : Rational) return Rational is
R : constant Rational :=
Rational'(Numerator => Left.Numerator * Right.Numerator,
Denominator => Left.Denominator * Right.Denominator);
begin
return Reduce (R);
end "*";
---------
-- "/" --
---------
function "/" (Left, Right : Rational) return Rational is
R : constant Rational := abs Right;
L : Rational := Left;
begin
if Right.Numerator < 0 then
L.Numerator := Whole (-Integer (L.Numerator));
end if;
return Reduce (Rational'(Numerator => L.Numerator * R.Denominator,
Denominator => L.Denominator * R.Numerator));
end "/";
-----------
-- "abs" --
-----------
function "abs" (Right : Rational) return Rational is
begin
return Rational'(Numerator => abs Right.Numerator,
Denominator => Right.Denominator);
end "abs";
------------------------------
-- Analyze_Aspect_Dimension --
------------------------------
-- with Dimension =>
-- ([Symbol =>] SYMBOL, DIMENSION_VALUE {, DIMENSION_Value})
--
-- SYMBOL ::= STRING_LITERAL | CHARACTER_LITERAL
-- DIMENSION_VALUE ::=
-- RATIONAL
-- | others => RATIONAL
-- | DISCRETE_CHOICE_LIST => RATIONAL
-- RATIONAL ::= [-] NUMERIC_LITERAL [/ NUMERIC_LITERAL]
-- Note that when the dimensioned type is an integer type, then any
-- dimension value must be an integer literal.
procedure Analyze_Aspect_Dimension
(N : Node_Id;
Id : Entity_Id;
Aggr : Node_Id)
is
Def_Id : constant Entity_Id := Defining_Identifier (N);
Processed : array (Dimension_Type'Range) of Boolean := (others => False);
-- This array is used when processing ranges or Others_Choice as part of
-- the dimension aggregate.
Dimensions : Dimension_Type := Null_Dimension;
procedure Extract_Power
(Expr : Node_Id;
Position : Dimension_Position);
-- Given an expression with denotes a rational number, read the number
-- and associate it with Position in Dimensions.
function Position_In_System
(Id : Node_Id;
System : System_Type) return Dimension_Position;
-- Given an identifier which denotes a dimension, return the position of
-- that dimension within System.
-------------------
-- Extract_Power --
-------------------
procedure Extract_Power
(Expr : Node_Id;
Position : Dimension_Position)
is
begin
-- Integer case
if Is_Integer_Type (Def_Id) then
-- Dimension value must be an integer literal
if Nkind (Expr) = N_Integer_Literal then
Dimensions (Position) := +Whole (UI_To_Int (Intval (Expr)));
else
Error_Msg_N ("integer literal expected", Expr);
end if;
-- Float case
else
Dimensions (Position) := Create_Rational_From (Expr, True);
end if;
Processed (Position) := True;
end Extract_Power;
------------------------
-- Position_In_System --
------------------------
function Position_In_System
(Id : Node_Id;
System : System_Type) return Dimension_Position
is
Dimension_Name : constant Name_Id := Chars (Id);
begin
for Position in System.Unit_Names'Range loop
if Dimension_Name = System.Unit_Names (Position) then
return Position;
end if;
end loop;
return Invalid_Position;
end Position_In_System;
-- Local variables
Assoc : Node_Id;
Choice : Node_Id;
Expr : Node_Id;
Num_Choices : Nat := 0;
Num_Dimensions : Nat := 0;
Others_Seen : Boolean := False;
Position : Nat := 0;
Sub_Ind : Node_Id;
Symbol : String_Id := No_String;
Symbol_Expr : Node_Id;
System : System_Type;
Typ : Entity_Id;
Errors_Count : Nat;
-- Errors_Count is a count of errors detected by the compiler so far
-- just before the extraction of symbol, names and values in the
-- aggregate (Step 2).
--
-- At the end of the analysis, there is a check to verify that this
-- count equals to Serious_Errors_Detected i.e. no erros have been
-- encountered during the process. Otherwise the Dimension_Table is
-- not filled.
-- Start of processing for Analyze_Aspect_Dimension
begin
-- STEP 1: Legality of aspect
if Nkind (N) /= N_Subtype_Declaration then
Error_Msg_NE ("aspect& must apply to subtype declaration", N, Id);
return;
end if;
Sub_Ind := Subtype_Indication (N);
Typ := Etype (Sub_Ind);
System := System_Of (Typ);
if Nkind (Sub_Ind) = N_Subtype_Indication then
Error_Msg_NE
("constraint not allowed with aspect&", Constraint (Sub_Ind), Id);
return;
end if;
-- The dimension declarations are useless if the parent type does not
-- declare a valid system.
if not Exists (System) then
Error_Msg_NE
("parent type of& lacks dimension system", Sub_Ind, Def_Id);
return;
end if;
if Nkind (Aggr) /= N_Aggregate then
Error_Msg_N ("aggregate expected", Aggr);
return;
end if;
-- STEP 2: Symbol, Names and values extraction
-- Get the number of errors detected by the compiler so far
Errors_Count := Serious_Errors_Detected;
-- STEP 2a: Symbol extraction
-- The first entry in the aggregate may be the symbolic representation
-- of the quantity.
-- Positional symbol argument
Symbol_Expr := First (Expressions (Aggr));
-- Named symbol argument
if No (Symbol_Expr)
or else not Nkind_In (Symbol_Expr, N_Character_Literal,
N_String_Literal)
then
Symbol_Expr := Empty;
-- Component associations present
if Present (Component_Associations (Aggr)) then
Assoc := First (Component_Associations (Aggr));
Choice := First (Choices (Assoc));
if No (Next (Choice)) and then Nkind (Choice) = N_Identifier then
-- Symbol component association is present
if Chars (Choice) = Name_Symbol then
Num_Choices := Num_Choices + 1;
Symbol_Expr := Expression (Assoc);
-- Verify symbol expression is a string or a character
if not Nkind_In (Symbol_Expr, N_Character_Literal,
N_String_Literal)
then
Symbol_Expr := Empty;
Error_Msg_N
("symbol expression must be character or string",
Symbol_Expr);
end if;
-- Special error if no Symbol choice but expression is string
-- or character.
elsif Nkind_In (Expression (Assoc), N_Character_Literal,
N_String_Literal)
then
Num_Choices := Num_Choices + 1;
Error_Msg_N
("optional component Symbol expected, found&", Choice);
end if;
end if;
end if;
end if;
-- STEP 2b: Names and values extraction
-- Positional elements
Expr := First (Expressions (Aggr));
-- Skip the symbol expression when present
if Present (Symbol_Expr) and then Num_Choices = 0 then
Expr := Next (Expr);
end if;
Position := Low_Position_Bound;
while Present (Expr) loop
if Position > High_Position_Bound then
Error_Msg_N
("type& has more dimensions than system allows", Def_Id);
exit;
end if;
Extract_Power (Expr, Position);
Position := Position + 1;
Num_Dimensions := Num_Dimensions + 1;
Next (Expr);
end loop;
-- Named elements
Assoc := First (Component_Associations (Aggr));
-- Skip the symbol association when present
if Num_Choices = 1 then
Next (Assoc);
end if;
while Present (Assoc) loop
Expr := Expression (Assoc);
Choice := First (Choices (Assoc));
while Present (Choice) loop
-- Identifier case: NAME => EXPRESSION
if Nkind (Choice) = N_Identifier then
Position := Position_In_System (Choice, System);
if Is_Invalid (Position) then
Error_Msg_N ("dimension name& not part of system", Choice);
else
Extract_Power (Expr, Position);
end if;
-- Range case: NAME .. NAME => EXPRESSION
elsif Nkind (Choice) = N_Range then
declare
Low : constant Node_Id := Low_Bound (Choice);
High : constant Node_Id := High_Bound (Choice);
Low_Pos : Dimension_Position;
High_Pos : Dimension_Position;
begin
if Nkind (Low) /= N_Identifier then
Error_Msg_N ("bound must denote a dimension name", Low);
elsif Nkind (High) /= N_Identifier then
Error_Msg_N ("bound must denote a dimension name", High);
else
Low_Pos := Position_In_System (Low, System);
High_Pos := Position_In_System (High, System);
if Is_Invalid (Low_Pos) then
Error_Msg_N ("dimension name& not part of system",
Low);
elsif Is_Invalid (High_Pos) then
Error_Msg_N ("dimension name& not part of system",
High);
elsif Low_Pos > High_Pos then
Error_Msg_N ("expected low to high range", Choice);
else
for Position in Low_Pos .. High_Pos loop
Extract_Power (Expr, Position);
end loop;
end if;
end if;
end;
-- Others case: OTHERS => EXPRESSION
elsif Nkind (Choice) = N_Others_Choice then
if Present (Next (Choice)) or else Present (Prev (Choice)) then
Error_Msg_N
("OTHERS must appear alone in a choice list", Choice);
elsif Present (Next (Assoc)) then
Error_Msg_N
("OTHERS must appear last in an aggregate", Choice);
elsif Others_Seen then
Error_Msg_N ("multiple OTHERS not allowed", Choice);
else
-- Fill the non-processed dimensions with the default value
-- supplied by others.
for Position in Processed'Range loop
if not Processed (Position) then
Extract_Power (Expr, Position);
end if;
end loop;
end if;
Others_Seen := True;
-- All other cases are illegal declarations of dimension names
else
Error_Msg_NE ("wrong syntax for aspect&", Choice, Id);
end if;
Num_Choices := Num_Choices + 1;
Next (Choice);
end loop;
Num_Dimensions := Num_Dimensions + 1;
Next (Assoc);
end loop;
-- STEP 3: Consistency of system and dimensions
if Present (First (Expressions (Aggr)))
and then (First (Expressions (Aggr)) /= Symbol_Expr
or else Present (Next (Symbol_Expr)))
and then (Num_Choices > 1
or else (Num_Choices = 1 and then not Others_Seen))
then
Error_Msg_N
("named associations cannot follow positional associations", Aggr);
end if;
if Num_Dimensions > System.Count then
Error_Msg_N ("type& has more dimensions than system allows", Def_Id);
elsif Num_Dimensions < System.Count and then not Others_Seen then
Error_Msg_N ("type& has less dimensions than system allows", Def_Id);
end if;
-- STEP 4: Dimension symbol extraction
if Present (Symbol_Expr) then
if Nkind (Symbol_Expr) = N_Character_Literal then
Start_String;
Store_String_Char (UI_To_CC (Char_Literal_Value (Symbol_Expr)));
Symbol := End_String;
else
Symbol := Strval (Symbol_Expr);
end if;
if String_Length (Symbol) = 0 then
Error_Msg_N ("empty string not allowed here", Symbol_Expr);
end if;
end if;
-- STEP 5: Storage of extracted values
-- Check that no errors have been detected during the analysis
if Errors_Count = Serious_Errors_Detected then
-- Check for useless declaration
if Symbol = No_String and then not Exists (Dimensions) then
Error_Msg_N ("useless dimension declaration", Aggr);
end if;
if Symbol /= No_String then
Set_Symbol (Def_Id, Symbol);
end if;
if Exists (Dimensions) then
Set_Dimensions (Def_Id, Dimensions);
end if;
end if;
end Analyze_Aspect_Dimension;
-------------------------------------
-- Analyze_Aspect_Dimension_System --
-------------------------------------
-- with Dimension_System => (DIMENSION {, DIMENSION});
-- DIMENSION ::= (
-- [Unit_Name =>] IDENTIFIER,
-- [Unit_Symbol =>] SYMBOL,
-- [Dim_Symbol =>] SYMBOL)
procedure Analyze_Aspect_Dimension_System
(N : Node_Id;
Id : Entity_Id;
Aggr : Node_Id)
is
function Is_Derived_Numeric_Type (N : Node_Id) return Boolean;
-- Determine whether type declaration N denotes a numeric derived type
-------------------------------
-- Is_Derived_Numeric_Type --
-------------------------------
function Is_Derived_Numeric_Type (N : Node_Id) return Boolean is
begin
return
Nkind (N) = N_Full_Type_Declaration
and then Nkind (Type_Definition (N)) = N_Derived_Type_Definition
and then Is_Numeric_Type
(Entity (Subtype_Indication (Type_Definition (N))));
end Is_Derived_Numeric_Type;
-- Local variables
Assoc : Node_Id;
Choice : Node_Id;
Dim_Aggr : Node_Id;
Dim_Symbol : Node_Id;
Dim_Symbols : Symbol_Array := No_Symbols;
Dim_System : System_Type := Null_System;
Position : Nat := 0;
Unit_Name : Node_Id;
Unit_Names : Name_Array := No_Names;
Unit_Symbol : Node_Id;
Unit_Symbols : Symbol_Array := No_Symbols;
Errors_Count : Nat;
-- Errors_Count is a count of errors detected by the compiler so far
-- just before the extraction of names and symbols in the aggregate
-- (Step 3).
--
-- At the end of the analysis, there is a check to verify that this
-- count equals Serious_Errors_Detected i.e. no errors have been
-- encountered during the process. Otherwise the System_Table is
-- not filled.
-- Start of processing for Analyze_Aspect_Dimension_System
begin
-- STEP 1: Legality of aspect
if not Is_Derived_Numeric_Type (N) then
Error_Msg_NE
("aspect& must apply to numeric derived type declaration", N, Id);
return;
end if;
if Nkind (Aggr) /= N_Aggregate then
Error_Msg_N ("aggregate expected", Aggr);
return;
end if;
-- STEP 2: Structural verification of the dimension aggregate
if Present (Component_Associations (Aggr)) then
Error_Msg_N ("expected positional aggregate", Aggr);
return;
end if;
-- STEP 3: Name and Symbol extraction
Dim_Aggr := First (Expressions (Aggr));
Errors_Count := Serious_Errors_Detected;
while Present (Dim_Aggr) loop
Position := Position + 1;
if Position > High_Position_Bound then
Error_Msg_N ("too many dimensions in system", Aggr);
exit;
end if;
if Nkind (Dim_Aggr) /= N_Aggregate then
Error_Msg_N ("aggregate expected", Dim_Aggr);
else
if Present (Component_Associations (Dim_Aggr))
and then Present (Expressions (Dim_Aggr))
then
Error_Msg_N
("mixed positional/named aggregate not allowed here",
Dim_Aggr);
-- Verify each dimension aggregate has three arguments
elsif List_Length (Component_Associations (Dim_Aggr)) /= 3
and then List_Length (Expressions (Dim_Aggr)) /= 3
then
Error_Msg_N
("three components expected in aggregate", Dim_Aggr);
else
-- Named dimension aggregate
if Present (Component_Associations (Dim_Aggr)) then
-- Check first argument denotes the unit name
Assoc := First (Component_Associations (Dim_Aggr));
Choice := First (Choices (Assoc));
Unit_Name := Expression (Assoc);
if Present (Next (Choice))
or else Nkind (Choice) /= N_Identifier
then
Error_Msg_NE ("wrong syntax for aspect&", Choice, Id);
elsif Chars (Choice) /= Name_Unit_Name then
Error_Msg_N ("expected Unit_Name, found&", Choice);
end if;
-- Check the second argument denotes the unit symbol
Next (Assoc);
Choice := First (Choices (Assoc));
Unit_Symbol := Expression (Assoc);
if Present (Next (Choice))
or else Nkind (Choice) /= N_Identifier
then
Error_Msg_NE ("wrong syntax for aspect&", Choice, Id);
elsif Chars (Choice) /= Name_Unit_Symbol then
Error_Msg_N ("expected Unit_Symbol, found&", Choice);
end if;
-- Check the third argument denotes the dimension symbol
Next (Assoc);
Choice := First (Choices (Assoc));
Dim_Symbol := Expression (Assoc);
if Present (Next (Choice))
or else Nkind (Choice) /= N_Identifier
then
Error_Msg_NE ("wrong syntax for aspect&", Choice, Id);
elsif Chars (Choice) /= Name_Dim_Symbol then
Error_Msg_N ("expected Dim_Symbol, found&", Choice);
end if;
-- Positional dimension aggregate
else
Unit_Name := First (Expressions (Dim_Aggr));
Unit_Symbol := Next (Unit_Name);
Dim_Symbol := Next (Unit_Symbol);
end if;
-- Check the first argument for each dimension aggregate is
-- a name.
if Nkind (Unit_Name) = N_Identifier then
Unit_Names (Position) := Chars (Unit_Name);
else
Error_Msg_N ("expected unit name", Unit_Name);
end if;
-- Check the second argument for each dimension aggregate is
-- a string or a character.
if not Nkind_In (Unit_Symbol, N_String_Literal,
N_Character_Literal)
then
Error_Msg_N
("expected unit symbol (string or character)",
Unit_Symbol);
else
-- String case
if Nkind (Unit_Symbol) = N_String_Literal then
Unit_Symbols (Position) := Strval (Unit_Symbol);
-- Character case
else
Start_String;
Store_String_Char
(UI_To_CC (Char_Literal_Value (Unit_Symbol)));
Unit_Symbols (Position) := End_String;
end if;
-- Verify that the string is not empty
if String_Length (Unit_Symbols (Position)) = 0 then
Error_Msg_N
("empty string not allowed here", Unit_Symbol);
end if;
end if;
-- Check the third argument for each dimension aggregate is
-- a string or a character.
if not Nkind_In (Dim_Symbol, N_String_Literal,
N_Character_Literal)
then
Error_Msg_N
("expected dimension symbol (string or character)",
Dim_Symbol);
else
-- String case
if Nkind (Dim_Symbol) = N_String_Literal then
Dim_Symbols (Position) := Strval (Dim_Symbol);
-- Character case
else
Start_String;
Store_String_Char
(UI_To_CC (Char_Literal_Value (Dim_Symbol)));
Dim_Symbols (Position) := End_String;
end if;
-- Verify that the string is not empty
if String_Length (Dim_Symbols (Position)) = 0 then
Error_Msg_N ("empty string not allowed here", Dim_Symbol);
end if;
end if;
end if;
end if;
Next (Dim_Aggr);
end loop;
-- STEP 4: Storage of extracted values
-- Check that no errors have been detected during the analysis
if Errors_Count = Serious_Errors_Detected then
Dim_System.Type_Decl := N;
Dim_System.Unit_Names := Unit_Names;
Dim_System.Unit_Symbols := Unit_Symbols;
Dim_System.Dim_Symbols := Dim_Symbols;
Dim_System.Count := Position;
System_Table.Append (Dim_System);
end if;
end Analyze_Aspect_Dimension_System;
-----------------------
-- Analyze_Dimension --
-----------------------
-- This dispatch routine propagates dimensions for each node
procedure Analyze_Dimension (N : Node_Id) is
begin
-- Aspect is an Ada 2012 feature. Note that there is no need to check
-- dimensions for nodes that don't come from source.
if Ada_Version < Ada_2012 or else not Comes_From_Source (N) then
return;
end if;
case Nkind (N) is
when N_Assignment_Statement =>
Analyze_Dimension_Assignment_Statement (N);
when N_Binary_Op =>
Analyze_Dimension_Binary_Op (N);
when N_Component_Declaration =>
Analyze_Dimension_Component_Declaration (N);
when N_Extended_Return_Statement =>
Analyze_Dimension_Extended_Return_Statement (N);
when N_Attribute_Reference |
N_Expanded_Name |
N_Function_Call |
N_Identifier |
N_Indexed_Component |
N_Qualified_Expression |
N_Selected_Component |
N_Slice |
N_Type_Conversion |
N_Unchecked_Type_Conversion =>
Analyze_Dimension_Has_Etype (N);
when N_Object_Declaration =>
Analyze_Dimension_Object_Declaration (N);
when N_Object_Renaming_Declaration =>
Analyze_Dimension_Object_Renaming_Declaration (N);
when N_Simple_Return_Statement =>
if not Comes_From_Extended_Return_Statement (N) then
Analyze_Dimension_Simple_Return_Statement (N);
end if;
when N_Subtype_Declaration =>
Analyze_Dimension_Subtype_Declaration (N);
when N_Unary_Op =>
Analyze_Dimension_Unary_Op (N);
when others => null;
end case;
end Analyze_Dimension;
---------------------------------------
-- Analyze_Dimension_Array_Aggregate --
---------------------------------------
procedure Analyze_Dimension_Array_Aggregate
(N : Node_Id;
Comp_Typ : Entity_Id)
is
Comp_Ass : constant List_Id := Component_Associations (N);
Dims_Of_Comp_Typ : constant Dimension_Type := Dimensions_Of (Comp_Typ);
Exps : constant List_Id := Expressions (N);
Comp : Node_Id;
Expr : Node_Id;
Error_Detected : Boolean := False;
-- This flag is used in order to indicate if an error has been detected
-- so far by the compiler in this routine.
begin
-- Aspect is an Ada 2012 feature. Nothing to do here if the component
-- base type is not a dimensioned type.
-- Note that here the original node must come from source since the
-- original array aggregate may not have been entirely decorated.
if Ada_Version < Ada_2012
or else not Comes_From_Source (Original_Node (N))
or else not Has_Dimension_System (Base_Type (Comp_Typ))
then
return;
end if;
-- Check whether there is any positional component association
if Is_Empty_List (Exps) then
Comp := First (Comp_Ass);
else
Comp := First (Exps);
end if;
while Present (Comp) loop
-- Get the expression from the component
if Nkind (Comp) = N_Component_Association then
Expr := Expression (Comp);
else
Expr := Comp;
end if;
-- Issue an error if the dimensions of the component type and the
-- dimensions of the component mismatch.
-- Note that we must ensure the expression has been fully analyzed
-- since it may not be decorated at this point. We also don't want to
-- issue the same error message multiple times on the same expression
-- (may happen when an aggregate is converted into a positional
-- aggregate).
if Comes_From_Source (Original_Node (Expr))
and then Present (Etype (Expr))
and then Dimensions_Of (Expr) /= Dims_Of_Comp_Typ
and then Sloc (Comp) /= Sloc (Prev (Comp))
then
-- Check if an error has already been encountered so far
if not Error_Detected then
Error_Msg_N ("dimensions mismatch in array aggregate", N);
Error_Detected := True;
end if;
Error_Msg_N
("\expected dimension " & Dimensions_Msg_Of (Comp_Typ)
& ", found " & Dimensions_Msg_Of (Expr), Expr);
end if;
-- Look at the named components right after the positional components
if not Present (Next (Comp))
and then List_Containing (Comp) = Exps
then
Comp := First (Comp_Ass);
else
Next (Comp);
end if;
end loop;
end Analyze_Dimension_Array_Aggregate;
--------------------------------------------
-- Analyze_Dimension_Assignment_Statement --
--------------------------------------------
procedure Analyze_Dimension_Assignment_Statement (N : Node_Id) is
Lhs : constant Node_Id := Name (N);
Dims_Of_Lhs : constant Dimension_Type := Dimensions_Of (Lhs);
Rhs : constant Node_Id := Expression (N);
Dims_Of_Rhs : constant Dimension_Type := Dimensions_Of (Rhs);
procedure Error_Dim_Msg_For_Assignment_Statement
(N : Node_Id;
Lhs : Node_Id;
Rhs : Node_Id);
-- Error using Error_Msg_N at node N. Output the dimensions of left
-- and right hand sides.
--------------------------------------------
-- Error_Dim_Msg_For_Assignment_Statement --
--------------------------------------------
procedure Error_Dim_Msg_For_Assignment_Statement
(N : Node_Id;
Lhs : Node_Id;
Rhs : Node_Id)
is
begin
Error_Msg_N ("dimensions mismatch in assignment", N);
Error_Msg_N ("\left-hand side " & Dimensions_Msg_Of (Lhs, True), N);
Error_Msg_N ("\right-hand side " & Dimensions_Msg_Of (Rhs, True), N);
end Error_Dim_Msg_For_Assignment_Statement;
-- Start of processing for Analyze_Dimension_Assignment
begin
if Dims_Of_Lhs /= Dims_Of_Rhs then
Error_Dim_Msg_For_Assignment_Statement (N, Lhs, Rhs);
end if;
end Analyze_Dimension_Assignment_Statement;
---------------------------------
-- Analyze_Dimension_Binary_Op --
---------------------------------
-- Check and propagate the dimensions for binary operators
-- Note that when the dimensions mismatch, no dimension is propagated to N.
procedure Analyze_Dimension_Binary_Op (N : Node_Id) is
N_Kind : constant Node_Kind := Nkind (N);
procedure Error_Dim_Msg_For_Binary_Op (N, L, R : Node_Id);
-- Error using Error_Msg_NE and Error_Msg_N at node N. Output the
-- dimensions of both operands.
---------------------------------
-- Error_Dim_Msg_For_Binary_Op --
---------------------------------
procedure Error_Dim_Msg_For_Binary_Op (N, L, R : Node_Id) is
begin
Error_Msg_NE
("both operands for operation& must have same dimensions",
N, Entity (N));
Error_Msg_N ("\left operand " & Dimensions_Msg_Of (L, True), N);
Error_Msg_N ("\right operand " & Dimensions_Msg_Of (R, True), N);
end Error_Dim_Msg_For_Binary_Op;
-- Start of processing for Analyze_Dimension_Binary_Op
begin
if Nkind_In (N_Kind, N_Op_Add, N_Op_Expon, N_Op_Subtract)
or else N_Kind in N_Multiplying_Operator
or else N_Kind in N_Op_Compare
then
declare
L : constant Node_Id := Left_Opnd (N);
Dims_Of_L : constant Dimension_Type := Dimensions_Of (L);
L_Has_Dimensions : constant Boolean := Exists (Dims_Of_L);
R : constant Node_Id := Right_Opnd (N);
Dims_Of_R : constant Dimension_Type := Dimensions_Of (R);
R_Has_Dimensions : constant Boolean := Exists (Dims_Of_R);
Dims_Of_N : Dimension_Type := Null_Dimension;
begin
-- N_Op_Add, N_Op_Mod, N_Op_Rem or N_Op_Subtract case
if Nkind_In (N, N_Op_Add, N_Op_Mod, N_Op_Rem, N_Op_Subtract) then
-- Check both operands have same dimension
if Dims_Of_L /= Dims_Of_R then
Error_Dim_Msg_For_Binary_Op (N, L, R);
else
-- Check both operands are not dimensionless
if Exists (Dims_Of_L) then
Set_Dimensions (N, Dims_Of_L);
end if;
end if;
-- N_Op_Multiply or N_Op_Divide case
elsif Nkind_In (N_Kind, N_Op_Multiply, N_Op_Divide) then
-- Check at least one operand is not dimensionless
if L_Has_Dimensions or R_Has_Dimensions then
-- Multiplication case
-- Get both operands dimensions and add them
if N_Kind = N_Op_Multiply then
for Position in Dimension_Type'Range loop
Dims_Of_N (Position) :=
Dims_Of_L (Position) + Dims_Of_R (Position);
end loop;
-- Division case
-- Get both operands dimensions and subtract them
else
for Position in Dimension_Type'Range loop
Dims_Of_N (Position) :=
Dims_Of_L (Position) - Dims_Of_R (Position);
end loop;
end if;
if Exists (Dims_Of_N) then
Set_Dimensions (N, Dims_Of_N);
end if;
end if;
-- Exponentiation case
-- Note: a rational exponent is allowed for dimensioned operand
elsif N_Kind = N_Op_Expon then
-- Check the left operand is not dimensionless. Note that the
-- value of the exponent must be known compile time. Otherwise,
-- the exponentiation evaluation will return an error message.
if L_Has_Dimensions then
if not Compile_Time_Known_Value (R) then
Error_Msg_N
("exponent of dimensioned operand must be "
& "known at compile time", N);
end if;
declare
Exponent_Value : Rational := Zero;
begin
-- Real operand case
if Is_Real_Type (Etype (L)) then
-- Define the exponent as a Rational number
Exponent_Value := Create_Rational_From (R, False);
-- Verify that the exponent cannot be interpreted
-- as a rational, otherwise interpret the exponent
-- as an integer.
if Exponent_Value = No_Rational then
Exponent_Value :=
+Whole (UI_To_Int (Expr_Value (R)));
end if;
-- Integer operand case.
-- For integer operand, the exponent cannot be
-- interpreted as a rational.
else
Exponent_Value := +Whole (UI_To_Int (Expr_Value (R)));
end if;
for Position in Dimension_Type'Range loop
Dims_Of_N (Position) :=
Dims_Of_L (Position) * Exponent_Value;
end loop;
if Exists (Dims_Of_N) then
Set_Dimensions (N, Dims_Of_N);
end if;
end;
end if;
-- Comparison cases
-- For relational operations, only dimension checking is
-- performed (no propagation).
elsif N_Kind in N_Op_Compare then
if (L_Has_Dimensions or R_Has_Dimensions)
and then Dims_Of_L /= Dims_Of_R
then
Error_Dim_Msg_For_Binary_Op (N, L, R);
end if;
end if;
-- Removal of dimensions for each operands
Remove_Dimensions (L);
Remove_Dimensions (R);
end;
end if;
end Analyze_Dimension_Binary_Op;
----------------------------
-- Analyze_Dimension_Call --
----------------------------
procedure Analyze_Dimension_Call (N : Node_Id; Nam : Entity_Id) is
Actuals : constant List_Id := Parameter_Associations (N);
Actual : Node_Id;
Dims_Of_Formal : Dimension_Type;
Formal : Node_Id;
Formal_Typ : Entity_Id;
Error_Detected : Boolean := False;
-- This flag is used in order to indicate if an error has been detected
-- so far by the compiler in this routine.
begin
-- Aspect is an Ada 2012 feature. Note that there is no need to check
-- dimensions for calls that don't come from source, or those that may
-- have semantic errors.
if Ada_Version < Ada_2012
or else not Comes_From_Source (N)
or else Error_Posted (N)
then
return;
end if;
-- Check the dimensions of the actuals, if any
if not Is_Empty_List (Actuals) then
-- Special processing for elementary functions
-- For Sqrt call, the resulting dimensions equal to half the
-- dimensions of the actual. For all other elementary calls, this
-- routine check that every actual is dimensionless.
if Nkind (N) = N_Function_Call then
Elementary_Function_Calls : declare
Dims_Of_Call : Dimension_Type;
Ent : Entity_Id := Nam;
function Is_Elementary_Function_Entity
(Sub_Id : Entity_Id) return Boolean;
-- Given Sub_Id, the original subprogram entity, return True
-- if call is to an elementary function (see Ada.Numerics.
-- Generic_Elementary_Functions).
-----------------------------------
-- Is_Elementary_Function_Entity --
-----------------------------------
function Is_Elementary_Function_Entity
(Sub_Id : Entity_Id) return Boolean
is
Loc : constant Source_Ptr := Sloc (Sub_Id);
begin
-- Is entity in Ada.Numerics.Generic_Elementary_Functions?
return
Loc > No_Location
and then
Is_RTU
(Cunit_Entity (Get_Source_Unit (Loc)),
Ada_Numerics_Generic_Elementary_Functions);
end Is_Elementary_Function_Entity;
-- Start of processing for Elementary_Function_Calls
begin
-- Get original subprogram entity following the renaming chain
if Present (Alias (Ent)) then
Ent := Alias (Ent);
end if;
-- Check the call is an Elementary function call
if Is_Elementary_Function_Entity (Ent) then
-- Sqrt function call case
if Chars (Ent) = Name_Sqrt then
Dims_Of_Call := Dimensions_Of (First_Actual (N));
-- Evaluates the resulting dimensions (i.e. half the
-- dimensions of the actual).
if Exists (Dims_Of_Call) then
for Position in Dims_Of_Call'Range loop
Dims_Of_Call (Position) :=
Dims_Of_Call (Position) *
Rational'(Numerator => 1, Denominator => 2);
end loop;
Set_Dimensions (N, Dims_Of_Call);
end if;
-- All other elementary functions case. Note that every
-- actual here should be dimensionless.
else
Actual := First_Actual (N);
while Present (Actual) loop
if Exists (Dimensions_Of (Actual)) then
-- Check if error has already been encountered
if not Error_Detected then
Error_Msg_NE
("dimensions mismatch in call of&",
N, Name (N));
Error_Detected := True;
end if;
Error_Msg_N
("\expected dimension '['], found "
& Dimensions_Msg_Of (Actual), Actual);
end if;
Next_Actual (Actual);
end loop;
end if;
-- Nothing more to do for elementary functions
return;
end if;
end Elementary_Function_Calls;
end if;
-- General case. Check, for each parameter, the dimensions of the
-- actual and its corresponding formal match. Otherwise, complain.
Actual := First_Actual (N);
Formal := First_Formal (Nam);
while Present (Formal) loop
-- A missing corresponding actual indicates that the analysis of
-- the call was aborted due to a previous error.
if No (Actual) then
Check_Error_Detected;
return;
end if;
Formal_Typ := Etype (Formal);
Dims_Of_Formal := Dimensions_Of (Formal_Typ);
-- If the formal is not dimensionless, check dimensions of formal
-- and actual match. Otherwise, complain.
if Exists (Dims_Of_Formal)
and then Dimensions_Of (Actual) /= Dims_Of_Formal
then
-- Check if an error has already been encountered so far
if not Error_Detected then
Error_Msg_NE ("dimensions mismatch in& call", N, Name (N));
Error_Detected := True;
end if;
Error_Msg_N
("\expected dimension " & Dimensions_Msg_Of (Formal_Typ)
& ", found " & Dimensions_Msg_Of (Actual), Actual);
end if;
Next_Actual (Actual);
Next_Formal (Formal);
end loop;
end if;
-- For function calls, propagate the dimensions from the returned type
if Nkind (N) = N_Function_Call then
Analyze_Dimension_Has_Etype (N);
end if;
end Analyze_Dimension_Call;
---------------------------------------------
-- Analyze_Dimension_Component_Declaration --
---------------------------------------------
procedure Analyze_Dimension_Component_Declaration (N : Node_Id) is
Expr : constant Node_Id := Expression (N);
Id : constant Entity_Id := Defining_Identifier (N);
Etyp : constant Entity_Id := Etype (Id);
Dims_Of_Etyp : constant Dimension_Type := Dimensions_Of (Etyp);
Dims_Of_Expr : Dimension_Type;
procedure Error_Dim_Msg_For_Component_Declaration
(N : Node_Id;
Etyp : Entity_Id;
Expr : Node_Id);
-- Error using Error_Msg_N at node N. Output the dimensions of the
-- type Etyp and the expression Expr of N.
---------------------------------------------
-- Error_Dim_Msg_For_Component_Declaration --
---------------------------------------------
procedure Error_Dim_Msg_For_Component_Declaration
(N : Node_Id;
Etyp : Entity_Id;
Expr : Node_Id) is
begin
Error_Msg_N ("dimensions mismatch in component declaration", N);
Error_Msg_N
("\expected dimension " & Dimensions_Msg_Of (Etyp) & ", found "
& Dimensions_Msg_Of (Expr), Expr);
end Error_Dim_Msg_For_Component_Declaration;
-- Start of processing for Analyze_Dimension_Component_Declaration
begin
-- Expression is present
if Present (Expr) then
Dims_Of_Expr := Dimensions_Of (Expr);
-- Check dimensions match
if Dims_Of_Etyp /= Dims_Of_Expr then
-- Numeric literal case. Issue a warning if the object type is not
-- dimensionless to indicate the literal is treated as if its
-- dimension matches the type dimension.
if Nkind_In (Original_Node (Expr), N_Real_Literal,
N_Integer_Literal)
then
Dim_Warning_For_Numeric_Literal (Expr, Etyp);
-- Issue a dimension mismatch error for all other cases
else
Error_Dim_Msg_For_Component_Declaration (N, Etyp, Expr);
end if;
end if;
end if;
end Analyze_Dimension_Component_Declaration;
-------------------------------------------------
-- Analyze_Dimension_Extended_Return_Statement --
-------------------------------------------------
procedure Analyze_Dimension_Extended_Return_Statement (N : Node_Id) is
Return_Ent : constant Entity_Id := Return_Statement_Entity (N);
Return_Etyp : constant Entity_Id :=
Etype (Return_Applies_To (Return_Ent));
Return_Obj_Decls : constant List_Id := Return_Object_Declarations (N);
Return_Obj_Decl : Node_Id;
Return_Obj_Id : Entity_Id;
Return_Obj_Typ : Entity_Id;
procedure Error_Dim_Msg_For_Extended_Return_Statement
(N : Node_Id;
Return_Etyp : Entity_Id;
Return_Obj_Typ : Entity_Id);
-- Error using Error_Msg_N at node N. Output dimensions of the returned
-- type Return_Etyp and the returned object type Return_Obj_Typ of N.
-------------------------------------------------
-- Error_Dim_Msg_For_Extended_Return_Statement --
-------------------------------------------------
procedure Error_Dim_Msg_For_Extended_Return_Statement
(N : Node_Id;
Return_Etyp : Entity_Id;
Return_Obj_Typ : Entity_Id)
is
begin
Error_Msg_N ("dimensions mismatch in extended return statement", N);
Error_Msg_N
("\expected dimension " & Dimensions_Msg_Of (Return_Etyp)
& ", found " & Dimensions_Msg_Of (Return_Obj_Typ), N);
end Error_Dim_Msg_For_Extended_Return_Statement;
-- Start of processing for Analyze_Dimension_Extended_Return_Statement
begin
if Present (Return_Obj_Decls) then
Return_Obj_Decl := First (Return_Obj_Decls);
while Present (Return_Obj_Decl) loop
if Nkind (Return_Obj_Decl) = N_Object_Declaration then
Return_Obj_Id := Defining_Identifier (Return_Obj_Decl);
if Is_Return_Object (Return_Obj_Id) then
Return_Obj_Typ := Etype (Return_Obj_Id);
-- Issue an error message if dimensions mismatch
if Dimensions_Of (Return_Etyp) /=
Dimensions_Of (Return_Obj_Typ)
then
Error_Dim_Msg_For_Extended_Return_Statement
(N, Return_Etyp, Return_Obj_Typ);
return;
end if;
end if;
end if;
Next (Return_Obj_Decl);
end loop;
end if;
end Analyze_Dimension_Extended_Return_Statement;
-----------------------------------------------------
-- Analyze_Dimension_Extension_Or_Record_Aggregate --
-----------------------------------------------------
procedure Analyze_Dimension_Extension_Or_Record_Aggregate (N : Node_Id) is
Comp : Node_Id;
Comp_Id : Entity_Id;
Comp_Typ : Entity_Id;
Expr : Node_Id;
Error_Detected : Boolean := False;
-- This flag is used in order to indicate if an error has been detected
-- so far by the compiler in this routine.
begin
-- Aspect is an Ada 2012 feature. Note that there is no need to check
-- dimensions for aggregates that don't come from source, or if we are
-- within an initialization procedure, whose expressions have been
-- checked at the point of record declaration.
if Ada_Version < Ada_2012
or else not Comes_From_Source (N)
or else Inside_Init_Proc
then
return;
end if;
Comp := First (Component_Associations (N));
while Present (Comp) loop
Comp_Id := Entity (First (Choices (Comp)));
Comp_Typ := Etype (Comp_Id);
-- Check the component type is either a dimensioned type or a
-- dimensioned subtype.
if Has_Dimension_System (Base_Type (Comp_Typ)) then
Expr := Expression (Comp);
-- Issue an error if the dimensions of the component type and the
-- dimensions of the component mismatch.
if Dimensions_Of (Expr) /= Dimensions_Of (Comp_Typ) then
-- Check if an error has already been encountered so far
if not Error_Detected then
-- Extension aggregate case
if Nkind (N) = N_Extension_Aggregate then
Error_Msg_N
("dimensions mismatch in extension aggregate", N);
-- Record aggregate case
else
Error_Msg_N
("dimensions mismatch in record aggregate", N);
end if;
Error_Detected := True;
end if;
Error_Msg_N
("\expected dimension " & Dimensions_Msg_Of (Comp_Typ)
& ", found " & Dimensions_Msg_Of (Expr), Comp);
end if;
end if;
Next (Comp);
end loop;
end Analyze_Dimension_Extension_Or_Record_Aggregate;
-------------------------------
-- Analyze_Dimension_Formals --
-------------------------------
procedure Analyze_Dimension_Formals (N : Node_Id; Formals : List_Id) is
Dims_Of_Typ : Dimension_Type;
Formal : Node_Id;
Typ : Entity_Id;
begin
-- Aspect is an Ada 2012 feature. Note that there is no need to check
-- dimensions for sub specs that don't come from source.
if Ada_Version < Ada_2012 or else not Comes_From_Source (N) then
return;
end if;
Formal := First (Formals);
while Present (Formal) loop
Typ := Parameter_Type (Formal);
Dims_Of_Typ := Dimensions_Of (Typ);
if Exists (Dims_Of_Typ) then
declare
Expr : constant Node_Id := Expression (Formal);
begin
-- Issue a warning if Expr is a numeric literal and if its
-- dimensions differ with the dimensions of the formal type.
if Present (Expr)
and then Dims_Of_Typ /= Dimensions_Of (Expr)
and then Nkind_In (Original_Node (Expr), N_Real_Literal,
N_Integer_Literal)
then
Dim_Warning_For_Numeric_Literal (Expr, Etype (Typ));
end if;
end;
end if;
Next (Formal);
end loop;
end Analyze_Dimension_Formals;
---------------------------------
-- Analyze_Dimension_Has_Etype --
---------------------------------
procedure Analyze_Dimension_Has_Etype (N : Node_Id) is
Etyp : constant Entity_Id := Etype (N);
Dims_Of_Etyp : Dimension_Type := Dimensions_Of (Etyp);
begin
-- General case. Propagation of the dimensions from the type
if Exists (Dims_Of_Etyp) then
Set_Dimensions (N, Dims_Of_Etyp);
-- Identifier case. Propagate the dimensions from the entity for
-- identifier whose entity is a non-dimensionless constant.
elsif Nkind (N) = N_Identifier then
Analyze_Dimension_Identifier : declare
Id : constant Entity_Id := Entity (N);
begin
-- If Id is missing, abnormal tree, assume previous error
if No (Id) then
Check_Error_Detected;
return;
elsif Ekind (Id) = E_Constant
and then Exists (Dimensions_Of (Id))
then
Set_Dimensions (N, Dimensions_Of (Id));
end if;
end Analyze_Dimension_Identifier;
-- Attribute reference case. Propagate the dimensions from the prefix.
elsif Nkind (N) = N_Attribute_Reference
and then Has_Dimension_System (Base_Type (Etyp))
then
Dims_Of_Etyp := Dimensions_Of (Prefix (N));
-- Check the prefix is not dimensionless
if Exists (Dims_Of_Etyp) then
Set_Dimensions (N, Dims_Of_Etyp);
end if;
end if;
-- Removal of dimensions in expression
case Nkind (N) is
when N_Attribute_Reference |
N_Indexed_Component =>
declare
Expr : Node_Id;
Exprs : constant List_Id := Expressions (N);
begin
if Present (Exprs) then
Expr := First (Exprs);
while Present (Expr) loop
Remove_Dimensions (Expr);
Next (Expr);
end loop;
end if;
end;
when N_Qualified_Expression |
N_Type_Conversion |
N_Unchecked_Type_Conversion =>
Remove_Dimensions (Expression (N));
when N_Selected_Component =>
Remove_Dimensions (Selector_Name (N));
when others => null;
end case;
end Analyze_Dimension_Has_Etype;
------------------------------------------
-- Analyze_Dimension_Object_Declaration --
------------------------------------------
procedure Analyze_Dimension_Object_Declaration (N : Node_Id) is
Expr : constant Node_Id := Expression (N);
Id : constant Entity_Id := Defining_Identifier (N);
Etyp : constant Entity_Id := Etype (Id);
Dim_Of_Etyp : constant Dimension_Type := Dimensions_Of (Etyp);
Dim_Of_Expr : Dimension_Type;
procedure Error_Dim_Msg_For_Object_Declaration
(N : Node_Id;
Etyp : Entity_Id;
Expr : Node_Id);
-- Error using Error_Msg_N at node N. Output the dimensions of the
-- type Etyp and of the expression Expr.
------------------------------------------
-- Error_Dim_Msg_For_Object_Declaration --
------------------------------------------
procedure Error_Dim_Msg_For_Object_Declaration
(N : Node_Id;
Etyp : Entity_Id;
Expr : Node_Id) is
begin
Error_Msg_N ("dimensions mismatch in object declaration", N);
Error_Msg_N
("\expected dimension " & Dimensions_Msg_Of (Etyp) & ", found "
& Dimensions_Msg_Of (Expr), Expr);
end Error_Dim_Msg_For_Object_Declaration;
-- Start of processing for Analyze_Dimension_Object_Declaration
begin
-- Expression is present
if Present (Expr) then
Dim_Of_Expr := Dimensions_Of (Expr);
-- Check dimensions match
if Dim_Of_Expr /= Dim_Of_Etyp then
-- Numeric literal case. Issue a warning if the object type is not
-- dimensionless to indicate the literal is treated as if its
-- dimension matches the type dimension.
if Nkind_In (Original_Node (Expr), N_Real_Literal,
N_Integer_Literal)
then
Dim_Warning_For_Numeric_Literal (Expr, Etyp);
-- Case of object is a constant whose type is a dimensioned type
elsif Constant_Present (N) and then not Exists (Dim_Of_Etyp) then
-- Propagate dimension from expression to object entity
Set_Dimensions (Id, Dim_Of_Expr);
-- For all other cases, issue an error message
else
Error_Dim_Msg_For_Object_Declaration (N, Etyp, Expr);
end if;
end if;
-- Removal of dimensions in expression
Remove_Dimensions (Expr);
end if;
end Analyze_Dimension_Object_Declaration;
---------------------------------------------------
-- Analyze_Dimension_Object_Renaming_Declaration --
---------------------------------------------------
procedure Analyze_Dimension_Object_Renaming_Declaration (N : Node_Id) is
Renamed_Name : constant Node_Id := Name (N);
Sub_Mark : constant Node_Id := Subtype_Mark (N);
procedure Error_Dim_Msg_For_Object_Renaming_Declaration
(N : Node_Id;
Sub_Mark : Node_Id;
Renamed_Name : Node_Id);
-- Error using Error_Msg_N at node N. Output the dimensions of
-- Sub_Mark and of Renamed_Name.
---------------------------------------------------
-- Error_Dim_Msg_For_Object_Renaming_Declaration --
---------------------------------------------------
procedure Error_Dim_Msg_For_Object_Renaming_Declaration
(N : Node_Id;
Sub_Mark : Node_Id;
Renamed_Name : Node_Id) is
begin
Error_Msg_N ("dimensions mismatch in object renaming declaration", N);
Error_Msg_N
("\expected dimension " & Dimensions_Msg_Of (Sub_Mark) & ", found "
& Dimensions_Msg_Of (Renamed_Name), Renamed_Name);
end Error_Dim_Msg_For_Object_Renaming_Declaration;
-- Start of processing for Analyze_Dimension_Object_Renaming_Declaration
begin
if Dimensions_Of (Renamed_Name) /= Dimensions_Of (Sub_Mark) then
Error_Dim_Msg_For_Object_Renaming_Declaration
(N, Sub_Mark, Renamed_Name);
end if;
end Analyze_Dimension_Object_Renaming_Declaration;
-----------------------------------------------
-- Analyze_Dimension_Simple_Return_Statement --
-----------------------------------------------
procedure Analyze_Dimension_Simple_Return_Statement (N : Node_Id) is
Expr : constant Node_Id := Expression (N);
Dims_Of_Expr : constant Dimension_Type := Dimensions_Of (Expr);
Return_Ent : constant Entity_Id := Return_Statement_Entity (N);
Return_Etyp : constant Entity_Id :=
Etype (Return_Applies_To (Return_Ent));
Dims_Of_Return_Etyp : constant Dimension_Type :=
Dimensions_Of (Return_Etyp);
procedure Error_Dim_Msg_For_Simple_Return_Statement
(N : Node_Id;
Return_Etyp : Entity_Id;
Expr : Node_Id);
-- Error using Error_Msg_N at node N. Output the dimensions of the
-- returned type Return_Etyp and the returned expression Expr of N.
-----------------------------------------------
-- Error_Dim_Msg_For_Simple_Return_Statement --
-----------------------------------------------
procedure Error_Dim_Msg_For_Simple_Return_Statement
(N : Node_Id;
Return_Etyp : Entity_Id;
Expr : Node_Id)
is
begin
Error_Msg_N ("dimensions mismatch in return statement", N);
Error_Msg_N
("\expected dimension " & Dimensions_Msg_Of (Return_Etyp)
& ", found " & Dimensions_Msg_Of (Expr), Expr);
end Error_Dim_Msg_For_Simple_Return_Statement;
-- Start of processing for Analyze_Dimension_Simple_Return_Statement
begin
if Dims_Of_Return_Etyp /= Dims_Of_Expr then
Error_Dim_Msg_For_Simple_Return_Statement (N, Return_Etyp, Expr);
Remove_Dimensions (Expr);
end if;
end Analyze_Dimension_Simple_Return_Statement;
-------------------------------------------
-- Analyze_Dimension_Subtype_Declaration --
-------------------------------------------
procedure Analyze_Dimension_Subtype_Declaration (N : Node_Id) is
Id : constant Entity_Id := Defining_Identifier (N);
Dims_Of_Id : constant Dimension_Type := Dimensions_Of (Id);
Dims_Of_Etyp : Dimension_Type;
Etyp : Node_Id;
begin
-- No constraint case in subtype declaration
if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
Etyp := Etype (Subtype_Indication (N));
Dims_Of_Etyp := Dimensions_Of (Etyp);
if Exists (Dims_Of_Etyp) then
-- If subtype already has a dimension (from Aspect_Dimension),
-- it cannot inherit a dimension from its subtype.
if Exists (Dims_Of_Id) then
Error_Msg_N
("subtype& already" & Dimensions_Msg_Of (Id, True), N);
else
Set_Dimensions (Id, Dims_Of_Etyp);
Set_Symbol (Id, Symbol_Of (Etyp));
end if;
end if;
-- Constraint present in subtype declaration
else
Etyp := Etype (Subtype_Mark (Subtype_Indication (N)));
Dims_Of_Etyp := Dimensions_Of (Etyp);
if Exists (Dims_Of_Etyp) then
Set_Dimensions (Id, Dims_Of_Etyp);
Set_Symbol (Id, Symbol_Of (Etyp));
end if;
end if;
end Analyze_Dimension_Subtype_Declaration;
--------------------------------
-- Analyze_Dimension_Unary_Op --
--------------------------------
procedure Analyze_Dimension_Unary_Op (N : Node_Id) is
begin
case Nkind (N) is
when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
-- Propagate the dimension if the operand is not dimensionless
declare
R : constant Node_Id := Right_Opnd (N);
begin
Move_Dimensions (R, N);
end;
when others => null;
end case;
end Analyze_Dimension_Unary_Op;
---------------------
-- Copy_Dimensions --
---------------------
procedure Copy_Dimensions (From, To : Node_Id) is
Dims_Of_From : constant Dimension_Type := Dimensions_Of (From);
begin
-- Ignore if not Ada 2012 or beyond
if Ada_Version < Ada_2012 then
return;
-- For Ada 2012, Copy the dimension of 'From to 'To'
elsif Exists (Dims_Of_From) then
Set_Dimensions (To, Dims_Of_From);
end if;
end Copy_Dimensions;
--------------------------
-- Create_Rational_From --
--------------------------
-- RATIONAL ::= [-] NUMERAL [/ NUMERAL]
-- A rational number is a number that can be expressed as the quotient or
-- fraction a/b of two integers, where b is non-zero positive.
function Create_Rational_From
(Expr : Node_Id;
Complain : Boolean) return Rational
is
Or_Node_Of_Expr : constant Node_Id := Original_Node (Expr);
Result : Rational := No_Rational;
function Process_Minus (N : Node_Id) return Rational;
-- Create a rational from a N_Op_Minus node
function Process_Divide (N : Node_Id) return Rational;
-- Create a rational from a N_Op_Divide node
function Process_Literal (N : Node_Id) return Rational;
-- Create a rational from a N_Integer_Literal node
-------------------
-- Process_Minus --
-------------------
function Process_Minus (N : Node_Id) return Rational is
Right : constant Node_Id := Original_Node (Right_Opnd (N));
Result : Rational;
begin
-- Operand is an integer literal
if Nkind (Right) = N_Integer_Literal then
Result := -Process_Literal (Right);
-- Operand is a divide operator
elsif Nkind (Right) = N_Op_Divide then
Result := -Process_Divide (Right);
else
Result := No_Rational;
end if;
-- Provide minimal semantic information on dimension expressions,
-- even though they have no run-time existence. This is for use by
-- ASIS tools, in particular pretty-printing. If generating code
-- standard operator resolution will take place.
if ASIS_Mode then
Set_Entity (N, Standard_Op_Minus);
Set_Etype (N, Standard_Integer);
end if;
return Result;
end Process_Minus;
--------------------
-- Process_Divide --
--------------------
function Process_Divide (N : Node_Id) return Rational is
Left : constant Node_Id := Original_Node (Left_Opnd (N));
Right : constant Node_Id := Original_Node (Right_Opnd (N));
Left_Rat : Rational;
Result : Rational := No_Rational;
Right_Rat : Rational;
begin
-- Both left and right operands are integer literals
if Nkind (Left) = N_Integer_Literal
and then
Nkind (Right) = N_Integer_Literal
then
Left_Rat := Process_Literal (Left);
Right_Rat := Process_Literal (Right);
Result := Left_Rat / Right_Rat;
end if;
-- Provide minimal semantic information on dimension expressions,
-- even though they have no run-time existence. This is for use by
-- ASIS tools, in particular pretty-printing. If generating code
-- standard operator resolution will take place.
if ASIS_Mode then
Set_Entity (N, Standard_Op_Divide);
Set_Etype (N, Standard_Integer);
end if;
return Result;
end Process_Divide;
---------------------
-- Process_Literal --
---------------------
function Process_Literal (N : Node_Id) return Rational is
begin
return +Whole (UI_To_Int (Intval (N)));
end Process_Literal;
-- Start of processing for Create_Rational_From
begin
-- Check the expression is either a division of two integers or an
-- integer itself. Note that the check applies to the original node
-- since the node could have already been rewritten.
-- Integer literal case
if Nkind (Or_Node_Of_Expr) = N_Integer_Literal then
Result := Process_Literal (Or_Node_Of_Expr);
-- Divide operator case
elsif Nkind (Or_Node_Of_Expr) = N_Op_Divide then
Result := Process_Divide (Or_Node_Of_Expr);
-- Minus operator case
elsif Nkind (Or_Node_Of_Expr) = N_Op_Minus then
Result := Process_Minus (Or_Node_Of_Expr);
end if;
-- When Expr cannot be interpreted as a rational and Complain is true,
-- generate an error message.
if Complain and then Result = No_Rational then
Error_Msg_N ("rational expected", Expr);
end if;
return Result;
end Create_Rational_From;
-------------------
-- Dimensions_Of --
-------------------
function Dimensions_Of (N : Node_Id) return Dimension_Type is
begin
return Dimension_Table.Get (N);
end Dimensions_Of;
-----------------------
-- Dimensions_Msg_Of --
-----------------------
function Dimensions_Msg_Of
(N : Node_Id;
Description_Needed : Boolean := False) return String
is
Dims_Of_N : constant Dimension_Type := Dimensions_Of (N);
Dimensions_Msg : Name_Id;
System : System_Type;
begin
-- Initialization of Name_Buffer
Name_Len := 0;
-- N is not dimensionless
if Exists (Dims_Of_N) then
System := System_Of (Base_Type (Etype (N)));
-- When Description_Needed, add to string "has dimension " before the
-- actual dimension.
if Description_Needed then
Add_Str_To_Name_Buffer ("has dimension ");
end if;
Add_String_To_Name_Buffer
(From_Dim_To_Str_Of_Dim_Symbols (Dims_Of_N, System, True));
-- N is dimensionless
-- When Description_Needed, return "is dimensionless"
elsif Description_Needed then
Add_Str_To_Name_Buffer ("is dimensionless");
-- Otherwise, return "'[']"
else
Add_Str_To_Name_Buffer ("'[']");
end if;
Dimensions_Msg := Name_Find;
return Get_Name_String (Dimensions_Msg);
end Dimensions_Msg_Of;
--------------------------
-- Dimension_Table_Hash --
--------------------------
function Dimension_Table_Hash
(Key : Node_Id) return Dimension_Table_Range
is
begin
return Dimension_Table_Range (Key mod 511);
end Dimension_Table_Hash;
-------------------------------------
-- Dim_Warning_For_Numeric_Literal --
-------------------------------------
procedure Dim_Warning_For_Numeric_Literal (N : Node_Id; Typ : Entity_Id) is
begin
-- Initialize name buffer
Name_Len := 0;
Add_String_To_Name_Buffer (String_From_Numeric_Literal (N));
-- Insert a blank between the literal and the symbol
Add_Str_To_Name_Buffer (" ");
Add_String_To_Name_Buffer (Symbol_Of (Typ));
Error_Msg_Name_1 := Name_Find;
Error_Msg_N ("assumed to be%%??", N);
end Dim_Warning_For_Numeric_Literal;
----------------------------------------
-- Eval_Op_Expon_For_Dimensioned_Type --
----------------------------------------
-- Evaluate the expon operator for real dimensioned type.
-- Note that if the exponent is an integer (denominator = 1) the node is
-- evaluated by the regular Eval_Op_Expon routine (see Sem_Eval).
procedure Eval_Op_Expon_For_Dimensioned_Type
(N : Node_Id;
Btyp : Entity_Id)
is
R : constant Node_Id := Right_Opnd (N);
R_Value : Rational := No_Rational;
begin
if Is_Real_Type (Btyp) then
R_Value := Create_Rational_From (R, False);
end if;
-- Check that the exponent is not an integer
if R_Value /= No_Rational and then R_Value.Denominator /= 1 then
Eval_Op_Expon_With_Rational_Exponent (N, R_Value);
else
Eval_Op_Expon (N);
end if;
end Eval_Op_Expon_For_Dimensioned_Type;
------------------------------------------
-- Eval_Op_Expon_With_Rational_Exponent --
------------------------------------------
-- For dimensioned operand in exponentiation, exponent is allowed to be a
-- Rational and not only an Integer like for dimensionless operands. For
-- that particular case, the left operand is rewritten as a function call
-- using the function Expon_LLF from s-llflex.ads.
procedure Eval_Op_Expon_With_Rational_Exponent
(N : Node_Id;
Exponent_Value : Rational)
is
Loc : constant Source_Ptr := Sloc (N);
Dims_Of_N : constant Dimension_Type := Dimensions_Of (N);
L : constant Node_Id := Left_Opnd (N);
Etyp_Of_L : constant Entity_Id := Etype (L);
Btyp_Of_L : constant Entity_Id := Base_Type (Etyp_Of_L);
Actual_1 : Node_Id;
Actual_2 : Node_Id;
Dim_Power : Rational;
List_Of_Dims : List_Id;
New_Aspect : Node_Id;
New_Aspects : List_Id;
New_Id : Entity_Id;
New_N : Node_Id;
New_Subtyp_Decl_For_L : Node_Id;
System : System_Type;
begin
-- Case when the operand is not dimensionless
if Exists (Dims_Of_N) then
-- Get the corresponding System_Type to know the exact number of
-- dimensions in the system.
System := System_Of (Btyp_Of_L);
-- Generation of a new subtype with the proper dimensions
-- In order to rewrite the operator as a type conversion, a new
-- dimensioned subtype with the resulting dimensions of the
-- exponentiation must be created.
-- Generate:
-- Btyp_Of_L : constant Entity_Id := Base_Type (Etyp_Of_L);
-- System : constant System_Id :=
-- Get_Dimension_System_Id (Btyp_Of_L);
-- Num_Of_Dims : constant Number_Of_Dimensions :=
-- Dimension_Systems.Table (System).Dimension_Count;
-- subtype T is Btyp_Of_L
-- with
-- Dimension => (
-- Dims_Of_N (1).Numerator / Dims_Of_N (1).Denominator,
-- Dims_Of_N (2).Numerator / Dims_Of_N (2).Denominator,
-- ...
-- Dims_Of_N (Num_Of_Dims).Numerator /
-- Dims_Of_N (Num_Of_Dims).Denominator);
-- Step 1: Generate the new aggregate for the aspect Dimension
New_Aspects := Empty_List;
List_Of_Dims := New_List;
for Position in Dims_Of_N'First .. System.Count loop
Dim_Power := Dims_Of_N (Position);
Append_To (List_Of_Dims,
Make_Op_Divide (Loc,
Left_Opnd =>
Make_Integer_Literal (Loc, Int (Dim_Power.Numerator)),
Right_Opnd =>
Make_Integer_Literal (Loc, Int (Dim_Power.Denominator))));
end loop;
-- Step 2: Create the new Aspect Specification for Aspect Dimension
New_Aspect :=
Make_Aspect_Specification (Loc,
Identifier => Make_Identifier (Loc, Name_Dimension),
Expression => Make_Aggregate (Loc, Expressions => List_Of_Dims));
-- Step 3: Make a temporary identifier for the new subtype
New_Id := Make_Temporary (Loc, 'T');
Set_Is_Internal (New_Id);
-- Step 4: Declaration of the new subtype
New_Subtyp_Decl_For_L :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => New_Id,
Subtype_Indication => New_Occurrence_Of (Btyp_Of_L, Loc));
Append (New_Aspect, New_Aspects);
Set_Parent (New_Aspects, New_Subtyp_Decl_For_L);
Set_Aspect_Specifications (New_Subtyp_Decl_For_L, New_Aspects);
Analyze (New_Subtyp_Decl_For_L);
-- Case where the operand is dimensionless
else
New_Id := Btyp_Of_L;
end if;
-- Replacement of N by New_N
-- Generate:
-- Actual_1 := Long_Long_Float (L),
-- Actual_2 := Long_Long_Float (Exponent_Value.Numerator) /
-- Long_Long_Float (Exponent_Value.Denominator);
-- (T (Expon_LLF (Actual_1, Actual_2)));
-- where T is the subtype declared in step 1
-- The node is rewritten as a type conversion
-- Step 1: Creation of the two parameters of Expon_LLF function call
Actual_1 :=
Make_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Standard_Long_Long_Float, Loc),
Expression => Relocate_Node (L));
Actual_2 :=
Make_Op_Divide (Loc,
Left_Opnd =>
Make_Real_Literal (Loc,
UR_From_Uint (UI_From_Int (Int (Exponent_Value.Numerator)))),
Right_Opnd =>
Make_Real_Literal (Loc,
UR_From_Uint (UI_From_Int (Int (Exponent_Value.Denominator)))));
-- Step 2: Creation of New_N
New_N :=
Make_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (New_Id, Loc),
Expression =>
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (RE_Expon_LLF), Loc),
Parameter_Associations => New_List (
Actual_1, Actual_2)));
-- Step 3: Rewrite N with the result
Rewrite (N, New_N);
Set_Etype (N, New_Id);
Analyze_And_Resolve (N, New_Id);
end Eval_Op_Expon_With_Rational_Exponent;
------------
-- Exists --
------------
function Exists (Dim : Dimension_Type) return Boolean is
begin
return Dim /= Null_Dimension;
end Exists;
function Exists (Str : String_Id) return Boolean is
begin
return Str /= No_String;
end Exists;
function Exists (Sys : System_Type) return Boolean is
begin
return Sys /= Null_System;
end Exists;
---------------------------------
-- Expand_Put_Call_With_Symbol --
---------------------------------
-- For procedure Put (resp. Put_Dim_Of) defined in System.Dim.Float_IO
-- (System.Dim.Integer_IO), the default string parameter must be rewritten
-- to include the unit symbols (resp. dimension symbols) in the output
-- of a dimensioned object. Note that if a value is already supplied for
-- parameter Symbol, this routine doesn't do anything.
-- Case 1. Item is dimensionless
-- * Put : Item appears without a suffix
-- * Put_Dim_Of : the output is []
-- Obj : Mks_Type := 2.6;
-- Put (Obj, 1, 1, 0);
-- Put_Dim_Of (Obj);
-- The corresponding outputs are:
-- $2.6
-- $[]
-- Case 2. Item has a dimension
-- * Put : If the type of Item is a dimensioned subtype whose
-- symbol is not empty, then the symbol appears as a
-- suffix. Otherwise, a new string is created and appears
-- as a suffix of Item. This string results in the
-- successive concatanations between each unit symbol
-- raised by its corresponding dimension power from the
-- dimensions of Item.
-- * Put_Dim_Of : The output is a new string resulting in the successive
-- concatanations between each dimension symbol raised by
-- its corresponding dimension power from the dimensions of
-- Item.
-- subtype Random is Mks_Type
-- with
-- Dimension => (
-- Meter => 3,
-- Candela => -1,
-- others => 0);
-- Obj : Random := 5.0;
-- Put (Obj);
-- Put_Dim_Of (Obj);
-- The corresponding outputs are:
-- $5.0 m**3.cd**(-1)
-- $[l**3.J**(-1)]
procedure Expand_Put_Call_With_Symbol (N : Node_Id) is
Actuals : constant List_Id := Parameter_Associations (N);
Loc : constant Source_Ptr := Sloc (N);
Name_Call : constant Node_Id := Name (N);
New_Actuals : constant List_Id := New_List;
Actual : Node_Id;
Dims_Of_Actual : Dimension_Type;
Etyp : Entity_Id;
New_Str_Lit : Node_Id := Empty;
Symbols : String_Id;
Is_Put_Dim_Of : Boolean := False;
-- This flag is used in order to differentiate routines Put and
-- Put_Dim_Of. Set to True if the procedure is one of the Put_Dim_Of
-- defined in System.Dim.Float_IO or System.Dim.Integer_IO.
function Has_Symbols return Boolean;
-- Return True if the current Put call already has a parameter
-- association for parameter "Symbols" with the correct string of
-- symbols.
function Is_Procedure_Put_Call return Boolean;
-- Return True if the current call is a call of an instantiation of a
-- procedure Put defined in the package System.Dim.Float_IO and
-- System.Dim.Integer_IO.
function Item_Actual return Node_Id;
-- Return the item actual parameter node in the output call
-----------------
-- Has_Symbols --
-----------------
function Has_Symbols return Boolean is
Actual : Node_Id;
Actual_Str : Node_Id;
begin
-- Look for a symbols parameter association in the list of actuals
Actual := First (Actuals);
while Present (Actual) loop
-- Positional parameter association case when the actual is a
-- string literal.
if Nkind (Actual) = N_String_Literal then
Actual_Str := Actual;
-- Named parameter association case when selector name is Symbol
elsif Nkind (Actual) = N_Parameter_Association
and then Chars (Selector_Name (Actual)) = Name_Symbol
then
Actual_Str := Explicit_Actual_Parameter (Actual);
-- Ignore all other cases
else
Actual_Str := Empty;
end if;
if Present (Actual_Str) then
-- Return True if the actual comes from source or if the string
-- of symbols doesn't have the default value (i.e. it is "").
if Comes_From_Source (Actual)
or else String_Length (Strval (Actual_Str)) /= 0
then
-- Complain only if the actual comes from source or if it
-- hasn't been fully analyzed yet.
if Comes_From_Source (Actual)
or else not Analyzed (Actual)
then
Error_Msg_N ("Symbol parameter should not be provided",
Actual);
Error_Msg_N ("\reserved for compiler use only", Actual);
end if;
return True;
else
return False;
end if;
end if;
Next (Actual);
end loop;
-- At this point, the call has no parameter association. Look to the
-- last actual since the symbols parameter is the last one.
return Nkind (Last (Actuals)) = N_String_Literal;
end Has_Symbols;
---------------------------
-- Is_Procedure_Put_Call --
---------------------------
function Is_Procedure_Put_Call return Boolean is
Ent : Entity_Id;
Loc : Source_Ptr;
begin
-- There are three different Put (resp. Put_Dim_Of) routines in each
-- generic dim IO package. Verify the current procedure call is one
-- of them.
if Is_Entity_Name (Name_Call) then
Ent := Entity (Name_Call);
-- Get the original subprogram entity following the renaming chain
if Present (Alias (Ent)) then
Ent := Alias (Ent);
end if;
Loc := Sloc (Ent);
-- Check the name of the entity subprogram is Put (resp.
-- Put_Dim_Of) and verify this entity is located in either
-- System.Dim.Float_IO or System.Dim.Integer_IO.
if Loc > No_Location
and then Is_Dim_IO_Package_Entity
(Cunit_Entity (Get_Source_Unit (Loc)))
then
if Chars (Ent) = Name_Put_Dim_Of then
Is_Put_Dim_Of := True;
return True;
elsif Chars (Ent) = Name_Put then
return True;
end if;
end if;
end if;
return False;
end Is_Procedure_Put_Call;
-----------------
-- Item_Actual --
-----------------
function Item_Actual return Node_Id is
Actual : Node_Id;
begin
-- Look for the item actual as a parameter association
Actual := First (Actuals);
while Present (Actual) loop
if Nkind (Actual) = N_Parameter_Association
and then Chars (Selector_Name (Actual)) = Name_Item
then
return Explicit_Actual_Parameter (Actual);
end if;
Next (Actual);
end loop;
-- Case where the item has been defined without an association
Actual := First (Actuals);
-- Depending on the procedure Put, Item actual could be first or
-- second in the list of actuals.
if Has_Dimension_System (Base_Type (Etype (Actual))) then
return Actual;
else
return Next (Actual);
end if;
end Item_Actual;
-- Start of processing for Expand_Put_Call_With_Symbol
begin
if Is_Procedure_Put_Call and then not Has_Symbols then
Actual := Item_Actual;
Dims_Of_Actual := Dimensions_Of (Actual);
Etyp := Etype (Actual);
-- Put_Dim_Of case
if Is_Put_Dim_Of then
-- Check that the item is not dimensionless
-- Create the new String_Literal with the new String_Id generated
-- by the routine From_Dim_To_Str_Of_Dim_Symbols.
if Exists (Dims_Of_Actual) then
New_Str_Lit :=
Make_String_Literal (Loc,
From_Dim_To_Str_Of_Dim_Symbols
(Dims_Of_Actual, System_Of (Base_Type (Etyp))));
-- If dimensionless, the output is []
else
New_Str_Lit :=
Make_String_Literal (Loc, "[]");
end if;
-- Put case
else
-- Add the symbol as a suffix of the value if the subtype has a
-- unit symbol or if the parameter is not dimensionless.
if Exists (Symbol_Of (Etyp)) then
Symbols := Symbol_Of (Etyp);
else
Symbols := From_Dim_To_Str_Of_Unit_Symbols
(Dims_Of_Actual, System_Of (Base_Type (Etyp)));
end if;
-- Check Symbols exists
if Exists (Symbols) then
Start_String;
-- Put a space between the value and the dimension
Store_String_Char (' ');
Store_String_Chars (Symbols);
New_Str_Lit := Make_String_Literal (Loc, End_String);
end if;
end if;
if Present (New_Str_Lit) then
-- Insert all actuals in New_Actuals
Actual := First (Actuals);
while Present (Actual) loop
-- Copy every actuals in New_Actuals except the Symbols
-- parameter association.
if Nkind (Actual) = N_Parameter_Association
and then Chars (Selector_Name (Actual)) /= Name_Symbol
then
Append_To (New_Actuals,
Make_Parameter_Association (Loc,
Selector_Name => New_Copy (Selector_Name (Actual)),
Explicit_Actual_Parameter =>
New_Copy (Explicit_Actual_Parameter (Actual))));
elsif Nkind (Actual) /= N_Parameter_Association then
Append_To (New_Actuals, New_Copy (Actual));
end if;
Next (Actual);
end loop;
-- Create new Symbols param association and append to New_Actuals
Append_To (New_Actuals,
Make_Parameter_Association (Loc,
Selector_Name => Make_Identifier (Loc, Name_Symbol),
Explicit_Actual_Parameter => New_Str_Lit));
-- Rewrite and analyze the procedure call
Rewrite (N,
Make_Procedure_Call_Statement (Loc,
Name => New_Copy (Name_Call),
Parameter_Associations => New_Actuals));
Analyze (N);
end if;
end if;
end Expand_Put_Call_With_Symbol;
------------------------------------
-- From_Dim_To_Str_Of_Dim_Symbols --
------------------------------------
-- Given a dimension vector and the corresponding dimension system, create
-- a String_Id to output dimension symbols corresponding to the dimensions
-- Dims. If In_Error_Msg is True, there is a special handling for character
-- asterisk * which is an insertion character in error messages.
function From_Dim_To_Str_Of_Dim_Symbols
(Dims : Dimension_Type;
System : System_Type;
In_Error_Msg : Boolean := False) return String_Id
is
Dim_Power : Rational;
First_Dim : Boolean := True;
procedure Store_String_Oexpon;
-- Store the expon operator symbol "**" in the string. In error
-- messages, asterisk * is a special character and must be quoted
-- to be placed literally into the message.
-------------------------
-- Store_String_Oexpon --
-------------------------
procedure Store_String_Oexpon is
begin
if In_Error_Msg then
Store_String_Chars ("'*'*");
else
Store_String_Chars ("**");
end if;
end Store_String_Oexpon;
-- Start of processing for From_Dim_To_Str_Of_Dim_Symbols
begin
-- Initialization of the new String_Id
Start_String;
-- Store the dimension symbols inside boxes
if In_Error_Msg then
Store_String_Chars ("'[");
else
Store_String_Char ('[');
end if;
for Position in Dimension_Type'Range loop
Dim_Power := Dims (Position);
if Dim_Power /= Zero then
if First_Dim then
First_Dim := False;
else
Store_String_Char ('.');
end if;
Store_String_Chars (System.Dim_Symbols (Position));
-- Positive dimension case
if Dim_Power.Numerator > 0 then
-- Integer case
if Dim_Power.Denominator = 1 then
if Dim_Power.Numerator /= 1 then
Store_String_Oexpon;
Store_String_Int (Int (Dim_Power.Numerator));
end if;
-- Rational case when denominator /= 1
else
Store_String_Oexpon;
Store_String_Char ('(');
Store_String_Int (Int (Dim_Power.Numerator));
Store_String_Char ('/');
Store_String_Int (Int (Dim_Power.Denominator));
Store_String_Char (')');
end if;
-- Negative dimension case
else
Store_String_Oexpon;
Store_String_Char ('(');
Store_String_Char ('-');
Store_String_Int (Int (-Dim_Power.Numerator));
-- Integer case
if Dim_Power.Denominator = 1 then
Store_String_Char (')');
-- Rational case when denominator /= 1
else
Store_String_Char ('/');
Store_String_Int (Int (Dim_Power.Denominator));
Store_String_Char (')');
end if;
end if;
end if;
end loop;
if In_Error_Msg then
Store_String_Chars ("']");
else
Store_String_Char (']');
end if;
return End_String;
end From_Dim_To_Str_Of_Dim_Symbols;
-------------------------------------
-- From_Dim_To_Str_Of_Unit_Symbols --
-------------------------------------
-- Given a dimension vector and the corresponding dimension system,
-- create a String_Id to output the unit symbols corresponding to the
-- dimensions Dims.
function From_Dim_To_Str_Of_Unit_Symbols
(Dims : Dimension_Type;
System : System_Type) return String_Id
is
Dim_Power : Rational;
First_Dim : Boolean := True;
begin
-- Return No_String if dimensionless
if not Exists (Dims) then
return No_String;
end if;
-- Initialization of the new String_Id
Start_String;
for Position in Dimension_Type'Range loop
Dim_Power := Dims (Position);
if Dim_Power /= Zero then
if First_Dim then
First_Dim := False;
else
Store_String_Char ('.');
end if;
Store_String_Chars (System.Unit_Symbols (Position));
-- Positive dimension case
if Dim_Power.Numerator > 0 then
-- Integer case
if Dim_Power.Denominator = 1 then
if Dim_Power.Numerator /= 1 then
Store_String_Chars ("**");
Store_String_Int (Int (Dim_Power.Numerator));
end if;
-- Rational case when denominator /= 1
else
Store_String_Chars ("**");
Store_String_Char ('(');
Store_String_Int (Int (Dim_Power.Numerator));
Store_String_Char ('/');
Store_String_Int (Int (Dim_Power.Denominator));
Store_String_Char (')');
end if;
-- Negative dimension case
else
Store_String_Chars ("**");
Store_String_Char ('(');
Store_String_Char ('-');
Store_String_Int (Int (-Dim_Power.Numerator));
-- Integer case
if Dim_Power.Denominator = 1 then
Store_String_Char (')');
-- Rational case when denominator /= 1
else
Store_String_Char ('/');
Store_String_Int (Int (Dim_Power.Denominator));
Store_String_Char (')');
end if;
end if;
end if;
end loop;
return End_String;
end From_Dim_To_Str_Of_Unit_Symbols;
---------
-- GCD --
---------
function GCD (Left, Right : Whole) return Int is
L : Whole;
R : Whole;
begin
L := Left;
R := Right;
while R /= 0 loop
L := L mod R;
if L = 0 then
return Int (R);
end if;
R := R mod L;
end loop;
return Int (L);
end GCD;
--------------------------
-- Has_Dimension_System --
--------------------------
function Has_Dimension_System (Typ : Entity_Id) return Boolean is
begin
return Exists (System_Of (Typ));
end Has_Dimension_System;
------------------------------
-- Is_Dim_IO_Package_Entity --
------------------------------
function Is_Dim_IO_Package_Entity (E : Entity_Id) return Boolean is
begin
-- Check the package entity corresponds to System.Dim.Float_IO or
-- System.Dim.Integer_IO.
return
Is_RTU (E, System_Dim_Float_IO)
or else
Is_RTU (E, System_Dim_Integer_IO);
end Is_Dim_IO_Package_Entity;
-------------------------------------
-- Is_Dim_IO_Package_Instantiation --
-------------------------------------
function Is_Dim_IO_Package_Instantiation (N : Node_Id) return Boolean is
Gen_Id : constant Node_Id := Name (N);
begin
-- Check that the instantiated package is either System.Dim.Float_IO
-- or System.Dim.Integer_IO.
return
Is_Entity_Name (Gen_Id)
and then Is_Dim_IO_Package_Entity (Entity (Gen_Id));
end Is_Dim_IO_Package_Instantiation;
----------------
-- Is_Invalid --
----------------
function Is_Invalid (Position : Dimension_Position) return Boolean is
begin
return Position = Invalid_Position;
end Is_Invalid;
---------------------
-- Move_Dimensions --
---------------------
procedure Move_Dimensions (From, To : Node_Id) is
begin
if Ada_Version < Ada_2012 then
return;
end if;
-- Copy the dimension of 'From to 'To' and remove dimension of 'From'
Copy_Dimensions (From, To);
Remove_Dimensions (From);
end Move_Dimensions;
------------
-- Reduce --
------------
function Reduce (X : Rational) return Rational is
begin
if X.Numerator = 0 then
return Zero;
end if;
declare
G : constant Int := GCD (X.Numerator, X.Denominator);
begin
return Rational'(Numerator => Whole (Int (X.Numerator) / G),
Denominator => Whole (Int (X.Denominator) / G));
end;
end Reduce;
-----------------------
-- Remove_Dimensions --
-----------------------
procedure Remove_Dimensions (N : Node_Id) is
Dims_Of_N : constant Dimension_Type := Dimensions_Of (N);
begin
if Exists (Dims_Of_N) then
Dimension_Table.Remove (N);
end if;
end Remove_Dimensions;
-----------------------------------
-- Remove_Dimension_In_Statement --
-----------------------------------
-- Removal of dimension in statement as part of the Analyze_Statements
-- routine (see package Sem_Ch5).
procedure Remove_Dimension_In_Statement (Stmt : Node_Id) is
begin
if Ada_Version < Ada_2012 then
return;
end if;
-- Remove dimension in parameter specifications for accept statement
if Nkind (Stmt) = N_Accept_Statement then
declare
Param : Node_Id := First (Parameter_Specifications (Stmt));
begin
while Present (Param) loop
Remove_Dimensions (Param);
Next (Param);
end loop;
end;
-- Remove dimension of name and expression in assignments
elsif Nkind (Stmt) = N_Assignment_Statement then
Remove_Dimensions (Expression (Stmt));
Remove_Dimensions (Name (Stmt));
end if;
end Remove_Dimension_In_Statement;
--------------------
-- Set_Dimensions --
--------------------
procedure Set_Dimensions (N : Node_Id; Val : Dimension_Type) is
begin
pragma Assert (OK_For_Dimension (Nkind (N)));
pragma Assert (Exists (Val));
Dimension_Table.Set (N, Val);
end Set_Dimensions;
----------------
-- Set_Symbol --
----------------
procedure Set_Symbol (E : Entity_Id; Val : String_Id) is
begin
Symbol_Table.Set (E, Val);
end Set_Symbol;
---------------------------------
-- String_From_Numeric_Literal --
---------------------------------
function String_From_Numeric_Literal (N : Node_Id) return String_Id is
Loc : constant Source_Ptr := Sloc (N);
Sbuffer : constant Source_Buffer_Ptr :=
Source_Text (Get_Source_File_Index (Loc));
Src_Ptr : Source_Ptr := Loc;
C : Character := Sbuffer (Src_Ptr);
-- Current source program character
function Belong_To_Numeric_Literal (C : Character) return Boolean;
-- Return True if C belongs to a numeric literal
-------------------------------
-- Belong_To_Numeric_Literal --
-------------------------------
function Belong_To_Numeric_Literal (C : Character) return Boolean is
begin
case C is
when '0' .. '9' |
'_' |
'.' |
'e' |
'#' |
'A' |
'B' |
'C' |
'D' |
'E' |
'F' =>
return True;
-- Make sure '+' or '-' is part of an exponent.
when '+' | '-' =>
declare
Prev_C : constant Character := Sbuffer (Src_Ptr - 1);
begin
return Prev_C = 'e' or else Prev_C = 'E';
end;
-- All other character doesn't belong to a numeric literal
when others =>
return False;
end case;
end Belong_To_Numeric_Literal;
-- Start of processing for String_From_Numeric_Literal
begin
Start_String;
while Belong_To_Numeric_Literal (C) loop
Store_String_Char (C);
Src_Ptr := Src_Ptr + 1;
C := Sbuffer (Src_Ptr);
end loop;
return End_String;
end String_From_Numeric_Literal;
---------------
-- Symbol_Of --
---------------
function Symbol_Of (E : Entity_Id) return String_Id is
Subtype_Symbol : constant String_Id := Symbol_Table.Get (E);
begin
if Subtype_Symbol /= No_String then
return Subtype_Symbol;
else
return From_Dim_To_Str_Of_Unit_Symbols
(Dimensions_Of (E), System_Of (Base_Type (E)));
end if;
end Symbol_Of;
-----------------------
-- Symbol_Table_Hash --
-----------------------
function Symbol_Table_Hash (Key : Entity_Id) return Symbol_Table_Range is
begin
return Symbol_Table_Range (Key mod 511);
end Symbol_Table_Hash;
---------------
-- System_Of --
---------------
function System_Of (E : Entity_Id) return System_Type is
Type_Decl : constant Node_Id := Parent (E);
begin
-- Look for Type_Decl in System_Table
for Dim_Sys in 1 .. System_Table.Last loop
if Type_Decl = System_Table.Table (Dim_Sys).Type_Decl then
return System_Table.Table (Dim_Sys);
end if;
end loop;
return Null_System;
end System_Of;
end Sem_Dim;
|