1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ U T I L --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Aspects; use Aspects;
with Atree; use Atree;
with Casing; use Casing;
with Checks; use Checks;
with Debug; use Debug;
with Elists; use Elists;
with Errout; use Errout;
with Exp_Ch11; use Exp_Ch11;
with Exp_Disp; use Exp_Disp;
with Exp_Unst; use Exp_Unst;
with Exp_Util; use Exp_Util;
with Fname; use Fname;
with Freeze; use Freeze;
with Lib; use Lib;
with Lib.Xref; use Lib.Xref;
with Namet.Sp; use Namet.Sp;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Output; use Output;
with Restrict; use Restrict;
with Rident; use Rident;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Attr; use Sem_Attr;
with Sem_Ch6; use Sem_Ch6;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch13; use Sem_Ch13;
with Sem_Disp; use Sem_Disp;
with Sem_Eval; use Sem_Eval;
with Sem_Prag; use Sem_Prag;
with Sem_Res; use Sem_Res;
with Sem_Warn; use Sem_Warn;
with Sem_Type; use Sem_Type;
with Sinfo; use Sinfo;
with Sinput; use Sinput;
with Stand; use Stand;
with Style;
with Stringt; use Stringt;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Uname; use Uname;
with GNAT.HTable; use GNAT.HTable;
package body Sem_Util is
----------------------------------------
-- Global Variables for New_Copy_Tree --
----------------------------------------
-- These global variables are used by New_Copy_Tree. See description of the
-- body of this subprogram for details. Global variables can be safely used
-- by New_Copy_Tree, since there is no case of a recursive call from the
-- processing inside New_Copy_Tree.
NCT_Hash_Threshold : constant := 20;
-- If there are more than this number of pairs of entries in the map, then
-- Hash_Tables_Used will be set, and the hash tables will be initialized
-- and used for the searches.
NCT_Hash_Tables_Used : Boolean := False;
-- Set to True if hash tables are in use
NCT_Table_Entries : Nat := 0;
-- Count entries in table to see if threshold is reached
NCT_Hash_Table_Setup : Boolean := False;
-- Set to True if hash table contains data. We set this True if we setup
-- the hash table with data, and leave it set permanently from then on,
-- this is a signal that second and subsequent users of the hash table
-- must clear the old entries before reuse.
subtype NCT_Header_Num is Int range 0 .. 511;
-- Defines range of headers in hash tables (512 headers)
-----------------------
-- Local Subprograms --
-----------------------
function Build_Component_Subtype
(C : List_Id;
Loc : Source_Ptr;
T : Entity_Id) return Node_Id;
-- This function builds the subtype for Build_Actual_Subtype_Of_Component
-- and Build_Discriminal_Subtype_Of_Component. C is a list of constraints,
-- Loc is the source location, T is the original subtype.
function Has_Enabled_Property
(Item_Id : Entity_Id;
Property : Name_Id) return Boolean;
-- Subsidiary to routines Async_xxx_Enabled and Effective_xxx_Enabled.
-- Determine whether an abstract state or a variable denoted by entity
-- Item_Id has enabled property Property.
function Has_Null_Extension (T : Entity_Id) return Boolean;
-- T is a derived tagged type. Check whether the type extension is null.
-- If the parent type is fully initialized, T can be treated as such.
function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean;
-- Subsidiary to Is_Fully_Initialized_Type. For an unconstrained type
-- with discriminants whose default values are static, examine only the
-- components in the selected variant to determine whether all of them
-- have a default.
------------------------------
-- Abstract_Interface_List --
------------------------------
function Abstract_Interface_List (Typ : Entity_Id) return List_Id is
Nod : Node_Id;
begin
if Is_Concurrent_Type (Typ) then
-- If we are dealing with a synchronized subtype, go to the base
-- type, whose declaration has the interface list.
-- Shouldn't this be Declaration_Node???
Nod := Parent (Base_Type (Typ));
if Nkind (Nod) = N_Full_Type_Declaration then
return Empty_List;
end if;
elsif Ekind (Typ) = E_Record_Type_With_Private then
if Nkind (Parent (Typ)) = N_Full_Type_Declaration then
Nod := Type_Definition (Parent (Typ));
elsif Nkind (Parent (Typ)) = N_Private_Type_Declaration then
if Present (Full_View (Typ))
and then
Nkind (Parent (Full_View (Typ))) = N_Full_Type_Declaration
then
Nod := Type_Definition (Parent (Full_View (Typ)));
-- If the full-view is not available we cannot do anything else
-- here (the source has errors).
else
return Empty_List;
end if;
-- Support for generic formals with interfaces is still missing ???
elsif Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
return Empty_List;
else
pragma Assert
(Nkind (Parent (Typ)) = N_Private_Extension_Declaration);
Nod := Parent (Typ);
end if;
elsif Ekind (Typ) = E_Record_Subtype then
Nod := Type_Definition (Parent (Etype (Typ)));
elsif Ekind (Typ) = E_Record_Subtype_With_Private then
-- Recurse, because parent may still be a private extension. Also
-- note that the full view of the subtype or the full view of its
-- base type may (both) be unavailable.
return Abstract_Interface_List (Etype (Typ));
else pragma Assert ((Ekind (Typ)) = E_Record_Type);
if Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
Nod := Formal_Type_Definition (Parent (Typ));
else
Nod := Type_Definition (Parent (Typ));
end if;
end if;
return Interface_List (Nod);
end Abstract_Interface_List;
--------------------------------
-- Add_Access_Type_To_Process --
--------------------------------
procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id) is
L : Elist_Id;
begin
Ensure_Freeze_Node (E);
L := Access_Types_To_Process (Freeze_Node (E));
if No (L) then
L := New_Elmt_List;
Set_Access_Types_To_Process (Freeze_Node (E), L);
end if;
Append_Elmt (A, L);
end Add_Access_Type_To_Process;
--------------------------
-- Add_Block_Identifier --
--------------------------
procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
begin
pragma Assert (Nkind (N) = N_Block_Statement);
-- The block already has a label, return its entity
if Present (Identifier (N)) then
Id := Entity (Identifier (N));
-- Create a new block label and set its attributes
else
Id := New_Internal_Entity (E_Block, Current_Scope, Loc, 'B');
Set_Etype (Id, Standard_Void_Type);
Set_Parent (Id, N);
Set_Identifier (N, New_Occurrence_Of (Id, Loc));
Set_Block_Node (Id, Identifier (N));
end if;
end Add_Block_Identifier;
-----------------------
-- Add_Contract_Item --
-----------------------
procedure Add_Contract_Item (Prag : Node_Id; Id : Entity_Id) is
Items : Node_Id := Contract (Id);
procedure Add_Classification;
-- Prepend Prag to the list of classifications
procedure Add_Contract_Test_Case;
-- Prepend Prag to the list of contract and test cases
procedure Add_Pre_Post_Condition;
-- Prepend Prag to the list of pre- and postconditions
------------------------
-- Add_Classification --
------------------------
procedure Add_Classification is
begin
Set_Next_Pragma (Prag, Classifications (Items));
Set_Classifications (Items, Prag);
end Add_Classification;
----------------------------
-- Add_Contract_Test_Case --
----------------------------
procedure Add_Contract_Test_Case is
begin
Set_Next_Pragma (Prag, Contract_Test_Cases (Items));
Set_Contract_Test_Cases (Items, Prag);
end Add_Contract_Test_Case;
----------------------------
-- Add_Pre_Post_Condition --
----------------------------
procedure Add_Pre_Post_Condition is
begin
Set_Next_Pragma (Prag, Pre_Post_Conditions (Items));
Set_Pre_Post_Conditions (Items, Prag);
end Add_Pre_Post_Condition;
-- Local variables
Prag_Nam : Name_Id;
-- Start of processing for Add_Contract_Item
begin
-- A contract must contain only pragmas
pragma Assert (Nkind (Prag) = N_Pragma);
Prag_Nam := Pragma_Name (Prag);
-- Create a new contract when adding the first item
if No (Items) then
Items := Make_Contract (Sloc (Id));
Set_Contract (Id, Items);
end if;
-- Contract items related to [generic] packages or instantiations. The
-- applicable pragmas are:
-- Abstract_States
-- Initial_Condition
-- Initializes
-- Part_Of (instantiation only)
if Ekind_In (Id, E_Generic_Package, E_Package) then
if Nam_In (Prag_Nam, Name_Abstract_State,
Name_Initial_Condition,
Name_Initializes)
then
Add_Classification;
-- Indicator Part_Of must be associated with a package instantiation
elsif Prag_Nam = Name_Part_Of and then Is_Generic_Instance (Id) then
Add_Classification;
-- The pragma is not a proper contract item
else
raise Program_Error;
end if;
-- Contract items related to package bodies. The applicable pragmas are:
-- Refined_States
elsif Ekind (Id) = E_Package_Body then
if Prag_Nam = Name_Refined_State then
Add_Classification;
-- The pragma is not a proper contract item
else
raise Program_Error;
end if;
-- Contract items related to subprogram or entry declarations. The
-- applicable pragmas are:
-- Contract_Cases
-- Depends
-- Extensions_Visible
-- Global
-- Postcondition
-- Precondition
-- Test_Case
elsif Ekind_In (Id, E_Entry, E_Entry_Family)
or else Is_Generic_Subprogram (Id)
or else Is_Subprogram (Id)
then
if Nam_In (Prag_Nam, Name_Postcondition, Name_Precondition) then
Add_Pre_Post_Condition;
elsif Nam_In (Prag_Nam, Name_Contract_Cases, Name_Test_Case) then
Add_Contract_Test_Case;
elsif Nam_In (Prag_Nam, Name_Depends,
Name_Extensions_Visible,
Name_Global)
then
Add_Classification;
-- The pragma is not a proper contract item
else
raise Program_Error;
end if;
-- Contract items related to subprogram bodies. Applicable pragmas are:
-- Postcondition
-- Precondition
-- Refined_Depends
-- Refined_Global
-- Refined_Post
elsif Ekind (Id) = E_Subprogram_Body then
if Nam_In (Prag_Nam, Name_Refined_Depends, Name_Refined_Global) then
Add_Classification;
elsif Nam_In (Prag_Nam, Name_Postcondition,
Name_Precondition,
Name_Refined_Post)
then
Add_Pre_Post_Condition;
-- The pragma is not a proper contract item
else
raise Program_Error;
end if;
-- Contract items related to variables. Applicable pragmas are:
-- Async_Readers
-- Async_Writers
-- Effective_Reads
-- Effective_Writes
-- Part_Of
elsif Ekind (Id) = E_Variable then
if Nam_In (Prag_Nam, Name_Async_Readers,
Name_Async_Writers,
Name_Effective_Reads,
Name_Effective_Writes,
Name_Part_Of)
then
Add_Classification;
-- The pragma is not a proper contract item
else
raise Program_Error;
end if;
end if;
end Add_Contract_Item;
----------------------------
-- Add_Global_Declaration --
----------------------------
procedure Add_Global_Declaration (N : Node_Id) is
Aux_Node : constant Node_Id := Aux_Decls_Node (Cunit (Current_Sem_Unit));
begin
if No (Declarations (Aux_Node)) then
Set_Declarations (Aux_Node, New_List);
end if;
Append_To (Declarations (Aux_Node), N);
Analyze (N);
end Add_Global_Declaration;
--------------------------------
-- Address_Integer_Convert_OK --
--------------------------------
function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean is
begin
if Allow_Integer_Address
and then ((Is_Descendent_Of_Address (T1)
and then Is_Private_Type (T1)
and then Is_Integer_Type (T2))
or else
(Is_Descendent_Of_Address (T2)
and then Is_Private_Type (T2)
and then Is_Integer_Type (T1)))
then
return True;
else
return False;
end if;
end Address_Integer_Convert_OK;
-----------------
-- Addressable --
-----------------
-- For now, just 8/16/32/64. but analyze later if AAMP is special???
function Addressable (V : Uint) return Boolean is
begin
return V = Uint_8 or else
V = Uint_16 or else
V = Uint_32 or else
V = Uint_64;
end Addressable;
function Addressable (V : Int) return Boolean is
begin
return V = 8 or else
V = 16 or else
V = 32 or else
V = 64;
end Addressable;
---------------------------------
-- Aggregate_Constraint_Checks --
---------------------------------
procedure Aggregate_Constraint_Checks
(Exp : Node_Id;
Check_Typ : Entity_Id)
is
Exp_Typ : constant Entity_Id := Etype (Exp);
begin
if Raises_Constraint_Error (Exp) then
return;
end if;
-- Ada 2005 (AI-230): Generate a conversion to an anonymous access
-- component's type to force the appropriate accessibility checks.
-- Ada 2005 (AI-231): Generate conversion to the null-excluding
-- type to force the corresponding run-time check
if Is_Access_Type (Check_Typ)
and then ((Is_Local_Anonymous_Access (Check_Typ))
or else (Can_Never_Be_Null (Check_Typ)
and then not Can_Never_Be_Null (Exp_Typ)))
then
Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
Analyze_And_Resolve (Exp, Check_Typ);
Check_Unset_Reference (Exp);
end if;
-- This is really expansion activity, so make sure that expansion is
-- on and is allowed. In GNATprove mode, we also want check flags to
-- be added in the tree, so that the formal verification can rely on
-- those to be present. In GNATprove mode for formal verification, some
-- treatment typically only done during expansion needs to be performed
-- on the tree, but it should not be applied inside generics. Otherwise,
-- this breaks the name resolution mechanism for generic instances.
if not Expander_Active
and (Inside_A_Generic or not Full_Analysis or not GNATprove_Mode)
then
return;
end if;
-- First check if we have to insert discriminant checks
if Has_Discriminants (Exp_Typ) then
Apply_Discriminant_Check (Exp, Check_Typ);
-- Next emit length checks for array aggregates
elsif Is_Array_Type (Exp_Typ) then
Apply_Length_Check (Exp, Check_Typ);
-- Finally emit scalar and string checks. If we are dealing with a
-- scalar literal we need to check by hand because the Etype of
-- literals is not necessarily correct.
elsif Is_Scalar_Type (Exp_Typ)
and then Compile_Time_Known_Value (Exp)
then
if Is_Out_Of_Range (Exp, Base_Type (Check_Typ)) then
Apply_Compile_Time_Constraint_Error
(Exp, "value not in range of}??", CE_Range_Check_Failed,
Ent => Base_Type (Check_Typ),
Typ => Base_Type (Check_Typ));
elsif Is_Out_Of_Range (Exp, Check_Typ) then
Apply_Compile_Time_Constraint_Error
(Exp, "value not in range of}??", CE_Range_Check_Failed,
Ent => Check_Typ,
Typ => Check_Typ);
elsif not Range_Checks_Suppressed (Check_Typ) then
Apply_Scalar_Range_Check (Exp, Check_Typ);
end if;
-- Verify that target type is also scalar, to prevent view anomalies
-- in instantiations.
elsif (Is_Scalar_Type (Exp_Typ)
or else Nkind (Exp) = N_String_Literal)
and then Is_Scalar_Type (Check_Typ)
and then Exp_Typ /= Check_Typ
then
if Is_Entity_Name (Exp)
and then Ekind (Entity (Exp)) = E_Constant
then
-- If expression is a constant, it is worthwhile checking whether
-- it is a bound of the type.
if (Is_Entity_Name (Type_Low_Bound (Check_Typ))
and then Entity (Exp) = Entity (Type_Low_Bound (Check_Typ)))
or else
(Is_Entity_Name (Type_High_Bound (Check_Typ))
and then Entity (Exp) = Entity (Type_High_Bound (Check_Typ)))
then
return;
else
Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
Analyze_And_Resolve (Exp, Check_Typ);
Check_Unset_Reference (Exp);
end if;
-- Could use a comment on this case ???
else
Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
Analyze_And_Resolve (Exp, Check_Typ);
Check_Unset_Reference (Exp);
end if;
end if;
end Aggregate_Constraint_Checks;
-----------------------
-- Alignment_In_Bits --
-----------------------
function Alignment_In_Bits (E : Entity_Id) return Uint is
begin
return Alignment (E) * System_Storage_Unit;
end Alignment_In_Bits;
---------------------------------
-- Append_Inherited_Subprogram --
---------------------------------
procedure Append_Inherited_Subprogram (S : Entity_Id) is
Par : constant Entity_Id := Alias (S);
-- The parent subprogram
Scop : constant Entity_Id := Scope (Par);
-- The scope of definition of the parent subprogram
Typ : constant Entity_Id := Defining_Entity (Parent (S));
-- The derived type of which S is a primitive operation
Decl : Node_Id;
Next_E : Entity_Id;
begin
if Ekind (Current_Scope) = E_Package
and then In_Private_Part (Current_Scope)
and then Has_Private_Declaration (Typ)
and then Is_Tagged_Type (Typ)
and then Scop = Current_Scope
then
-- The inherited operation is available at the earliest place after
-- the derived type declaration ( RM 7.3.1 (6/1)). This is only
-- relevant for type extensions. If the parent operation appears
-- after the type extension, the operation is not visible.
Decl := First
(Visible_Declarations
(Package_Specification (Current_Scope)));
while Present (Decl) loop
if Nkind (Decl) = N_Private_Extension_Declaration
and then Defining_Entity (Decl) = Typ
then
if Sloc (Decl) > Sloc (Par) then
Next_E := Next_Entity (Par);
Set_Next_Entity (Par, S);
Set_Next_Entity (S, Next_E);
return;
else
exit;
end if;
end if;
Next (Decl);
end loop;
end if;
-- If partial view is not a type extension, or it appears before the
-- subprogram declaration, insert normally at end of entity list.
Append_Entity (S, Current_Scope);
end Append_Inherited_Subprogram;
-----------------------------------------
-- Apply_Compile_Time_Constraint_Error --
-----------------------------------------
procedure Apply_Compile_Time_Constraint_Error
(N : Node_Id;
Msg : String;
Reason : RT_Exception_Code;
Ent : Entity_Id := Empty;
Typ : Entity_Id := Empty;
Loc : Source_Ptr := No_Location;
Rep : Boolean := True;
Warn : Boolean := False)
is
Stat : constant Boolean := Is_Static_Expression (N);
R_Stat : constant Node_Id :=
Make_Raise_Constraint_Error (Sloc (N), Reason => Reason);
Rtyp : Entity_Id;
begin
if No (Typ) then
Rtyp := Etype (N);
else
Rtyp := Typ;
end if;
Discard_Node
(Compile_Time_Constraint_Error (N, Msg, Ent, Loc, Warn => Warn));
if not Rep then
return;
end if;
-- Now we replace the node by an N_Raise_Constraint_Error node
-- This does not need reanalyzing, so set it as analyzed now.
Rewrite (N, R_Stat);
Set_Analyzed (N, True);
Set_Etype (N, Rtyp);
Set_Raises_Constraint_Error (N);
-- Now deal with possible local raise handling
Possible_Local_Raise (N, Standard_Constraint_Error);
-- If the original expression was marked as static, the result is
-- still marked as static, but the Raises_Constraint_Error flag is
-- always set so that further static evaluation is not attempted.
if Stat then
Set_Is_Static_Expression (N);
end if;
end Apply_Compile_Time_Constraint_Error;
---------------------------
-- Async_Readers_Enabled --
---------------------------
function Async_Readers_Enabled (Id : Entity_Id) return Boolean is
begin
return Has_Enabled_Property (Id, Name_Async_Readers);
end Async_Readers_Enabled;
---------------------------
-- Async_Writers_Enabled --
---------------------------
function Async_Writers_Enabled (Id : Entity_Id) return Boolean is
begin
return Has_Enabled_Property (Id, Name_Async_Writers);
end Async_Writers_Enabled;
--------------------------------------
-- Available_Full_View_Of_Component --
--------------------------------------
function Available_Full_View_Of_Component (T : Entity_Id) return Boolean is
ST : constant Entity_Id := Scope (T);
SCT : constant Entity_Id := Scope (Component_Type (T));
begin
return In_Open_Scopes (ST)
and then In_Open_Scopes (SCT)
and then Scope_Depth (ST) >= Scope_Depth (SCT);
end Available_Full_View_Of_Component;
-------------------
-- Bad_Attribute --
-------------------
procedure Bad_Attribute
(N : Node_Id;
Nam : Name_Id;
Warn : Boolean := False)
is
begin
Error_Msg_Warn := Warn;
Error_Msg_N ("unrecognized attribute&<<", N);
-- Check for possible misspelling
Error_Msg_Name_1 := First_Attribute_Name;
while Error_Msg_Name_1 <= Last_Attribute_Name loop
if Is_Bad_Spelling_Of (Nam, Error_Msg_Name_1) then
Error_Msg_N -- CODEFIX
("\possible misspelling of %<<", N);
exit;
end if;
Error_Msg_Name_1 := Error_Msg_Name_1 + 1;
end loop;
end Bad_Attribute;
--------------------------------
-- Bad_Predicated_Subtype_Use --
--------------------------------
procedure Bad_Predicated_Subtype_Use
(Msg : String;
N : Node_Id;
Typ : Entity_Id;
Suggest_Static : Boolean := False)
is
Gen : Entity_Id;
begin
-- Avoid cascaded errors
if Error_Posted (N) then
return;
end if;
if Inside_A_Generic then
Gen := Current_Scope;
while Present (Gen) and then Ekind (Gen) /= E_Generic_Package loop
Gen := Scope (Gen);
end loop;
if No (Gen) then
return;
end if;
if Is_Generic_Formal (Typ) and then Is_Discrete_Type (Typ) then
Set_No_Predicate_On_Actual (Typ);
end if;
elsif Has_Predicates (Typ) then
if Is_Generic_Actual_Type (Typ) then
-- The restriction on loop parameters is only that the type
-- should have no dynamic predicates.
if Nkind (Parent (N)) = N_Loop_Parameter_Specification
and then not Has_Dynamic_Predicate_Aspect (Typ)
and then Is_OK_Static_Subtype (Typ)
then
return;
end if;
Gen := Current_Scope;
while not Is_Generic_Instance (Gen) loop
Gen := Scope (Gen);
end loop;
pragma Assert (Present (Gen));
if Ekind (Gen) = E_Package and then In_Package_Body (Gen) then
Error_Msg_Warn := SPARK_Mode /= On;
Error_Msg_FE (Msg & "<<", N, Typ);
Error_Msg_F ("\Program_Error [<<", N);
Insert_Action (N,
Make_Raise_Program_Error (Sloc (N),
Reason => PE_Bad_Predicated_Generic_Type));
else
Error_Msg_FE (Msg & "<<", N, Typ);
end if;
else
Error_Msg_FE (Msg, N, Typ);
end if;
-- Emit an optional suggestion on how to remedy the error if the
-- context warrants it.
if Suggest_Static and then Has_Static_Predicate (Typ) then
Error_Msg_FE ("\predicate of & should be marked static", N, Typ);
end if;
end if;
end Bad_Predicated_Subtype_Use;
-----------------------------------------
-- Bad_Unordered_Enumeration_Reference --
-----------------------------------------
function Bad_Unordered_Enumeration_Reference
(N : Node_Id;
T : Entity_Id) return Boolean
is
begin
return Is_Enumeration_Type (T)
and then Warn_On_Unordered_Enumeration_Type
and then not Is_Generic_Type (T)
and then Comes_From_Source (N)
and then not Has_Pragma_Ordered (T)
and then not In_Same_Extended_Unit (N, T);
end Bad_Unordered_Enumeration_Reference;
--------------------------
-- Build_Actual_Subtype --
--------------------------
function Build_Actual_Subtype
(T : Entity_Id;
N : Node_Or_Entity_Id) return Node_Id
is
Loc : Source_Ptr;
-- Normally Sloc (N), but may point to corresponding body in some cases
Constraints : List_Id;
Decl : Node_Id;
Discr : Entity_Id;
Hi : Node_Id;
Lo : Node_Id;
Subt : Entity_Id;
Disc_Type : Entity_Id;
Obj : Node_Id;
begin
Loc := Sloc (N);
if Nkind (N) = N_Defining_Identifier then
Obj := New_Occurrence_Of (N, Loc);
-- If this is a formal parameter of a subprogram declaration, and
-- we are compiling the body, we want the declaration for the
-- actual subtype to carry the source position of the body, to
-- prevent anomalies in gdb when stepping through the code.
if Is_Formal (N) then
declare
Decl : constant Node_Id := Unit_Declaration_Node (Scope (N));
begin
if Nkind (Decl) = N_Subprogram_Declaration
and then Present (Corresponding_Body (Decl))
then
Loc := Sloc (Corresponding_Body (Decl));
end if;
end;
end if;
else
Obj := N;
end if;
if Is_Array_Type (T) then
Constraints := New_List;
for J in 1 .. Number_Dimensions (T) loop
-- Build an array subtype declaration with the nominal subtype and
-- the bounds of the actual. Add the declaration in front of the
-- local declarations for the subprogram, for analysis before any
-- reference to the formal in the body.
Lo :=
Make_Attribute_Reference (Loc,
Prefix =>
Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
Attribute_Name => Name_First,
Expressions => New_List (
Make_Integer_Literal (Loc, J)));
Hi :=
Make_Attribute_Reference (Loc,
Prefix =>
Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
Attribute_Name => Name_Last,
Expressions => New_List (
Make_Integer_Literal (Loc, J)));
Append (Make_Range (Loc, Lo, Hi), Constraints);
end loop;
-- If the type has unknown discriminants there is no constrained
-- subtype to build. This is never called for a formal or for a
-- lhs, so returning the type is ok ???
elsif Has_Unknown_Discriminants (T) then
return T;
else
Constraints := New_List;
-- Type T is a generic derived type, inherit the discriminants from
-- the parent type.
if Is_Private_Type (T)
and then No (Full_View (T))
-- T was flagged as an error if it was declared as a formal
-- derived type with known discriminants. In this case there
-- is no need to look at the parent type since T already carries
-- its own discriminants.
and then not Error_Posted (T)
then
Disc_Type := Etype (Base_Type (T));
else
Disc_Type := T;
end if;
Discr := First_Discriminant (Disc_Type);
while Present (Discr) loop
Append_To (Constraints,
Make_Selected_Component (Loc,
Prefix =>
Duplicate_Subexpr_No_Checks (Obj),
Selector_Name => New_Occurrence_Of (Discr, Loc)));
Next_Discriminant (Discr);
end loop;
end if;
Subt := Make_Temporary (Loc, 'S', Related_Node => N);
Set_Is_Internal (Subt);
Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => Subt,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (T, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => Constraints)));
Mark_Rewrite_Insertion (Decl);
return Decl;
end Build_Actual_Subtype;
---------------------------------------
-- Build_Actual_Subtype_Of_Component --
---------------------------------------
function Build_Actual_Subtype_Of_Component
(T : Entity_Id;
N : Node_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (N);
P : constant Node_Id := Prefix (N);
D : Elmt_Id;
Id : Node_Id;
Index_Typ : Entity_Id;
Desig_Typ : Entity_Id;
-- This is either a copy of T, or if T is an access type, then it is
-- the directly designated type of this access type.
function Build_Actual_Array_Constraint return List_Id;
-- If one or more of the bounds of the component depends on
-- discriminants, build actual constraint using the discriminants
-- of the prefix.
function Build_Actual_Record_Constraint return List_Id;
-- Similar to previous one, for discriminated components constrained
-- by the discriminant of the enclosing object.
-----------------------------------
-- Build_Actual_Array_Constraint --
-----------------------------------
function Build_Actual_Array_Constraint return List_Id is
Constraints : constant List_Id := New_List;
Indx : Node_Id;
Hi : Node_Id;
Lo : Node_Id;
Old_Hi : Node_Id;
Old_Lo : Node_Id;
begin
Indx := First_Index (Desig_Typ);
while Present (Indx) loop
Old_Lo := Type_Low_Bound (Etype (Indx));
Old_Hi := Type_High_Bound (Etype (Indx));
if Denotes_Discriminant (Old_Lo) then
Lo :=
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (P),
Selector_Name => New_Occurrence_Of (Entity (Old_Lo), Loc));
else
Lo := New_Copy_Tree (Old_Lo);
-- The new bound will be reanalyzed in the enclosing
-- declaration. For literal bounds that come from a type
-- declaration, the type of the context must be imposed, so
-- insure that analysis will take place. For non-universal
-- types this is not strictly necessary.
Set_Analyzed (Lo, False);
end if;
if Denotes_Discriminant (Old_Hi) then
Hi :=
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (P),
Selector_Name => New_Occurrence_Of (Entity (Old_Hi), Loc));
else
Hi := New_Copy_Tree (Old_Hi);
Set_Analyzed (Hi, False);
end if;
Append (Make_Range (Loc, Lo, Hi), Constraints);
Next_Index (Indx);
end loop;
return Constraints;
end Build_Actual_Array_Constraint;
------------------------------------
-- Build_Actual_Record_Constraint --
------------------------------------
function Build_Actual_Record_Constraint return List_Id is
Constraints : constant List_Id := New_List;
D : Elmt_Id;
D_Val : Node_Id;
begin
D := First_Elmt (Discriminant_Constraint (Desig_Typ));
while Present (D) loop
if Denotes_Discriminant (Node (D)) then
D_Val := Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (P),
Selector_Name => New_Occurrence_Of (Entity (Node (D)), Loc));
else
D_Val := New_Copy_Tree (Node (D));
end if;
Append (D_Val, Constraints);
Next_Elmt (D);
end loop;
return Constraints;
end Build_Actual_Record_Constraint;
-- Start of processing for Build_Actual_Subtype_Of_Component
begin
-- Why the test for Spec_Expression mode here???
if In_Spec_Expression then
return Empty;
-- More comments for the rest of this body would be good ???
elsif Nkind (N) = N_Explicit_Dereference then
if Is_Composite_Type (T)
and then not Is_Constrained (T)
and then not (Is_Class_Wide_Type (T)
and then Is_Constrained (Root_Type (T)))
and then not Has_Unknown_Discriminants (T)
then
-- If the type of the dereference is already constrained, it is an
-- actual subtype.
if Is_Array_Type (Etype (N))
and then Is_Constrained (Etype (N))
then
return Empty;
else
Remove_Side_Effects (P);
return Build_Actual_Subtype (T, N);
end if;
else
return Empty;
end if;
end if;
if Ekind (T) = E_Access_Subtype then
Desig_Typ := Designated_Type (T);
else
Desig_Typ := T;
end if;
if Ekind (Desig_Typ) = E_Array_Subtype then
Id := First_Index (Desig_Typ);
while Present (Id) loop
Index_Typ := Underlying_Type (Etype (Id));
if Denotes_Discriminant (Type_Low_Bound (Index_Typ))
or else
Denotes_Discriminant (Type_High_Bound (Index_Typ))
then
Remove_Side_Effects (P);
return
Build_Component_Subtype
(Build_Actual_Array_Constraint, Loc, Base_Type (T));
end if;
Next_Index (Id);
end loop;
elsif Is_Composite_Type (Desig_Typ)
and then Has_Discriminants (Desig_Typ)
and then not Has_Unknown_Discriminants (Desig_Typ)
then
if Is_Private_Type (Desig_Typ)
and then No (Discriminant_Constraint (Desig_Typ))
then
Desig_Typ := Full_View (Desig_Typ);
end if;
D := First_Elmt (Discriminant_Constraint (Desig_Typ));
while Present (D) loop
if Denotes_Discriminant (Node (D)) then
Remove_Side_Effects (P);
return
Build_Component_Subtype (
Build_Actual_Record_Constraint, Loc, Base_Type (T));
end if;
Next_Elmt (D);
end loop;
end if;
-- If none of the above, the actual and nominal subtypes are the same
return Empty;
end Build_Actual_Subtype_Of_Component;
-----------------------------
-- Build_Component_Subtype --
-----------------------------
function Build_Component_Subtype
(C : List_Id;
Loc : Source_Ptr;
T : Entity_Id) return Node_Id
is
Subt : Entity_Id;
Decl : Node_Id;
begin
-- Unchecked_Union components do not require component subtypes
if Is_Unchecked_Union (T) then
return Empty;
end if;
Subt := Make_Temporary (Loc, 'S');
Set_Is_Internal (Subt);
Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => Subt,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Base_Type (T), Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => C)));
Mark_Rewrite_Insertion (Decl);
return Decl;
end Build_Component_Subtype;
----------------------------------
-- Build_Default_Init_Cond_Call --
----------------------------------
function Build_Default_Init_Cond_Call
(Loc : Source_Ptr;
Obj_Id : Entity_Id;
Typ : Entity_Id) return Node_Id
is
Proc_Id : constant Entity_Id := Default_Init_Cond_Procedure (Typ);
Formal_Typ : constant Entity_Id := Etype (First_Formal (Proc_Id));
begin
return
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Proc_Id, Loc),
Parameter_Associations => New_List (
Make_Unchecked_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Formal_Typ, Loc),
Expression => New_Occurrence_Of (Obj_Id, Loc))));
end Build_Default_Init_Cond_Call;
----------------------------------------------
-- Build_Default_Init_Cond_Procedure_Bodies --
----------------------------------------------
procedure Build_Default_Init_Cond_Procedure_Bodies (Priv_Decls : List_Id) is
procedure Build_Default_Init_Cond_Procedure_Body (Typ : Entity_Id);
-- If type Typ is subject to pragma Default_Initial_Condition, build the
-- body of the procedure which verifies the assumption of the pragma at
-- run time. The generated body is added after the type declaration.
--------------------------------------------
-- Build_Default_Init_Cond_Procedure_Body --
--------------------------------------------
procedure Build_Default_Init_Cond_Procedure_Body (Typ : Entity_Id) is
Param_Id : Entity_Id;
-- The entity of the sole formal parameter of the default initial
-- condition procedure.
procedure Replace_Type_Reference (N : Node_Id);
-- Replace a single reference to type Typ with a reference to formal
-- parameter Param_Id.
----------------------------
-- Replace_Type_Reference --
----------------------------
procedure Replace_Type_Reference (N : Node_Id) is
begin
Rewrite (N, New_Occurrence_Of (Param_Id, Sloc (N)));
end Replace_Type_Reference;
procedure Replace_Type_References is
new Replace_Type_References_Generic (Replace_Type_Reference);
-- Local variables
Loc : constant Source_Ptr := Sloc (Typ);
Prag : constant Node_Id :=
Get_Pragma (Typ, Pragma_Default_Initial_Condition);
Proc_Id : constant Entity_Id := Default_Init_Cond_Procedure (Typ);
Spec_Decl : constant Node_Id := Unit_Declaration_Node (Proc_Id);
Body_Decl : Node_Id;
Expr : Node_Id;
Stmt : Node_Id;
-- Start of processing for Build_Default_Init_Cond_Procedure_Body
begin
-- The procedure should be generated only for [sub]types subject to
-- pragma Default_Initial_Condition. Types that inherit the pragma do
-- not get this specialized procedure.
pragma Assert (Has_Default_Init_Cond (Typ));
pragma Assert (Present (Prag));
pragma Assert (Present (Proc_Id));
-- Nothing to do if the body was already built
if Present (Corresponding_Body (Spec_Decl)) then
return;
end if;
Param_Id := First_Formal (Proc_Id);
-- The pragma has an argument. Note that the argument is analyzed
-- after all references to the current instance of the type are
-- replaced.
if Present (Pragma_Argument_Associations (Prag)) then
Expr :=
Get_Pragma_Arg (First (Pragma_Argument_Associations (Prag)));
if Nkind (Expr) = N_Null then
Stmt := Make_Null_Statement (Loc);
-- Preserve the original argument of the pragma by replicating it.
-- Replace all references to the current instance of the type with
-- references to the formal parameter.
else
Expr := New_Copy_Tree (Expr);
Replace_Type_References (Expr, Typ);
-- Generate:
-- pragma Check (Default_Initial_Condition, <Expr>);
Stmt :=
Make_Pragma (Loc,
Pragma_Identifier =>
Make_Identifier (Loc, Name_Check),
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression =>
Make_Identifier (Loc,
Chars => Name_Default_Initial_Condition)),
Make_Pragma_Argument_Association (Loc,
Expression => Expr)));
end if;
-- Otherwise the pragma appears without an argument
else
Stmt := Make_Null_Statement (Loc);
end if;
-- Generate:
-- procedure <Typ>Default_Init_Cond (I : <Typ>) is
-- begin
-- <Stmt>;
-- end <Typ>Default_Init_Cond;
Body_Decl :=
Make_Subprogram_Body (Loc,
Specification =>
Copy_Separate_Tree (Specification (Spec_Decl)),
Declarations => Empty_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Stmt)));
-- Link the spec and body of the default initial condition procedure
-- to prevent the generation of a duplicate body.
Set_Corresponding_Body (Spec_Decl, Defining_Entity (Body_Decl));
Set_Corresponding_Spec (Body_Decl, Proc_Id);
Insert_After_And_Analyze (Declaration_Node (Typ), Body_Decl);
end Build_Default_Init_Cond_Procedure_Body;
-- Local variables
Decl : Node_Id;
Typ : Entity_Id;
-- Start of processing for Build_Default_Init_Cond_Procedure_Bodies
begin
-- Inspect the private declarations looking for [sub]type declarations
Decl := First (Priv_Decls);
while Present (Decl) loop
if Nkind_In (Decl, N_Full_Type_Declaration,
N_Subtype_Declaration)
then
Typ := Defining_Entity (Decl);
-- Guard against partially decorate types due to previous errors
if Is_Type (Typ) then
-- If the type is subject to pragma Default_Initial_Condition,
-- generate the body of the internal procedure which verifies
-- the assertion of the pragma at run time.
if Has_Default_Init_Cond (Typ) then
Build_Default_Init_Cond_Procedure_Body (Typ);
-- A derived type inherits the default initial condition
-- procedure from its parent type.
elsif Has_Inherited_Default_Init_Cond (Typ) then
Inherit_Default_Init_Cond_Procedure (Typ);
end if;
end if;
end if;
Next (Decl);
end loop;
end Build_Default_Init_Cond_Procedure_Bodies;
---------------------------------------------------
-- Build_Default_Init_Cond_Procedure_Declaration --
---------------------------------------------------
procedure Build_Default_Init_Cond_Procedure_Declaration (Typ : Entity_Id) is
Loc : constant Source_Ptr := Sloc (Typ);
Prag : constant Node_Id :=
Get_Pragma (Typ, Pragma_Default_Initial_Condition);
Proc_Id : Entity_Id;
begin
-- The procedure should be generated only for types subject to pragma
-- Default_Initial_Condition. Types that inherit the pragma do not get
-- this specialized procedure.
pragma Assert (Has_Default_Init_Cond (Typ));
pragma Assert (Present (Prag));
-- Nothing to do if default initial condition procedure already built
if Present (Default_Init_Cond_Procedure (Typ)) then
return;
end if;
Proc_Id :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Typ), "Default_Init_Cond"));
-- Associate default initial condition procedure with the private type
Set_Ekind (Proc_Id, E_Procedure);
Set_Is_Default_Init_Cond_Procedure (Proc_Id);
Set_Default_Init_Cond_Procedure (Typ, Proc_Id);
-- Generate:
-- procedure <Typ>Default_Init_Cond (Inn : <Typ>);
Insert_After_And_Analyze (Prag,
Make_Subprogram_Declaration (Loc,
Specification =>
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Proc_Id,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Temporary (Loc, 'I'),
Parameter_Type => New_Occurrence_Of (Typ, Loc))))));
end Build_Default_Init_Cond_Procedure_Declaration;
---------------------------
-- Build_Default_Subtype --
---------------------------
function Build_Default_Subtype
(T : Entity_Id;
N : Node_Id) return Entity_Id
is
Loc : constant Source_Ptr := Sloc (N);
Disc : Entity_Id;
Bas : Entity_Id;
-- The base type that is to be constrained by the defaults
begin
if not Has_Discriminants (T) or else Is_Constrained (T) then
return T;
end if;
Bas := Base_Type (T);
-- If T is non-private but its base type is private, this is the
-- completion of a subtype declaration whose parent type is private
-- (see Complete_Private_Subtype in Sem_Ch3). The proper discriminants
-- are to be found in the full view of the base. Check that the private
-- status of T and its base differ.
if Is_Private_Type (Bas)
and then not Is_Private_Type (T)
and then Present (Full_View (Bas))
then
Bas := Full_View (Bas);
end if;
Disc := First_Discriminant (T);
if No (Discriminant_Default_Value (Disc)) then
return T;
end if;
declare
Act : constant Entity_Id := Make_Temporary (Loc, 'S');
Constraints : constant List_Id := New_List;
Decl : Node_Id;
begin
while Present (Disc) loop
Append_To (Constraints,
New_Copy_Tree (Discriminant_Default_Value (Disc)));
Next_Discriminant (Disc);
end loop;
Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => Act,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Bas, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => Constraints)));
Insert_Action (N, Decl);
Analyze (Decl);
return Act;
end;
end Build_Default_Subtype;
--------------------------------------------
-- Build_Discriminal_Subtype_Of_Component --
--------------------------------------------
function Build_Discriminal_Subtype_Of_Component
(T : Entity_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (T);
D : Elmt_Id;
Id : Node_Id;
function Build_Discriminal_Array_Constraint return List_Id;
-- If one or more of the bounds of the component depends on
-- discriminants, build actual constraint using the discriminants
-- of the prefix.
function Build_Discriminal_Record_Constraint return List_Id;
-- Similar to previous one, for discriminated components constrained by
-- the discriminant of the enclosing object.
----------------------------------------
-- Build_Discriminal_Array_Constraint --
----------------------------------------
function Build_Discriminal_Array_Constraint return List_Id is
Constraints : constant List_Id := New_List;
Indx : Node_Id;
Hi : Node_Id;
Lo : Node_Id;
Old_Hi : Node_Id;
Old_Lo : Node_Id;
begin
Indx := First_Index (T);
while Present (Indx) loop
Old_Lo := Type_Low_Bound (Etype (Indx));
Old_Hi := Type_High_Bound (Etype (Indx));
if Denotes_Discriminant (Old_Lo) then
Lo := New_Occurrence_Of (Discriminal (Entity (Old_Lo)), Loc);
else
Lo := New_Copy_Tree (Old_Lo);
end if;
if Denotes_Discriminant (Old_Hi) then
Hi := New_Occurrence_Of (Discriminal (Entity (Old_Hi)), Loc);
else
Hi := New_Copy_Tree (Old_Hi);
end if;
Append (Make_Range (Loc, Lo, Hi), Constraints);
Next_Index (Indx);
end loop;
return Constraints;
end Build_Discriminal_Array_Constraint;
-----------------------------------------
-- Build_Discriminal_Record_Constraint --
-----------------------------------------
function Build_Discriminal_Record_Constraint return List_Id is
Constraints : constant List_Id := New_List;
D : Elmt_Id;
D_Val : Node_Id;
begin
D := First_Elmt (Discriminant_Constraint (T));
while Present (D) loop
if Denotes_Discriminant (Node (D)) then
D_Val :=
New_Occurrence_Of (Discriminal (Entity (Node (D))), Loc);
else
D_Val := New_Copy_Tree (Node (D));
end if;
Append (D_Val, Constraints);
Next_Elmt (D);
end loop;
return Constraints;
end Build_Discriminal_Record_Constraint;
-- Start of processing for Build_Discriminal_Subtype_Of_Component
begin
if Ekind (T) = E_Array_Subtype then
Id := First_Index (T);
while Present (Id) loop
if Denotes_Discriminant (Type_Low_Bound (Etype (Id)))
or else
Denotes_Discriminant (Type_High_Bound (Etype (Id)))
then
return Build_Component_Subtype
(Build_Discriminal_Array_Constraint, Loc, T);
end if;
Next_Index (Id);
end loop;
elsif Ekind (T) = E_Record_Subtype
and then Has_Discriminants (T)
and then not Has_Unknown_Discriminants (T)
then
D := First_Elmt (Discriminant_Constraint (T));
while Present (D) loop
if Denotes_Discriminant (Node (D)) then
return Build_Component_Subtype
(Build_Discriminal_Record_Constraint, Loc, T);
end if;
Next_Elmt (D);
end loop;
end if;
-- If none of the above, the actual and nominal subtypes are the same
return Empty;
end Build_Discriminal_Subtype_Of_Component;
------------------------------
-- Build_Elaboration_Entity --
------------------------------
procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
Decl : Node_Id;
Elab_Ent : Entity_Id;
procedure Set_Package_Name (Ent : Entity_Id);
-- Given an entity, sets the fully qualified name of the entity in
-- Name_Buffer, with components separated by double underscores. This
-- is a recursive routine that climbs the scope chain to Standard.
----------------------
-- Set_Package_Name --
----------------------
procedure Set_Package_Name (Ent : Entity_Id) is
begin
if Scope (Ent) /= Standard_Standard then
Set_Package_Name (Scope (Ent));
declare
Nam : constant String := Get_Name_String (Chars (Ent));
begin
Name_Buffer (Name_Len + 1) := '_';
Name_Buffer (Name_Len + 2) := '_';
Name_Buffer (Name_Len + 3 .. Name_Len + Nam'Length + 2) := Nam;
Name_Len := Name_Len + Nam'Length + 2;
end;
else
Get_Name_String (Chars (Ent));
end if;
end Set_Package_Name;
-- Start of processing for Build_Elaboration_Entity
begin
-- Ignore call if already constructed
if Present (Elaboration_Entity (Spec_Id)) then
return;
-- Ignore in ASIS mode, elaboration entity is not in source and plays
-- no role in analysis.
elsif ASIS_Mode then
return;
-- See if we need elaboration entity. We always need it for the dynamic
-- elaboration model, since it is needed to properly generate the PE
-- exception for access before elaboration.
elsif Dynamic_Elaboration_Checks then
null;
-- For the static model, we don't need the elaboration counter if this
-- unit is sure to have no elaboration code, since that means there
-- is no elaboration unit to be called. Note that we can't just decide
-- after the fact by looking to see whether there was elaboration code,
-- because that's too late to make this decision.
elsif Restriction_Active (No_Elaboration_Code) then
return;
-- Similarly, for the static model, we can skip the elaboration counter
-- if we have the No_Multiple_Elaboration restriction, since for the
-- static model, that's the only purpose of the counter (to avoid
-- multiple elaboration).
elsif Restriction_Active (No_Multiple_Elaboration) then
return;
end if;
-- Here we need the elaboration entity
-- Construct name of elaboration entity as xxx_E, where xxx is the unit
-- name with dots replaced by double underscore. We have to manually
-- construct this name, since it will be elaborated in the outer scope,
-- and thus will not have the unit name automatically prepended.
Set_Package_Name (Spec_Id);
Add_Str_To_Name_Buffer ("_E");
-- Create elaboration counter
Elab_Ent := Make_Defining_Identifier (Loc, Chars => Name_Find);
Set_Elaboration_Entity (Spec_Id, Elab_Ent);
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Elab_Ent,
Object_Definition =>
New_Occurrence_Of (Standard_Short_Integer, Loc),
Expression => Make_Integer_Literal (Loc, Uint_0));
Push_Scope (Standard_Standard);
Add_Global_Declaration (Decl);
Pop_Scope;
-- Reset True_Constant indication, since we will indeed assign a value
-- to the variable in the binder main. We also kill the Current_Value
-- and Last_Assignment fields for the same reason.
Set_Is_True_Constant (Elab_Ent, False);
Set_Current_Value (Elab_Ent, Empty);
Set_Last_Assignment (Elab_Ent, Empty);
-- We do not want any further qualification of the name (if we did not
-- do this, we would pick up the name of the generic package in the case
-- of a library level generic instantiation).
Set_Has_Qualified_Name (Elab_Ent);
Set_Has_Fully_Qualified_Name (Elab_Ent);
end Build_Elaboration_Entity;
--------------------------------
-- Build_Explicit_Dereference --
--------------------------------
procedure Build_Explicit_Dereference
(Expr : Node_Id;
Disc : Entity_Id)
is
Loc : constant Source_Ptr := Sloc (Expr);
begin
-- An entity of a type with a reference aspect is overloaded with
-- both interpretations: with and without the dereference. Now that
-- the dereference is made explicit, set the type of the node properly,
-- to prevent anomalies in the backend. Same if the expression is an
-- overloaded function call whose return type has a reference aspect.
if Is_Entity_Name (Expr) then
Set_Etype (Expr, Etype (Entity (Expr)));
elsif Nkind (Expr) = N_Function_Call then
Set_Etype (Expr, Etype (Name (Expr)));
end if;
Set_Is_Overloaded (Expr, False);
-- The expression will often be a generalized indexing that yields a
-- container element that is then dereferenced, in which case the
-- generalized indexing call is also non-overloaded.
if Nkind (Expr) = N_Indexed_Component
and then Present (Generalized_Indexing (Expr))
then
Set_Is_Overloaded (Generalized_Indexing (Expr), False);
end if;
Rewrite (Expr,
Make_Explicit_Dereference (Loc,
Prefix =>
Make_Selected_Component (Loc,
Prefix => Relocate_Node (Expr),
Selector_Name => New_Occurrence_Of (Disc, Loc))));
Set_Etype (Prefix (Expr), Etype (Disc));
Set_Etype (Expr, Designated_Type (Etype (Disc)));
end Build_Explicit_Dereference;
-----------------------------------
-- Cannot_Raise_Constraint_Error --
-----------------------------------
function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean is
begin
if Compile_Time_Known_Value (Expr) then
return True;
elsif Do_Range_Check (Expr) then
return False;
elsif Raises_Constraint_Error (Expr) then
return False;
else
case Nkind (Expr) is
when N_Identifier =>
return True;
when N_Expanded_Name =>
return True;
when N_Selected_Component =>
return not Do_Discriminant_Check (Expr);
when N_Attribute_Reference =>
if Do_Overflow_Check (Expr) then
return False;
elsif No (Expressions (Expr)) then
return True;
else
declare
N : Node_Id;
begin
N := First (Expressions (Expr));
while Present (N) loop
if Cannot_Raise_Constraint_Error (N) then
Next (N);
else
return False;
end if;
end loop;
return True;
end;
end if;
when N_Type_Conversion =>
if Do_Overflow_Check (Expr)
or else Do_Length_Check (Expr)
or else Do_Tag_Check (Expr)
then
return False;
else
return Cannot_Raise_Constraint_Error (Expression (Expr));
end if;
when N_Unchecked_Type_Conversion =>
return Cannot_Raise_Constraint_Error (Expression (Expr));
when N_Unary_Op =>
if Do_Overflow_Check (Expr) then
return False;
else
return Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
end if;
when N_Op_Divide |
N_Op_Mod |
N_Op_Rem
=>
if Do_Division_Check (Expr)
or else
Do_Overflow_Check (Expr)
then
return False;
else
return
Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
and then
Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
end if;
when N_Op_Add |
N_Op_And |
N_Op_Concat |
N_Op_Eq |
N_Op_Expon |
N_Op_Ge |
N_Op_Gt |
N_Op_Le |
N_Op_Lt |
N_Op_Multiply |
N_Op_Ne |
N_Op_Or |
N_Op_Rotate_Left |
N_Op_Rotate_Right |
N_Op_Shift_Left |
N_Op_Shift_Right |
N_Op_Shift_Right_Arithmetic |
N_Op_Subtract |
N_Op_Xor
=>
if Do_Overflow_Check (Expr) then
return False;
else
return
Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
and then
Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
end if;
when others =>
return False;
end case;
end if;
end Cannot_Raise_Constraint_Error;
-----------------------------------------
-- Check_Dynamically_Tagged_Expression --
-----------------------------------------
procedure Check_Dynamically_Tagged_Expression
(Expr : Node_Id;
Typ : Entity_Id;
Related_Nod : Node_Id)
is
begin
pragma Assert (Is_Tagged_Type (Typ));
-- In order to avoid spurious errors when analyzing the expanded code,
-- this check is done only for nodes that come from source and for
-- actuals of generic instantiations.
if (Comes_From_Source (Related_Nod)
or else In_Generic_Actual (Expr))
and then (Is_Class_Wide_Type (Etype (Expr))
or else Is_Dynamically_Tagged (Expr))
and then Is_Tagged_Type (Typ)
and then not Is_Class_Wide_Type (Typ)
then
Error_Msg_N ("dynamically tagged expression not allowed!", Expr);
end if;
end Check_Dynamically_Tagged_Expression;
--------------------------
-- Check_Fully_Declared --
--------------------------
procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id) is
begin
if Ekind (T) = E_Incomplete_Type then
-- Ada 2005 (AI-50217): If the type is available through a limited
-- with_clause, verify that its full view has been analyzed.
if From_Limited_With (T)
and then Present (Non_Limited_View (T))
and then Ekind (Non_Limited_View (T)) /= E_Incomplete_Type
then
-- The non-limited view is fully declared
null;
else
Error_Msg_NE
("premature usage of incomplete}", N, First_Subtype (T));
end if;
-- Need comments for these tests ???
elsif Has_Private_Component (T)
and then not Is_Generic_Type (Root_Type (T))
and then not In_Spec_Expression
then
-- Special case: if T is the anonymous type created for a single
-- task or protected object, use the name of the source object.
if Is_Concurrent_Type (T)
and then not Comes_From_Source (T)
and then Nkind (N) = N_Object_Declaration
then
Error_Msg_NE
("type of& has incomplete component",
N, Defining_Identifier (N));
else
Error_Msg_NE
("premature usage of incomplete}",
N, First_Subtype (T));
end if;
end if;
end Check_Fully_Declared;
-------------------------------------
-- Check_Function_Writable_Actuals --
-------------------------------------
procedure Check_Function_Writable_Actuals (N : Node_Id) is
Writable_Actuals_List : Elist_Id := No_Elist;
Identifiers_List : Elist_Id := No_Elist;
Error_Node : Node_Id := Empty;
procedure Collect_Identifiers (N : Node_Id);
-- In a single traversal of subtree N collect in Writable_Actuals_List
-- all the actuals of functions with writable actuals, and in the list
-- Identifiers_List collect all the identifiers that are not actuals of
-- functions with writable actuals. If a writable actual is referenced
-- twice as writable actual then Error_Node is set to reference its
-- second occurrence, the error is reported, and the tree traversal
-- is abandoned.
function Get_Function_Id (Call : Node_Id) return Entity_Id;
-- Return the entity associated with the function call
procedure Preanalyze_Without_Errors (N : Node_Id);
-- Preanalyze N without reporting errors. Very dubious, you can't just
-- go analyzing things more than once???
-------------------------
-- Collect_Identifiers --
-------------------------
procedure Collect_Identifiers (N : Node_Id) is
function Check_Node (N : Node_Id) return Traverse_Result;
-- Process a single node during the tree traversal to collect the
-- writable actuals of functions and all the identifiers which are
-- not writable actuals of functions.
function Contains (List : Elist_Id; N : Node_Id) return Boolean;
-- Returns True if List has a node whose Entity is Entity (N)
-------------------------
-- Check_Function_Call --
-------------------------
function Check_Node (N : Node_Id) return Traverse_Result is
Is_Writable_Actual : Boolean := False;
Id : Entity_Id;
begin
if Nkind (N) = N_Identifier then
-- No analysis possible if the entity is not decorated
if No (Entity (N)) then
return Skip;
-- Don't collect identifiers of packages, called functions, etc
elsif Ekind_In (Entity (N), E_Package,
E_Function,
E_Procedure,
E_Entry)
then
return Skip;
-- Analyze if N is a writable actual of a function
elsif Nkind (Parent (N)) = N_Function_Call then
declare
Call : constant Node_Id := Parent (N);
Actual : Node_Id;
Formal : Node_Id;
begin
Id := Get_Function_Id (Call);
-- In case of previous error, no check is possible
if No (Id) then
return Abandon;
end if;
Formal := First_Formal (Id);
Actual := First_Actual (Call);
while Present (Actual) and then Present (Formal) loop
if Actual = N then
if Ekind_In (Formal, E_Out_Parameter,
E_In_Out_Parameter)
then
Is_Writable_Actual := True;
end if;
exit;
end if;
Next_Formal (Formal);
Next_Actual (Actual);
end loop;
end;
end if;
if Is_Writable_Actual then
if Contains (Writable_Actuals_List, N) then
Error_Msg_NE
("value may be affected by call to& "
& "because order of evaluation is arbitrary", N, Id);
Error_Node := N;
return Abandon;
end if;
Append_New_Elmt (N, To => Writable_Actuals_List);
else
if Identifiers_List = No_Elist then
Identifiers_List := New_Elmt_List;
end if;
Append_Unique_Elmt (N, Identifiers_List);
end if;
end if;
return OK;
end Check_Node;
--------------
-- Contains --
--------------
function Contains
(List : Elist_Id;
N : Node_Id) return Boolean
is
pragma Assert (Nkind (N) in N_Has_Entity);
Elmt : Elmt_Id;
begin
if List = No_Elist then
return False;
end if;
Elmt := First_Elmt (List);
while Present (Elmt) loop
if Entity (Node (Elmt)) = Entity (N) then
return True;
else
Next_Elmt (Elmt);
end if;
end loop;
return False;
end Contains;
------------------
-- Do_Traversal --
------------------
procedure Do_Traversal is new Traverse_Proc (Check_Node);
-- The traversal procedure
-- Start of processing for Collect_Identifiers
begin
if Present (Error_Node) then
return;
end if;
if Nkind (N) in N_Subexpr and then Is_OK_Static_Expression (N) then
return;
end if;
Do_Traversal (N);
end Collect_Identifiers;
---------------------
-- Get_Function_Id --
---------------------
function Get_Function_Id (Call : Node_Id) return Entity_Id is
Nam : constant Node_Id := Name (Call);
Id : Entity_Id;
begin
if Nkind (Nam) = N_Explicit_Dereference then
Id := Etype (Nam);
pragma Assert (Ekind (Id) = E_Subprogram_Type);
elsif Nkind (Nam) = N_Selected_Component then
Id := Entity (Selector_Name (Nam));
elsif Nkind (Nam) = N_Indexed_Component then
Id := Entity (Selector_Name (Prefix (Nam)));
else
Id := Entity (Nam);
end if;
return Id;
end Get_Function_Id;
---------------------------
-- Preanalyze_Expression --
---------------------------
procedure Preanalyze_Without_Errors (N : Node_Id) is
Status : constant Boolean := Get_Ignore_Errors;
begin
Set_Ignore_Errors (True);
Preanalyze (N);
Set_Ignore_Errors (Status);
end Preanalyze_Without_Errors;
-- Start of processing for Check_Function_Writable_Actuals
begin
-- The check only applies to Ada 2012 code, and only to constructs that
-- have multiple constituents whose order of evaluation is not specified
-- by the language.
if Ada_Version < Ada_2012
or else (not (Nkind (N) in N_Op)
and then not (Nkind (N) in N_Membership_Test)
and then not Nkind_In (N, N_Range,
N_Aggregate,
N_Extension_Aggregate,
N_Full_Type_Declaration,
N_Function_Call,
N_Procedure_Call_Statement,
N_Entry_Call_Statement))
or else (Nkind (N) = N_Full_Type_Declaration
and then not Is_Record_Type (Defining_Identifier (N)))
-- In addition, this check only applies to source code, not to code
-- generated by constraint checks.
or else not Comes_From_Source (N)
then
return;
end if;
-- If a construct C has two or more direct constituents that are names
-- or expressions whose evaluation may occur in an arbitrary order, at
-- least one of which contains a function call with an in out or out
-- parameter, then the construct is legal only if: for each name N that
-- is passed as a parameter of mode in out or out to some inner function
-- call C2 (not including the construct C itself), there is no other
-- name anywhere within a direct constituent of the construct C other
-- than the one containing C2, that is known to refer to the same
-- object (RM 6.4.1(6.17/3)).
case Nkind (N) is
when N_Range =>
Collect_Identifiers (Low_Bound (N));
Collect_Identifiers (High_Bound (N));
when N_Op | N_Membership_Test =>
declare
Expr : Node_Id;
begin
Collect_Identifiers (Left_Opnd (N));
if Present (Right_Opnd (N)) then
Collect_Identifiers (Right_Opnd (N));
end if;
if Nkind_In (N, N_In, N_Not_In)
and then Present (Alternatives (N))
then
Expr := First (Alternatives (N));
while Present (Expr) loop
Collect_Identifiers (Expr);
Next (Expr);
end loop;
end if;
end;
when N_Full_Type_Declaration =>
declare
function Get_Record_Part (N : Node_Id) return Node_Id;
-- Return the record part of this record type definition
function Get_Record_Part (N : Node_Id) return Node_Id is
Type_Def : constant Node_Id := Type_Definition (N);
begin
if Nkind (Type_Def) = N_Derived_Type_Definition then
return Record_Extension_Part (Type_Def);
else
return Type_Def;
end if;
end Get_Record_Part;
Comp : Node_Id;
Def_Id : Entity_Id := Defining_Identifier (N);
Rec : Node_Id := Get_Record_Part (N);
begin
-- No need to perform any analysis if the record has no
-- components
if No (Rec) or else No (Component_List (Rec)) then
return;
end if;
-- Collect the identifiers starting from the deepest
-- derivation. Done to report the error in the deepest
-- derivation.
loop
if Present (Component_List (Rec)) then
Comp := First (Component_Items (Component_List (Rec)));
while Present (Comp) loop
if Nkind (Comp) = N_Component_Declaration
and then Present (Expression (Comp))
then
Collect_Identifiers (Expression (Comp));
end if;
Next (Comp);
end loop;
end if;
exit when No (Underlying_Type (Etype (Def_Id)))
or else Base_Type (Underlying_Type (Etype (Def_Id)))
= Def_Id;
Def_Id := Base_Type (Underlying_Type (Etype (Def_Id)));
Rec := Get_Record_Part (Parent (Def_Id));
end loop;
end;
when N_Subprogram_Call |
N_Entry_Call_Statement =>
declare
Id : constant Entity_Id := Get_Function_Id (N);
Formal : Node_Id;
Actual : Node_Id;
begin
Formal := First_Formal (Id);
Actual := First_Actual (N);
while Present (Actual) and then Present (Formal) loop
if Ekind_In (Formal, E_Out_Parameter,
E_In_Out_Parameter)
then
Collect_Identifiers (Actual);
end if;
Next_Formal (Formal);
Next_Actual (Actual);
end loop;
end;
when N_Aggregate |
N_Extension_Aggregate =>
declare
Assoc : Node_Id;
Choice : Node_Id;
Comp_Expr : Node_Id;
begin
-- Handle the N_Others_Choice of array aggregates with static
-- bounds. There is no need to perform this analysis in
-- aggregates without static bounds since we cannot evaluate
-- if the N_Others_Choice covers several elements. There is
-- no need to handle the N_Others choice of record aggregates
-- since at this stage it has been already expanded by
-- Resolve_Record_Aggregate.
if Is_Array_Type (Etype (N))
and then Nkind (N) = N_Aggregate
and then Present (Aggregate_Bounds (N))
and then Compile_Time_Known_Bounds (Etype (N))
and then Expr_Value (High_Bound (Aggregate_Bounds (N)))
>
Expr_Value (Low_Bound (Aggregate_Bounds (N)))
then
declare
Count_Components : Uint := Uint_0;
Num_Components : Uint;
Others_Assoc : Node_Id;
Others_Choice : Node_Id := Empty;
Others_Box_Present : Boolean := False;
begin
-- Count positional associations
if Present (Expressions (N)) then
Comp_Expr := First (Expressions (N));
while Present (Comp_Expr) loop
Count_Components := Count_Components + 1;
Next (Comp_Expr);
end loop;
end if;
-- Count the rest of elements and locate the N_Others
-- choice (if any)
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
Choice := First (Choices (Assoc));
while Present (Choice) loop
if Nkind (Choice) = N_Others_Choice then
Others_Assoc := Assoc;
Others_Choice := Choice;
Others_Box_Present := Box_Present (Assoc);
-- Count several components
elsif Nkind_In (Choice, N_Range,
N_Subtype_Indication)
or else (Is_Entity_Name (Choice)
and then Is_Type (Entity (Choice)))
then
declare
L, H : Node_Id;
begin
Get_Index_Bounds (Choice, L, H);
pragma Assert
(Compile_Time_Known_Value (L)
and then Compile_Time_Known_Value (H));
Count_Components :=
Count_Components
+ Expr_Value (H) - Expr_Value (L) + 1;
end;
-- Count single component. No other case available
-- since we are handling an aggregate with static
-- bounds.
else
pragma Assert (Is_OK_Static_Expression (Choice)
or else Nkind (Choice) = N_Identifier
or else Nkind (Choice) = N_Integer_Literal);
Count_Components := Count_Components + 1;
end if;
Next (Choice);
end loop;
Next (Assoc);
end loop;
Num_Components :=
Expr_Value (High_Bound (Aggregate_Bounds (N))) -
Expr_Value (Low_Bound (Aggregate_Bounds (N))) + 1;
pragma Assert (Count_Components <= Num_Components);
-- Handle the N_Others choice if it covers several
-- components
if Present (Others_Choice)
and then (Num_Components - Count_Components) > 1
then
if not Others_Box_Present then
-- At this stage, if expansion is active, the
-- expression of the others choice has not been
-- analyzed. Hence we generate a duplicate and
-- we analyze it silently to have available the
-- minimum decoration required to collect the
-- identifiers.
if not Expander_Active then
Comp_Expr := Expression (Others_Assoc);
else
Comp_Expr :=
New_Copy_Tree (Expression (Others_Assoc));
Preanalyze_Without_Errors (Comp_Expr);
end if;
Collect_Identifiers (Comp_Expr);
if Writable_Actuals_List /= No_Elist then
-- As suggested by Robert, at current stage we
-- report occurrences of this case as warnings.
Error_Msg_N
("writable function parameter may affect "
& "value in other component because order "
& "of evaluation is unspecified??",
Node (First_Elmt (Writable_Actuals_List)));
end if;
end if;
end if;
end;
end if;
-- Handle ancestor part of extension aggregates
if Nkind (N) = N_Extension_Aggregate then
Collect_Identifiers (Ancestor_Part (N));
end if;
-- Handle positional associations
if Present (Expressions (N)) then
Comp_Expr := First (Expressions (N));
while Present (Comp_Expr) loop
if not Is_OK_Static_Expression (Comp_Expr) then
Collect_Identifiers (Comp_Expr);
end if;
Next (Comp_Expr);
end loop;
end if;
-- Handle discrete associations
if Present (Component_Associations (N)) then
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
if not Box_Present (Assoc) then
Choice := First (Choices (Assoc));
while Present (Choice) loop
-- For now we skip discriminants since it requires
-- performing the analysis in two phases: first one
-- analyzing discriminants and second one analyzing
-- the rest of components since discriminants are
-- evaluated prior to components: too much extra
-- work to detect a corner case???
if Nkind (Choice) in N_Has_Entity
and then Present (Entity (Choice))
and then Ekind (Entity (Choice)) = E_Discriminant
then
null;
elsif Box_Present (Assoc) then
null;
else
if not Analyzed (Expression (Assoc)) then
Comp_Expr :=
New_Copy_Tree (Expression (Assoc));
Set_Parent (Comp_Expr, Parent (N));
Preanalyze_Without_Errors (Comp_Expr);
else
Comp_Expr := Expression (Assoc);
end if;
Collect_Identifiers (Comp_Expr);
end if;
Next (Choice);
end loop;
end if;
Next (Assoc);
end loop;
end if;
end;
when others =>
return;
end case;
-- No further action needed if we already reported an error
if Present (Error_Node) then
return;
end if;
-- Check if some writable argument of a function is referenced
if Writable_Actuals_List /= No_Elist
and then Identifiers_List /= No_Elist
then
declare
Elmt_1 : Elmt_Id;
Elmt_2 : Elmt_Id;
begin
Elmt_1 := First_Elmt (Writable_Actuals_List);
while Present (Elmt_1) loop
Elmt_2 := First_Elmt (Identifiers_List);
while Present (Elmt_2) loop
if Entity (Node (Elmt_1)) = Entity (Node (Elmt_2)) then
case Nkind (Parent (Node (Elmt_2))) is
when N_Aggregate |
N_Component_Association |
N_Component_Declaration =>
Error_Msg_N
("value may be affected by call in other "
& "component because they are evaluated "
& "in unspecified order",
Node (Elmt_2));
when N_In | N_Not_In =>
Error_Msg_N
("value may be affected by call in other "
& "alternative because they are evaluated "
& "in unspecified order",
Node (Elmt_2));
when others =>
Error_Msg_N
("value of actual may be affected by call in "
& "other actual because they are evaluated "
& "in unspecified order",
Node (Elmt_2));
end case;
end if;
Next_Elmt (Elmt_2);
end loop;
Next_Elmt (Elmt_1);
end loop;
end;
end if;
end Check_Function_Writable_Actuals;
--------------------------------
-- Check_Implicit_Dereference --
--------------------------------
procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id) is
Disc : Entity_Id;
Desig : Entity_Id;
Nam : Node_Id;
begin
if Nkind (N) = N_Indexed_Component
and then Present (Generalized_Indexing (N))
then
Nam := Generalized_Indexing (N);
else
Nam := N;
end if;
if Ada_Version < Ada_2012
or else not Has_Implicit_Dereference (Base_Type (Typ))
then
return;
elsif not Comes_From_Source (N)
and then Nkind (N) /= N_Indexed_Component
then
return;
elsif Is_Entity_Name (Nam) and then Is_Type (Entity (Nam)) then
null;
else
Disc := First_Discriminant (Typ);
while Present (Disc) loop
if Has_Implicit_Dereference (Disc) then
Desig := Designated_Type (Etype (Disc));
Add_One_Interp (Nam, Disc, Desig);
-- If the node is a generalized indexing, add interpretation
-- to that node as well, for subsequent resolution.
if Nkind (N) = N_Indexed_Component then
Add_One_Interp (N, Disc, Desig);
end if;
-- If the operation comes from a generic unit and the context
-- is a selected component, the selector name may be global
-- and set in the instance already. Remove the entity to
-- force resolution of the selected component, and the
-- generation of an explicit dereference if needed.
if In_Instance
and then Nkind (Parent (Nam)) = N_Selected_Component
then
Set_Entity (Selector_Name (Parent (Nam)), Empty);
end if;
exit;
end if;
Next_Discriminant (Disc);
end loop;
end if;
end Check_Implicit_Dereference;
----------------------------------
-- Check_Internal_Protected_Use --
----------------------------------
procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id) is
S : Entity_Id;
Prot : Entity_Id;
begin
S := Current_Scope;
while Present (S) loop
if S = Standard_Standard then
return;
elsif Ekind (S) = E_Function
and then Ekind (Scope (S)) = E_Protected_Type
then
Prot := Scope (S);
exit;
end if;
S := Scope (S);
end loop;
if Scope (Nam) = Prot and then Ekind (Nam) /= E_Function then
-- An indirect function call (e.g. a callback within a protected
-- function body) is not statically illegal. If the access type is
-- anonymous and is the type of an access parameter, the scope of Nam
-- will be the protected type, but it is not a protected operation.
if Ekind (Nam) = E_Subprogram_Type
and then
Nkind (Associated_Node_For_Itype (Nam)) = N_Function_Specification
then
null;
elsif Nkind (N) = N_Subprogram_Renaming_Declaration then
Error_Msg_N
("within protected function cannot use protected "
& "procedure in renaming or as generic actual", N);
elsif Nkind (N) = N_Attribute_Reference then
Error_Msg_N
("within protected function cannot take access of "
& " protected procedure", N);
else
Error_Msg_N
("within protected function, protected object is constant", N);
Error_Msg_N
("\cannot call operation that may modify it", N);
end if;
end if;
end Check_Internal_Protected_Use;
---------------------------------------
-- Check_Later_Vs_Basic_Declarations --
---------------------------------------
procedure Check_Later_Vs_Basic_Declarations
(Decls : List_Id;
During_Parsing : Boolean)
is
Body_Sloc : Source_Ptr;
Decl : Node_Id;
function Is_Later_Declarative_Item (Decl : Node_Id) return Boolean;
-- Return whether Decl is considered as a declarative item.
-- When During_Parsing is True, the semantics of Ada 83 is followed.
-- When During_Parsing is False, the semantics of SPARK is followed.
-------------------------------
-- Is_Later_Declarative_Item --
-------------------------------
function Is_Later_Declarative_Item (Decl : Node_Id) return Boolean is
begin
if Nkind (Decl) in N_Later_Decl_Item then
return True;
elsif Nkind (Decl) = N_Pragma then
return True;
elsif During_Parsing then
return False;
-- In SPARK, a package declaration is not considered as a later
-- declarative item.
elsif Nkind (Decl) = N_Package_Declaration then
return False;
-- In SPARK, a renaming is considered as a later declarative item
elsif Nkind (Decl) in N_Renaming_Declaration then
return True;
else
return False;
end if;
end Is_Later_Declarative_Item;
-- Start of Check_Later_Vs_Basic_Declarations
begin
Decl := First (Decls);
-- Loop through sequence of basic declarative items
Outer : while Present (Decl) loop
if not Nkind_In (Decl, N_Subprogram_Body, N_Package_Body, N_Task_Body)
and then Nkind (Decl) not in N_Body_Stub
then
Next (Decl);
-- Once a body is encountered, we only allow later declarative
-- items. The inner loop checks the rest of the list.
else
Body_Sloc := Sloc (Decl);
Inner : while Present (Decl) loop
if not Is_Later_Declarative_Item (Decl) then
if During_Parsing then
if Ada_Version = Ada_83 then
Error_Msg_Sloc := Body_Sloc;
Error_Msg_N
("(Ada 83) decl cannot appear after body#", Decl);
end if;
else
Error_Msg_Sloc := Body_Sloc;
Check_SPARK_05_Restriction
("decl cannot appear after body#", Decl);
end if;
end if;
Next (Decl);
end loop Inner;
end if;
end loop Outer;
end Check_Later_Vs_Basic_Declarations;
-------------------------
-- Check_Nested_Access --
-------------------------
procedure Check_Nested_Access (N : Node_Id; Ent : Entity_Id) is
Scop : constant Entity_Id := Current_Scope;
Current_Subp : Entity_Id;
Enclosing : Entity_Id;
begin
-- Currently only enabled for VM back-ends for efficiency, should we
-- enable it more systematically? Probably not unless someone actually
-- needs it. It will be needed for C generation and is activated if the
-- Opt.Unnest_Subprogram_Mode flag is set True.
if (VM_Target /= No_VM or else Unnest_Subprogram_Mode)
and then Scope (Ent) /= Empty
and then not Is_Library_Level_Entity (Ent)
-- Comment the exclusion of imported entities ???
and then not Is_Imported (Ent)
then
-- In both the VM case and in Unnest_Subprogram_Mode, we mark
-- variables, constants, and loop parameters.
if Ekind_In (Ent, E_Variable, E_Constant, E_Loop_Parameter) then
null;
-- In Unnest_Subprogram_Mode, we also mark types and formals
elsif Unnest_Subprogram_Mode
and then (Is_Type (Ent) or else Is_Formal (Ent))
then
null;
-- All other cases, do not mark
else
return;
end if;
-- Get current subprogram that is relevant
if Is_Subprogram (Scop)
or else Is_Generic_Subprogram (Scop)
or else Is_Entry (Scop)
then
Current_Subp := Scop;
else
Current_Subp := Current_Subprogram;
end if;
Enclosing := Enclosing_Subprogram (Ent);
-- Set flag if uplevel reference
if Enclosing /= Empty and then Enclosing /= Current_Subp then
if Is_Type (Ent) then
Check_Uplevel_Reference_To_Type (Ent);
else
Set_Has_Uplevel_Reference (Ent, True);
if Unnest_Subprogram_Mode then
Set_Has_Uplevel_Reference (Current_Subp, True);
Note_Uplevel_Reference (N, Enclosing);
end if;
end if;
end if;
end if;
end Check_Nested_Access;
---------------------------
-- Check_No_Hidden_State --
---------------------------
procedure Check_No_Hidden_State (Id : Entity_Id) is
function Has_Null_Abstract_State (Pkg : Entity_Id) return Boolean;
-- Determine whether the entity of a package denoted by Pkg has a null
-- abstract state.
-----------------------------
-- Has_Null_Abstract_State --
-----------------------------
function Has_Null_Abstract_State (Pkg : Entity_Id) return Boolean is
States : constant Elist_Id := Abstract_States (Pkg);
begin
-- Check first available state of related package. A null abstract
-- state always appears as the sole element of the state list.
return
Present (States)
and then Is_Null_State (Node (First_Elmt (States)));
end Has_Null_Abstract_State;
-- Local variables
Context : Entity_Id := Empty;
Not_Visible : Boolean := False;
Scop : Entity_Id;
-- Start of processing for Check_No_Hidden_State
begin
pragma Assert (Ekind_In (Id, E_Abstract_State, E_Variable));
-- Find the proper context where the object or state appears
Scop := Scope (Id);
while Present (Scop) loop
Context := Scop;
-- Keep track of the context's visibility
Not_Visible := Not_Visible or else In_Private_Part (Context);
-- Prevent the search from going too far
if Context = Standard_Standard then
return;
-- Objects and states that appear immediately within a subprogram or
-- inside a construct nested within a subprogram do not introduce a
-- hidden state. They behave as local variable declarations.
elsif Is_Subprogram (Context) then
return;
-- When examining a package body, use the entity of the spec as it
-- carries the abstract state declarations.
elsif Ekind (Context) = E_Package_Body then
Context := Spec_Entity (Context);
end if;
-- Stop the traversal when a package subject to a null abstract state
-- has been found.
if Ekind_In (Context, E_Generic_Package, E_Package)
and then Has_Null_Abstract_State (Context)
then
exit;
end if;
Scop := Scope (Scop);
end loop;
-- At this point we know that there is at least one package with a null
-- abstract state in visibility. Emit an error message unconditionally
-- if the entity being processed is a state because the placement of the
-- related package is irrelevant. This is not the case for objects as
-- the intermediate context matters.
if Present (Context)
and then (Ekind (Id) = E_Abstract_State or else Not_Visible)
then
Error_Msg_N ("cannot introduce hidden state &", Id);
Error_Msg_NE ("\package & has null abstract state", Id, Context);
end if;
end Check_No_Hidden_State;
------------------------------------------
-- Check_Potentially_Blocking_Operation --
------------------------------------------
procedure Check_Potentially_Blocking_Operation (N : Node_Id) is
S : Entity_Id;
begin
-- N is one of the potentially blocking operations listed in 9.5.1(8).
-- When pragma Detect_Blocking is active, the run time will raise
-- Program_Error. Here we only issue a warning, since we generally
-- support the use of potentially blocking operations in the absence
-- of the pragma.
-- Indirect blocking through a subprogram call cannot be diagnosed
-- statically without interprocedural analysis, so we do not attempt
-- to do it here.
S := Scope (Current_Scope);
while Present (S) and then S /= Standard_Standard loop
if Is_Protected_Type (S) then
Error_Msg_N
("potentially blocking operation in protected operation??", N);
return;
end if;
S := Scope (S);
end loop;
end Check_Potentially_Blocking_Operation;
---------------------------------
-- Check_Result_And_Post_State --
---------------------------------
procedure Check_Result_And_Post_State (Subp_Id : Entity_Id) is
procedure Check_Result_And_Post_State_In_Pragma
(Prag : Node_Id;
Result_Seen : in out Boolean);
-- Determine whether pragma Prag mentions attribute 'Result and whether
-- the pragma contains an expression that evaluates differently in pre-
-- and post-state. Prag is a [refined] postcondition or a contract-cases
-- pragma. Result_Seen is set when the pragma mentions attribute 'Result
function Has_In_Out_Parameter (Subp_Id : Entity_Id) return Boolean;
-- Determine whether subprogram Subp_Id contains at least one IN OUT
-- formal parameter.
-------------------------------------------
-- Check_Result_And_Post_State_In_Pragma --
-------------------------------------------
procedure Check_Result_And_Post_State_In_Pragma
(Prag : Node_Id;
Result_Seen : in out Boolean)
is
procedure Check_Expression (Expr : Node_Id);
-- Perform the 'Result and post-state checks on a given expression
function Is_Function_Result (N : Node_Id) return Traverse_Result;
-- Attempt to find attribute 'Result in a subtree denoted by N
function Is_Trivial_Boolean (N : Node_Id) return Boolean;
-- Determine whether source node N denotes "True" or "False"
function Mentions_Post_State (N : Node_Id) return Boolean;
-- Determine whether a subtree denoted by N mentions any construct
-- that denotes a post-state.
procedure Check_Function_Result is
new Traverse_Proc (Is_Function_Result);
----------------------
-- Check_Expression --
----------------------
procedure Check_Expression (Expr : Node_Id) is
begin
if not Is_Trivial_Boolean (Expr) then
Check_Function_Result (Expr);
if not Mentions_Post_State (Expr) then
if Pragma_Name (Prag) = Name_Contract_Cases then
Error_Msg_NE
("contract case does not check the outcome of calling "
& "&?T?", Expr, Subp_Id);
elsif Pragma_Name (Prag) = Name_Refined_Post then
Error_Msg_NE
("refined postcondition does not check the outcome of "
& "calling &?T?", Prag, Subp_Id);
else
Error_Msg_NE
("postcondition does not check the outcome of calling "
& "&?T?", Prag, Subp_Id);
end if;
end if;
end if;
end Check_Expression;
------------------------
-- Is_Function_Result --
------------------------
function Is_Function_Result (N : Node_Id) return Traverse_Result is
begin
if Is_Attribute_Result (N) then
Result_Seen := True;
return Abandon;
-- Continue the traversal
else
return OK;
end if;
end Is_Function_Result;
------------------------
-- Is_Trivial_Boolean --
------------------------
function Is_Trivial_Boolean (N : Node_Id) return Boolean is
begin
return
Comes_From_Source (N)
and then Is_Entity_Name (N)
and then (Entity (N) = Standard_True
or else
Entity (N) = Standard_False);
end Is_Trivial_Boolean;
-------------------------
-- Mentions_Post_State --
-------------------------
function Mentions_Post_State (N : Node_Id) return Boolean is
Post_State_Seen : Boolean := False;
function Is_Post_State (N : Node_Id) return Traverse_Result;
-- Attempt to find a construct that denotes a post-state. If this
-- is the case, set flag Post_State_Seen.
-------------------
-- Is_Post_State --
-------------------
function Is_Post_State (N : Node_Id) return Traverse_Result is
Ent : Entity_Id;
begin
if Nkind_In (N, N_Explicit_Dereference, N_Function_Call) then
Post_State_Seen := True;
return Abandon;
elsif Nkind_In (N, N_Expanded_Name, N_Identifier) then
Ent := Entity (N);
-- The entity may be modifiable through an implicit
-- dereference.
if No (Ent)
or else Ekind (Ent) in Assignable_Kind
or else (Is_Access_Type (Etype (Ent))
and then Nkind (Parent (N)) =
N_Selected_Component)
then
Post_State_Seen := True;
return Abandon;
end if;
elsif Nkind (N) = N_Attribute_Reference then
if Attribute_Name (N) = Name_Old then
return Skip;
elsif Attribute_Name (N) = Name_Result then
Post_State_Seen := True;
return Abandon;
end if;
end if;
return OK;
end Is_Post_State;
procedure Find_Post_State is new Traverse_Proc (Is_Post_State);
-- Start of processing for Mentions_Post_State
begin
Find_Post_State (N);
return Post_State_Seen;
end Mentions_Post_State;
-- Local variables
Expr : constant Node_Id :=
Get_Pragma_Arg
(First (Pragma_Argument_Associations (Prag)));
Nam : constant Name_Id := Pragma_Name (Prag);
CCase : Node_Id;
-- Start of processing for Check_Result_And_Post_State_In_Pragma
begin
-- Examine all consequences
if Nam = Name_Contract_Cases then
CCase := First (Component_Associations (Expr));
while Present (CCase) loop
Check_Expression (Expression (CCase));
Next (CCase);
end loop;
-- Examine the expression of a postcondition
else pragma Assert (Nam_In (Nam, Name_Postcondition,
Name_Refined_Post));
Check_Expression (Expr);
end if;
end Check_Result_And_Post_State_In_Pragma;
--------------------------
-- Has_In_Out_Parameter --
--------------------------
function Has_In_Out_Parameter (Subp_Id : Entity_Id) return Boolean is
Formal : Entity_Id;
begin
-- Traverse the formals looking for an IN OUT parameter
Formal := First_Formal (Subp_Id);
while Present (Formal) loop
if Ekind (Formal) = E_In_Out_Parameter then
return True;
end if;
Next_Formal (Formal);
end loop;
return False;
end Has_In_Out_Parameter;
-- Local variables
Items : constant Node_Id := Contract (Subp_Id);
Subp_Decl : constant Node_Id := Unit_Declaration_Node (Subp_Id);
Case_Prag : Node_Id := Empty;
Post_Prag : Node_Id := Empty;
Prag : Node_Id;
Seen_In_Case : Boolean := False;
Seen_In_Post : Boolean := False;
Spec_Id : Entity_Id;
-- Start of processing for Check_Result_And_Post_State
begin
-- The lack of attribute 'Result or a post-state is classified as a
-- suspicious contract. Do not perform the check if the corresponding
-- swich is not set.
if not Warn_On_Suspicious_Contract then
return;
-- Nothing to do if there is no contract
elsif No (Items) then
return;
end if;
-- Retrieve the entity of the subprogram spec (if any)
if Nkind (Subp_Decl) = N_Subprogram_Body
and then Present (Corresponding_Spec (Subp_Decl))
then
Spec_Id := Corresponding_Spec (Subp_Decl);
elsif Nkind (Subp_Decl) = N_Subprogram_Body_Stub
and then Present (Corresponding_Spec_Of_Stub (Subp_Decl))
then
Spec_Id := Corresponding_Spec_Of_Stub (Subp_Decl);
else
Spec_Id := Subp_Id;
end if;
-- Examine all postconditions for attribute 'Result and a post-state
Prag := Pre_Post_Conditions (Items);
while Present (Prag) loop
if Nam_In (Pragma_Name (Prag), Name_Postcondition,
Name_Refined_Post)
and then not Error_Posted (Prag)
then
Post_Prag := Prag;
Check_Result_And_Post_State_In_Pragma (Prag, Seen_In_Post);
end if;
Prag := Next_Pragma (Prag);
end loop;
-- Examine the contract cases of the subprogram for attribute 'Result
-- and a post-state.
Prag := Contract_Test_Cases (Items);
while Present (Prag) loop
if Pragma_Name (Prag) = Name_Contract_Cases
and then not Error_Posted (Prag)
then
Case_Prag := Prag;
Check_Result_And_Post_State_In_Pragma (Prag, Seen_In_Case);
end if;
Prag := Next_Pragma (Prag);
end loop;
-- Do not emit any errors if the subprogram is not a function
if not Ekind_In (Spec_Id, E_Function, E_Generic_Function) then
null;
-- Regardless of whether the function has postconditions or contract
-- cases, or whether they mention attribute 'Result, an IN OUT formal
-- parameter is always treated as a result.
elsif Has_In_Out_Parameter (Spec_Id) then
null;
-- The function has both a postcondition and contract cases and they do
-- not mention attribute 'Result.
elsif Present (Case_Prag)
and then not Seen_In_Case
and then Present (Post_Prag)
and then not Seen_In_Post
then
Error_Msg_N
("neither postcondition nor contract cases mention function "
& "result?T?", Post_Prag);
-- The function has contract cases only and they do not mention
-- attribute 'Result.
elsif Present (Case_Prag) and then not Seen_In_Case then
Error_Msg_N ("contract cases do not mention result?T?", Case_Prag);
-- The function has postconditions only and they do not mention
-- attribute 'Result.
elsif Present (Post_Prag) and then not Seen_In_Post then
Error_Msg_N
("postcondition does not mention function result?T?", Post_Prag);
end if;
end Check_Result_And_Post_State;
------------------------------
-- Check_Unprotected_Access --
------------------------------
procedure Check_Unprotected_Access
(Context : Node_Id;
Expr : Node_Id)
is
Cont_Encl_Typ : Entity_Id;
Pref_Encl_Typ : Entity_Id;
function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id;
-- Check whether Obj is a private component of a protected object.
-- Return the protected type where the component resides, Empty
-- otherwise.
function Is_Public_Operation return Boolean;
-- Verify that the enclosing operation is callable from outside the
-- protected object, to minimize false positives.
------------------------------
-- Enclosing_Protected_Type --
------------------------------
function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id is
begin
if Is_Entity_Name (Obj) then
declare
Ent : Entity_Id := Entity (Obj);
begin
-- The object can be a renaming of a private component, use
-- the original record component.
if Is_Prival (Ent) then
Ent := Prival_Link (Ent);
end if;
if Is_Protected_Type (Scope (Ent)) then
return Scope (Ent);
end if;
end;
end if;
-- For indexed and selected components, recursively check the prefix
if Nkind_In (Obj, N_Indexed_Component, N_Selected_Component) then
return Enclosing_Protected_Type (Prefix (Obj));
-- The object does not denote a protected component
else
return Empty;
end if;
end Enclosing_Protected_Type;
-------------------------
-- Is_Public_Operation --
-------------------------
function Is_Public_Operation return Boolean is
S : Entity_Id;
E : Entity_Id;
begin
S := Current_Scope;
while Present (S) and then S /= Pref_Encl_Typ loop
if Scope (S) = Pref_Encl_Typ then
E := First_Entity (Pref_Encl_Typ);
while Present (E)
and then E /= First_Private_Entity (Pref_Encl_Typ)
loop
if E = S then
return True;
end if;
Next_Entity (E);
end loop;
end if;
S := Scope (S);
end loop;
return False;
end Is_Public_Operation;
-- Start of processing for Check_Unprotected_Access
begin
if Nkind (Expr) = N_Attribute_Reference
and then Attribute_Name (Expr) = Name_Unchecked_Access
then
Cont_Encl_Typ := Enclosing_Protected_Type (Context);
Pref_Encl_Typ := Enclosing_Protected_Type (Prefix (Expr));
-- Check whether we are trying to export a protected component to a
-- context with an equal or lower access level.
if Present (Pref_Encl_Typ)
and then No (Cont_Encl_Typ)
and then Is_Public_Operation
and then Scope_Depth (Pref_Encl_Typ) >=
Object_Access_Level (Context)
then
Error_Msg_N
("??possible unprotected access to protected data", Expr);
end if;
end if;
end Check_Unprotected_Access;
------------------------
-- Collect_Interfaces --
------------------------
procedure Collect_Interfaces
(T : Entity_Id;
Ifaces_List : out Elist_Id;
Exclude_Parents : Boolean := False;
Use_Full_View : Boolean := True)
is
procedure Collect (Typ : Entity_Id);
-- Subsidiary subprogram used to traverse the whole list
-- of directly and indirectly implemented interfaces
-------------
-- Collect --
-------------
procedure Collect (Typ : Entity_Id) is
Ancestor : Entity_Id;
Full_T : Entity_Id;
Id : Node_Id;
Iface : Entity_Id;
begin
Full_T := Typ;
-- Handle private types and subtypes
if Use_Full_View
and then Is_Private_Type (Typ)
and then Present (Full_View (Typ))
then
Full_T := Full_View (Typ);
if Ekind (Full_T) = E_Record_Subtype then
Full_T := Full_View (Etype (Typ));
end if;
end if;
-- Include the ancestor if we are generating the whole list of
-- abstract interfaces.
if Etype (Full_T) /= Typ
-- Protect the frontend against wrong sources. For example:
-- package P is
-- type A is tagged null record;
-- type B is new A with private;
-- type C is new A with private;
-- private
-- type B is new C with null record;
-- type C is new B with null record;
-- end P;
and then Etype (Full_T) /= T
then
Ancestor := Etype (Full_T);
Collect (Ancestor);
if Is_Interface (Ancestor) and then not Exclude_Parents then
Append_Unique_Elmt (Ancestor, Ifaces_List);
end if;
end if;
-- Traverse the graph of ancestor interfaces
if Is_Non_Empty_List (Abstract_Interface_List (Full_T)) then
Id := First (Abstract_Interface_List (Full_T));
while Present (Id) loop
Iface := Etype (Id);
-- Protect against wrong uses. For example:
-- type I is interface;
-- type O is tagged null record;
-- type Wrong is new I and O with null record; -- ERROR
if Is_Interface (Iface) then
if Exclude_Parents
and then Etype (T) /= T
and then Interface_Present_In_Ancestor (Etype (T), Iface)
then
null;
else
Collect (Iface);
Append_Unique_Elmt (Iface, Ifaces_List);
end if;
end if;
Next (Id);
end loop;
end if;
end Collect;
-- Start of processing for Collect_Interfaces
begin
pragma Assert (Is_Tagged_Type (T) or else Is_Concurrent_Type (T));
Ifaces_List := New_Elmt_List;
Collect (T);
end Collect_Interfaces;
----------------------------------
-- Collect_Interface_Components --
----------------------------------
procedure Collect_Interface_Components
(Tagged_Type : Entity_Id;
Components_List : out Elist_Id)
is
procedure Collect (Typ : Entity_Id);
-- Subsidiary subprogram used to climb to the parents
-------------
-- Collect --
-------------
procedure Collect (Typ : Entity_Id) is
Tag_Comp : Entity_Id;
Parent_Typ : Entity_Id;
begin
-- Handle private types
if Present (Full_View (Etype (Typ))) then
Parent_Typ := Full_View (Etype (Typ));
else
Parent_Typ := Etype (Typ);
end if;
if Parent_Typ /= Typ
-- Protect the frontend against wrong sources. For example:
-- package P is
-- type A is tagged null record;
-- type B is new A with private;
-- type C is new A with private;
-- private
-- type B is new C with null record;
-- type C is new B with null record;
-- end P;
and then Parent_Typ /= Tagged_Type
then
Collect (Parent_Typ);
end if;
-- Collect the components containing tags of secondary dispatch
-- tables.
Tag_Comp := Next_Tag_Component (First_Tag_Component (Typ));
while Present (Tag_Comp) loop
pragma Assert (Present (Related_Type (Tag_Comp)));
Append_Elmt (Tag_Comp, Components_List);
Tag_Comp := Next_Tag_Component (Tag_Comp);
end loop;
end Collect;
-- Start of processing for Collect_Interface_Components
begin
pragma Assert (Ekind (Tagged_Type) = E_Record_Type
and then Is_Tagged_Type (Tagged_Type));
Components_List := New_Elmt_List;
Collect (Tagged_Type);
end Collect_Interface_Components;
-----------------------------
-- Collect_Interfaces_Info --
-----------------------------
procedure Collect_Interfaces_Info
(T : Entity_Id;
Ifaces_List : out Elist_Id;
Components_List : out Elist_Id;
Tags_List : out Elist_Id)
is
Comps_List : Elist_Id;
Comp_Elmt : Elmt_Id;
Comp_Iface : Entity_Id;
Iface_Elmt : Elmt_Id;
Iface : Entity_Id;
function Search_Tag (Iface : Entity_Id) return Entity_Id;
-- Search for the secondary tag associated with the interface type
-- Iface that is implemented by T.
----------------
-- Search_Tag --
----------------
function Search_Tag (Iface : Entity_Id) return Entity_Id is
ADT : Elmt_Id;
begin
if not Is_CPP_Class (T) then
ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (T))));
else
ADT := Next_Elmt (First_Elmt (Access_Disp_Table (T)));
end if;
while Present (ADT)
and then Is_Tag (Node (ADT))
and then Related_Type (Node (ADT)) /= Iface
loop
-- Skip secondary dispatch table referencing thunks to user
-- defined primitives covered by this interface.
pragma Assert (Has_Suffix (Node (ADT), 'P'));
Next_Elmt (ADT);
-- Skip secondary dispatch tables of Ada types
if not Is_CPP_Class (T) then
-- Skip secondary dispatch table referencing thunks to
-- predefined primitives.
pragma Assert (Has_Suffix (Node (ADT), 'Y'));
Next_Elmt (ADT);
-- Skip secondary dispatch table referencing user-defined
-- primitives covered by this interface.
pragma Assert (Has_Suffix (Node (ADT), 'D'));
Next_Elmt (ADT);
-- Skip secondary dispatch table referencing predefined
-- primitives.
pragma Assert (Has_Suffix (Node (ADT), 'Z'));
Next_Elmt (ADT);
end if;
end loop;
pragma Assert (Is_Tag (Node (ADT)));
return Node (ADT);
end Search_Tag;
-- Start of processing for Collect_Interfaces_Info
begin
Collect_Interfaces (T, Ifaces_List);
Collect_Interface_Components (T, Comps_List);
-- Search for the record component and tag associated with each
-- interface type of T.
Components_List := New_Elmt_List;
Tags_List := New_Elmt_List;
Iface_Elmt := First_Elmt (Ifaces_List);
while Present (Iface_Elmt) loop
Iface := Node (Iface_Elmt);
-- Associate the primary tag component and the primary dispatch table
-- with all the interfaces that are parents of T
if Is_Ancestor (Iface, T, Use_Full_View => True) then
Append_Elmt (First_Tag_Component (T), Components_List);
Append_Elmt (Node (First_Elmt (Access_Disp_Table (T))), Tags_List);
-- Otherwise search for the tag component and secondary dispatch
-- table of Iface
else
Comp_Elmt := First_Elmt (Comps_List);
while Present (Comp_Elmt) loop
Comp_Iface := Related_Type (Node (Comp_Elmt));
if Comp_Iface = Iface
or else Is_Ancestor (Iface, Comp_Iface, Use_Full_View => True)
then
Append_Elmt (Node (Comp_Elmt), Components_List);
Append_Elmt (Search_Tag (Comp_Iface), Tags_List);
exit;
end if;
Next_Elmt (Comp_Elmt);
end loop;
pragma Assert (Present (Comp_Elmt));
end if;
Next_Elmt (Iface_Elmt);
end loop;
end Collect_Interfaces_Info;
---------------------
-- Collect_Parents --
---------------------
procedure Collect_Parents
(T : Entity_Id;
List : out Elist_Id;
Use_Full_View : Boolean := True)
is
Current_Typ : Entity_Id := T;
Parent_Typ : Entity_Id;
begin
List := New_Elmt_List;
-- No action if the if the type has no parents
if T = Etype (T) then
return;
end if;
loop
Parent_Typ := Etype (Current_Typ);
if Is_Private_Type (Parent_Typ)
and then Present (Full_View (Parent_Typ))
and then Use_Full_View
then
Parent_Typ := Full_View (Base_Type (Parent_Typ));
end if;
Append_Elmt (Parent_Typ, List);
exit when Parent_Typ = Current_Typ;
Current_Typ := Parent_Typ;
end loop;
end Collect_Parents;
----------------------------------
-- Collect_Primitive_Operations --
----------------------------------
function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id is
B_Type : constant Entity_Id := Base_Type (T);
B_Decl : constant Node_Id := Original_Node (Parent (B_Type));
B_Scope : Entity_Id := Scope (B_Type);
Op_List : Elist_Id;
Formal : Entity_Id;
Is_Prim : Boolean;
Is_Type_In_Pkg : Boolean;
Formal_Derived : Boolean := False;
Id : Entity_Id;
function Match (E : Entity_Id) return Boolean;
-- True if E's base type is B_Type, or E is of an anonymous access type
-- and the base type of its designated type is B_Type.
-----------
-- Match --
-----------
function Match (E : Entity_Id) return Boolean is
Etyp : Entity_Id := Etype (E);
begin
if Ekind (Etyp) = E_Anonymous_Access_Type then
Etyp := Designated_Type (Etyp);
end if;
-- In Ada 2012 a primitive operation may have a formal of an
-- incomplete view of the parent type.
return Base_Type (Etyp) = B_Type
or else
(Ada_Version >= Ada_2012
and then Ekind (Etyp) = E_Incomplete_Type
and then Full_View (Etyp) = B_Type);
end Match;
-- Start of processing for Collect_Primitive_Operations
begin
-- For tagged types, the primitive operations are collected as they
-- are declared, and held in an explicit list which is simply returned.
if Is_Tagged_Type (B_Type) then
return Primitive_Operations (B_Type);
-- An untagged generic type that is a derived type inherits the
-- primitive operations of its parent type. Other formal types only
-- have predefined operators, which are not explicitly represented.
elsif Is_Generic_Type (B_Type) then
if Nkind (B_Decl) = N_Formal_Type_Declaration
and then Nkind (Formal_Type_Definition (B_Decl)) =
N_Formal_Derived_Type_Definition
then
Formal_Derived := True;
else
return New_Elmt_List;
end if;
end if;
Op_List := New_Elmt_List;
if B_Scope = Standard_Standard then
if B_Type = Standard_String then
Append_Elmt (Standard_Op_Concat, Op_List);
elsif B_Type = Standard_Wide_String then
Append_Elmt (Standard_Op_Concatw, Op_List);
else
null;
end if;
-- Locate the primitive subprograms of the type
else
-- The primitive operations appear after the base type, except
-- if the derivation happens within the private part of B_Scope
-- and the type is a private type, in which case both the type
-- and some primitive operations may appear before the base
-- type, and the list of candidates starts after the type.
if In_Open_Scopes (B_Scope)
and then Scope (T) = B_Scope
and then In_Private_Part (B_Scope)
then
Id := Next_Entity (T);
-- In Ada 2012, If the type has an incomplete partial view, there
-- may be primitive operations declared before the full view, so
-- we need to start scanning from the incomplete view, which is
-- earlier on the entity chain.
elsif Nkind (Parent (B_Type)) = N_Full_Type_Declaration
and then Present (Incomplete_View (Parent (B_Type)))
then
Id := Defining_Entity (Incomplete_View (Parent (B_Type)));
else
Id := Next_Entity (B_Type);
end if;
-- Set flag if this is a type in a package spec
Is_Type_In_Pkg :=
Is_Package_Or_Generic_Package (B_Scope)
and then
Nkind (Parent (Declaration_Node (First_Subtype (T)))) /=
N_Package_Body;
while Present (Id) loop
-- Test whether the result type or any of the parameter types of
-- each subprogram following the type match that type when the
-- type is declared in a package spec, is a derived type, or the
-- subprogram is marked as primitive. (The Is_Primitive test is
-- needed to find primitives of nonderived types in declarative
-- parts that happen to override the predefined "=" operator.)
-- Note that generic formal subprograms are not considered to be
-- primitive operations and thus are never inherited.
if Is_Overloadable (Id)
and then (Is_Type_In_Pkg
or else Is_Derived_Type (B_Type)
or else Is_Primitive (Id))
and then Nkind (Parent (Parent (Id)))
not in N_Formal_Subprogram_Declaration
then
Is_Prim := False;
if Match (Id) then
Is_Prim := True;
else
Formal := First_Formal (Id);
while Present (Formal) loop
if Match (Formal) then
Is_Prim := True;
exit;
end if;
Next_Formal (Formal);
end loop;
end if;
-- For a formal derived type, the only primitives are the ones
-- inherited from the parent type. Operations appearing in the
-- package declaration are not primitive for it.
if Is_Prim
and then (not Formal_Derived or else Present (Alias (Id)))
then
-- In the special case of an equality operator aliased to
-- an overriding dispatching equality belonging to the same
-- type, we don't include it in the list of primitives.
-- This avoids inheriting multiple equality operators when
-- deriving from untagged private types whose full type is
-- tagged, which can otherwise cause ambiguities. Note that
-- this should only happen for this kind of untagged parent
-- type, since normally dispatching operations are inherited
-- using the type's Primitive_Operations list.
if Chars (Id) = Name_Op_Eq
and then Is_Dispatching_Operation (Id)
and then Present (Alias (Id))
and then Present (Overridden_Operation (Alias (Id)))
and then Base_Type (Etype (First_Entity (Id))) =
Base_Type (Etype (First_Entity (Alias (Id))))
then
null;
-- Include the subprogram in the list of primitives
else
Append_Elmt (Id, Op_List);
end if;
end if;
end if;
Next_Entity (Id);
-- For a type declared in System, some of its operations may
-- appear in the target-specific extension to System.
if No (Id)
and then B_Scope = RTU_Entity (System)
and then Present_System_Aux
then
B_Scope := System_Aux_Id;
Id := First_Entity (System_Aux_Id);
end if;
end loop;
end if;
return Op_List;
end Collect_Primitive_Operations;
-----------------------------------
-- Compile_Time_Constraint_Error --
-----------------------------------
function Compile_Time_Constraint_Error
(N : Node_Id;
Msg : String;
Ent : Entity_Id := Empty;
Loc : Source_Ptr := No_Location;
Warn : Boolean := False) return Node_Id
is
Msgc : String (1 .. Msg'Length + 3);
-- Copy of message, with room for possible ?? or << and ! at end
Msgl : Natural;
Wmsg : Boolean;
Eloc : Source_Ptr;
-- Start of processing for Compile_Time_Constraint_Error
begin
-- If this is a warning, convert it into an error if we are in code
-- subject to SPARK_Mode being set ON.
Error_Msg_Warn := SPARK_Mode /= On;
-- A static constraint error in an instance body is not a fatal error.
-- we choose to inhibit the message altogether, because there is no
-- obvious node (for now) on which to post it. On the other hand the
-- offending node must be replaced with a constraint_error in any case.
-- No messages are generated if we already posted an error on this node
if not Error_Posted (N) then
if Loc /= No_Location then
Eloc := Loc;
else
Eloc := Sloc (N);
end if;
-- Copy message to Msgc, converting any ? in the message into
-- < instead, so that we have an error in GNATprove mode.
Msgl := Msg'Length;
for J in 1 .. Msgl loop
if Msg (J) = '?' and then (J = 1 or else Msg (J) /= ''') then
Msgc (J) := '<';
else
Msgc (J) := Msg (J);
end if;
end loop;
-- Message is a warning, even in Ada 95 case
if Msg (Msg'Last) = '?' or else Msg (Msg'Last) = '<' then
Wmsg := True;
-- In Ada 83, all messages are warnings. In the private part and
-- the body of an instance, constraint_checks are only warnings.
-- We also make this a warning if the Warn parameter is set.
elsif Warn
or else (Ada_Version = Ada_83 and then Comes_From_Source (N))
then
Msgl := Msgl + 1;
Msgc (Msgl) := '<';
Msgl := Msgl + 1;
Msgc (Msgl) := '<';
Wmsg := True;
elsif In_Instance_Not_Visible then
Msgl := Msgl + 1;
Msgc (Msgl) := '<';
Msgl := Msgl + 1;
Msgc (Msgl) := '<';
Wmsg := True;
-- Otherwise we have a real error message (Ada 95 static case)
-- and we make this an unconditional message. Note that in the
-- warning case we do not make the message unconditional, it seems
-- quite reasonable to delete messages like this (about exceptions
-- that will be raised) in dead code.
else
Wmsg := False;
Msgl := Msgl + 1;
Msgc (Msgl) := '!';
end if;
-- One more test, skip the warning if the related expression is
-- statically unevaluated, since we don't want to warn about what
-- will happen when something is evaluated if it never will be
-- evaluated.
if not Is_Statically_Unevaluated (N) then
Error_Msg_Warn := SPARK_Mode /= On;
if Present (Ent) then
Error_Msg_NEL (Msgc (1 .. Msgl), N, Ent, Eloc);
else
Error_Msg_NEL (Msgc (1 .. Msgl), N, Etype (N), Eloc);
end if;
if Wmsg then
-- Check whether the context is an Init_Proc
if Inside_Init_Proc then
declare
Conc_Typ : constant Entity_Id :=
Corresponding_Concurrent_Type
(Entity (Parameter_Type (First
(Parameter_Specifications
(Parent (Current_Scope))))));
begin
-- Don't complain if the corresponding concurrent type
-- doesn't come from source (i.e. a single task/protected
-- object).
if Present (Conc_Typ)
and then not Comes_From_Source (Conc_Typ)
then
Error_Msg_NEL
("\& [<<", N, Standard_Constraint_Error, Eloc);
else
if GNATprove_Mode then
Error_Msg_NEL
("\& would have been raised for objects of this "
& "type", N, Standard_Constraint_Error, Eloc);
else
Error_Msg_NEL
("\& will be raised for objects of this type??",
N, Standard_Constraint_Error, Eloc);
end if;
end if;
end;
else
Error_Msg_NEL ("\& [<<", N, Standard_Constraint_Error, Eloc);
end if;
else
Error_Msg ("\static expression fails Constraint_Check", Eloc);
Set_Error_Posted (N);
end if;
end if;
end if;
return N;
end Compile_Time_Constraint_Error;
-----------------------
-- Conditional_Delay --
-----------------------
procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id) is
begin
if Has_Delayed_Freeze (Old_Ent) and then not Is_Frozen (Old_Ent) then
Set_Has_Delayed_Freeze (New_Ent);
end if;
end Conditional_Delay;
----------------------------
-- Contains_Refined_State --
----------------------------
function Contains_Refined_State (Prag : Node_Id) return Boolean is
function Has_State_In_Dependency (List : Node_Id) return Boolean;
-- Determine whether a dependency list mentions a state with a visible
-- refinement.
function Has_State_In_Global (List : Node_Id) return Boolean;
-- Determine whether a global list mentions a state with a visible
-- refinement.
function Is_Refined_State (Item : Node_Id) return Boolean;
-- Determine whether Item is a reference to an abstract state with a
-- visible refinement.
-----------------------------
-- Has_State_In_Dependency --
-----------------------------
function Has_State_In_Dependency (List : Node_Id) return Boolean is
Clause : Node_Id;
Output : Node_Id;
begin
-- A null dependency list does not mention any states
if Nkind (List) = N_Null then
return False;
-- Dependency clauses appear as component associations of an
-- aggregate.
elsif Nkind (List) = N_Aggregate
and then Present (Component_Associations (List))
then
Clause := First (Component_Associations (List));
while Present (Clause) loop
-- Inspect the outputs of a dependency clause
Output := First (Choices (Clause));
while Present (Output) loop
if Is_Refined_State (Output) then
return True;
end if;
Next (Output);
end loop;
-- Inspect the outputs of a dependency clause
if Is_Refined_State (Expression (Clause)) then
return True;
end if;
Next (Clause);
end loop;
-- If we get here, then none of the dependency clauses mention a
-- state with visible refinement.
return False;
-- An illegal pragma managed to sneak in
else
raise Program_Error;
end if;
end Has_State_In_Dependency;
-------------------------
-- Has_State_In_Global --
-------------------------
function Has_State_In_Global (List : Node_Id) return Boolean is
Item : Node_Id;
begin
-- A null global list does not mention any states
if Nkind (List) = N_Null then
return False;
-- Simple global list or moded global list declaration
elsif Nkind (List) = N_Aggregate then
-- The declaration of a simple global list appear as a collection
-- of expressions.
if Present (Expressions (List)) then
Item := First (Expressions (List));
while Present (Item) loop
if Is_Refined_State (Item) then
return True;
end if;
Next (Item);
end loop;
-- The declaration of a moded global list appears as a collection
-- of component associations where individual choices denote
-- modes.
else
Item := First (Component_Associations (List));
while Present (Item) loop
if Has_State_In_Global (Expression (Item)) then
return True;
end if;
Next (Item);
end loop;
end if;
-- If we get here, then the simple/moded global list did not
-- mention any states with a visible refinement.
return False;
-- Single global item declaration
elsif Is_Entity_Name (List) then
return Is_Refined_State (List);
-- An illegal pragma managed to sneak in
else
raise Program_Error;
end if;
end Has_State_In_Global;
----------------------
-- Is_Refined_State --
----------------------
function Is_Refined_State (Item : Node_Id) return Boolean is
Elmt : Node_Id;
Item_Id : Entity_Id;
begin
if Nkind (Item) = N_Null then
return False;
-- States cannot be subject to attribute 'Result. This case arises
-- in dependency relations.
elsif Nkind (Item) = N_Attribute_Reference
and then Attribute_Name (Item) = Name_Result
then
return False;
-- Multiple items appear as an aggregate. This case arises in
-- dependency relations.
elsif Nkind (Item) = N_Aggregate
and then Present (Expressions (Item))
then
Elmt := First (Expressions (Item));
while Present (Elmt) loop
if Is_Refined_State (Elmt) then
return True;
end if;
Next (Elmt);
end loop;
-- If we get here, then none of the inputs or outputs reference a
-- state with visible refinement.
return False;
-- Single item
else
Item_Id := Entity_Of (Item);
return
Present (Item_Id)
and then Ekind (Item_Id) = E_Abstract_State
and then Has_Visible_Refinement (Item_Id);
end if;
end Is_Refined_State;
-- Local variables
Arg : constant Node_Id :=
Get_Pragma_Arg (First (Pragma_Argument_Associations (Prag)));
Nam : constant Name_Id := Pragma_Name (Prag);
-- Start of processing for Contains_Refined_State
begin
if Nam = Name_Depends then
return Has_State_In_Dependency (Arg);
else pragma Assert (Nam = Name_Global);
return Has_State_In_Global (Arg);
end if;
end Contains_Refined_State;
-------------------------
-- Copy_Component_List --
-------------------------
function Copy_Component_List
(R_Typ : Entity_Id;
Loc : Source_Ptr) return List_Id
is
Comp : Node_Id;
Comps : constant List_Id := New_List;
begin
Comp := First_Component (Underlying_Type (R_Typ));
while Present (Comp) loop
if Comes_From_Source (Comp) then
declare
Comp_Decl : constant Node_Id := Declaration_Node (Comp);
begin
Append_To (Comps,
Make_Component_Declaration (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Chars (Comp)),
Component_Definition =>
New_Copy_Tree
(Component_Definition (Comp_Decl), New_Sloc => Loc)));
end;
end if;
Next_Component (Comp);
end loop;
return Comps;
end Copy_Component_List;
-------------------------
-- Copy_Parameter_List --
-------------------------
function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id is
Loc : constant Source_Ptr := Sloc (Subp_Id);
Plist : List_Id;
Formal : Entity_Id;
begin
if No (First_Formal (Subp_Id)) then
return No_List;
else
Plist := New_List;
Formal := First_Formal (Subp_Id);
while Present (Formal) loop
Append
(Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Sloc (Formal),
Chars => Chars (Formal)),
In_Present => In_Present (Parent (Formal)),
Out_Present => Out_Present (Parent (Formal)),
Parameter_Type =>
New_Occurrence_Of (Etype (Formal), Loc),
Expression =>
New_Copy_Tree (Expression (Parent (Formal)))),
Plist);
Next_Formal (Formal);
end loop;
end if;
return Plist;
end Copy_Parameter_List;
--------------------------------
-- Corresponding_Generic_Type --
--------------------------------
function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id is
Inst : Entity_Id;
Gen : Entity_Id;
Typ : Entity_Id;
begin
if not Is_Generic_Actual_Type (T) then
return Any_Type;
-- If the actual is the actual of an enclosing instance, resolution
-- was correct in the generic.
elsif Nkind (Parent (T)) = N_Subtype_Declaration
and then Is_Entity_Name (Subtype_Indication (Parent (T)))
and then
Is_Generic_Actual_Type (Entity (Subtype_Indication (Parent (T))))
then
return Any_Type;
else
Inst := Scope (T);
if Is_Wrapper_Package (Inst) then
Inst := Related_Instance (Inst);
end if;
Gen :=
Generic_Parent
(Specification (Unit_Declaration_Node (Inst)));
-- Generic actual has the same name as the corresponding formal
Typ := First_Entity (Gen);
while Present (Typ) loop
if Chars (Typ) = Chars (T) then
return Typ;
end if;
Next_Entity (Typ);
end loop;
return Any_Type;
end if;
end Corresponding_Generic_Type;
---------------------------
-- Corresponding_Spec_Of --
---------------------------
function Corresponding_Spec_Of (Subp_Decl : Node_Id) return Entity_Id is
begin
if Nkind (Subp_Decl) = N_Subprogram_Body
and then Present (Corresponding_Spec (Subp_Decl))
then
return Corresponding_Spec (Subp_Decl);
elsif Nkind (Subp_Decl) = N_Subprogram_Body_Stub
and then Present (Corresponding_Spec_Of_Stub (Subp_Decl))
then
return Corresponding_Spec_Of_Stub (Subp_Decl);
else
return Defining_Entity (Subp_Decl);
end if;
end Corresponding_Spec_Of;
--------------------
-- Current_Entity --
--------------------
-- The currently visible definition for a given identifier is the
-- one most chained at the start of the visibility chain, i.e. the
-- one that is referenced by the Node_Id value of the name of the
-- given identifier.
function Current_Entity (N : Node_Id) return Entity_Id is
begin
return Get_Name_Entity_Id (Chars (N));
end Current_Entity;
-----------------------------
-- Current_Entity_In_Scope --
-----------------------------
function Current_Entity_In_Scope (N : Node_Id) return Entity_Id is
E : Entity_Id;
CS : constant Entity_Id := Current_Scope;
Transient_Case : constant Boolean := Scope_Is_Transient;
begin
E := Get_Name_Entity_Id (Chars (N));
while Present (E)
and then Scope (E) /= CS
and then (not Transient_Case or else Scope (E) /= Scope (CS))
loop
E := Homonym (E);
end loop;
return E;
end Current_Entity_In_Scope;
-------------------
-- Current_Scope --
-------------------
function Current_Scope return Entity_Id is
begin
if Scope_Stack.Last = -1 then
return Standard_Standard;
else
declare
C : constant Entity_Id :=
Scope_Stack.Table (Scope_Stack.Last).Entity;
begin
if Present (C) then
return C;
else
return Standard_Standard;
end if;
end;
end if;
end Current_Scope;
------------------------
-- Current_Subprogram --
------------------------
function Current_Subprogram return Entity_Id is
Scop : constant Entity_Id := Current_Scope;
begin
if Is_Subprogram_Or_Generic_Subprogram (Scop) then
return Scop;
else
return Enclosing_Subprogram (Scop);
end if;
end Current_Subprogram;
----------------------------------
-- Deepest_Type_Access_Level --
----------------------------------
function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint is
begin
if Ekind (Typ) = E_Anonymous_Access_Type
and then not Is_Local_Anonymous_Access (Typ)
and then Nkind (Associated_Node_For_Itype (Typ)) = N_Object_Declaration
then
-- Typ is the type of an Ada 2012 stand-alone object of an anonymous
-- access type.
return
Scope_Depth (Enclosing_Dynamic_Scope
(Defining_Identifier
(Associated_Node_For_Itype (Typ))));
-- For generic formal type, return Int'Last (infinite).
-- See comment preceding Is_Generic_Type call in Type_Access_Level.
elsif Is_Generic_Type (Root_Type (Typ)) then
return UI_From_Int (Int'Last);
else
return Type_Access_Level (Typ);
end if;
end Deepest_Type_Access_Level;
---------------------
-- Defining_Entity --
---------------------
function Defining_Entity (N : Node_Id) return Entity_Id is
K : constant Node_Kind := Nkind (N);
Err : Entity_Id := Empty;
begin
case K is
when
N_Subprogram_Declaration |
N_Abstract_Subprogram_Declaration |
N_Subprogram_Body |
N_Package_Declaration |
N_Subprogram_Renaming_Declaration |
N_Subprogram_Body_Stub |
N_Generic_Subprogram_Declaration |
N_Generic_Package_Declaration |
N_Formal_Subprogram_Declaration |
N_Expression_Function
=>
return Defining_Entity (Specification (N));
when
N_Component_Declaration |
N_Defining_Program_Unit_Name |
N_Discriminant_Specification |
N_Entry_Body |
N_Entry_Declaration |
N_Entry_Index_Specification |
N_Exception_Declaration |
N_Exception_Renaming_Declaration |
N_Formal_Object_Declaration |
N_Formal_Package_Declaration |
N_Formal_Type_Declaration |
N_Full_Type_Declaration |
N_Implicit_Label_Declaration |
N_Incomplete_Type_Declaration |
N_Loop_Parameter_Specification |
N_Number_Declaration |
N_Object_Declaration |
N_Object_Renaming_Declaration |
N_Package_Body_Stub |
N_Parameter_Specification |
N_Private_Extension_Declaration |
N_Private_Type_Declaration |
N_Protected_Body |
N_Protected_Body_Stub |
N_Protected_Type_Declaration |
N_Single_Protected_Declaration |
N_Single_Task_Declaration |
N_Subtype_Declaration |
N_Task_Body |
N_Task_Body_Stub |
N_Task_Type_Declaration
=>
return Defining_Identifier (N);
when N_Subunit =>
return Defining_Entity (Proper_Body (N));
when
N_Function_Instantiation |
N_Function_Specification |
N_Generic_Function_Renaming_Declaration |
N_Generic_Package_Renaming_Declaration |
N_Generic_Procedure_Renaming_Declaration |
N_Package_Body |
N_Package_Instantiation |
N_Package_Renaming_Declaration |
N_Package_Specification |
N_Procedure_Instantiation |
N_Procedure_Specification
=>
declare
Nam : constant Node_Id := Defining_Unit_Name (N);
begin
if Nkind (Nam) in N_Entity then
return Nam;
-- For Error, make up a name and attach to declaration
-- so we can continue semantic analysis
elsif Nam = Error then
Err := Make_Temporary (Sloc (N), 'T');
Set_Defining_Unit_Name (N, Err);
return Err;
-- If not an entity, get defining identifier
else
return Defining_Identifier (Nam);
end if;
end;
when
N_Block_Statement |
N_Loop_Statement
=>
return Entity (Identifier (N));
when others =>
raise Program_Error;
end case;
end Defining_Entity;
--------------------------
-- Denotes_Discriminant --
--------------------------
function Denotes_Discriminant
(N : Node_Id;
Check_Concurrent : Boolean := False) return Boolean
is
E : Entity_Id;
begin
if not Is_Entity_Name (N) or else No (Entity (N)) then
return False;
else
E := Entity (N);
end if;
-- If we are checking for a protected type, the discriminant may have
-- been rewritten as the corresponding discriminal of the original type
-- or of the corresponding concurrent record, depending on whether we
-- are in the spec or body of the protected type.
return Ekind (E) = E_Discriminant
or else
(Check_Concurrent
and then Ekind (E) = E_In_Parameter
and then Present (Discriminal_Link (E))
and then
(Is_Concurrent_Type (Scope (Discriminal_Link (E)))
or else
Is_Concurrent_Record_Type (Scope (Discriminal_Link (E)))));
end Denotes_Discriminant;
-------------------------
-- Denotes_Same_Object --
-------------------------
function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean is
Obj1 : Node_Id := A1;
Obj2 : Node_Id := A2;
function Has_Prefix (N : Node_Id) return Boolean;
-- Return True if N has attribute Prefix
function Is_Renaming (N : Node_Id) return Boolean;
-- Return true if N names a renaming entity
function Is_Valid_Renaming (N : Node_Id) return Boolean;
-- For renamings, return False if the prefix of any dereference within
-- the renamed object_name is a variable, or any expression within the
-- renamed object_name contains references to variables or calls on
-- nonstatic functions; otherwise return True (RM 6.4.1(6.10/3))
----------------
-- Has_Prefix --
----------------
function Has_Prefix (N : Node_Id) return Boolean is
begin
return
Nkind_In (N,
N_Attribute_Reference,
N_Expanded_Name,
N_Explicit_Dereference,
N_Indexed_Component,
N_Reference,
N_Selected_Component,
N_Slice);
end Has_Prefix;
-----------------
-- Is_Renaming --
-----------------
function Is_Renaming (N : Node_Id) return Boolean is
begin
return Is_Entity_Name (N)
and then Present (Renamed_Entity (Entity (N)));
end Is_Renaming;
-----------------------
-- Is_Valid_Renaming --
-----------------------
function Is_Valid_Renaming (N : Node_Id) return Boolean is
function Check_Renaming (N : Node_Id) return Boolean;
-- Recursive function used to traverse all the prefixes of N
function Check_Renaming (N : Node_Id) return Boolean is
begin
if Is_Renaming (N)
and then not Check_Renaming (Renamed_Entity (Entity (N)))
then
return False;
end if;
if Nkind (N) = N_Indexed_Component then
declare
Indx : Node_Id;
begin
Indx := First (Expressions (N));
while Present (Indx) loop
if not Is_OK_Static_Expression (Indx) then
return False;
end if;
Next_Index (Indx);
end loop;
end;
end if;
if Has_Prefix (N) then
declare
P : constant Node_Id := Prefix (N);
begin
if Nkind (N) = N_Explicit_Dereference
and then Is_Variable (P)
then
return False;
elsif Is_Entity_Name (P)
and then Ekind (Entity (P)) = E_Function
then
return False;
elsif Nkind (P) = N_Function_Call then
return False;
end if;
-- Recursion to continue traversing the prefix of the
-- renaming expression
return Check_Renaming (P);
end;
end if;
return True;
end Check_Renaming;
-- Start of processing for Is_Valid_Renaming
begin
return Check_Renaming (N);
end Is_Valid_Renaming;
-- Start of processing for Denotes_Same_Object
begin
-- Both names statically denote the same stand-alone object or parameter
-- (RM 6.4.1(6.5/3))
if Is_Entity_Name (Obj1)
and then Is_Entity_Name (Obj2)
and then Entity (Obj1) = Entity (Obj2)
then
return True;
end if;
-- For renamings, the prefix of any dereference within the renamed
-- object_name is not a variable, and any expression within the
-- renamed object_name contains no references to variables nor
-- calls on nonstatic functions (RM 6.4.1(6.10/3)).
if Is_Renaming (Obj1) then
if Is_Valid_Renaming (Obj1) then
Obj1 := Renamed_Entity (Entity (Obj1));
else
return False;
end if;
end if;
if Is_Renaming (Obj2) then
if Is_Valid_Renaming (Obj2) then
Obj2 := Renamed_Entity (Entity (Obj2));
else
return False;
end if;
end if;
-- No match if not same node kind (such cases are handled by
-- Denotes_Same_Prefix)
if Nkind (Obj1) /= Nkind (Obj2) then
return False;
-- After handling valid renamings, one of the two names statically
-- denoted a renaming declaration whose renamed object_name is known
-- to denote the same object as the other (RM 6.4.1(6.10/3))
elsif Is_Entity_Name (Obj1) then
if Is_Entity_Name (Obj2) then
return Entity (Obj1) = Entity (Obj2);
else
return False;
end if;
-- Both names are selected_components, their prefixes are known to
-- denote the same object, and their selector_names denote the same
-- component (RM 6.4.1(6.6/3)
elsif Nkind (Obj1) = N_Selected_Component then
return Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2))
and then
Entity (Selector_Name (Obj1)) = Entity (Selector_Name (Obj2));
-- Both names are dereferences and the dereferenced names are known to
-- denote the same object (RM 6.4.1(6.7/3))
elsif Nkind (Obj1) = N_Explicit_Dereference then
return Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2));
-- Both names are indexed_components, their prefixes are known to denote
-- the same object, and each of the pairs of corresponding index values
-- are either both static expressions with the same static value or both
-- names that are known to denote the same object (RM 6.4.1(6.8/3))
elsif Nkind (Obj1) = N_Indexed_Component then
if not Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2)) then
return False;
else
declare
Indx1 : Node_Id;
Indx2 : Node_Id;
begin
Indx1 := First (Expressions (Obj1));
Indx2 := First (Expressions (Obj2));
while Present (Indx1) loop
-- Indexes must denote the same static value or same object
if Is_OK_Static_Expression (Indx1) then
if not Is_OK_Static_Expression (Indx2) then
return False;
elsif Expr_Value (Indx1) /= Expr_Value (Indx2) then
return False;
end if;
elsif not Denotes_Same_Object (Indx1, Indx2) then
return False;
end if;
Next (Indx1);
Next (Indx2);
end loop;
return True;
end;
end if;
-- Both names are slices, their prefixes are known to denote the same
-- object, and the two slices have statically matching index constraints
-- (RM 6.4.1(6.9/3))
elsif Nkind (Obj1) = N_Slice
and then Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2))
then
declare
Lo1, Lo2, Hi1, Hi2 : Node_Id;
begin
Get_Index_Bounds (Etype (Obj1), Lo1, Hi1);
Get_Index_Bounds (Etype (Obj2), Lo2, Hi2);
-- Check whether bounds are statically identical. There is no
-- attempt to detect partial overlap of slices.
return Denotes_Same_Object (Lo1, Lo2)
and then
Denotes_Same_Object (Hi1, Hi2);
end;
-- In the recursion, literals appear as indexes
elsif Nkind (Obj1) = N_Integer_Literal
and then
Nkind (Obj2) = N_Integer_Literal
then
return Intval (Obj1) = Intval (Obj2);
else
return False;
end if;
end Denotes_Same_Object;
-------------------------
-- Denotes_Same_Prefix --
-------------------------
function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean is
begin
if Is_Entity_Name (A1) then
if Nkind_In (A2, N_Selected_Component, N_Indexed_Component)
and then not Is_Access_Type (Etype (A1))
then
return Denotes_Same_Object (A1, Prefix (A2))
or else Denotes_Same_Prefix (A1, Prefix (A2));
else
return False;
end if;
elsif Is_Entity_Name (A2) then
return Denotes_Same_Prefix (A1 => A2, A2 => A1);
elsif Nkind_In (A1, N_Selected_Component, N_Indexed_Component, N_Slice)
and then
Nkind_In (A2, N_Selected_Component, N_Indexed_Component, N_Slice)
then
declare
Root1, Root2 : Node_Id;
Depth1, Depth2 : Int := 0;
begin
Root1 := Prefix (A1);
while not Is_Entity_Name (Root1) loop
if not Nkind_In
(Root1, N_Selected_Component, N_Indexed_Component)
then
return False;
else
Root1 := Prefix (Root1);
end if;
Depth1 := Depth1 + 1;
end loop;
Root2 := Prefix (A2);
while not Is_Entity_Name (Root2) loop
if not Nkind_In (Root2, N_Selected_Component,
N_Indexed_Component)
then
return False;
else
Root2 := Prefix (Root2);
end if;
Depth2 := Depth2 + 1;
end loop;
-- If both have the same depth and they do not denote the same
-- object, they are disjoint and no warning is needed.
if Depth1 = Depth2 then
return False;
elsif Depth1 > Depth2 then
Root1 := Prefix (A1);
for J in 1 .. Depth1 - Depth2 - 1 loop
Root1 := Prefix (Root1);
end loop;
return Denotes_Same_Object (Root1, A2);
else
Root2 := Prefix (A2);
for J in 1 .. Depth2 - Depth1 - 1 loop
Root2 := Prefix (Root2);
end loop;
return Denotes_Same_Object (A1, Root2);
end if;
end;
else
return False;
end if;
end Denotes_Same_Prefix;
----------------------
-- Denotes_Variable --
----------------------
function Denotes_Variable (N : Node_Id) return Boolean is
begin
return Is_Variable (N) and then Paren_Count (N) = 0;
end Denotes_Variable;
-----------------------------
-- Depends_On_Discriminant --
-----------------------------
function Depends_On_Discriminant (N : Node_Id) return Boolean is
L : Node_Id;
H : Node_Id;
begin
Get_Index_Bounds (N, L, H);
return Denotes_Discriminant (L) or else Denotes_Discriminant (H);
end Depends_On_Discriminant;
-------------------------
-- Designate_Same_Unit --
-------------------------
function Designate_Same_Unit
(Name1 : Node_Id;
Name2 : Node_Id) return Boolean
is
K1 : constant Node_Kind := Nkind (Name1);
K2 : constant Node_Kind := Nkind (Name2);
function Prefix_Node (N : Node_Id) return Node_Id;
-- Returns the parent unit name node of a defining program unit name
-- or the prefix if N is a selected component or an expanded name.
function Select_Node (N : Node_Id) return Node_Id;
-- Returns the defining identifier node of a defining program unit
-- name or the selector node if N is a selected component or an
-- expanded name.
-----------------
-- Prefix_Node --
-----------------
function Prefix_Node (N : Node_Id) return Node_Id is
begin
if Nkind (N) = N_Defining_Program_Unit_Name then
return Name (N);
else
return Prefix (N);
end if;
end Prefix_Node;
-----------------
-- Select_Node --
-----------------
function Select_Node (N : Node_Id) return Node_Id is
begin
if Nkind (N) = N_Defining_Program_Unit_Name then
return Defining_Identifier (N);
else
return Selector_Name (N);
end if;
end Select_Node;
-- Start of processing for Designate_Same_Unit
begin
if Nkind_In (K1, N_Identifier, N_Defining_Identifier)
and then
Nkind_In (K2, N_Identifier, N_Defining_Identifier)
then
return Chars (Name1) = Chars (Name2);
elsif Nkind_In (K1, N_Expanded_Name,
N_Selected_Component,
N_Defining_Program_Unit_Name)
and then
Nkind_In (K2, N_Expanded_Name,
N_Selected_Component,
N_Defining_Program_Unit_Name)
then
return
(Chars (Select_Node (Name1)) = Chars (Select_Node (Name2)))
and then
Designate_Same_Unit (Prefix_Node (Name1), Prefix_Node (Name2));
else
return False;
end if;
end Designate_Same_Unit;
------------------------------------------
-- function Dynamic_Accessibility_Level --
------------------------------------------
function Dynamic_Accessibility_Level (Expr : Node_Id) return Node_Id is
E : Entity_Id;
Loc : constant Source_Ptr := Sloc (Expr);
function Make_Level_Literal (Level : Uint) return Node_Id;
-- Construct an integer literal representing an accessibility level
-- with its type set to Natural.
------------------------
-- Make_Level_Literal --
------------------------
function Make_Level_Literal (Level : Uint) return Node_Id is
Result : constant Node_Id := Make_Integer_Literal (Loc, Level);
begin
Set_Etype (Result, Standard_Natural);
return Result;
end Make_Level_Literal;
-- Start of processing for Dynamic_Accessibility_Level
begin
if Is_Entity_Name (Expr) then
E := Entity (Expr);
if Present (Renamed_Object (E)) then
return Dynamic_Accessibility_Level (Renamed_Object (E));
end if;
if Is_Formal (E) or else Ekind_In (E, E_Variable, E_Constant) then
if Present (Extra_Accessibility (E)) then
return New_Occurrence_Of (Extra_Accessibility (E), Loc);
end if;
end if;
end if;
-- Unimplemented: Ptr.all'Access, where Ptr has Extra_Accessibility ???
case Nkind (Expr) is
-- For access discriminant, the level of the enclosing object
when N_Selected_Component =>
if Ekind (Entity (Selector_Name (Expr))) = E_Discriminant
and then Ekind (Etype (Entity (Selector_Name (Expr)))) =
E_Anonymous_Access_Type
then
return Make_Level_Literal (Object_Access_Level (Expr));
end if;
when N_Attribute_Reference =>
case Get_Attribute_Id (Attribute_Name (Expr)) is
-- For X'Access, the level of the prefix X
when Attribute_Access =>
return Make_Level_Literal
(Object_Access_Level (Prefix (Expr)));
-- Treat the unchecked attributes as library-level
when Attribute_Unchecked_Access |
Attribute_Unrestricted_Access =>
return Make_Level_Literal (Scope_Depth (Standard_Standard));
-- No other access-valued attributes
when others =>
raise Program_Error;
end case;
when N_Allocator =>
-- Unimplemented: depends on context. As an actual parameter where
-- formal type is anonymous, use
-- Scope_Depth (Current_Scope) + 1.
-- For other cases, see 3.10.2(14/3) and following. ???
null;
when N_Type_Conversion =>
if not Is_Local_Anonymous_Access (Etype (Expr)) then
-- Handle type conversions introduced for a rename of an
-- Ada 2012 stand-alone object of an anonymous access type.
return Dynamic_Accessibility_Level (Expression (Expr));
end if;
when others =>
null;
end case;
return Make_Level_Literal (Type_Access_Level (Etype (Expr)));
end Dynamic_Accessibility_Level;
-----------------------------------
-- Effective_Extra_Accessibility --
-----------------------------------
function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id is
begin
if Present (Renamed_Object (Id))
and then Is_Entity_Name (Renamed_Object (Id))
then
return Effective_Extra_Accessibility (Entity (Renamed_Object (Id)));
else
return Extra_Accessibility (Id);
end if;
end Effective_Extra_Accessibility;
-----------------------------
-- Effective_Reads_Enabled --
-----------------------------
function Effective_Reads_Enabled (Id : Entity_Id) return Boolean is
begin
return Has_Enabled_Property (Id, Name_Effective_Reads);
end Effective_Reads_Enabled;
------------------------------
-- Effective_Writes_Enabled --
------------------------------
function Effective_Writes_Enabled (Id : Entity_Id) return Boolean is
begin
return Has_Enabled_Property (Id, Name_Effective_Writes);
end Effective_Writes_Enabled;
------------------------------
-- Enclosing_Comp_Unit_Node --
------------------------------
function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id is
Current_Node : Node_Id;
begin
Current_Node := N;
while Present (Current_Node)
and then Nkind (Current_Node) /= N_Compilation_Unit
loop
Current_Node := Parent (Current_Node);
end loop;
if Nkind (Current_Node) /= N_Compilation_Unit then
return Empty;
else
return Current_Node;
end if;
end Enclosing_Comp_Unit_Node;
--------------------------
-- Enclosing_CPP_Parent --
--------------------------
function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id is
Parent_Typ : Entity_Id := Typ;
begin
while not Is_CPP_Class (Parent_Typ)
and then Etype (Parent_Typ) /= Parent_Typ
loop
Parent_Typ := Etype (Parent_Typ);
if Is_Private_Type (Parent_Typ) then
Parent_Typ := Full_View (Base_Type (Parent_Typ));
end if;
end loop;
pragma Assert (Is_CPP_Class (Parent_Typ));
return Parent_Typ;
end Enclosing_CPP_Parent;
----------------------------
-- Enclosing_Generic_Body --
----------------------------
function Enclosing_Generic_Body
(N : Node_Id) return Node_Id
is
P : Node_Id;
Decl : Node_Id;
Spec : Node_Id;
begin
P := Parent (N);
while Present (P) loop
if Nkind (P) = N_Package_Body
or else Nkind (P) = N_Subprogram_Body
then
Spec := Corresponding_Spec (P);
if Present (Spec) then
Decl := Unit_Declaration_Node (Spec);
if Nkind (Decl) = N_Generic_Package_Declaration
or else Nkind (Decl) = N_Generic_Subprogram_Declaration
then
return P;
end if;
end if;
end if;
P := Parent (P);
end loop;
return Empty;
end Enclosing_Generic_Body;
----------------------------
-- Enclosing_Generic_Unit --
----------------------------
function Enclosing_Generic_Unit
(N : Node_Id) return Node_Id
is
P : Node_Id;
Decl : Node_Id;
Spec : Node_Id;
begin
P := Parent (N);
while Present (P) loop
if Nkind (P) = N_Generic_Package_Declaration
or else Nkind (P) = N_Generic_Subprogram_Declaration
then
return P;
elsif Nkind (P) = N_Package_Body
or else Nkind (P) = N_Subprogram_Body
then
Spec := Corresponding_Spec (P);
if Present (Spec) then
Decl := Unit_Declaration_Node (Spec);
if Nkind (Decl) = N_Generic_Package_Declaration
or else Nkind (Decl) = N_Generic_Subprogram_Declaration
then
return Decl;
end if;
end if;
end if;
P := Parent (P);
end loop;
return Empty;
end Enclosing_Generic_Unit;
-------------------------------
-- Enclosing_Lib_Unit_Entity --
-------------------------------
function Enclosing_Lib_Unit_Entity
(E : Entity_Id := Current_Scope) return Entity_Id
is
Unit_Entity : Entity_Id;
begin
-- Look for enclosing library unit entity by following scope links.
-- Equivalent to, but faster than indexing through the scope stack.
Unit_Entity := E;
while (Present (Scope (Unit_Entity))
and then Scope (Unit_Entity) /= Standard_Standard)
and not Is_Child_Unit (Unit_Entity)
loop
Unit_Entity := Scope (Unit_Entity);
end loop;
return Unit_Entity;
end Enclosing_Lib_Unit_Entity;
-----------------------
-- Enclosing_Package --
-----------------------
function Enclosing_Package (E : Entity_Id) return Entity_Id is
Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
begin
if Dynamic_Scope = Standard_Standard then
return Standard_Standard;
elsif Dynamic_Scope = Empty then
return Empty;
elsif Ekind_In (Dynamic_Scope, E_Package, E_Package_Body,
E_Generic_Package)
then
return Dynamic_Scope;
else
return Enclosing_Package (Dynamic_Scope);
end if;
end Enclosing_Package;
--------------------------
-- Enclosing_Subprogram --
--------------------------
function Enclosing_Subprogram (E : Entity_Id) return Entity_Id is
Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
begin
if Dynamic_Scope = Standard_Standard then
return Empty;
elsif Dynamic_Scope = Empty then
return Empty;
elsif Ekind (Dynamic_Scope) = E_Subprogram_Body then
return Corresponding_Spec (Parent (Parent (Dynamic_Scope)));
elsif Ekind (Dynamic_Scope) = E_Block
or else Ekind (Dynamic_Scope) = E_Return_Statement
then
return Enclosing_Subprogram (Dynamic_Scope);
elsif Ekind (Dynamic_Scope) = E_Task_Type then
return Get_Task_Body_Procedure (Dynamic_Scope);
elsif Ekind (Dynamic_Scope) = E_Limited_Private_Type
and then Present (Full_View (Dynamic_Scope))
and then Ekind (Full_View (Dynamic_Scope)) = E_Task_Type
then
return Get_Task_Body_Procedure (Full_View (Dynamic_Scope));
-- No body is generated if the protected operation is eliminated
elsif Convention (Dynamic_Scope) = Convention_Protected
and then not Is_Eliminated (Dynamic_Scope)
and then Present (Protected_Body_Subprogram (Dynamic_Scope))
then
return Protected_Body_Subprogram (Dynamic_Scope);
else
return Dynamic_Scope;
end if;
end Enclosing_Subprogram;
------------------------
-- Ensure_Freeze_Node --
------------------------
procedure Ensure_Freeze_Node (E : Entity_Id) is
FN : Node_Id;
begin
if No (Freeze_Node (E)) then
FN := Make_Freeze_Entity (Sloc (E));
Set_Has_Delayed_Freeze (E);
Set_Freeze_Node (E, FN);
Set_Access_Types_To_Process (FN, No_Elist);
Set_TSS_Elist (FN, No_Elist);
Set_Entity (FN, E);
end if;
end Ensure_Freeze_Node;
----------------
-- Enter_Name --
----------------
procedure Enter_Name (Def_Id : Entity_Id) is
C : constant Entity_Id := Current_Entity (Def_Id);
E : constant Entity_Id := Current_Entity_In_Scope (Def_Id);
S : constant Entity_Id := Current_Scope;
begin
Generate_Definition (Def_Id);
-- Add new name to current scope declarations. Check for duplicate
-- declaration, which may or may not be a genuine error.
if Present (E) then
-- Case of previous entity entered because of a missing declaration
-- or else a bad subtype indication. Best is to use the new entity,
-- and make the previous one invisible.
if Etype (E) = Any_Type then
Set_Is_Immediately_Visible (E, False);
-- Case of renaming declaration constructed for package instances.
-- if there is an explicit declaration with the same identifier,
-- the renaming is not immediately visible any longer, but remains
-- visible through selected component notation.
elsif Nkind (Parent (E)) = N_Package_Renaming_Declaration
and then not Comes_From_Source (E)
then
Set_Is_Immediately_Visible (E, False);
-- The new entity may be the package renaming, which has the same
-- same name as a generic formal which has been seen already.
elsif Nkind (Parent (Def_Id)) = N_Package_Renaming_Declaration
and then not Comes_From_Source (Def_Id)
then
Set_Is_Immediately_Visible (E, False);
-- For a fat pointer corresponding to a remote access to subprogram,
-- we use the same identifier as the RAS type, so that the proper
-- name appears in the stub. This type is only retrieved through
-- the RAS type and never by visibility, and is not added to the
-- visibility list (see below).
elsif Nkind (Parent (Def_Id)) = N_Full_Type_Declaration
and then Ekind (Def_Id) = E_Record_Type
and then Present (Corresponding_Remote_Type (Def_Id))
then
null;
-- Case of an implicit operation or derived literal. The new entity
-- hides the implicit one, which is removed from all visibility,
-- i.e. the entity list of its scope, and homonym chain of its name.
elsif (Is_Overloadable (E) and then Is_Inherited_Operation (E))
or else Is_Internal (E)
then
declare
Prev : Entity_Id;
Prev_Vis : Entity_Id;
Decl : constant Node_Id := Parent (E);
begin
-- If E is an implicit declaration, it cannot be the first
-- entity in the scope.
Prev := First_Entity (Current_Scope);
while Present (Prev) and then Next_Entity (Prev) /= E loop
Next_Entity (Prev);
end loop;
if No (Prev) then
-- If E is not on the entity chain of the current scope,
-- it is an implicit declaration in the generic formal
-- part of a generic subprogram. When analyzing the body,
-- the generic formals are visible but not on the entity
-- chain of the subprogram. The new entity will become
-- the visible one in the body.
pragma Assert
(Nkind (Parent (Decl)) = N_Generic_Subprogram_Declaration);
null;
else
Set_Next_Entity (Prev, Next_Entity (E));
if No (Next_Entity (Prev)) then
Set_Last_Entity (Current_Scope, Prev);
end if;
if E = Current_Entity (E) then
Prev_Vis := Empty;
else
Prev_Vis := Current_Entity (E);
while Homonym (Prev_Vis) /= E loop
Prev_Vis := Homonym (Prev_Vis);
end loop;
end if;
if Present (Prev_Vis) then
-- Skip E in the visibility chain
Set_Homonym (Prev_Vis, Homonym (E));
else
Set_Name_Entity_Id (Chars (E), Homonym (E));
end if;
end if;
end;
-- This section of code could use a comment ???
elsif Present (Etype (E))
and then Is_Concurrent_Type (Etype (E))
and then E = Def_Id
then
return;
-- If the homograph is a protected component renaming, it should not
-- be hiding the current entity. Such renamings are treated as weak
-- declarations.
elsif Is_Prival (E) then
Set_Is_Immediately_Visible (E, False);
-- In this case the current entity is a protected component renaming.
-- Perform minimal decoration by setting the scope and return since
-- the prival should not be hiding other visible entities.
elsif Is_Prival (Def_Id) then
Set_Scope (Def_Id, Current_Scope);
return;
-- Analogous to privals, the discriminal generated for an entry index
-- parameter acts as a weak declaration. Perform minimal decoration
-- to avoid bogus errors.
elsif Is_Discriminal (Def_Id)
and then Ekind (Discriminal_Link (Def_Id)) = E_Entry_Index_Parameter
then
Set_Scope (Def_Id, Current_Scope);
return;
-- In the body or private part of an instance, a type extension may
-- introduce a component with the same name as that of an actual. The
-- legality rule is not enforced, but the semantics of the full type
-- with two components of same name are not clear at this point???
elsif In_Instance_Not_Visible then
null;
-- When compiling a package body, some child units may have become
-- visible. They cannot conflict with local entities that hide them.
elsif Is_Child_Unit (E)
and then In_Open_Scopes (Scope (E))
and then not Is_Immediately_Visible (E)
then
null;
-- Conversely, with front-end inlining we may compile the parent body
-- first, and a child unit subsequently. The context is now the
-- parent spec, and body entities are not visible.
elsif Is_Child_Unit (Def_Id)
and then Is_Package_Body_Entity (E)
and then not In_Package_Body (Current_Scope)
then
null;
-- Case of genuine duplicate declaration
else
Error_Msg_Sloc := Sloc (E);
-- If the previous declaration is an incomplete type declaration
-- this may be an attempt to complete it with a private type. The
-- following avoids confusing cascaded errors.
if Nkind (Parent (E)) = N_Incomplete_Type_Declaration
and then Nkind (Parent (Def_Id)) = N_Private_Type_Declaration
then
Error_Msg_N
("incomplete type cannot be completed with a private " &
"declaration", Parent (Def_Id));
Set_Is_Immediately_Visible (E, False);
Set_Full_View (E, Def_Id);
-- An inherited component of a record conflicts with a new
-- discriminant. The discriminant is inserted first in the scope,
-- but the error should be posted on it, not on the component.
elsif Ekind (E) = E_Discriminant
and then Present (Scope (Def_Id))
and then Scope (Def_Id) /= Current_Scope
then
Error_Msg_Sloc := Sloc (Def_Id);
Error_Msg_N ("& conflicts with declaration#", E);
return;
-- If the name of the unit appears in its own context clause, a
-- dummy package with the name has already been created, and the
-- error emitted. Try to continue quietly.
elsif Error_Posted (E)
and then Sloc (E) = No_Location
and then Nkind (Parent (E)) = N_Package_Specification
and then Current_Scope = Standard_Standard
then
Set_Scope (Def_Id, Current_Scope);
return;
else
Error_Msg_N ("& conflicts with declaration#", Def_Id);
-- Avoid cascaded messages with duplicate components in
-- derived types.
if Ekind_In (E, E_Component, E_Discriminant) then
return;
end if;
end if;
if Nkind (Parent (Parent (Def_Id))) =
N_Generic_Subprogram_Declaration
and then Def_Id =
Defining_Entity (Specification (Parent (Parent (Def_Id))))
then
Error_Msg_N ("\generic units cannot be overloaded", Def_Id);
end if;
-- If entity is in standard, then we are in trouble, because it
-- means that we have a library package with a duplicated name.
-- That's hard to recover from, so abort.
if S = Standard_Standard then
raise Unrecoverable_Error;
-- Otherwise we continue with the declaration. Having two
-- identical declarations should not cause us too much trouble.
else
null;
end if;
end if;
end if;
-- If we fall through, declaration is OK, at least OK enough to continue
-- If Def_Id is a discriminant or a record component we are in the midst
-- of inheriting components in a derived record definition. Preserve
-- their Ekind and Etype.
if Ekind_In (Def_Id, E_Discriminant, E_Component) then
null;
-- If a type is already set, leave it alone (happens when a type
-- declaration is reanalyzed following a call to the optimizer).
elsif Present (Etype (Def_Id)) then
null;
-- Otherwise, the kind E_Void insures that premature uses of the entity
-- will be detected. Any_Type insures that no cascaded errors will occur
else
Set_Ekind (Def_Id, E_Void);
Set_Etype (Def_Id, Any_Type);
end if;
-- Inherited discriminants and components in derived record types are
-- immediately visible. Itypes are not.
-- Unless the Itype is for a record type with a corresponding remote
-- type (what is that about, it was not commented ???)
if Ekind_In (Def_Id, E_Discriminant, E_Component)
or else
((not Is_Record_Type (Def_Id)
or else No (Corresponding_Remote_Type (Def_Id)))
and then not Is_Itype (Def_Id))
then
Set_Is_Immediately_Visible (Def_Id);
Set_Current_Entity (Def_Id);
end if;
Set_Homonym (Def_Id, C);
Append_Entity (Def_Id, S);
Set_Public_Status (Def_Id);
-- Declaring a homonym is not allowed in SPARK ...
if Present (C) and then Restriction_Check_Required (SPARK_05) then
declare
Enclosing_Subp : constant Node_Id := Enclosing_Subprogram (Def_Id);
Enclosing_Pack : constant Node_Id := Enclosing_Package (Def_Id);
Other_Scope : constant Node_Id := Enclosing_Dynamic_Scope (C);
begin
-- ... unless the new declaration is in a subprogram, and the
-- visible declaration is a variable declaration or a parameter
-- specification outside that subprogram.
if Present (Enclosing_Subp)
and then Nkind_In (Parent (C), N_Object_Declaration,
N_Parameter_Specification)
and then not Scope_Within_Or_Same (Other_Scope, Enclosing_Subp)
then
null;
-- ... or the new declaration is in a package, and the visible
-- declaration occurs outside that package.
elsif Present (Enclosing_Pack)
and then not Scope_Within_Or_Same (Other_Scope, Enclosing_Pack)
then
null;
-- ... or the new declaration is a component declaration in a
-- record type definition.
elsif Nkind (Parent (Def_Id)) = N_Component_Declaration then
null;
-- Don't issue error for non-source entities
elsif Comes_From_Source (Def_Id)
and then Comes_From_Source (C)
then
Error_Msg_Sloc := Sloc (C);
Check_SPARK_05_Restriction
("redeclaration of identifier &#", Def_Id);
end if;
end;
end if;
-- Warn if new entity hides an old one
if Warn_On_Hiding and then Present (C)
-- Don't warn for record components since they always have a well
-- defined scope which does not confuse other uses. Note that in
-- some cases, Ekind has not been set yet.
and then Ekind (C) /= E_Component
and then Ekind (C) /= E_Discriminant
and then Nkind (Parent (C)) /= N_Component_Declaration
and then Ekind (Def_Id) /= E_Component
and then Ekind (Def_Id) /= E_Discriminant
and then Nkind (Parent (Def_Id)) /= N_Component_Declaration
-- Don't warn for one character variables. It is too common to use
-- such variables as locals and will just cause too many false hits.
and then Length_Of_Name (Chars (C)) /= 1
-- Don't warn for non-source entities
and then Comes_From_Source (C)
and then Comes_From_Source (Def_Id)
-- Don't warn unless entity in question is in extended main source
and then In_Extended_Main_Source_Unit (Def_Id)
-- Finally, the hidden entity must be either immediately visible or
-- use visible (i.e. from a used package).
and then
(Is_Immediately_Visible (C)
or else
Is_Potentially_Use_Visible (C))
then
Error_Msg_Sloc := Sloc (C);
Error_Msg_N ("declaration hides &#?h?", Def_Id);
end if;
end Enter_Name;
---------------
-- Entity_Of --
---------------
function Entity_Of (N : Node_Id) return Entity_Id is
Id : Entity_Id;
begin
Id := Empty;
if Is_Entity_Name (N) then
Id := Entity (N);
-- Follow a possible chain of renamings to reach the root renamed
-- object.
while Present (Id) and then Present (Renamed_Object (Id)) loop
if Is_Entity_Name (Renamed_Object (Id)) then
Id := Entity (Renamed_Object (Id));
else
Id := Empty;
exit;
end if;
end loop;
end if;
return Id;
end Entity_Of;
--------------------------
-- Explain_Limited_Type --
--------------------------
procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id) is
C : Entity_Id;
begin
-- For array, component type must be limited
if Is_Array_Type (T) then
Error_Msg_Node_2 := T;
Error_Msg_NE
("\component type& of type& is limited", N, Component_Type (T));
Explain_Limited_Type (Component_Type (T), N);
elsif Is_Record_Type (T) then
-- No need for extra messages if explicit limited record
if Is_Limited_Record (Base_Type (T)) then
return;
end if;
-- Otherwise find a limited component. Check only components that
-- come from source, or inherited components that appear in the
-- source of the ancestor.
C := First_Component (T);
while Present (C) loop
if Is_Limited_Type (Etype (C))
and then
(Comes_From_Source (C)
or else
(Present (Original_Record_Component (C))
and then
Comes_From_Source (Original_Record_Component (C))))
then
Error_Msg_Node_2 := T;
Error_Msg_NE ("\component& of type& has limited type", N, C);
Explain_Limited_Type (Etype (C), N);
return;
end if;
Next_Component (C);
end loop;
-- The type may be declared explicitly limited, even if no component
-- of it is limited, in which case we fall out of the loop.
return;
end if;
end Explain_Limited_Type;
-------------------------------
-- Extensions_Visible_Status --
-------------------------------
function Extensions_Visible_Status
(Id : Entity_Id) return Extensions_Visible_Mode
is
Arg : Node_Id;
Decl : Node_Id;
Expr : Node_Id;
Prag : Node_Id;
Subp : Entity_Id;
begin
-- When a formal parameter is subject to Extensions_Visible, the pragma
-- is stored in the contract of related subprogram.
if Is_Formal (Id) then
Subp := Scope (Id);
elsif Is_Subprogram_Or_Generic_Subprogram (Id) then
Subp := Id;
-- No other construct carries this pragma
else
return Extensions_Visible_None;
end if;
Prag := Get_Pragma (Subp, Pragma_Extensions_Visible);
-- In certain cases analysis may request the Extensions_Visible status
-- of an expression function before the pragma has been analyzed yet.
-- Inspect the declarative items after the expression function looking
-- for the pragma (if any).
if No (Prag) and then Is_Expression_Function (Subp) then
Decl := Next (Unit_Declaration_Node (Subp));
while Present (Decl) loop
if Nkind (Decl) = N_Pragma
and then Pragma_Name (Decl) = Name_Extensions_Visible
then
Prag := Decl;
exit;
-- A source construct ends the region where Extensions_Visible may
-- appear, stop the traversal. An expanded expression function is
-- no longer a source construct, but it must still be recognized.
elsif Comes_From_Source (Decl)
or else
(Nkind_In (Decl, N_Subprogram_Body,
N_Subprogram_Declaration)
and then Is_Expression_Function (Defining_Entity (Decl)))
then
exit;
end if;
Next (Decl);
end loop;
end if;
-- Extract the value from the Boolean expression (if any)
if Present (Prag) then
Arg := First (Pragma_Argument_Associations (Prag));
if Present (Arg) then
Expr := Get_Pragma_Arg (Arg);
-- When the associated subprogram is an expression function, the
-- argument of the pragma may not have been analyzed.
if not Analyzed (Expr) then
Preanalyze_And_Resolve (Expr, Standard_Boolean);
end if;
-- Guard against cascading errors when the argument of pragma
-- Extensions_Visible is not a valid static Boolean expression.
if Error_Posted (Expr) then
return Extensions_Visible_None;
elsif Is_True (Expr_Value (Expr)) then
return Extensions_Visible_True;
else
return Extensions_Visible_False;
end if;
-- Otherwise the aspect or pragma defaults to True
else
return Extensions_Visible_True;
end if;
-- Otherwise aspect or pragma Extensions_Visible is not inherited or
-- directly specified. In SPARK code, its value defaults to "False".
elsif SPARK_Mode = On then
return Extensions_Visible_False;
-- In non-SPARK code, aspect or pragma Extensions_Visible defaults to
-- "True".
else
return Extensions_Visible_True;
end if;
end Extensions_Visible_Status;
-----------------
-- Find_Actual --
-----------------
procedure Find_Actual
(N : Node_Id;
Formal : out Entity_Id;
Call : out Node_Id)
is
Parnt : constant Node_Id := Parent (N);
Actual : Node_Id;
begin
if Nkind_In (Parnt, N_Indexed_Component, N_Selected_Component)
and then N = Prefix (Parnt)
then
Find_Actual (Parnt, Formal, Call);
return;
elsif Nkind (Parnt) = N_Parameter_Association
and then N = Explicit_Actual_Parameter (Parnt)
then
Call := Parent (Parnt);
elsif Nkind (Parnt) in N_Subprogram_Call then
Call := Parnt;
else
Formal := Empty;
Call := Empty;
return;
end if;
-- If we have a call to a subprogram look for the parameter. Note that
-- we exclude overloaded calls, since we don't know enough to be sure
-- of giving the right answer in this case.
if Nkind_In (Call, N_Function_Call, N_Procedure_Call_Statement)
and then Is_Entity_Name (Name (Call))
and then Present (Entity (Name (Call)))
and then Is_Overloadable (Entity (Name (Call)))
and then not Is_Overloaded (Name (Call))
then
-- If node is name in call it is not an actual
if N = Name (Call) then
Call := Empty;
Formal := Empty;
return;
end if;
-- Fall here if we are definitely a parameter
Actual := First_Actual (Call);
Formal := First_Formal (Entity (Name (Call)));
while Present (Formal) and then Present (Actual) loop
if Actual = N then
return;
-- An actual that is the prefix in a prefixed call may have
-- been rewritten in the call, after the deferred reference
-- was collected. Check if sloc and kinds and names match.
elsif Sloc (Actual) = Sloc (N)
and then Nkind (Actual) = N_Identifier
and then Nkind (Actual) = Nkind (N)
and then Chars (Actual) = Chars (N)
then
return;
else
Actual := Next_Actual (Actual);
Formal := Next_Formal (Formal);
end if;
end loop;
end if;
-- Fall through here if we did not find matching actual
Formal := Empty;
Call := Empty;
end Find_Actual;
---------------------------
-- Find_Body_Discriminal --
---------------------------
function Find_Body_Discriminal
(Spec_Discriminant : Entity_Id) return Entity_Id
is
Tsk : Entity_Id;
Disc : Entity_Id;
begin
-- If expansion is suppressed, then the scope can be the concurrent type
-- itself rather than a corresponding concurrent record type.
if Is_Concurrent_Type (Scope (Spec_Discriminant)) then
Tsk := Scope (Spec_Discriminant);
else
pragma Assert (Is_Concurrent_Record_Type (Scope (Spec_Discriminant)));
Tsk := Corresponding_Concurrent_Type (Scope (Spec_Discriminant));
end if;
-- Find discriminant of original concurrent type, and use its current
-- discriminal, which is the renaming within the task/protected body.
Disc := First_Discriminant (Tsk);
while Present (Disc) loop
if Chars (Disc) = Chars (Spec_Discriminant) then
return Discriminal (Disc);
end if;
Next_Discriminant (Disc);
end loop;
-- That loop should always succeed in finding a matching entry and
-- returning. Fatal error if not.
raise Program_Error;
end Find_Body_Discriminal;
-------------------------------------
-- Find_Corresponding_Discriminant --
-------------------------------------
function Find_Corresponding_Discriminant
(Id : Node_Id;
Typ : Entity_Id) return Entity_Id
is
Par_Disc : Entity_Id;
Old_Disc : Entity_Id;
New_Disc : Entity_Id;
begin
Par_Disc := Original_Record_Component (Original_Discriminant (Id));
-- The original type may currently be private, and the discriminant
-- only appear on its full view.
if Is_Private_Type (Scope (Par_Disc))
and then not Has_Discriminants (Scope (Par_Disc))
and then Present (Full_View (Scope (Par_Disc)))
then
Old_Disc := First_Discriminant (Full_View (Scope (Par_Disc)));
else
Old_Disc := First_Discriminant (Scope (Par_Disc));
end if;
if Is_Class_Wide_Type (Typ) then
New_Disc := First_Discriminant (Root_Type (Typ));
else
New_Disc := First_Discriminant (Typ);
end if;
while Present (Old_Disc) and then Present (New_Disc) loop
if Old_Disc = Par_Disc then
return New_Disc;
end if;
Next_Discriminant (Old_Disc);
Next_Discriminant (New_Disc);
end loop;
-- Should always find it
raise Program_Error;
end Find_Corresponding_Discriminant;
----------------------------------
-- Find_Enclosing_Iterator_Loop --
----------------------------------
function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id is
Constr : Node_Id;
S : Entity_Id;
begin
-- Traverse the scope chain looking for an iterator loop. Such loops are
-- usually transformed into blocks, hence the use of Original_Node.
S := Id;
while Present (S) and then S /= Standard_Standard loop
if Ekind (S) = E_Loop
and then Nkind (Parent (S)) = N_Implicit_Label_Declaration
then
Constr := Original_Node (Label_Construct (Parent (S)));
if Nkind (Constr) = N_Loop_Statement
and then Present (Iteration_Scheme (Constr))
and then Nkind (Iterator_Specification
(Iteration_Scheme (Constr))) =
N_Iterator_Specification
then
return S;
end if;
end if;
S := Scope (S);
end loop;
return Empty;
end Find_Enclosing_Iterator_Loop;
------------------------------------
-- Find_Loop_In_Conditional_Block --
------------------------------------
function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id is
Stmt : Node_Id;
begin
Stmt := N;
if Nkind (Stmt) = N_If_Statement then
Stmt := First (Then_Statements (Stmt));
end if;
pragma Assert (Nkind (Stmt) = N_Block_Statement);
-- Inspect the statements of the conditional block. In general the loop
-- should be the first statement in the statement sequence of the block,
-- but the finalization machinery may have introduced extra object
-- declarations.
Stmt := First (Statements (Handled_Statement_Sequence (Stmt)));
while Present (Stmt) loop
if Nkind (Stmt) = N_Loop_Statement then
return Stmt;
end if;
Next (Stmt);
end loop;
-- The expansion of attribute 'Loop_Entry produced a malformed block
raise Program_Error;
end Find_Loop_In_Conditional_Block;
--------------------------
-- Find_Overlaid_Entity --
--------------------------
procedure Find_Overlaid_Entity
(N : Node_Id;
Ent : out Entity_Id;
Off : out Boolean)
is
Expr : Node_Id;
begin
-- We are looking for one of the two following forms:
-- for X'Address use Y'Address
-- or
-- Const : constant Address := expr;
-- ...
-- for X'Address use Const;
-- In the second case, the expr is either Y'Address, or recursively a
-- constant that eventually references Y'Address.
Ent := Empty;
Off := False;
if Nkind (N) = N_Attribute_Definition_Clause
and then Chars (N) = Name_Address
then
Expr := Expression (N);
-- This loop checks the form of the expression for Y'Address,
-- using recursion to deal with intermediate constants.
loop
-- Check for Y'Address
if Nkind (Expr) = N_Attribute_Reference
and then Attribute_Name (Expr) = Name_Address
then
Expr := Prefix (Expr);
exit;
-- Check for Const where Const is a constant entity
elsif Is_Entity_Name (Expr)
and then Ekind (Entity (Expr)) = E_Constant
then
Expr := Constant_Value (Entity (Expr));
-- Anything else does not need checking
else
return;
end if;
end loop;
-- This loop checks the form of the prefix for an entity, using
-- recursion to deal with intermediate components.
loop
-- Check for Y where Y is an entity
if Is_Entity_Name (Expr) then
Ent := Entity (Expr);
return;
-- Check for components
elsif
Nkind_In (Expr, N_Selected_Component, N_Indexed_Component)
then
Expr := Prefix (Expr);
Off := True;
-- Anything else does not need checking
else
return;
end if;
end loop;
end if;
end Find_Overlaid_Entity;
-------------------------
-- Find_Parameter_Type --
-------------------------
function Find_Parameter_Type (Param : Node_Id) return Entity_Id is
begin
if Nkind (Param) /= N_Parameter_Specification then
return Empty;
-- For an access parameter, obtain the type from the formal entity
-- itself, because access to subprogram nodes do not carry a type.
-- Shouldn't we always use the formal entity ???
elsif Nkind (Parameter_Type (Param)) = N_Access_Definition then
return Etype (Defining_Identifier (Param));
else
return Etype (Parameter_Type (Param));
end if;
end Find_Parameter_Type;
-----------------------------------
-- Find_Placement_In_State_Space --
-----------------------------------
procedure Find_Placement_In_State_Space
(Item_Id : Entity_Id;
Placement : out State_Space_Kind;
Pack_Id : out Entity_Id)
is
Context : Entity_Id;
begin
-- Assume that the item does not appear in the state space of a package
Placement := Not_In_Package;
Pack_Id := Empty;
-- Climb the scope stack and examine the enclosing context
Context := Scope (Item_Id);
while Present (Context) and then Context /= Standard_Standard loop
if Ekind (Context) = E_Package then
Pack_Id := Context;
-- A package body is a cut off point for the traversal as the item
-- cannot be visible to the outside from this point on. Note that
-- this test must be done first as a body is also classified as a
-- private part.
if In_Package_Body (Context) then
Placement := Body_State_Space;
return;
-- The private part of a package is a cut off point for the
-- traversal as the item cannot be visible to the outside from
-- this point on.
elsif In_Private_Part (Context) then
Placement := Private_State_Space;
return;
-- When the item appears in the visible state space of a package,
-- continue to climb the scope stack as this may not be the final
-- state space.
else
Placement := Visible_State_Space;
-- The visible state space of a child unit acts as the proper
-- placement of an item.
if Is_Child_Unit (Context) then
return;
end if;
end if;
-- The item or its enclosing package appear in a construct that has
-- no state space.
else
Placement := Not_In_Package;
return;
end if;
Context := Scope (Context);
end loop;
end Find_Placement_In_State_Space;
------------------------
-- Find_Specific_Type --
------------------------
function Find_Specific_Type (CW : Entity_Id) return Entity_Id is
Typ : Entity_Id := Root_Type (CW);
begin
if Ekind (Typ) = E_Incomplete_Type then
if From_Limited_With (Typ) then
Typ := Non_Limited_View (Typ);
else
Typ := Full_View (Typ);
end if;
end if;
if Is_Private_Type (Typ)
and then not Is_Tagged_Type (Typ)
and then Present (Full_View (Typ))
then
return Full_View (Typ);
else
return Typ;
end if;
end Find_Specific_Type;
-----------------------------
-- Find_Static_Alternative --
-----------------------------
function Find_Static_Alternative (N : Node_Id) return Node_Id is
Expr : constant Node_Id := Expression (N);
Val : constant Uint := Expr_Value (Expr);
Alt : Node_Id;
Choice : Node_Id;
begin
Alt := First (Alternatives (N));
Search : loop
if Nkind (Alt) /= N_Pragma then
Choice := First (Discrete_Choices (Alt));
while Present (Choice) loop
-- Others choice, always matches
if Nkind (Choice) = N_Others_Choice then
exit Search;
-- Range, check if value is in the range
elsif Nkind (Choice) = N_Range then
exit Search when
Val >= Expr_Value (Low_Bound (Choice))
and then
Val <= Expr_Value (High_Bound (Choice));
-- Choice is a subtype name. Note that we know it must
-- be a static subtype, since otherwise it would have
-- been diagnosed as illegal.
elsif Is_Entity_Name (Choice)
and then Is_Type (Entity (Choice))
then
exit Search when Is_In_Range (Expr, Etype (Choice),
Assume_Valid => False);
-- Choice is a subtype indication
elsif Nkind (Choice) = N_Subtype_Indication then
declare
C : constant Node_Id := Constraint (Choice);
R : constant Node_Id := Range_Expression (C);
begin
exit Search when
Val >= Expr_Value (Low_Bound (R))
and then
Val <= Expr_Value (High_Bound (R));
end;
-- Choice is a simple expression
else
exit Search when Val = Expr_Value (Choice);
end if;
Next (Choice);
end loop;
end if;
Next (Alt);
pragma Assert (Present (Alt));
end loop Search;
-- The above loop *must* terminate by finding a match, since
-- we know the case statement is valid, and the value of the
-- expression is known at compile time. When we fall out of
-- the loop, Alt points to the alternative that we know will
-- be selected at run time.
return Alt;
end Find_Static_Alternative;
------------------
-- First_Actual --
------------------
function First_Actual (Node : Node_Id) return Node_Id is
N : Node_Id;
begin
if No (Parameter_Associations (Node)) then
return Empty;
end if;
N := First (Parameter_Associations (Node));
if Nkind (N) = N_Parameter_Association then
return First_Named_Actual (Node);
else
return N;
end if;
end First_Actual;
-----------------------
-- Gather_Components --
-----------------------
procedure Gather_Components
(Typ : Entity_Id;
Comp_List : Node_Id;
Governed_By : List_Id;
Into : Elist_Id;
Report_Errors : out Boolean)
is
Assoc : Node_Id;
Variant : Node_Id;
Discrete_Choice : Node_Id;
Comp_Item : Node_Id;
Discrim : Entity_Id;
Discrim_Name : Node_Id;
Discrim_Value : Node_Id;
begin
Report_Errors := False;
if No (Comp_List) or else Null_Present (Comp_List) then
return;
elsif Present (Component_Items (Comp_List)) then
Comp_Item := First (Component_Items (Comp_List));
else
Comp_Item := Empty;
end if;
while Present (Comp_Item) loop
-- Skip the tag of a tagged record, the interface tags, as well
-- as all items that are not user components (anonymous types,
-- rep clauses, Parent field, controller field).
if Nkind (Comp_Item) = N_Component_Declaration then
declare
Comp : constant Entity_Id := Defining_Identifier (Comp_Item);
begin
if not Is_Tag (Comp) and then Chars (Comp) /= Name_uParent then
Append_Elmt (Comp, Into);
end if;
end;
end if;
Next (Comp_Item);
end loop;
if No (Variant_Part (Comp_List)) then
return;
else
Discrim_Name := Name (Variant_Part (Comp_List));
Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
end if;
-- Look for the discriminant that governs this variant part.
-- The discriminant *must* be in the Governed_By List
Assoc := First (Governed_By);
Find_Constraint : loop
Discrim := First (Choices (Assoc));
exit Find_Constraint when Chars (Discrim_Name) = Chars (Discrim)
or else (Present (Corresponding_Discriminant (Entity (Discrim)))
and then
Chars (Corresponding_Discriminant (Entity (Discrim))) =
Chars (Discrim_Name))
or else Chars (Original_Record_Component (Entity (Discrim)))
= Chars (Discrim_Name);
if No (Next (Assoc)) then
if not Is_Constrained (Typ)
and then Is_Derived_Type (Typ)
and then Present (Stored_Constraint (Typ))
then
-- If the type is a tagged type with inherited discriminants,
-- use the stored constraint on the parent in order to find
-- the values of discriminants that are otherwise hidden by an
-- explicit constraint. Renamed discriminants are handled in
-- the code above.
-- If several parent discriminants are renamed by a single
-- discriminant of the derived type, the call to obtain the
-- Corresponding_Discriminant field only retrieves the last
-- of them. We recover the constraint on the others from the
-- Stored_Constraint as well.
declare
D : Entity_Id;
C : Elmt_Id;
begin
D := First_Discriminant (Etype (Typ));
C := First_Elmt (Stored_Constraint (Typ));
while Present (D) and then Present (C) loop
if Chars (Discrim_Name) = Chars (D) then
if Is_Entity_Name (Node (C))
and then Entity (Node (C)) = Entity (Discrim)
then
-- D is renamed by Discrim, whose value is given in
-- Assoc.
null;
else
Assoc :=
Make_Component_Association (Sloc (Typ),
New_List
(New_Occurrence_Of (D, Sloc (Typ))),
Duplicate_Subexpr_No_Checks (Node (C)));
end if;
exit Find_Constraint;
end if;
Next_Discriminant (D);
Next_Elmt (C);
end loop;
end;
end if;
end if;
if No (Next (Assoc)) then
Error_Msg_NE (" missing value for discriminant&",
First (Governed_By), Discrim_Name);
Report_Errors := True;
return;
end if;
Next (Assoc);
end loop Find_Constraint;
Discrim_Value := Expression (Assoc);
if not Is_OK_Static_Expression (Discrim_Value) then
-- If the variant part is governed by a discriminant of the type
-- this is an error. If the variant part and the discriminant are
-- inherited from an ancestor this is legal (AI05-120) unless the
-- components are being gathered for an aggregate, in which case
-- the caller must check Report_Errors.
if Scope (Original_Record_Component
((Entity (First (Choices (Assoc)))))) = Typ
then
Error_Msg_FE
("value for discriminant & must be static!",
Discrim_Value, Discrim);
Why_Not_Static (Discrim_Value);
end if;
Report_Errors := True;
return;
end if;
Search_For_Discriminant_Value : declare
Low : Node_Id;
High : Node_Id;
UI_High : Uint;
UI_Low : Uint;
UI_Discrim_Value : constant Uint := Expr_Value (Discrim_Value);
begin
Find_Discrete_Value : while Present (Variant) loop
Discrete_Choice := First (Discrete_Choices (Variant));
while Present (Discrete_Choice) loop
exit Find_Discrete_Value when
Nkind (Discrete_Choice) = N_Others_Choice;
Get_Index_Bounds (Discrete_Choice, Low, High);
UI_Low := Expr_Value (Low);
UI_High := Expr_Value (High);
exit Find_Discrete_Value when
UI_Low <= UI_Discrim_Value
and then
UI_High >= UI_Discrim_Value;
Next (Discrete_Choice);
end loop;
Next_Non_Pragma (Variant);
end loop Find_Discrete_Value;
end Search_For_Discriminant_Value;
if No (Variant) then
Error_Msg_NE
("value of discriminant & is out of range", Discrim_Value, Discrim);
Report_Errors := True;
return;
end if;
-- If we have found the corresponding choice, recursively add its
-- components to the Into list.
Gather_Components
(Empty, Component_List (Variant), Governed_By, Into, Report_Errors);
end Gather_Components;
------------------------
-- Get_Actual_Subtype --
------------------------
function Get_Actual_Subtype (N : Node_Id) return Entity_Id is
Typ : constant Entity_Id := Etype (N);
Utyp : Entity_Id := Underlying_Type (Typ);
Decl : Node_Id;
Atyp : Entity_Id;
begin
if No (Utyp) then
Utyp := Typ;
end if;
-- If what we have is an identifier that references a subprogram
-- formal, or a variable or constant object, then we get the actual
-- subtype from the referenced entity if one has been built.
if Nkind (N) = N_Identifier
and then
(Is_Formal (Entity (N))
or else Ekind (Entity (N)) = E_Constant
or else Ekind (Entity (N)) = E_Variable)
and then Present (Actual_Subtype (Entity (N)))
then
return Actual_Subtype (Entity (N));
-- Actual subtype of unchecked union is always itself. We never need
-- the "real" actual subtype. If we did, we couldn't get it anyway
-- because the discriminant is not available. The restrictions on
-- Unchecked_Union are designed to make sure that this is OK.
elsif Is_Unchecked_Union (Base_Type (Utyp)) then
return Typ;
-- Here for the unconstrained case, we must find actual subtype
-- No actual subtype is available, so we must build it on the fly.
-- Checking the type, not the underlying type, for constrainedness
-- seems to be necessary. Maybe all the tests should be on the type???
elsif (not Is_Constrained (Typ))
and then (Is_Array_Type (Utyp)
or else (Is_Record_Type (Utyp)
and then Has_Discriminants (Utyp)))
and then not Has_Unknown_Discriminants (Utyp)
and then not (Ekind (Utyp) = E_String_Literal_Subtype)
then
-- Nothing to do if in spec expression (why not???)
if In_Spec_Expression then
return Typ;
elsif Is_Private_Type (Typ) and then not Has_Discriminants (Typ) then
-- If the type has no discriminants, there is no subtype to
-- build, even if the underlying type is discriminated.
return Typ;
-- Else build the actual subtype
else
Decl := Build_Actual_Subtype (Typ, N);
Atyp := Defining_Identifier (Decl);
-- If Build_Actual_Subtype generated a new declaration then use it
if Atyp /= Typ then
-- The actual subtype is an Itype, so analyze the declaration,
-- but do not attach it to the tree, to get the type defined.
Set_Parent (Decl, N);
Set_Is_Itype (Atyp);
Analyze (Decl, Suppress => All_Checks);
Set_Associated_Node_For_Itype (Atyp, N);
Set_Has_Delayed_Freeze (Atyp, False);
-- We need to freeze the actual subtype immediately. This is
-- needed, because otherwise this Itype will not get frozen
-- at all, and it is always safe to freeze on creation because
-- any associated types must be frozen at this point.
Freeze_Itype (Atyp, N);
return Atyp;
-- Otherwise we did not build a declaration, so return original
else
return Typ;
end if;
end if;
-- For all remaining cases, the actual subtype is the same as
-- the nominal type.
else
return Typ;
end if;
end Get_Actual_Subtype;
-------------------------------------
-- Get_Actual_Subtype_If_Available --
-------------------------------------
function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id is
Typ : constant Entity_Id := Etype (N);
begin
-- If what we have is an identifier that references a subprogram
-- formal, or a variable or constant object, then we get the actual
-- subtype from the referenced entity if one has been built.
if Nkind (N) = N_Identifier
and then
(Is_Formal (Entity (N))
or else Ekind (Entity (N)) = E_Constant
or else Ekind (Entity (N)) = E_Variable)
and then Present (Actual_Subtype (Entity (N)))
then
return Actual_Subtype (Entity (N));
-- Otherwise the Etype of N is returned unchanged
else
return Typ;
end if;
end Get_Actual_Subtype_If_Available;
------------------------
-- Get_Body_From_Stub --
------------------------
function Get_Body_From_Stub (N : Node_Id) return Node_Id is
begin
return Proper_Body (Unit (Library_Unit (N)));
end Get_Body_From_Stub;
---------------------
-- Get_Cursor_Type --
---------------------
function Get_Cursor_Type
(Aspect : Node_Id;
Typ : Entity_Id) return Entity_Id
is
Assoc : Node_Id;
Func : Entity_Id;
First_Op : Entity_Id;
Cursor : Entity_Id;
begin
-- If error already detected, return
if Error_Posted (Aspect) then
return Any_Type;
end if;
-- The cursor type for an Iterable aspect is the return type of a
-- non-overloaded First primitive operation. Locate association for
-- First.
Assoc := First (Component_Associations (Expression (Aspect)));
First_Op := Any_Id;
while Present (Assoc) loop
if Chars (First (Choices (Assoc))) = Name_First then
First_Op := Expression (Assoc);
exit;
end if;
Next (Assoc);
end loop;
if First_Op = Any_Id then
Error_Msg_N ("aspect Iterable must specify First operation", Aspect);
return Any_Type;
end if;
Cursor := Any_Type;
-- Locate function with desired name and profile in scope of type
Func := First_Entity (Scope (Typ));
while Present (Func) loop
if Chars (Func) = Chars (First_Op)
and then Ekind (Func) = E_Function
and then Present (First_Formal (Func))
and then Etype (First_Formal (Func)) = Typ
and then No (Next_Formal (First_Formal (Func)))
then
if Cursor /= Any_Type then
Error_Msg_N
("Operation First for iterable type must be unique", Aspect);
return Any_Type;
else
Cursor := Etype (Func);
end if;
end if;
Next_Entity (Func);
end loop;
-- If not found, no way to resolve remaining primitives.
if Cursor = Any_Type then
Error_Msg_N
("No legal primitive operation First for Iterable type", Aspect);
end if;
return Cursor;
end Get_Cursor_Type;
-------------------------------
-- Get_Default_External_Name --
-------------------------------
function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id is
begin
Get_Decoded_Name_String (Chars (E));
if Opt.External_Name_Imp_Casing = Uppercase then
Set_Casing (All_Upper_Case);
else
Set_Casing (All_Lower_Case);
end if;
return
Make_String_Literal (Sloc (E),
Strval => String_From_Name_Buffer);
end Get_Default_External_Name;
--------------------------
-- Get_Enclosing_Object --
--------------------------
function Get_Enclosing_Object (N : Node_Id) return Entity_Id is
begin
if Is_Entity_Name (N) then
return Entity (N);
else
case Nkind (N) is
when N_Indexed_Component |
N_Slice |
N_Selected_Component =>
-- If not generating code, a dereference may be left implicit.
-- In thoses cases, return Empty.
if Is_Access_Type (Etype (Prefix (N))) then
return Empty;
else
return Get_Enclosing_Object (Prefix (N));
end if;
when N_Type_Conversion =>
return Get_Enclosing_Object (Expression (N));
when others =>
return Empty;
end case;
end if;
end Get_Enclosing_Object;
---------------------------
-- Get_Enum_Lit_From_Pos --
---------------------------
function Get_Enum_Lit_From_Pos
(T : Entity_Id;
Pos : Uint;
Loc : Source_Ptr) return Node_Id
is
Btyp : Entity_Id := Base_Type (T);
Lit : Node_Id;
begin
-- In the case where the literal is of type Character, Wide_Character
-- or Wide_Wide_Character or of a type derived from them, there needs
-- to be some special handling since there is no explicit chain of
-- literals to search. Instead, an N_Character_Literal node is created
-- with the appropriate Char_Code and Chars fields.
if Is_Standard_Character_Type (T) then
Set_Character_Literal_Name (UI_To_CC (Pos));
return
Make_Character_Literal (Loc,
Chars => Name_Find,
Char_Literal_Value => Pos);
-- For all other cases, we have a complete table of literals, and
-- we simply iterate through the chain of literal until the one
-- with the desired position value is found.
else
if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
Btyp := Full_View (Btyp);
end if;
Lit := First_Literal (Btyp);
for J in 1 .. UI_To_Int (Pos) loop
Next_Literal (Lit);
end loop;
return New_Occurrence_Of (Lit, Loc);
end if;
end Get_Enum_Lit_From_Pos;
------------------------
-- Get_Generic_Entity --
------------------------
function Get_Generic_Entity (N : Node_Id) return Entity_Id is
Ent : constant Entity_Id := Entity (Name (N));
begin
if Present (Renamed_Object (Ent)) then
return Renamed_Object (Ent);
else
return Ent;
end if;
end Get_Generic_Entity;
-------------------------------------
-- Get_Incomplete_View_Of_Ancestor --
-------------------------------------
function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id is
Cur_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
Par_Scope : Entity_Id;
Par_Type : Entity_Id;
begin
-- The incomplete view of an ancestor is only relevant for private
-- derived types in child units.
if not Is_Derived_Type (E)
or else not Is_Child_Unit (Cur_Unit)
then
return Empty;
else
Par_Scope := Scope (Cur_Unit);
if No (Par_Scope) then
return Empty;
end if;
Par_Type := Etype (Base_Type (E));
-- Traverse list of ancestor types until we find one declared in
-- a parent or grandparent unit (two levels seem sufficient).
while Present (Par_Type) loop
if Scope (Par_Type) = Par_Scope
or else Scope (Par_Type) = Scope (Par_Scope)
then
return Par_Type;
elsif not Is_Derived_Type (Par_Type) then
return Empty;
else
Par_Type := Etype (Base_Type (Par_Type));
end if;
end loop;
-- If none found, there is no relevant ancestor type.
return Empty;
end if;
end Get_Incomplete_View_Of_Ancestor;
----------------------
-- Get_Index_Bounds --
----------------------
procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id) is
Kind : constant Node_Kind := Nkind (N);
R : Node_Id;
begin
if Kind = N_Range then
L := Low_Bound (N);
H := High_Bound (N);
elsif Kind = N_Subtype_Indication then
R := Range_Expression (Constraint (N));
if R = Error then
L := Error;
H := Error;
return;
else
L := Low_Bound (Range_Expression (Constraint (N)));
H := High_Bound (Range_Expression (Constraint (N)));
end if;
elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then
if Error_Posted (Scalar_Range (Entity (N))) then
L := Error;
H := Error;
elsif Nkind (Scalar_Range (Entity (N))) = N_Subtype_Indication then
Get_Index_Bounds (Scalar_Range (Entity (N)), L, H);
else
L := Low_Bound (Scalar_Range (Entity (N)));
H := High_Bound (Scalar_Range (Entity (N)));
end if;
else
-- N is an expression, indicating a range with one value
L := N;
H := N;
end if;
end Get_Index_Bounds;
---------------------------------
-- Get_Iterable_Type_Primitive --
---------------------------------
function Get_Iterable_Type_Primitive
(Typ : Entity_Id;
Nam : Name_Id) return Entity_Id
is
Funcs : constant Node_Id := Find_Value_Of_Aspect (Typ, Aspect_Iterable);
Assoc : Node_Id;
begin
if No (Funcs) then
return Empty;
else
Assoc := First (Component_Associations (Funcs));
while Present (Assoc) loop
if Chars (First (Choices (Assoc))) = Nam then
return Entity (Expression (Assoc));
end if;
Assoc := Next (Assoc);
end loop;
return Empty;
end if;
end Get_Iterable_Type_Primitive;
----------------------------------
-- Get_Library_Unit_Name_string --
----------------------------------
procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id) is
Unit_Name_Id : constant Unit_Name_Type := Get_Unit_Name (Decl_Node);
begin
Get_Unit_Name_String (Unit_Name_Id);
-- Remove seven last character (" (spec)" or " (body)")
Name_Len := Name_Len - 7;
pragma Assert (Name_Buffer (Name_Len + 1) = ' ');
end Get_Library_Unit_Name_String;
------------------------
-- Get_Name_Entity_Id --
------------------------
function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id is
begin
return Entity_Id (Get_Name_Table_Int (Id));
end Get_Name_Entity_Id;
------------------------------
-- Get_Name_From_CTC_Pragma --
------------------------------
function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id is
Arg : constant Node_Id :=
Get_Pragma_Arg (First (Pragma_Argument_Associations (N)));
begin
return Strval (Expr_Value_S (Arg));
end Get_Name_From_CTC_Pragma;
-----------------------
-- Get_Parent_Entity --
-----------------------
function Get_Parent_Entity (Unit : Node_Id) return Entity_Id is
begin
if Nkind (Unit) = N_Package_Body
and then Nkind (Original_Node (Unit)) = N_Package_Instantiation
then
return Defining_Entity
(Specification (Instance_Spec (Original_Node (Unit))));
elsif Nkind (Unit) = N_Package_Instantiation then
return Defining_Entity (Specification (Instance_Spec (Unit)));
else
return Defining_Entity (Unit);
end if;
end Get_Parent_Entity;
-------------------
-- Get_Pragma_Id --
-------------------
function Get_Pragma_Id (N : Node_Id) return Pragma_Id is
begin
return Get_Pragma_Id (Pragma_Name (N));
end Get_Pragma_Id;
-----------------------
-- Get_Reason_String --
-----------------------
procedure Get_Reason_String (N : Node_Id) is
begin
if Nkind (N) = N_String_Literal then
Store_String_Chars (Strval (N));
elsif Nkind (N) = N_Op_Concat then
Get_Reason_String (Left_Opnd (N));
Get_Reason_String (Right_Opnd (N));
-- If not of required form, error
else
Error_Msg_N
("Reason for pragma Warnings has wrong form", N);
Error_Msg_N
("\must be string literal or concatenation of string literals", N);
return;
end if;
end Get_Reason_String;
---------------------------
-- Get_Referenced_Object --
---------------------------
function Get_Referenced_Object (N : Node_Id) return Node_Id is
R : Node_Id;
begin
R := N;
while Is_Entity_Name (R)
and then Present (Renamed_Object (Entity (R)))
loop
R := Renamed_Object (Entity (R));
end loop;
return R;
end Get_Referenced_Object;
------------------------
-- Get_Renamed_Entity --
------------------------
function Get_Renamed_Entity (E : Entity_Id) return Entity_Id is
R : Entity_Id;
begin
R := E;
while Present (Renamed_Entity (R)) loop
R := Renamed_Entity (R);
end loop;
return R;
end Get_Renamed_Entity;
-------------------------
-- Get_Subprogram_Body --
-------------------------
function Get_Subprogram_Body (E : Entity_Id) return Node_Id is
Decl : Node_Id;
begin
Decl := Unit_Declaration_Node (E);
if Nkind (Decl) = N_Subprogram_Body then
return Decl;
-- The below comment is bad, because it is possible for
-- Nkind (Decl) to be an N_Subprogram_Body_Stub ???
else -- Nkind (Decl) = N_Subprogram_Declaration
if Present (Corresponding_Body (Decl)) then
return Unit_Declaration_Node (Corresponding_Body (Decl));
-- Imported subprogram case
else
return Empty;
end if;
end if;
end Get_Subprogram_Body;
---------------------------
-- Get_Subprogram_Entity --
---------------------------
function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id is
Subp : Node_Id;
Subp_Id : Entity_Id;
begin
if Nkind (Nod) = N_Accept_Statement then
Subp := Entry_Direct_Name (Nod);
elsif Nkind (Nod) = N_Slice then
Subp := Prefix (Nod);
else
Subp := Name (Nod);
end if;
-- Strip the subprogram call
loop
if Nkind_In (Subp, N_Explicit_Dereference,
N_Indexed_Component,
N_Selected_Component)
then
Subp := Prefix (Subp);
elsif Nkind_In (Subp, N_Type_Conversion,
N_Unchecked_Type_Conversion)
then
Subp := Expression (Subp);
else
exit;
end if;
end loop;
-- Extract the entity of the subprogram call
if Is_Entity_Name (Subp) then
Subp_Id := Entity (Subp);
if Ekind (Subp_Id) = E_Access_Subprogram_Type then
Subp_Id := Directly_Designated_Type (Subp_Id);
end if;
if Is_Subprogram (Subp_Id) then
return Subp_Id;
else
return Empty;
end if;
-- The search did not find a construct that denotes a subprogram
else
return Empty;
end if;
end Get_Subprogram_Entity;
-----------------------------
-- Get_Task_Body_Procedure --
-----------------------------
function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id is
begin
-- Note: A task type may be the completion of a private type with
-- discriminants. When performing elaboration checks on a task
-- declaration, the current view of the type may be the private one,
-- and the procedure that holds the body of the task is held in its
-- underlying type.
-- This is an odd function, why not have Task_Body_Procedure do
-- the following digging???
return Task_Body_Procedure (Underlying_Type (Root_Type (E)));
end Get_Task_Body_Procedure;
-----------------------
-- Has_Access_Values --
-----------------------
function Has_Access_Values (T : Entity_Id) return Boolean is
Typ : constant Entity_Id := Underlying_Type (T);
begin
-- Case of a private type which is not completed yet. This can only
-- happen in the case of a generic format type appearing directly, or
-- as a component of the type to which this function is being applied
-- at the top level. Return False in this case, since we certainly do
-- not know that the type contains access types.
if No (Typ) then
return False;
elsif Is_Access_Type (Typ) then
return True;
elsif Is_Array_Type (Typ) then
return Has_Access_Values (Component_Type (Typ));
elsif Is_Record_Type (Typ) then
declare
Comp : Entity_Id;
begin
-- Loop to Check components
Comp := First_Component_Or_Discriminant (Typ);
while Present (Comp) loop
-- Check for access component, tag field does not count, even
-- though it is implemented internally using an access type.
if Has_Access_Values (Etype (Comp))
and then Chars (Comp) /= Name_uTag
then
return True;
end if;
Next_Component_Or_Discriminant (Comp);
end loop;
end;
return False;
else
return False;
end if;
end Has_Access_Values;
------------------------------
-- Has_Compatible_Alignment --
------------------------------
function Has_Compatible_Alignment
(Obj : Entity_Id;
Expr : Node_Id) return Alignment_Result
is
function Has_Compatible_Alignment_Internal
(Obj : Entity_Id;
Expr : Node_Id;
Default : Alignment_Result) return Alignment_Result;
-- This is the internal recursive function that actually does the work.
-- There is one additional parameter, which says what the result should
-- be if no alignment information is found, and there is no definite
-- indication of compatible alignments. At the outer level, this is set
-- to Unknown, but for internal recursive calls in the case where types
-- are known to be correct, it is set to Known_Compatible.
---------------------------------------
-- Has_Compatible_Alignment_Internal --
---------------------------------------
function Has_Compatible_Alignment_Internal
(Obj : Entity_Id;
Expr : Node_Id;
Default : Alignment_Result) return Alignment_Result
is
Result : Alignment_Result := Known_Compatible;
-- Holds the current status of the result. Note that once a value of
-- Known_Incompatible is set, it is sticky and does not get changed
-- to Unknown (the value in Result only gets worse as we go along,
-- never better).
Offs : Uint := No_Uint;
-- Set to a factor of the offset from the base object when Expr is a
-- selected or indexed component, based on Component_Bit_Offset and
-- Component_Size respectively. A negative value is used to represent
-- a value which is not known at compile time.
procedure Check_Prefix;
-- Checks the prefix recursively in the case where the expression
-- is an indexed or selected component.
procedure Set_Result (R : Alignment_Result);
-- If R represents a worse outcome (unknown instead of known
-- compatible, or known incompatible), then set Result to R.
------------------
-- Check_Prefix --
------------------
procedure Check_Prefix is
begin
-- The subtlety here is that in doing a recursive call to check
-- the prefix, we have to decide what to do in the case where we
-- don't find any specific indication of an alignment problem.
-- At the outer level, we normally set Unknown as the result in
-- this case, since we can only set Known_Compatible if we really
-- know that the alignment value is OK, but for the recursive
-- call, in the case where the types match, and we have not
-- specified a peculiar alignment for the object, we are only
-- concerned about suspicious rep clauses, the default case does
-- not affect us, since the compiler will, in the absence of such
-- rep clauses, ensure that the alignment is correct.
if Default = Known_Compatible
or else
(Etype (Obj) = Etype (Expr)
and then (Unknown_Alignment (Obj)
or else
Alignment (Obj) = Alignment (Etype (Obj))))
then
Set_Result
(Has_Compatible_Alignment_Internal
(Obj, Prefix (Expr), Known_Compatible));
-- In all other cases, we need a full check on the prefix
else
Set_Result
(Has_Compatible_Alignment_Internal
(Obj, Prefix (Expr), Unknown));
end if;
end Check_Prefix;
----------------
-- Set_Result --
----------------
procedure Set_Result (R : Alignment_Result) is
begin
if R > Result then
Result := R;
end if;
end Set_Result;
-- Start of processing for Has_Compatible_Alignment_Internal
begin
-- If Expr is a selected component, we must make sure there is no
-- potentially troublesome component clause, and that the record is
-- not packed.
if Nkind (Expr) = N_Selected_Component then
-- Packed record always generate unknown alignment
if Is_Packed (Etype (Prefix (Expr))) then
Set_Result (Unknown);
end if;
-- Check prefix and component offset
Check_Prefix;
Offs := Component_Bit_Offset (Entity (Selector_Name (Expr)));
-- If Expr is an indexed component, we must make sure there is no
-- potentially troublesome Component_Size clause and that the array
-- is not bit-packed.
elsif Nkind (Expr) = N_Indexed_Component then
declare
Typ : constant Entity_Id := Etype (Prefix (Expr));
Ind : constant Node_Id := First_Index (Typ);
begin
-- Bit packed array always generates unknown alignment
if Is_Bit_Packed_Array (Typ) then
Set_Result (Unknown);
end if;
-- Check prefix and component offset
Check_Prefix;
Offs := Component_Size (Typ);
-- Small optimization: compute the full offset when possible
if Offs /= No_Uint
and then Offs > Uint_0
and then Present (Ind)
and then Nkind (Ind) = N_Range
and then Compile_Time_Known_Value (Low_Bound (Ind))
and then Compile_Time_Known_Value (First (Expressions (Expr)))
then
Offs := Offs * (Expr_Value (First (Expressions (Expr)))
- Expr_Value (Low_Bound ((Ind))));
end if;
end;
end if;
-- If we have a null offset, the result is entirely determined by
-- the base object and has already been computed recursively.
if Offs = Uint_0 then
null;
-- Case where we know the alignment of the object
elsif Known_Alignment (Obj) then
declare
ObjA : constant Uint := Alignment (Obj);
ExpA : Uint := No_Uint;
SizA : Uint := No_Uint;
begin
-- If alignment of Obj is 1, then we are always OK
if ObjA = 1 then
Set_Result (Known_Compatible);
-- Alignment of Obj is greater than 1, so we need to check
else
-- If we have an offset, see if it is compatible
if Offs /= No_Uint and Offs > Uint_0 then
if Offs mod (System_Storage_Unit * ObjA) /= 0 then
Set_Result (Known_Incompatible);
end if;
-- See if Expr is an object with known alignment
elsif Is_Entity_Name (Expr)
and then Known_Alignment (Entity (Expr))
then
ExpA := Alignment (Entity (Expr));
-- Otherwise, we can use the alignment of the type of
-- Expr given that we already checked for
-- discombobulating rep clauses for the cases of indexed
-- and selected components above.
elsif Known_Alignment (Etype (Expr)) then
ExpA := Alignment (Etype (Expr));
-- Otherwise the alignment is unknown
else
Set_Result (Default);
end if;
-- If we got an alignment, see if it is acceptable
if ExpA /= No_Uint and then ExpA < ObjA then
Set_Result (Known_Incompatible);
end if;
-- If Expr is not a piece of a larger object, see if size
-- is given. If so, check that it is not too small for the
-- required alignment.
if Offs /= No_Uint then
null;
-- See if Expr is an object with known size
elsif Is_Entity_Name (Expr)
and then Known_Static_Esize (Entity (Expr))
then
SizA := Esize (Entity (Expr));
-- Otherwise, we check the object size of the Expr type
elsif Known_Static_Esize (Etype (Expr)) then
SizA := Esize (Etype (Expr));
end if;
-- If we got a size, see if it is a multiple of the Obj
-- alignment, if not, then the alignment cannot be
-- acceptable, since the size is always a multiple of the
-- alignment.
if SizA /= No_Uint then
if SizA mod (ObjA * Ttypes.System_Storage_Unit) /= 0 then
Set_Result (Known_Incompatible);
end if;
end if;
end if;
end;
-- If we do not know required alignment, any non-zero offset is a
-- potential problem (but certainly may be OK, so result is unknown).
elsif Offs /= No_Uint then
Set_Result (Unknown);
-- If we can't find the result by direct comparison of alignment
-- values, then there is still one case that we can determine known
-- result, and that is when we can determine that the types are the
-- same, and no alignments are specified. Then we known that the
-- alignments are compatible, even if we don't know the alignment
-- value in the front end.
elsif Etype (Obj) = Etype (Expr) then
-- Types are the same, but we have to check for possible size
-- and alignments on the Expr object that may make the alignment
-- different, even though the types are the same.
if Is_Entity_Name (Expr) then
-- First check alignment of the Expr object. Any alignment less
-- than Maximum_Alignment is worrisome since this is the case
-- where we do not know the alignment of Obj.
if Known_Alignment (Entity (Expr))
and then UI_To_Int (Alignment (Entity (Expr))) <
Ttypes.Maximum_Alignment
then
Set_Result (Unknown);
-- Now check size of Expr object. Any size that is not an
-- even multiple of Maximum_Alignment is also worrisome
-- since it may cause the alignment of the object to be less
-- than the alignment of the type.
elsif Known_Static_Esize (Entity (Expr))
and then
(UI_To_Int (Esize (Entity (Expr))) mod
(Ttypes.Maximum_Alignment * Ttypes.System_Storage_Unit))
/= 0
then
Set_Result (Unknown);
-- Otherwise same type is decisive
else
Set_Result (Known_Compatible);
end if;
end if;
-- Another case to deal with is when there is an explicit size or
-- alignment clause when the types are not the same. If so, then the
-- result is Unknown. We don't need to do this test if the Default is
-- Unknown, since that result will be set in any case.
elsif Default /= Unknown
and then (Has_Size_Clause (Etype (Expr))
or else
Has_Alignment_Clause (Etype (Expr)))
then
Set_Result (Unknown);
-- If no indication found, set default
else
Set_Result (Default);
end if;
-- Return worst result found
return Result;
end Has_Compatible_Alignment_Internal;
-- Start of processing for Has_Compatible_Alignment
begin
-- If Obj has no specified alignment, then set alignment from the type
-- alignment. Perhaps we should always do this, but for sure we should
-- do it when there is an address clause since we can do more if the
-- alignment is known.
if Unknown_Alignment (Obj) then
Set_Alignment (Obj, Alignment (Etype (Obj)));
end if;
-- Now do the internal call that does all the work
return Has_Compatible_Alignment_Internal (Obj, Expr, Unknown);
end Has_Compatible_Alignment;
----------------------
-- Has_Declarations --
----------------------
function Has_Declarations (N : Node_Id) return Boolean is
begin
return Nkind_In (Nkind (N), N_Accept_Statement,
N_Block_Statement,
N_Compilation_Unit_Aux,
N_Entry_Body,
N_Package_Body,
N_Protected_Body,
N_Subprogram_Body,
N_Task_Body,
N_Package_Specification);
end Has_Declarations;
---------------------------------
-- Has_Defaulted_Discriminants --
---------------------------------
function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean is
begin
return Has_Discriminants (Typ)
and then Present (First_Discriminant (Typ))
and then Present (Discriminant_Default_Value
(First_Discriminant (Typ)));
end Has_Defaulted_Discriminants;
-------------------
-- Has_Denormals --
-------------------
function Has_Denormals (E : Entity_Id) return Boolean is
begin
return Is_Floating_Point_Type (E) and then Denorm_On_Target;
end Has_Denormals;
-------------------------------------------
-- Has_Discriminant_Dependent_Constraint --
-------------------------------------------
function Has_Discriminant_Dependent_Constraint
(Comp : Entity_Id) return Boolean
is
Comp_Decl : constant Node_Id := Parent (Comp);
Subt_Indic : Node_Id;
Constr : Node_Id;
Assn : Node_Id;
begin
-- Discriminants can't depend on discriminants
if Ekind (Comp) = E_Discriminant then
return False;
else
Subt_Indic := Subtype_Indication (Component_Definition (Comp_Decl));
if Nkind (Subt_Indic) = N_Subtype_Indication then
Constr := Constraint (Subt_Indic);
if Nkind (Constr) = N_Index_Or_Discriminant_Constraint then
Assn := First (Constraints (Constr));
while Present (Assn) loop
case Nkind (Assn) is
when N_Subtype_Indication |
N_Range |
N_Identifier
=>
if Depends_On_Discriminant (Assn) then
return True;
end if;
when N_Discriminant_Association =>
if Depends_On_Discriminant (Expression (Assn)) then
return True;
end if;
when others =>
null;
end case;
Next (Assn);
end loop;
end if;
end if;
end if;
return False;
end Has_Discriminant_Dependent_Constraint;
--------------------------
-- Has_Enabled_Property --
--------------------------
function Has_Enabled_Property
(Item_Id : Entity_Id;
Property : Name_Id) return Boolean
is
function State_Has_Enabled_Property return Boolean;
-- Determine whether a state denoted by Item_Id has the property enabled
function Variable_Has_Enabled_Property return Boolean;
-- Determine whether a variable denoted by Item_Id has the property
-- enabled.
--------------------------------
-- State_Has_Enabled_Property --
--------------------------------
function State_Has_Enabled_Property return Boolean is
Decl : constant Node_Id := Parent (Item_Id);
Opt : Node_Id;
Opt_Nam : Node_Id;
Prop : Node_Id;
Prop_Nam : Node_Id;
Props : Node_Id;
begin
-- The declaration of an external abstract state appears as an
-- extension aggregate. If this is not the case, properties can never
-- be set.
if Nkind (Decl) /= N_Extension_Aggregate then
return False;
end if;
-- When External appears as a simple option, it automatically enables
-- all properties.
Opt := First (Expressions (Decl));
while Present (Opt) loop
if Nkind (Opt) = N_Identifier
and then Chars (Opt) = Name_External
then
return True;
end if;
Next (Opt);
end loop;
-- When External specifies particular properties, inspect those and
-- find the desired one (if any).
Opt := First (Component_Associations (Decl));
while Present (Opt) loop
Opt_Nam := First (Choices (Opt));
if Nkind (Opt_Nam) = N_Identifier
and then Chars (Opt_Nam) = Name_External
then
Props := Expression (Opt);
-- Multiple properties appear as an aggregate
if Nkind (Props) = N_Aggregate then
-- Simple property form
Prop := First (Expressions (Props));
while Present (Prop) loop
if Chars (Prop) = Property then
return True;
end if;
Next (Prop);
end loop;
-- Property with expression form
Prop := First (Component_Associations (Props));
while Present (Prop) loop
Prop_Nam := First (Choices (Prop));
-- The property can be represented in two ways:
-- others => <value>
-- <property> => <value>
if Nkind (Prop_Nam) = N_Others_Choice
or else (Nkind (Prop_Nam) = N_Identifier
and then Chars (Prop_Nam) = Property)
then
return Is_True (Expr_Value (Expression (Prop)));
end if;
Next (Prop);
end loop;
-- Single property
else
return Chars (Props) = Property;
end if;
end if;
Next (Opt);
end loop;
return False;
end State_Has_Enabled_Property;
-----------------------------------
-- Variable_Has_Enabled_Property --
-----------------------------------
function Variable_Has_Enabled_Property return Boolean is
function Is_Enabled (Prag : Node_Id) return Boolean;
-- Determine whether property pragma Prag (if present) denotes an
-- enabled property.
----------------
-- Is_Enabled --
----------------
function Is_Enabled (Prag : Node_Id) return Boolean is
Arg2 : Node_Id;
begin
if Present (Prag) then
Arg2 := Next (First (Pragma_Argument_Associations (Prag)));
-- The pragma has an optional Boolean expression, the related
-- property is enabled only when the expression evaluates to
-- True.
if Present (Arg2) then
return Is_True (Expr_Value (Get_Pragma_Arg (Arg2)));
-- Otherwise the lack of expression enables the property by
-- default.
else
return True;
end if;
-- The property was never set in the first place
else
return False;
end if;
end Is_Enabled;
-- Local variables
AR : constant Node_Id :=
Get_Pragma (Item_Id, Pragma_Async_Readers);
AW : constant Node_Id :=
Get_Pragma (Item_Id, Pragma_Async_Writers);
ER : constant Node_Id :=
Get_Pragma (Item_Id, Pragma_Effective_Reads);
EW : constant Node_Id :=
Get_Pragma (Item_Id, Pragma_Effective_Writes);
-- Start of processing for Variable_Has_Enabled_Property
begin
-- A non-effectively volatile object can never possess external
-- properties.
if not Is_Effectively_Volatile (Item_Id) then
return False;
-- External properties related to variables come in two flavors -
-- explicit and implicit. The explicit case is characterized by the
-- presence of a property pragma with an optional Boolean flag. The
-- property is enabled when the flag evaluates to True or the flag is
-- missing altogether.
elsif Property = Name_Async_Readers and then Is_Enabled (AR) then
return True;
elsif Property = Name_Async_Writers and then Is_Enabled (AW) then
return True;
elsif Property = Name_Effective_Reads and then Is_Enabled (ER) then
return True;
elsif Property = Name_Effective_Writes and then Is_Enabled (EW) then
return True;
-- The implicit case lacks all property pragmas
elsif No (AR) and then No (AW) and then No (ER) and then No (EW) then
return True;
else
return False;
end if;
end Variable_Has_Enabled_Property;
-- Start of processing for Has_Enabled_Property
begin
-- Abstract states and variables have a flexible scheme of specifying
-- external properties.
if Ekind (Item_Id) = E_Abstract_State then
return State_Has_Enabled_Property;
elsif Ekind (Item_Id) = E_Variable then
return Variable_Has_Enabled_Property;
-- Otherwise a property is enabled when the related item is effectively
-- volatile.
else
return Is_Effectively_Volatile (Item_Id);
end if;
end Has_Enabled_Property;
--------------------
-- Has_Infinities --
--------------------
function Has_Infinities (E : Entity_Id) return Boolean is
begin
return
Is_Floating_Point_Type (E)
and then Nkind (Scalar_Range (E)) = N_Range
and then Includes_Infinities (Scalar_Range (E));
end Has_Infinities;
--------------------
-- Has_Interfaces --
--------------------
function Has_Interfaces
(T : Entity_Id;
Use_Full_View : Boolean := True) return Boolean
is
Typ : Entity_Id := Base_Type (T);
begin
-- Handle concurrent types
if Is_Concurrent_Type (Typ) then
Typ := Corresponding_Record_Type (Typ);
end if;
if not Present (Typ)
or else not Is_Record_Type (Typ)
or else not Is_Tagged_Type (Typ)
then
return False;
end if;
-- Handle private types
if Use_Full_View and then Present (Full_View (Typ)) then
Typ := Full_View (Typ);
end if;
-- Handle concurrent record types
if Is_Concurrent_Record_Type (Typ)
and then Is_Non_Empty_List (Abstract_Interface_List (Typ))
then
return True;
end if;
loop
if Is_Interface (Typ)
or else
(Is_Record_Type (Typ)
and then Present (Interfaces (Typ))
and then not Is_Empty_Elmt_List (Interfaces (Typ)))
then
return True;
end if;
exit when Etype (Typ) = Typ
-- Handle private types
or else (Present (Full_View (Etype (Typ)))
and then Full_View (Etype (Typ)) = Typ)
-- Protect frontend against wrong sources with cyclic derivations
or else Etype (Typ) = T;
-- Climb to the ancestor type handling private types
if Present (Full_View (Etype (Typ))) then
Typ := Full_View (Etype (Typ));
else
Typ := Etype (Typ);
end if;
end loop;
return False;
end Has_Interfaces;
---------------------------------
-- Has_No_Obvious_Side_Effects --
---------------------------------
function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean is
begin
-- For now, just handle literals, constants, and non-volatile
-- variables and expressions combining these with operators or
-- short circuit forms.
if Nkind (N) in N_Numeric_Or_String_Literal then
return True;
elsif Nkind (N) = N_Character_Literal then
return True;
elsif Nkind (N) in N_Unary_Op then
return Has_No_Obvious_Side_Effects (Right_Opnd (N));
elsif Nkind (N) in N_Binary_Op or else Nkind (N) in N_Short_Circuit then
return Has_No_Obvious_Side_Effects (Left_Opnd (N))
and then
Has_No_Obvious_Side_Effects (Right_Opnd (N));
elsif Nkind (N) = N_Expression_With_Actions
and then Is_Empty_List (Actions (N))
then
return Has_No_Obvious_Side_Effects (Expression (N));
elsif Nkind (N) in N_Has_Entity then
return Present (Entity (N))
and then Ekind_In (Entity (N), E_Variable,
E_Constant,
E_Enumeration_Literal,
E_In_Parameter,
E_Out_Parameter,
E_In_Out_Parameter)
and then not Is_Volatile (Entity (N));
else
return False;
end if;
end Has_No_Obvious_Side_Effects;
------------------------
-- Has_Null_Exclusion --
------------------------
function Has_Null_Exclusion (N : Node_Id) return Boolean is
begin
case Nkind (N) is
when N_Access_Definition |
N_Access_Function_Definition |
N_Access_Procedure_Definition |
N_Access_To_Object_Definition |
N_Allocator |
N_Derived_Type_Definition |
N_Function_Specification |
N_Subtype_Declaration =>
return Null_Exclusion_Present (N);
when N_Component_Definition |
N_Formal_Object_Declaration |
N_Object_Renaming_Declaration =>
if Present (Subtype_Mark (N)) then
return Null_Exclusion_Present (N);
else pragma Assert (Present (Access_Definition (N)));
return Null_Exclusion_Present (Access_Definition (N));
end if;
when N_Discriminant_Specification =>
if Nkind (Discriminant_Type (N)) = N_Access_Definition then
return Null_Exclusion_Present (Discriminant_Type (N));
else
return Null_Exclusion_Present (N);
end if;
when N_Object_Declaration =>
if Nkind (Object_Definition (N)) = N_Access_Definition then
return Null_Exclusion_Present (Object_Definition (N));
else
return Null_Exclusion_Present (N);
end if;
when N_Parameter_Specification =>
if Nkind (Parameter_Type (N)) = N_Access_Definition then
return Null_Exclusion_Present (Parameter_Type (N));
else
return Null_Exclusion_Present (N);
end if;
when others =>
return False;
end case;
end Has_Null_Exclusion;
------------------------
-- Has_Null_Extension --
------------------------
function Has_Null_Extension (T : Entity_Id) return Boolean is
B : constant Entity_Id := Base_Type (T);
Comps : Node_Id;
Ext : Node_Id;
begin
if Nkind (Parent (B)) = N_Full_Type_Declaration
and then Present (Record_Extension_Part (Type_Definition (Parent (B))))
then
Ext := Record_Extension_Part (Type_Definition (Parent (B)));
if Present (Ext) then
if Null_Present (Ext) then
return True;
else
Comps := Component_List (Ext);
-- The null component list is rewritten during analysis to
-- include the parent component. Any other component indicates
-- that the extension was not originally null.
return Null_Present (Comps)
or else No (Next (First (Component_Items (Comps))));
end if;
else
return False;
end if;
else
return False;
end if;
end Has_Null_Extension;
-------------------------------
-- Has_Overriding_Initialize --
-------------------------------
function Has_Overriding_Initialize (T : Entity_Id) return Boolean is
BT : constant Entity_Id := Base_Type (T);
P : Elmt_Id;
begin
if Is_Controlled (BT) then
if Is_RTU (Scope (BT), Ada_Finalization) then
return False;
elsif Present (Primitive_Operations (BT)) then
P := First_Elmt (Primitive_Operations (BT));
while Present (P) loop
declare
Init : constant Entity_Id := Node (P);
Formal : constant Entity_Id := First_Formal (Init);
begin
if Ekind (Init) = E_Procedure
and then Chars (Init) = Name_Initialize
and then Comes_From_Source (Init)
and then Present (Formal)
and then Etype (Formal) = BT
and then No (Next_Formal (Formal))
and then (Ada_Version < Ada_2012
or else not Null_Present (Parent (Init)))
then
return True;
end if;
end;
Next_Elmt (P);
end loop;
end if;
-- Here if type itself does not have a non-null Initialize operation:
-- check immediate ancestor.
if Is_Derived_Type (BT)
and then Has_Overriding_Initialize (Etype (BT))
then
return True;
end if;
end if;
return False;
end Has_Overriding_Initialize;
--------------------------------------
-- Has_Preelaborable_Initialization --
--------------------------------------
function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean is
Has_PE : Boolean;
procedure Check_Components (E : Entity_Id);
-- Check component/discriminant chain, sets Has_PE False if a component
-- or discriminant does not meet the preelaborable initialization rules.
----------------------
-- Check_Components --
----------------------
procedure Check_Components (E : Entity_Id) is
Ent : Entity_Id;
Exp : Node_Id;
function Is_Preelaborable_Expression (N : Node_Id) return Boolean;
-- Returns True if and only if the expression denoted by N does not
-- violate restrictions on preelaborable constructs (RM-10.2.1(5-9)).
---------------------------------
-- Is_Preelaborable_Expression --
---------------------------------
function Is_Preelaborable_Expression (N : Node_Id) return Boolean is
Exp : Node_Id;
Assn : Node_Id;
Choice : Node_Id;
Comp_Type : Entity_Id;
Is_Array_Aggr : Boolean;
begin
if Is_OK_Static_Expression (N) then
return True;
elsif Nkind (N) = N_Null then
return True;
-- Attributes are allowed in general, even if their prefix is a
-- formal type. (It seems that certain attributes known not to be
-- static might not be allowed, but there are no rules to prevent
-- them.)
elsif Nkind (N) = N_Attribute_Reference then
return True;
-- The name of a discriminant evaluated within its parent type is
-- defined to be preelaborable (10.2.1(8)). Note that we test for
-- names that denote discriminals as well as discriminants to
-- catch references occurring within init procs.
elsif Is_Entity_Name (N)
and then
(Ekind (Entity (N)) = E_Discriminant
or else (Ekind_In (Entity (N), E_Constant, E_In_Parameter)
and then Present (Discriminal_Link (Entity (N)))))
then
return True;
elsif Nkind (N) = N_Qualified_Expression then
return Is_Preelaborable_Expression (Expression (N));
-- For aggregates we have to check that each of the associations
-- is preelaborable.
elsif Nkind_In (N, N_Aggregate, N_Extension_Aggregate) then
Is_Array_Aggr := Is_Array_Type (Etype (N));
if Is_Array_Aggr then
Comp_Type := Component_Type (Etype (N));
end if;
-- Check the ancestor part of extension aggregates, which must
-- be either the name of a type that has preelaborable init or
-- an expression that is preelaborable.
if Nkind (N) = N_Extension_Aggregate then
declare
Anc_Part : constant Node_Id := Ancestor_Part (N);
begin
if Is_Entity_Name (Anc_Part)
and then Is_Type (Entity (Anc_Part))
then
if not Has_Preelaborable_Initialization
(Entity (Anc_Part))
then
return False;
end if;
elsif not Is_Preelaborable_Expression (Anc_Part) then
return False;
end if;
end;
end if;
-- Check positional associations
Exp := First (Expressions (N));
while Present (Exp) loop
if not Is_Preelaborable_Expression (Exp) then
return False;
end if;
Next (Exp);
end loop;
-- Check named associations
Assn := First (Component_Associations (N));
while Present (Assn) loop
Choice := First (Choices (Assn));
while Present (Choice) loop
if Is_Array_Aggr then
if Nkind (Choice) = N_Others_Choice then
null;
elsif Nkind (Choice) = N_Range then
if not Is_OK_Static_Range (Choice) then
return False;
end if;
elsif not Is_OK_Static_Expression (Choice) then
return False;
end if;
else
Comp_Type := Etype (Choice);
end if;
Next (Choice);
end loop;
-- If the association has a <> at this point, then we have
-- to check whether the component's type has preelaborable
-- initialization. Note that this only occurs when the
-- association's corresponding component does not have a
-- default expression, the latter case having already been
-- expanded as an expression for the association.
if Box_Present (Assn) then
if not Has_Preelaborable_Initialization (Comp_Type) then
return False;
end if;
-- In the expression case we check whether the expression
-- is preelaborable.
elsif
not Is_Preelaborable_Expression (Expression (Assn))
then
return False;
end if;
Next (Assn);
end loop;
-- If we get here then aggregate as a whole is preelaborable
return True;
-- All other cases are not preelaborable
else
return False;
end if;
end Is_Preelaborable_Expression;
-- Start of processing for Check_Components
begin
-- Loop through entities of record or protected type
Ent := E;
while Present (Ent) loop
-- We are interested only in components and discriminants
Exp := Empty;
case Ekind (Ent) is
when E_Component =>
-- Get default expression if any. If there is no declaration
-- node, it means we have an internal entity. The parent and
-- tag fields are examples of such entities. For such cases,
-- we just test the type of the entity.
if Present (Declaration_Node (Ent)) then
Exp := Expression (Declaration_Node (Ent));
end if;
when E_Discriminant =>
-- Note: for a renamed discriminant, the Declaration_Node
-- may point to the one from the ancestor, and have a
-- different expression, so use the proper attribute to
-- retrieve the expression from the derived constraint.
Exp := Discriminant_Default_Value (Ent);
when others =>
goto Check_Next_Entity;
end case;
-- A component has PI if it has no default expression and the
-- component type has PI.
if No (Exp) then
if not Has_Preelaborable_Initialization (Etype (Ent)) then
Has_PE := False;
exit;
end if;
-- Require the default expression to be preelaborable
elsif not Is_Preelaborable_Expression (Exp) then
Has_PE := False;
exit;
end if;
<<Check_Next_Entity>>
Next_Entity (Ent);
end loop;
end Check_Components;
-- Start of processing for Has_Preelaborable_Initialization
begin
-- Immediate return if already marked as known preelaborable init. This
-- covers types for which this function has already been called once
-- and returned True (in which case the result is cached), and also
-- types to which a pragma Preelaborable_Initialization applies.
if Known_To_Have_Preelab_Init (E) then
return True;
end if;
-- If the type is a subtype representing a generic actual type, then
-- test whether its base type has preelaborable initialization since
-- the subtype representing the actual does not inherit this attribute
-- from the actual or formal. (but maybe it should???)
if Is_Generic_Actual_Type (E) then
return Has_Preelaborable_Initialization (Base_Type (E));
end if;
-- All elementary types have preelaborable initialization
if Is_Elementary_Type (E) then
Has_PE := True;
-- Array types have PI if the component type has PI
elsif Is_Array_Type (E) then
Has_PE := Has_Preelaborable_Initialization (Component_Type (E));
-- A derived type has preelaborable initialization if its parent type
-- has preelaborable initialization and (in the case of a derived record
-- extension) if the non-inherited components all have preelaborable
-- initialization. However, a user-defined controlled type with an
-- overriding Initialize procedure does not have preelaborable
-- initialization.
elsif Is_Derived_Type (E) then
-- If the derived type is a private extension then it doesn't have
-- preelaborable initialization.
if Ekind (Base_Type (E)) = E_Record_Type_With_Private then
return False;
end if;
-- First check whether ancestor type has preelaborable initialization
Has_PE := Has_Preelaborable_Initialization (Etype (Base_Type (E)));
-- If OK, check extension components (if any)
if Has_PE and then Is_Record_Type (E) then
Check_Components (First_Entity (E));
end if;
-- Check specifically for 10.2.1(11.4/2) exception: a controlled type
-- with a user defined Initialize procedure does not have PI. If
-- the type is untagged, the control primitives come from a component
-- that has already been checked.
if Has_PE
and then Is_Controlled (E)
and then Is_Tagged_Type (E)
and then Has_Overriding_Initialize (E)
then
Has_PE := False;
end if;
-- Private types not derived from a type having preelaborable init and
-- that are not marked with pragma Preelaborable_Initialization do not
-- have preelaborable initialization.
elsif Is_Private_Type (E) then
return False;
-- Record type has PI if it is non private and all components have PI
elsif Is_Record_Type (E) then
Has_PE := True;
Check_Components (First_Entity (E));
-- Protected types must not have entries, and components must meet
-- same set of rules as for record components.
elsif Is_Protected_Type (E) then
if Has_Entries (E) then
Has_PE := False;
else
Has_PE := True;
Check_Components (First_Entity (E));
Check_Components (First_Private_Entity (E));
end if;
-- Type System.Address always has preelaborable initialization
elsif Is_RTE (E, RE_Address) then
Has_PE := True;
-- In all other cases, type does not have preelaborable initialization
else
return False;
end if;
-- If type has preelaborable initialization, cache result
if Has_PE then
Set_Known_To_Have_Preelab_Init (E);
end if;
return Has_PE;
end Has_Preelaborable_Initialization;
---------------------------
-- Has_Private_Component --
---------------------------
function Has_Private_Component (Type_Id : Entity_Id) return Boolean is
Btype : Entity_Id := Base_Type (Type_Id);
Component : Entity_Id;
begin
if Error_Posted (Type_Id)
or else Error_Posted (Btype)
then
return False;
end if;
if Is_Class_Wide_Type (Btype) then
Btype := Root_Type (Btype);
end if;
if Is_Private_Type (Btype) then
declare
UT : constant Entity_Id := Underlying_Type (Btype);
begin
if No (UT) then
if No (Full_View (Btype)) then
return not Is_Generic_Type (Btype)
and then
not Is_Generic_Type (Root_Type (Btype));
else
return not Is_Generic_Type (Root_Type (Full_View (Btype)));
end if;
else
return not Is_Frozen (UT) and then Has_Private_Component (UT);
end if;
end;
elsif Is_Array_Type (Btype) then
return Has_Private_Component (Component_Type (Btype));
elsif Is_Record_Type (Btype) then
Component := First_Component (Btype);
while Present (Component) loop
if Has_Private_Component (Etype (Component)) then
return True;
end if;
Next_Component (Component);
end loop;
return False;
elsif Is_Protected_Type (Btype)
and then Present (Corresponding_Record_Type (Btype))
then
return Has_Private_Component (Corresponding_Record_Type (Btype));
else
return False;
end if;
end Has_Private_Component;
----------------------
-- Has_Signed_Zeros --
----------------------
function Has_Signed_Zeros (E : Entity_Id) return Boolean is
begin
return Is_Floating_Point_Type (E) and then Signed_Zeros_On_Target;
end Has_Signed_Zeros;
------------------------------
-- Has_Significant_Contract --
------------------------------
function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean is
Subp_Nam : constant Name_Id := Chars (Subp_Id);
begin
-- _Finalizer procedure
if Subp_Nam = Name_uFinalizer then
return False;
-- _Postconditions procedure
elsif Subp_Nam = Name_uPostconditions then
return False;
-- Predicate function
elsif Ekind (Subp_Id) = E_Function
and then Is_Predicate_Function (Subp_Id)
then
return False;
-- TSS subprogram
elsif Get_TSS_Name (Subp_Id) /= TSS_Null then
return False;
else
return True;
end if;
end Has_Significant_Contract;
-----------------------------
-- Has_Static_Array_Bounds --
-----------------------------
function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean is
Ndims : constant Nat := Number_Dimensions (Typ);
Index : Node_Id;
Low : Node_Id;
High : Node_Id;
begin
-- Unconstrained types do not have static bounds
if not Is_Constrained (Typ) then
return False;
end if;
-- First treat string literals specially, as the lower bound and length
-- of string literals are not stored like those of arrays.
-- A string literal always has static bounds
if Ekind (Typ) = E_String_Literal_Subtype then
return True;
end if;
-- Treat all dimensions in turn
Index := First_Index (Typ);
for Indx in 1 .. Ndims loop
-- In case of an illegal index which is not a discrete type, return
-- that the type is not static.
if not Is_Discrete_Type (Etype (Index))
or else Etype (Index) = Any_Type
then
return False;
end if;
Get_Index_Bounds (Index, Low, High);
if Error_Posted (Low) or else Error_Posted (High) then
return False;
end if;
if Is_OK_Static_Expression (Low)
and then
Is_OK_Static_Expression (High)
then
null;
else
return False;
end if;
Next (Index);
end loop;
-- If we fall through the loop, all indexes matched
return True;
end Has_Static_Array_Bounds;
----------------
-- Has_Stream --
----------------
function Has_Stream (T : Entity_Id) return Boolean is
E : Entity_Id;
begin
if No (T) then
return False;
elsif Is_RTE (Root_Type (T), RE_Root_Stream_Type) then
return True;
elsif Is_Array_Type (T) then
return Has_Stream (Component_Type (T));
elsif Is_Record_Type (T) then
E := First_Component (T);
while Present (E) loop
if Has_Stream (Etype (E)) then
return True;
else
Next_Component (E);
end if;
end loop;
return False;
elsif Is_Private_Type (T) then
return Has_Stream (Underlying_Type (T));
else
return False;
end if;
end Has_Stream;
----------------
-- Has_Suffix --
----------------
function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean is
begin
Get_Name_String (Chars (E));
return Name_Buffer (Name_Len) = Suffix;
end Has_Suffix;
----------------
-- Add_Suffix --
----------------
function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id is
begin
Get_Name_String (Chars (E));
Add_Char_To_Name_Buffer (Suffix);
return Name_Find;
end Add_Suffix;
-------------------
-- Remove_Suffix --
-------------------
function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id is
begin
pragma Assert (Has_Suffix (E, Suffix));
Get_Name_String (Chars (E));
Name_Len := Name_Len - 1;
return Name_Find;
end Remove_Suffix;
--------------------------
-- Has_Tagged_Component --
--------------------------
function Has_Tagged_Component (Typ : Entity_Id) return Boolean is
Comp : Entity_Id;
begin
if Is_Private_Type (Typ) and then Present (Underlying_Type (Typ)) then
return Has_Tagged_Component (Underlying_Type (Typ));
elsif Is_Array_Type (Typ) then
return Has_Tagged_Component (Component_Type (Typ));
elsif Is_Tagged_Type (Typ) then
return True;
elsif Is_Record_Type (Typ) then
Comp := First_Component (Typ);
while Present (Comp) loop
if Has_Tagged_Component (Etype (Comp)) then
return True;
end if;
Next_Component (Comp);
end loop;
return False;
else
return False;
end if;
end Has_Tagged_Component;
----------------------------
-- Has_Volatile_Component --
----------------------------
function Has_Volatile_Component (Typ : Entity_Id) return Boolean is
Comp : Entity_Id;
begin
if Has_Volatile_Components (Typ) then
return True;
elsif Is_Array_Type (Typ) then
return Is_Volatile (Component_Type (Typ));
elsif Is_Record_Type (Typ) then
Comp := First_Component (Typ);
while Present (Comp) loop
if Is_Volatile_Object (Comp) then
return True;
end if;
Comp := Next_Component (Comp);
end loop;
end if;
return False;
end Has_Volatile_Component;
-------------------------
-- Implementation_Kind --
-------------------------
function Implementation_Kind (Subp : Entity_Id) return Name_Id is
Impl_Prag : constant Node_Id := Get_Rep_Pragma (Subp, Name_Implemented);
Arg : Node_Id;
begin
pragma Assert (Present (Impl_Prag));
Arg := Last (Pragma_Argument_Associations (Impl_Prag));
return Chars (Get_Pragma_Arg (Arg));
end Implementation_Kind;
--------------------------
-- Implements_Interface --
--------------------------
function Implements_Interface
(Typ_Ent : Entity_Id;
Iface_Ent : Entity_Id;
Exclude_Parents : Boolean := False) return Boolean
is
Ifaces_List : Elist_Id;
Elmt : Elmt_Id;
Iface : Entity_Id := Base_Type (Iface_Ent);
Typ : Entity_Id := Base_Type (Typ_Ent);
begin
if Is_Class_Wide_Type (Typ) then
Typ := Root_Type (Typ);
end if;
if not Has_Interfaces (Typ) then
return False;
end if;
if Is_Class_Wide_Type (Iface) then
Iface := Root_Type (Iface);
end if;
Collect_Interfaces (Typ, Ifaces_List);
Elmt := First_Elmt (Ifaces_List);
while Present (Elmt) loop
if Is_Ancestor (Node (Elmt), Typ, Use_Full_View => True)
and then Exclude_Parents
then
null;
elsif Node (Elmt) = Iface then
return True;
end if;
Next_Elmt (Elmt);
end loop;
return False;
end Implements_Interface;
------------------------------------
-- In_Assertion_Expression_Pragma --
------------------------------------
function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean is
Par : Node_Id;
Prag : Node_Id := Empty;
begin
-- Climb the parent chain looking for an enclosing pragma
Par := N;
while Present (Par) loop
if Nkind (Par) = N_Pragma then
Prag := Par;
exit;
-- Precondition-like pragmas are expanded into if statements, check
-- the original node instead.
elsif Nkind (Original_Node (Par)) = N_Pragma then
Prag := Original_Node (Par);
exit;
-- The expansion of attribute 'Old generates a constant to capture
-- the result of the prefix. If the parent traversal reaches
-- one of these constants, then the node technically came from a
-- postcondition-like pragma. Note that the Ekind is not tested here
-- because N may be the expression of an object declaration which is
-- currently being analyzed. Such objects carry Ekind of E_Void.
elsif Nkind (Par) = N_Object_Declaration
and then Constant_Present (Par)
and then Stores_Attribute_Old_Prefix (Defining_Entity (Par))
then
return True;
-- Prevent the search from going too far
elsif Is_Body_Or_Package_Declaration (Par) then
return False;
end if;
Par := Parent (Par);
end loop;
return
Present (Prag)
and then Assertion_Expression_Pragma (Get_Pragma_Id (Prag));
end In_Assertion_Expression_Pragma;
-----------------
-- In_Instance --
-----------------
function In_Instance return Boolean is
Curr_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
S : Entity_Id;
begin
S := Current_Scope;
while Present (S) and then S /= Standard_Standard loop
if Ekind_In (S, E_Function, E_Package, E_Procedure)
and then Is_Generic_Instance (S)
then
-- A child instance is always compiled in the context of a parent
-- instance. Nevertheless, the actuals are not analyzed in an
-- instance context. We detect this case by examining the current
-- compilation unit, which must be a child instance, and checking
-- that it is not currently on the scope stack.
if Is_Child_Unit (Curr_Unit)
and then Nkind (Unit (Cunit (Current_Sem_Unit))) =
N_Package_Instantiation
and then not In_Open_Scopes (Curr_Unit)
then
return False;
else
return True;
end if;
end if;
S := Scope (S);
end loop;
return False;
end In_Instance;
----------------------
-- In_Instance_Body --
----------------------
function In_Instance_Body return Boolean is
S : Entity_Id;
begin
S := Current_Scope;
while Present (S) and then S /= Standard_Standard loop
if Ekind_In (S, E_Function, E_Procedure)
and then Is_Generic_Instance (S)
then
return True;
elsif Ekind (S) = E_Package
and then In_Package_Body (S)
and then Is_Generic_Instance (S)
then
return True;
end if;
S := Scope (S);
end loop;
return False;
end In_Instance_Body;
-----------------------------
-- In_Instance_Not_Visible --
-----------------------------
function In_Instance_Not_Visible return Boolean is
S : Entity_Id;
begin
S := Current_Scope;
while Present (S) and then S /= Standard_Standard loop
if Ekind_In (S, E_Function, E_Procedure)
and then Is_Generic_Instance (S)
then
return True;
elsif Ekind (S) = E_Package
and then (In_Package_Body (S) or else In_Private_Part (S))
and then Is_Generic_Instance (S)
then
return True;
end if;
S := Scope (S);
end loop;
return False;
end In_Instance_Not_Visible;
------------------------------
-- In_Instance_Visible_Part --
------------------------------
function In_Instance_Visible_Part return Boolean is
S : Entity_Id;
begin
S := Current_Scope;
while Present (S) and then S /= Standard_Standard loop
if Ekind (S) = E_Package
and then Is_Generic_Instance (S)
and then not In_Package_Body (S)
and then not In_Private_Part (S)
then
return True;
end if;
S := Scope (S);
end loop;
return False;
end In_Instance_Visible_Part;
---------------------
-- In_Package_Body --
---------------------
function In_Package_Body return Boolean is
S : Entity_Id;
begin
S := Current_Scope;
while Present (S) and then S /= Standard_Standard loop
if Ekind (S) = E_Package and then In_Package_Body (S) then
return True;
else
S := Scope (S);
end if;
end loop;
return False;
end In_Package_Body;
--------------------------------
-- In_Parameter_Specification --
--------------------------------
function In_Parameter_Specification (N : Node_Id) return Boolean is
PN : Node_Id;
begin
PN := Parent (N);
while Present (PN) loop
if Nkind (PN) = N_Parameter_Specification then
return True;
end if;
PN := Parent (PN);
end loop;
return False;
end In_Parameter_Specification;
--------------------------
-- In_Pragma_Expression --
--------------------------
function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean is
P : Node_Id;
begin
P := Parent (N);
loop
if No (P) then
return False;
elsif Nkind (P) = N_Pragma and then Pragma_Name (P) = Nam then
return True;
else
P := Parent (P);
end if;
end loop;
end In_Pragma_Expression;
-------------------------------------
-- In_Reverse_Storage_Order_Object --
-------------------------------------
function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean is
Pref : Node_Id;
Btyp : Entity_Id := Empty;
begin
-- Climb up indexed components
Pref := N;
loop
case Nkind (Pref) is
when N_Selected_Component =>
Pref := Prefix (Pref);
exit;
when N_Indexed_Component =>
Pref := Prefix (Pref);
when others =>
Pref := Empty;
exit;
end case;
end loop;
if Present (Pref) then
Btyp := Base_Type (Etype (Pref));
end if;
return Present (Btyp)
and then (Is_Record_Type (Btyp) or else Is_Array_Type (Btyp))
and then Reverse_Storage_Order (Btyp);
end In_Reverse_Storage_Order_Object;
--------------------------------------
-- In_Subprogram_Or_Concurrent_Unit --
--------------------------------------
function In_Subprogram_Or_Concurrent_Unit return Boolean is
E : Entity_Id;
K : Entity_Kind;
begin
-- Use scope chain to check successively outer scopes
E := Current_Scope;
loop
K := Ekind (E);
if K in Subprogram_Kind
or else K in Concurrent_Kind
or else K in Generic_Subprogram_Kind
then
return True;
elsif E = Standard_Standard then
return False;
end if;
E := Scope (E);
end loop;
end In_Subprogram_Or_Concurrent_Unit;
---------------------
-- In_Visible_Part --
---------------------
function In_Visible_Part (Scope_Id : Entity_Id) return Boolean is
begin
return Is_Package_Or_Generic_Package (Scope_Id)
and then In_Open_Scopes (Scope_Id)
and then not In_Package_Body (Scope_Id)
and then not In_Private_Part (Scope_Id);
end In_Visible_Part;
--------------------------------
-- Incomplete_Or_Partial_View --
--------------------------------
function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id is
function Inspect_Decls
(Decls : List_Id;
Taft : Boolean := False) return Entity_Id;
-- Check whether a declarative region contains the incomplete or partial
-- view of Id.
-------------------
-- Inspect_Decls --
-------------------
function Inspect_Decls
(Decls : List_Id;
Taft : Boolean := False) return Entity_Id
is
Decl : Node_Id;
Match : Node_Id;
begin
Decl := First (Decls);
while Present (Decl) loop
Match := Empty;
if Taft then
if Nkind (Decl) = N_Incomplete_Type_Declaration then
Match := Defining_Identifier (Decl);
end if;
else
if Nkind_In (Decl, N_Private_Extension_Declaration,
N_Private_Type_Declaration)
then
Match := Defining_Identifier (Decl);
end if;
end if;
if Present (Match)
and then Present (Full_View (Match))
and then Full_View (Match) = Id
then
return Match;
end if;
Next (Decl);
end loop;
return Empty;
end Inspect_Decls;
-- Local variables
Prev : Entity_Id;
-- Start of processing for Incomplete_Or_Partial_View
begin
-- Deferred constant or incomplete type case
Prev := Current_Entity_In_Scope (Id);
if Present (Prev)
and then (Is_Incomplete_Type (Prev) or else Ekind (Prev) = E_Constant)
and then Present (Full_View (Prev))
and then Full_View (Prev) = Id
then
return Prev;
end if;
-- Private or Taft amendment type case
declare
Pkg : constant Entity_Id := Scope (Id);
Pkg_Decl : Node_Id := Pkg;
begin
if Present (Pkg) and then Ekind (Pkg) = E_Package then
while Nkind (Pkg_Decl) /= N_Package_Specification loop
Pkg_Decl := Parent (Pkg_Decl);
end loop;
-- It is knows that Typ has a private view, look for it in the
-- visible declarations of the enclosing scope. A special case
-- of this is when the two views have been exchanged - the full
-- appears earlier than the private.
if Has_Private_Declaration (Id) then
Prev := Inspect_Decls (Visible_Declarations (Pkg_Decl));
-- Exchanged view case, look in the private declarations
if No (Prev) then
Prev := Inspect_Decls (Private_Declarations (Pkg_Decl));
end if;
return Prev;
-- Otherwise if this is the package body, then Typ is a potential
-- Taft amendment type. The incomplete view should be located in
-- the private declarations of the enclosing scope.
elsif In_Package_Body (Pkg) then
return Inspect_Decls (Private_Declarations (Pkg_Decl), True);
end if;
end if;
end;
-- The type has no incomplete or private view
return Empty;
end Incomplete_Or_Partial_View;
-----------------------------------------
-- Inherit_Default_Init_Cond_Procedure --
-----------------------------------------
procedure Inherit_Default_Init_Cond_Procedure (Typ : Entity_Id) is
Par_Typ : constant Entity_Id := Etype (Typ);
begin
-- A derived type inherits the default initial condition procedure of
-- its parent type.
if No (Default_Init_Cond_Procedure (Typ)) then
Set_Default_Init_Cond_Procedure
(Typ, Default_Init_Cond_Procedure (Par_Typ));
end if;
end Inherit_Default_Init_Cond_Procedure;
----------------------------
-- Inherit_Rep_Item_Chain --
----------------------------
procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id) is
From_Item : constant Node_Id := First_Rep_Item (From_Typ);
Item : Node_Id := Empty;
Last_Item : Node_Id := Empty;
begin
-- Reach the end of the destination type's chain (if any) and capture
-- the last item.
Item := First_Rep_Item (Typ);
while Present (Item) loop
-- Do not inherit a chain that has been inherited already
if Item = From_Item then
return;
end if;
Last_Item := Item;
Item := Next_Rep_Item (Item);
end loop;
-- When the destination type has a rep item chain, the chain of the
-- source type is appended to it.
if Present (Last_Item) then
Set_Next_Rep_Item (Last_Item, From_Item);
-- Otherwise the destination type directly inherits the rep item chain
-- of the source type (if any).
else
Set_First_Rep_Item (Typ, From_Item);
end if;
end Inherit_Rep_Item_Chain;
---------------------------------
-- Inherit_Subprogram_Contract --
---------------------------------
procedure Inherit_Subprogram_Contract
(Subp : Entity_Id;
From_Subp : Entity_Id)
is
procedure Inherit_Pragma (Prag_Id : Pragma_Id);
-- Propagate a pragma denoted by Prag_Id from From_Subp's contract to
-- Subp's contract.
--------------------
-- Inherit_Pragma --
--------------------
procedure Inherit_Pragma (Prag_Id : Pragma_Id) is
Prag : constant Node_Id := Get_Pragma (From_Subp, Prag_Id);
New_Prag : Node_Id;
begin
-- A pragma cannot be part of more than one First_Pragma/Next_Pragma
-- chains, therefore the node must be replicated. The new pragma is
-- flagged is inherited for distrinction purposes.
if Present (Prag) then
New_Prag := New_Copy_Tree (Prag);
Set_Is_Inherited (New_Prag);
Add_Contract_Item (New_Prag, Subp);
end if;
end Inherit_Pragma;
-- Start of processing for Inherit_Subprogram_Contract
begin
-- Inheritance is carried out only when both entities are subprograms
-- with contracts.
if Is_Subprogram_Or_Generic_Subprogram (Subp)
and then Is_Subprogram_Or_Generic_Subprogram (From_Subp)
and then Present (Contract (From_Subp))
then
Inherit_Pragma (Pragma_Extensions_Visible);
end if;
end Inherit_Subprogram_Contract;
---------------------------------
-- Insert_Explicit_Dereference --
---------------------------------
procedure Insert_Explicit_Dereference (N : Node_Id) is
New_Prefix : constant Node_Id := Relocate_Node (N);
Ent : Entity_Id := Empty;
Pref : Node_Id;
I : Interp_Index;
It : Interp;
T : Entity_Id;
begin
Save_Interps (N, New_Prefix);
Rewrite (N,
Make_Explicit_Dereference (Sloc (Parent (N)),
Prefix => New_Prefix));
Set_Etype (N, Designated_Type (Etype (New_Prefix)));
if Is_Overloaded (New_Prefix) then
-- The dereference is also overloaded, and its interpretations are
-- the designated types of the interpretations of the original node.
Set_Etype (N, Any_Type);
Get_First_Interp (New_Prefix, I, It);
while Present (It.Nam) loop
T := It.Typ;
if Is_Access_Type (T) then
Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
end if;
Get_Next_Interp (I, It);
end loop;
End_Interp_List;
else
-- Prefix is unambiguous: mark the original prefix (which might
-- Come_From_Source) as a reference, since the new (relocated) one
-- won't be taken into account.
if Is_Entity_Name (New_Prefix) then
Ent := Entity (New_Prefix);
Pref := New_Prefix;
-- For a retrieval of a subcomponent of some composite object,
-- retrieve the ultimate entity if there is one.
elsif Nkind_In (New_Prefix, N_Selected_Component,
N_Indexed_Component)
then
Pref := Prefix (New_Prefix);
while Present (Pref)
and then Nkind_In (Pref, N_Selected_Component,
N_Indexed_Component)
loop
Pref := Prefix (Pref);
end loop;
if Present (Pref) and then Is_Entity_Name (Pref) then
Ent := Entity (Pref);
end if;
end if;
-- Place the reference on the entity node
if Present (Ent) then
Generate_Reference (Ent, Pref);
end if;
end if;
end Insert_Explicit_Dereference;
------------------------------------------
-- Inspect_Deferred_Constant_Completion --
------------------------------------------
procedure Inspect_Deferred_Constant_Completion (Decls : List_Id) is
Decl : Node_Id;
begin
Decl := First (Decls);
while Present (Decl) loop
-- Deferred constant signature
if Nkind (Decl) = N_Object_Declaration
and then Constant_Present (Decl)
and then No (Expression (Decl))
-- No need to check internally generated constants
and then Comes_From_Source (Decl)
-- The constant is not completed. A full object declaration or a
-- pragma Import complete a deferred constant.
and then not Has_Completion (Defining_Identifier (Decl))
then
Error_Msg_N
("constant declaration requires initialization expression",
Defining_Identifier (Decl));
end if;
Decl := Next (Decl);
end loop;
end Inspect_Deferred_Constant_Completion;
-----------------------------
-- Install_Generic_Formals --
-----------------------------
procedure Install_Generic_Formals (Subp_Id : Entity_Id) is
E : Entity_Id;
begin
pragma Assert (Is_Generic_Subprogram (Subp_Id));
E := First_Entity (Subp_Id);
while Present (E) loop
Install_Entity (E);
Next_Entity (E);
end loop;
end Install_Generic_Formals;
-----------------------------
-- Is_Actual_Out_Parameter --
-----------------------------
function Is_Actual_Out_Parameter (N : Node_Id) return Boolean is
Formal : Entity_Id;
Call : Node_Id;
begin
Find_Actual (N, Formal, Call);
return Present (Formal) and then Ekind (Formal) = E_Out_Parameter;
end Is_Actual_Out_Parameter;
-------------------------
-- Is_Actual_Parameter --
-------------------------
function Is_Actual_Parameter (N : Node_Id) return Boolean is
PK : constant Node_Kind := Nkind (Parent (N));
begin
case PK is
when N_Parameter_Association =>
return N = Explicit_Actual_Parameter (Parent (N));
when N_Subprogram_Call =>
return Is_List_Member (N)
and then
List_Containing (N) = Parameter_Associations (Parent (N));
when others =>
return False;
end case;
end Is_Actual_Parameter;
--------------------------------
-- Is_Actual_Tagged_Parameter --
--------------------------------
function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean is
Formal : Entity_Id;
Call : Node_Id;
begin
Find_Actual (N, Formal, Call);
return Present (Formal) and then Is_Tagged_Type (Etype (Formal));
end Is_Actual_Tagged_Parameter;
---------------------
-- Is_Aliased_View --
---------------------
function Is_Aliased_View (Obj : Node_Id) return Boolean is
E : Entity_Id;
begin
if Is_Entity_Name (Obj) then
E := Entity (Obj);
return
(Is_Object (E)
and then
(Is_Aliased (E)
or else (Present (Renamed_Object (E))
and then Is_Aliased_View (Renamed_Object (E)))))
or else ((Is_Formal (E)
or else Ekind_In (E, E_Generic_In_Out_Parameter,
E_Generic_In_Parameter))
and then Is_Tagged_Type (Etype (E)))
or else (Is_Concurrent_Type (E) and then In_Open_Scopes (E))
-- Current instance of type, either directly or as rewritten
-- reference to the current object.
or else (Is_Entity_Name (Original_Node (Obj))
and then Present (Entity (Original_Node (Obj)))
and then Is_Type (Entity (Original_Node (Obj))))
or else (Is_Type (E) and then E = Current_Scope)
or else (Is_Incomplete_Or_Private_Type (E)
and then Full_View (E) = Current_Scope)
-- Ada 2012 AI05-0053: the return object of an extended return
-- statement is aliased if its type is immutably limited.
or else (Is_Return_Object (E)
and then Is_Limited_View (Etype (E)));
elsif Nkind (Obj) = N_Selected_Component then
return Is_Aliased (Entity (Selector_Name (Obj)));
elsif Nkind (Obj) = N_Indexed_Component then
return Has_Aliased_Components (Etype (Prefix (Obj)))
or else
(Is_Access_Type (Etype (Prefix (Obj)))
and then Has_Aliased_Components
(Designated_Type (Etype (Prefix (Obj)))));
elsif Nkind_In (Obj, N_Unchecked_Type_Conversion, N_Type_Conversion) then
return Is_Tagged_Type (Etype (Obj))
and then Is_Aliased_View (Expression (Obj));
elsif Nkind (Obj) = N_Explicit_Dereference then
return Nkind (Original_Node (Obj)) /= N_Function_Call;
else
return False;
end if;
end Is_Aliased_View;
-------------------------
-- Is_Ancestor_Package --
-------------------------
function Is_Ancestor_Package
(E1 : Entity_Id;
E2 : Entity_Id) return Boolean
is
Par : Entity_Id;
begin
Par := E2;
while Present (Par) and then Par /= Standard_Standard loop
if Par = E1 then
return True;
end if;
Par := Scope (Par);
end loop;
return False;
end Is_Ancestor_Package;
----------------------
-- Is_Atomic_Object --
----------------------
function Is_Atomic_Object (N : Node_Id) return Boolean is
function Object_Has_Atomic_Components (N : Node_Id) return Boolean;
-- Determines if given object has atomic components
function Is_Atomic_Prefix (N : Node_Id) return Boolean;
-- If prefix is an implicit dereference, examine designated type
----------------------
-- Is_Atomic_Prefix --
----------------------
function Is_Atomic_Prefix (N : Node_Id) return Boolean is
begin
if Is_Access_Type (Etype (N)) then
return
Has_Atomic_Components (Designated_Type (Etype (N)));
else
return Object_Has_Atomic_Components (N);
end if;
end Is_Atomic_Prefix;
----------------------------------
-- Object_Has_Atomic_Components --
----------------------------------
function Object_Has_Atomic_Components (N : Node_Id) return Boolean is
begin
if Has_Atomic_Components (Etype (N))
or else Is_Atomic (Etype (N))
then
return True;
elsif Is_Entity_Name (N)
and then (Has_Atomic_Components (Entity (N))
or else Is_Atomic (Entity (N)))
then
return True;
elsif Nkind (N) = N_Selected_Component
and then Is_Atomic (Entity (Selector_Name (N)))
then
return True;
elsif Nkind (N) = N_Indexed_Component
or else Nkind (N) = N_Selected_Component
then
return Is_Atomic_Prefix (Prefix (N));
else
return False;
end if;
end Object_Has_Atomic_Components;
-- Start of processing for Is_Atomic_Object
begin
-- Predicate is not relevant to subprograms
if Is_Entity_Name (N) and then Is_Overloadable (Entity (N)) then
return False;
elsif Is_Atomic (Etype (N))
or else (Is_Entity_Name (N) and then Is_Atomic (Entity (N)))
then
return True;
elsif Nkind (N) = N_Selected_Component
and then Is_Atomic (Entity (Selector_Name (N)))
then
return True;
elsif Nkind (N) = N_Indexed_Component
or else Nkind (N) = N_Selected_Component
then
return Is_Atomic_Prefix (Prefix (N));
else
return False;
end if;
end Is_Atomic_Object;
-------------------------
-- Is_Attribute_Result --
-------------------------
function Is_Attribute_Result (N : Node_Id) return Boolean is
begin
return Nkind (N) = N_Attribute_Reference
and then Attribute_Name (N) = Name_Result;
end Is_Attribute_Result;
------------------------------------
-- Is_Body_Or_Package_Declaration --
------------------------------------
function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean is
begin
return Nkind_In (N, N_Entry_Body,
N_Package_Body,
N_Package_Declaration,
N_Protected_Body,
N_Subprogram_Body,
N_Task_Body);
end Is_Body_Or_Package_Declaration;
-----------------------
-- Is_Bounded_String --
-----------------------
function Is_Bounded_String (T : Entity_Id) return Boolean is
Under : constant Entity_Id := Underlying_Type (Root_Type (T));
begin
-- Check whether T is ultimately derived from Ada.Strings.Superbounded.
-- Super_String, or one of the [Wide_]Wide_ versions. This will
-- be True for all the Bounded_String types in instances of the
-- Generic_Bounded_Length generics, and for types derived from those.
return Present (Under)
and then (Is_RTE (Root_Type (Under), RO_SU_Super_String) or else
Is_RTE (Root_Type (Under), RO_WI_Super_String) or else
Is_RTE (Root_Type (Under), RO_WW_Super_String));
end Is_Bounded_String;
-------------------------
-- Is_Child_Or_Sibling --
-------------------------
function Is_Child_Or_Sibling
(Pack_1 : Entity_Id;
Pack_2 : Entity_Id) return Boolean
is
function Distance_From_Standard (Pack : Entity_Id) return Nat;
-- Given an arbitrary package, return the number of "climbs" necessary
-- to reach scope Standard_Standard.
procedure Equalize_Depths
(Pack : in out Entity_Id;
Depth : in out Nat;
Depth_To_Reach : Nat);
-- Given an arbitrary package, its depth and a target depth to reach,
-- climb the scope chain until the said depth is reached. The pointer
-- to the package and its depth a modified during the climb.
----------------------------
-- Distance_From_Standard --
----------------------------
function Distance_From_Standard (Pack : Entity_Id) return Nat is
Dist : Nat;
Scop : Entity_Id;
begin
Dist := 0;
Scop := Pack;
while Present (Scop) and then Scop /= Standard_Standard loop
Dist := Dist + 1;
Scop := Scope (Scop);
end loop;
return Dist;
end Distance_From_Standard;
---------------------
-- Equalize_Depths --
---------------------
procedure Equalize_Depths
(Pack : in out Entity_Id;
Depth : in out Nat;
Depth_To_Reach : Nat)
is
begin
-- The package must be at a greater or equal depth
if Depth < Depth_To_Reach then
raise Program_Error;
end if;
-- Climb the scope chain until the desired depth is reached
while Present (Pack) and then Depth /= Depth_To_Reach loop
Pack := Scope (Pack);
Depth := Depth - 1;
end loop;
end Equalize_Depths;
-- Local variables
P_1 : Entity_Id := Pack_1;
P_1_Child : Boolean := False;
P_1_Depth : Nat := Distance_From_Standard (P_1);
P_2 : Entity_Id := Pack_2;
P_2_Child : Boolean := False;
P_2_Depth : Nat := Distance_From_Standard (P_2);
-- Start of processing for Is_Child_Or_Sibling
begin
pragma Assert
(Ekind (Pack_1) = E_Package and then Ekind (Pack_2) = E_Package);
-- Both packages denote the same entity, therefore they cannot be
-- children or siblings.
if P_1 = P_2 then
return False;
-- One of the packages is at a deeper level than the other. Note that
-- both may still come from differen hierarchies.
-- (root) P_2
-- / \ :
-- X P_2 or X
-- : :
-- P_1 P_1
elsif P_1_Depth > P_2_Depth then
Equalize_Depths
(Pack => P_1,
Depth => P_1_Depth,
Depth_To_Reach => P_2_Depth);
P_1_Child := True;
-- (root) P_1
-- / \ :
-- P_1 X or X
-- : :
-- P_2 P_2
elsif P_2_Depth > P_1_Depth then
Equalize_Depths
(Pack => P_2,
Depth => P_2_Depth,
Depth_To_Reach => P_1_Depth);
P_2_Child := True;
end if;
-- At this stage the package pointers have been elevated to the same
-- depth. If the related entities are the same, then one package is a
-- potential child of the other:
-- P_1
-- :
-- X became P_1 P_2 or vica versa
-- :
-- P_2
if P_1 = P_2 then
if P_1_Child then
return Is_Child_Unit (Pack_1);
else pragma Assert (P_2_Child);
return Is_Child_Unit (Pack_2);
end if;
-- The packages may come from the same package chain or from entirely
-- different hierarcies. To determine this, climb the scope stack until
-- a common root is found.
-- (root) (root 1) (root 2)
-- / \ | |
-- P_1 P_2 P_1 P_2
else
while Present (P_1) and then Present (P_2) loop
-- The two packages may be siblings
if P_1 = P_2 then
return Is_Child_Unit (Pack_1) and then Is_Child_Unit (Pack_2);
end if;
P_1 := Scope (P_1);
P_2 := Scope (P_2);
end loop;
end if;
return False;
end Is_Child_Or_Sibling;
-----------------------------
-- Is_Concurrent_Interface --
-----------------------------
function Is_Concurrent_Interface (T : Entity_Id) return Boolean is
begin
return Is_Interface (T)
and then
(Is_Protected_Interface (T)
or else Is_Synchronized_Interface (T)
or else Is_Task_Interface (T));
end Is_Concurrent_Interface;
---------------------------
-- Is_Container_Element --
---------------------------
function Is_Container_Element (Exp : Node_Id) return Boolean is
Loc : constant Source_Ptr := Sloc (Exp);
Pref : constant Node_Id := Prefix (Exp);
Call : Node_Id;
-- Call to an indexing aspect
Cont_Typ : Entity_Id;
-- The type of the container being accessed
Elem_Typ : Entity_Id;
-- Its element type
Indexing : Entity_Id;
Is_Const : Boolean;
-- Indicates that constant indexing is used, and the element is thus
-- a constant.
Ref_Typ : Entity_Id;
-- The reference type returned by the indexing operation
begin
-- If C is a container, in a context that imposes the element type of
-- that container, the indexing notation C (X) is rewritten as:
-- Indexing (C, X).Discr.all
-- where Indexing is one of the indexing aspects of the container.
-- If the context does not require a reference, the construct can be
-- rewritten as
-- Element (C, X)
-- First, verify that the construct has the proper form
if not Expander_Active then
return False;
elsif Nkind (Pref) /= N_Selected_Component then
return False;
elsif Nkind (Prefix (Pref)) /= N_Function_Call then
return False;
else
Call := Prefix (Pref);
Ref_Typ := Etype (Call);
end if;
if not Has_Implicit_Dereference (Ref_Typ)
or else No (First (Parameter_Associations (Call)))
or else not Is_Entity_Name (Name (Call))
then
return False;
end if;
-- Retrieve type of container object, and its iterator aspects
Cont_Typ := Etype (First (Parameter_Associations (Call)));
Indexing := Find_Value_Of_Aspect (Cont_Typ, Aspect_Constant_Indexing);
Is_Const := False;
if No (Indexing) then
-- Container should have at least one indexing operation
return False;
elsif Entity (Name (Call)) /= Entity (Indexing) then
-- This may be a variable indexing operation
Indexing := Find_Value_Of_Aspect (Cont_Typ, Aspect_Variable_Indexing);
if No (Indexing)
or else Entity (Name (Call)) /= Entity (Indexing)
then
return False;
end if;
else
Is_Const := True;
end if;
Elem_Typ := Find_Value_Of_Aspect (Cont_Typ, Aspect_Iterator_Element);
if No (Elem_Typ) or else Entity (Elem_Typ) /= Etype (Exp) then
return False;
end if;
-- Check that the expression is not the target of an assignment, in
-- which case the rewriting is not possible.
if not Is_Const then
declare
Par : Node_Id;
begin
Par := Exp;
while Present (Par)
loop
if Nkind (Parent (Par)) = N_Assignment_Statement
and then Par = Name (Parent (Par))
then
return False;
-- A renaming produces a reference, and the transformation
-- does not apply.
elsif Nkind (Parent (Par)) = N_Object_Renaming_Declaration then
return False;
elsif Nkind_In
(Nkind (Parent (Par)), N_Function_Call,
N_Procedure_Call_Statement,
N_Entry_Call_Statement)
then
-- Check that the element is not part of an actual for an
-- in-out parameter.
declare
F : Entity_Id;
A : Node_Id;
begin
F := First_Formal (Entity (Name (Parent (Par))));
A := First (Parameter_Associations (Parent (Par)));
while Present (F) loop
if A = Par and then Ekind (F) /= E_In_Parameter then
return False;
end if;
Next_Formal (F);
Next (A);
end loop;
end;
-- E_In_Parameter in a call: element is not modified.
exit;
end if;
Par := Parent (Par);
end loop;
end;
end if;
-- The expression has the proper form and the context requires the
-- element type. Retrieve the Element function of the container and
-- rewrite the construct as a call to it.
declare
Op : Elmt_Id;
begin
Op := First_Elmt (Primitive_Operations (Cont_Typ));
while Present (Op) loop
exit when Chars (Node (Op)) = Name_Element;
Next_Elmt (Op);
end loop;
if No (Op) then
return False;
else
Rewrite (Exp,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Node (Op), Loc),
Parameter_Associations => Parameter_Associations (Call)));
Analyze_And_Resolve (Exp, Entity (Elem_Typ));
return True;
end if;
end;
end Is_Container_Element;
-----------------------
-- Is_Constant_Bound --
-----------------------
function Is_Constant_Bound (Exp : Node_Id) return Boolean is
begin
if Compile_Time_Known_Value (Exp) then
return True;
elsif Is_Entity_Name (Exp) and then Present (Entity (Exp)) then
return Is_Constant_Object (Entity (Exp))
or else Ekind (Entity (Exp)) = E_Enumeration_Literal;
elsif Nkind (Exp) in N_Binary_Op then
return Is_Constant_Bound (Left_Opnd (Exp))
and then Is_Constant_Bound (Right_Opnd (Exp))
and then Scope (Entity (Exp)) = Standard_Standard;
else
return False;
end if;
end Is_Constant_Bound;
--------------------------------------
-- Is_Controlling_Limited_Procedure --
--------------------------------------
function Is_Controlling_Limited_Procedure
(Proc_Nam : Entity_Id) return Boolean
is
Param_Typ : Entity_Id := Empty;
begin
if Ekind (Proc_Nam) = E_Procedure
and then Present (Parameter_Specifications (Parent (Proc_Nam)))
then
Param_Typ := Etype (Parameter_Type (First (
Parameter_Specifications (Parent (Proc_Nam)))));
-- In this case where an Itype was created, the procedure call has been
-- rewritten.
elsif Present (Associated_Node_For_Itype (Proc_Nam))
and then Present (Original_Node (Associated_Node_For_Itype (Proc_Nam)))
and then
Present (Parameter_Associations
(Associated_Node_For_Itype (Proc_Nam)))
then
Param_Typ :=
Etype (First (Parameter_Associations
(Associated_Node_For_Itype (Proc_Nam))));
end if;
if Present (Param_Typ) then
return
Is_Interface (Param_Typ)
and then Is_Limited_Record (Param_Typ);
end if;
return False;
end Is_Controlling_Limited_Procedure;
-----------------------------
-- Is_CPP_Constructor_Call --
-----------------------------
function Is_CPP_Constructor_Call (N : Node_Id) return Boolean is
begin
return Nkind (N) = N_Function_Call
and then Is_CPP_Class (Etype (Etype (N)))
and then Is_Constructor (Entity (Name (N)))
and then Is_Imported (Entity (Name (N)));
end Is_CPP_Constructor_Call;
--------------------
-- Is_Declaration --
--------------------
function Is_Declaration (N : Node_Id) return Boolean is
begin
case Nkind (N) is
when N_Abstract_Subprogram_Declaration |
N_Exception_Declaration |
N_Exception_Renaming_Declaration |
N_Full_Type_Declaration |
N_Generic_Function_Renaming_Declaration |
N_Generic_Package_Declaration |
N_Generic_Package_Renaming_Declaration |
N_Generic_Procedure_Renaming_Declaration |
N_Generic_Subprogram_Declaration |
N_Number_Declaration |
N_Object_Declaration |
N_Object_Renaming_Declaration |
N_Package_Declaration |
N_Package_Renaming_Declaration |
N_Private_Extension_Declaration |
N_Private_Type_Declaration |
N_Subprogram_Declaration |
N_Subprogram_Renaming_Declaration |
N_Subtype_Declaration =>
return True;
when others =>
return False;
end case;
end Is_Declaration;
-----------------
-- Is_Delegate --
-----------------
function Is_Delegate (T : Entity_Id) return Boolean is
Desig_Type : Entity_Id;
begin
if VM_Target /= CLI_Target then
return False;
end if;
-- Access-to-subprograms are delegates in CIL
if Ekind (T) = E_Access_Subprogram_Type then
return True;
end if;
if not Is_Access_Type (T) then
-- A delegate is a managed pointer. If no designated type is defined
-- it means that it's not a delegate.
return False;
end if;
Desig_Type := Etype (Directly_Designated_Type (T));
if not Is_Tagged_Type (Desig_Type) then
return False;
end if;
-- Test if the type is inherited from [mscorlib]System.Delegate
while Etype (Desig_Type) /= Desig_Type loop
if Chars (Scope (Desig_Type)) /= No_Name
and then Is_Imported (Scope (Desig_Type))
and then Get_Name_String (Chars (Scope (Desig_Type))) = "delegate"
then
return True;
end if;
Desig_Type := Etype (Desig_Type);
end loop;
return False;
end Is_Delegate;
----------------------------------------------
-- Is_Dependent_Component_Of_Mutable_Object --
----------------------------------------------
function Is_Dependent_Component_Of_Mutable_Object
(Object : Node_Id) return Boolean
is
function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
-- Returns True if and only if Comp is declared within a variant part
--------------------------------
-- Is_Declared_Within_Variant --
--------------------------------
function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean is
Comp_Decl : constant Node_Id := Parent (Comp);
Comp_List : constant Node_Id := Parent (Comp_Decl);
begin
return Nkind (Parent (Comp_List)) = N_Variant;
end Is_Declared_Within_Variant;
P : Node_Id;
Prefix_Type : Entity_Id;
P_Aliased : Boolean := False;
Comp : Entity_Id;
Deref : Node_Id := Object;
-- Dereference node, in something like X.all.Y(2)
-- Start of processing for Is_Dependent_Component_Of_Mutable_Object
begin
-- Find the dereference node if any
while Nkind_In (Deref, N_Indexed_Component,
N_Selected_Component,
N_Slice)
loop
Deref := Prefix (Deref);
end loop;
-- Ada 2005: If we have a component or slice of a dereference,
-- something like X.all.Y (2), and the type of X is access-to-constant,
-- Is_Variable will return False, because it is indeed a constant
-- view. But it might be a view of a variable object, so we want the
-- following condition to be True in that case.
if Is_Variable (Object)
or else (Ada_Version >= Ada_2005
and then Nkind (Deref) = N_Explicit_Dereference)
then
if Nkind (Object) = N_Selected_Component then
P := Prefix (Object);
Prefix_Type := Etype (P);
if Is_Entity_Name (P) then
if Ekind (Entity (P)) = E_Generic_In_Out_Parameter then
Prefix_Type := Base_Type (Prefix_Type);
end if;
if Is_Aliased (Entity (P)) then
P_Aliased := True;
end if;
-- A discriminant check on a selected component may be expanded
-- into a dereference when removing side-effects. Recover the
-- original node and its type, which may be unconstrained.
elsif Nkind (P) = N_Explicit_Dereference
and then not (Comes_From_Source (P))
then
P := Original_Node (P);
Prefix_Type := Etype (P);
else
-- Check for prefix being an aliased component???
null;
end if;
-- A heap object is constrained by its initial value
-- Ada 2005 (AI-363): Always assume the object could be mutable in
-- the dereferenced case, since the access value might denote an
-- unconstrained aliased object, whereas in Ada 95 the designated
-- object is guaranteed to be constrained. A worst-case assumption
-- has to apply in Ada 2005 because we can't tell at compile
-- time whether the object is "constrained by its initial value"
-- (despite the fact that 3.10.2(26/2) and 8.5.1(5/2) are semantic
-- rules (these rules are acknowledged to need fixing).
if Ada_Version < Ada_2005 then
if Is_Access_Type (Prefix_Type)
or else Nkind (P) = N_Explicit_Dereference
then
return False;
end if;
else pragma Assert (Ada_Version >= Ada_2005);
if Is_Access_Type (Prefix_Type) then
-- If the access type is pool-specific, and there is no
-- constrained partial view of the designated type, then the
-- designated object is known to be constrained.
if Ekind (Prefix_Type) = E_Access_Type
and then not Object_Type_Has_Constrained_Partial_View
(Typ => Designated_Type (Prefix_Type),
Scop => Current_Scope)
then
return False;
-- Otherwise (general access type, or there is a constrained
-- partial view of the designated type), we need to check
-- based on the designated type.
else
Prefix_Type := Designated_Type (Prefix_Type);
end if;
end if;
end if;
Comp :=
Original_Record_Component (Entity (Selector_Name (Object)));
-- As per AI-0017, the renaming is illegal in a generic body, even
-- if the subtype is indefinite.
-- Ada 2005 (AI-363): In Ada 2005 an aliased object can be mutable
if not Is_Constrained (Prefix_Type)
and then (not Is_Indefinite_Subtype (Prefix_Type)
or else
(Is_Generic_Type (Prefix_Type)
and then Ekind (Current_Scope) = E_Generic_Package
and then In_Package_Body (Current_Scope)))
and then (Is_Declared_Within_Variant (Comp)
or else Has_Discriminant_Dependent_Constraint (Comp))
and then (not P_Aliased or else Ada_Version >= Ada_2005)
then
return True;
-- If the prefix is of an access type at this point, then we want
-- to return False, rather than calling this function recursively
-- on the access object (which itself might be a discriminant-
-- dependent component of some other object, but that isn't
-- relevant to checking the object passed to us). This avoids
-- issuing wrong errors when compiling with -gnatc, where there
-- can be implicit dereferences that have not been expanded.
elsif Is_Access_Type (Etype (Prefix (Object))) then
return False;
else
return
Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
end if;
elsif Nkind (Object) = N_Indexed_Component
or else Nkind (Object) = N_Slice
then
return Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
-- A type conversion that Is_Variable is a view conversion:
-- go back to the denoted object.
elsif Nkind (Object) = N_Type_Conversion then
return
Is_Dependent_Component_Of_Mutable_Object (Expression (Object));
end if;
end if;
return False;
end Is_Dependent_Component_Of_Mutable_Object;
---------------------
-- Is_Dereferenced --
---------------------
function Is_Dereferenced (N : Node_Id) return Boolean is
P : constant Node_Id := Parent (N);
begin
return Nkind_In (P, N_Selected_Component,
N_Explicit_Dereference,
N_Indexed_Component,
N_Slice)
and then Prefix (P) = N;
end Is_Dereferenced;
----------------------
-- Is_Descendent_Of --
----------------------
function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean is
T : Entity_Id;
Etyp : Entity_Id;
begin
pragma Assert (Nkind (T1) in N_Entity);
pragma Assert (Nkind (T2) in N_Entity);
T := Base_Type (T1);
-- Immediate return if the types match
if T = T2 then
return True;
-- Comment needed here ???
elsif Ekind (T) = E_Class_Wide_Type then
return Etype (T) = T2;
-- All other cases
else
loop
Etyp := Etype (T);
-- Done if we found the type we are looking for
if Etyp = T2 then
return True;
-- Done if no more derivations to check
elsif T = T1
or else T = Etyp
then
return False;
-- Following test catches error cases resulting from prev errors
elsif No (Etyp) then
return False;
elsif Is_Private_Type (T) and then Etyp = Full_View (T) then
return False;
elsif Is_Private_Type (Etyp) and then Full_View (Etyp) = T then
return False;
end if;
T := Base_Type (Etyp);
end loop;
end if;
end Is_Descendent_Of;
-----------------------------
-- Is_Effectively_Volatile --
-----------------------------
function Is_Effectively_Volatile (Id : Entity_Id) return Boolean is
begin
if Is_Type (Id) then
-- An arbitrary type is effectively volatile when it is subject to
-- pragma Atomic or Volatile.
if Is_Volatile (Id) then
return True;
-- An array type is effectively volatile when it is subject to pragma
-- Atomic_Components or Volatile_Components or its compolent type is
-- effectively volatile.
elsif Is_Array_Type (Id) then
return
Has_Volatile_Components (Id)
or else
Is_Effectively_Volatile (Component_Type (Base_Type (Id)));
else
return False;
end if;
-- Otherwise Id denotes an object
else
return
Is_Volatile (Id)
or else Has_Volatile_Components (Id)
or else Is_Effectively_Volatile (Etype (Id));
end if;
end Is_Effectively_Volatile;
------------------------------------
-- Is_Effectively_Volatile_Object --
------------------------------------
function Is_Effectively_Volatile_Object (N : Node_Id) return Boolean is
begin
if Is_Entity_Name (N) then
return Is_Effectively_Volatile (Entity (N));
elsif Nkind (N) = N_Expanded_Name then
return Is_Effectively_Volatile (Entity (N));
elsif Nkind (N) = N_Indexed_Component then
return Is_Effectively_Volatile_Object (Prefix (N));
elsif Nkind (N) = N_Selected_Component then
return
Is_Effectively_Volatile_Object (Prefix (N))
or else
Is_Effectively_Volatile_Object (Selector_Name (N));
else
return False;
end if;
end Is_Effectively_Volatile_Object;
----------------------------
-- Is_Expression_Function --
----------------------------
function Is_Expression_Function (Subp : Entity_Id) return Boolean is
Decl : Node_Id;
begin
if Ekind (Subp) /= E_Function then
return False;
else
Decl := Unit_Declaration_Node (Subp);
return Nkind (Decl) = N_Subprogram_Declaration
and then
(Nkind (Original_Node (Decl)) = N_Expression_Function
or else
(Present (Corresponding_Body (Decl))
and then
Nkind (Original_Node
(Unit_Declaration_Node
(Corresponding_Body (Decl)))) =
N_Expression_Function));
end if;
end Is_Expression_Function;
-----------------------
-- Is_EVF_Expression --
-----------------------
function Is_EVF_Expression (N : Node_Id) return Boolean is
Orig_N : constant Node_Id := Original_Node (N);
Alt : Node_Id;
Expr : Node_Id;
Id : Entity_Id;
begin
-- Detect a reference to a formal parameter of a specific tagged type
-- whose related subprogram is subject to pragma Expresions_Visible with
-- value "False".
if Is_Entity_Name (N) and then Present (Entity (N)) then
Id := Entity (N);
return
Is_Formal (Id)
and then Is_Specific_Tagged_Type (Etype (Id))
and then Extensions_Visible_Status (Id) =
Extensions_Visible_False;
-- A case expression is an EVF expression when it contains at least one
-- EVF dependent_expression. Note that a case expression may have been
-- expanded, hence the use of Original_Node.
elsif Nkind (Orig_N) = N_Case_Expression then
Alt := First (Alternatives (Orig_N));
while Present (Alt) loop
if Is_EVF_Expression (Expression (Alt)) then
return True;
end if;
Next (Alt);
end loop;
-- An if expression is an EVF expression when it contains at least one
-- EVF dependent_expression. Note that an if expression may have been
-- expanded, hence the use of Original_Node.
elsif Nkind (Orig_N) = N_If_Expression then
Expr := Next (First (Expressions (Orig_N)));
while Present (Expr) loop
if Is_EVF_Expression (Expr) then
return True;
end if;
Next (Expr);
end loop;
-- A qualified expression or a type conversion is an EVF expression when
-- its operand is an EVF expression.
elsif Nkind_In (N, N_Qualified_Expression,
N_Unchecked_Type_Conversion,
N_Type_Conversion)
then
return Is_EVF_Expression (Expression (N));
-- Attributes 'Loop_Entry, 'Old and 'Update are an EVF expression when
-- their prefix denotes an EVF expression.
elsif Nkind (N) = N_Attribute_Reference
and then Nam_In (Attribute_Name (N), Name_Loop_Entry,
Name_Old,
Name_Update)
then
return Is_EVF_Expression (Prefix (N));
end if;
return False;
end Is_EVF_Expression;
--------------
-- Is_False --
--------------
function Is_False (U : Uint) return Boolean is
begin
return (U = 0);
end Is_False;
---------------------------
-- Is_Fixed_Model_Number --
---------------------------
function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean is
S : constant Ureal := Small_Value (T);
M : Urealp.Save_Mark;
R : Boolean;
begin
M := Urealp.Mark;
R := (U = UR_Trunc (U / S) * S);
Urealp.Release (M);
return R;
end Is_Fixed_Model_Number;
-------------------------------
-- Is_Fully_Initialized_Type --
-------------------------------
function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean is
begin
-- Scalar types
if Is_Scalar_Type (Typ) then
-- A scalar type with an aspect Default_Value is fully initialized
-- Note: Iniitalize/Normalize_Scalars also ensure full initialization
-- of a scalar type, but we don't take that into account here, since
-- we don't want these to affect warnings.
return Has_Default_Aspect (Typ);
elsif Is_Access_Type (Typ) then
return True;
elsif Is_Array_Type (Typ) then
if Is_Fully_Initialized_Type (Component_Type (Typ))
or else (Ada_Version >= Ada_2012 and then Has_Default_Aspect (Typ))
then
return True;
end if;
-- An interesting case, if we have a constrained type one of whose
-- bounds is known to be null, then there are no elements to be
-- initialized, so all the elements are initialized.
if Is_Constrained (Typ) then
declare
Indx : Node_Id;
Indx_Typ : Entity_Id;
Lbd, Hbd : Node_Id;
begin
Indx := First_Index (Typ);
while Present (Indx) loop
if Etype (Indx) = Any_Type then
return False;
-- If index is a range, use directly
elsif Nkind (Indx) = N_Range then
Lbd := Low_Bound (Indx);
Hbd := High_Bound (Indx);
else
Indx_Typ := Etype (Indx);
if Is_Private_Type (Indx_Typ) then
Indx_Typ := Full_View (Indx_Typ);
end if;
if No (Indx_Typ) or else Etype (Indx_Typ) = Any_Type then
return False;
else
Lbd := Type_Low_Bound (Indx_Typ);
Hbd := Type_High_Bound (Indx_Typ);
end if;
end if;
if Compile_Time_Known_Value (Lbd)
and then
Compile_Time_Known_Value (Hbd)
then
if Expr_Value (Hbd) < Expr_Value (Lbd) then
return True;
end if;
end if;
Next_Index (Indx);
end loop;
end;
end if;
-- If no null indexes, then type is not fully initialized
return False;
-- Record types
elsif Is_Record_Type (Typ) then
if Has_Discriminants (Typ)
and then
Present (Discriminant_Default_Value (First_Discriminant (Typ)))
and then Is_Fully_Initialized_Variant (Typ)
then
return True;
end if;
-- We consider bounded string types to be fully initialized, because
-- otherwise we get false alarms when the Data component is not
-- default-initialized.
if Is_Bounded_String (Typ) then
return True;
end if;
-- Controlled records are considered to be fully initialized if
-- there is a user defined Initialize routine. This may not be
-- entirely correct, but as the spec notes, we are guessing here
-- what is best from the point of view of issuing warnings.
if Is_Controlled (Typ) then
declare
Utyp : constant Entity_Id := Underlying_Type (Typ);
begin
if Present (Utyp) then
declare
Init : constant Entity_Id :=
(Find_Prim_Op
(Underlying_Type (Typ), Name_Initialize));
begin
if Present (Init)
and then Comes_From_Source (Init)
and then not
Is_Predefined_File_Name
(File_Name (Get_Source_File_Index (Sloc (Init))))
then
return True;
elsif Has_Null_Extension (Typ)
and then
Is_Fully_Initialized_Type
(Etype (Base_Type (Typ)))
then
return True;
end if;
end;
end if;
end;
end if;
-- Otherwise see if all record components are initialized
declare
Ent : Entity_Id;
begin
Ent := First_Entity (Typ);
while Present (Ent) loop
if Ekind (Ent) = E_Component
and then (No (Parent (Ent))
or else No (Expression (Parent (Ent))))
and then not Is_Fully_Initialized_Type (Etype (Ent))
-- Special VM case for tag components, which need to be
-- defined in this case, but are never initialized as VMs
-- are using other dispatching mechanisms. Ignore this
-- uninitialized case. Note that this applies both to the
-- uTag entry and the main vtable pointer (CPP_Class case).
and then (Tagged_Type_Expansion or else not Is_Tag (Ent))
then
return False;
end if;
Next_Entity (Ent);
end loop;
end;
-- No uninitialized components, so type is fully initialized.
-- Note that this catches the case of no components as well.
return True;
elsif Is_Concurrent_Type (Typ) then
return True;
elsif Is_Private_Type (Typ) then
declare
U : constant Entity_Id := Underlying_Type (Typ);
begin
if No (U) then
return False;
else
return Is_Fully_Initialized_Type (U);
end if;
end;
else
return False;
end if;
end Is_Fully_Initialized_Type;
----------------------------------
-- Is_Fully_Initialized_Variant --
----------------------------------
function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean is
Loc : constant Source_Ptr := Sloc (Typ);
Constraints : constant List_Id := New_List;
Components : constant Elist_Id := New_Elmt_List;
Comp_Elmt : Elmt_Id;
Comp_Id : Node_Id;
Comp_List : Node_Id;
Discr : Entity_Id;
Discr_Val : Node_Id;
Report_Errors : Boolean;
pragma Warnings (Off, Report_Errors);
begin
if Serious_Errors_Detected > 0 then
return False;
end if;
if Is_Record_Type (Typ)
and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
and then Nkind (Type_Definition (Parent (Typ))) = N_Record_Definition
then
Comp_List := Component_List (Type_Definition (Parent (Typ)));
Discr := First_Discriminant (Typ);
while Present (Discr) loop
if Nkind (Parent (Discr)) = N_Discriminant_Specification then
Discr_Val := Expression (Parent (Discr));
if Present (Discr_Val)
and then Is_OK_Static_Expression (Discr_Val)
then
Append_To (Constraints,
Make_Component_Association (Loc,
Choices => New_List (New_Occurrence_Of (Discr, Loc)),
Expression => New_Copy (Discr_Val)));
else
return False;
end if;
else
return False;
end if;
Next_Discriminant (Discr);
end loop;
Gather_Components
(Typ => Typ,
Comp_List => Comp_List,
Governed_By => Constraints,
Into => Components,
Report_Errors => Report_Errors);
-- Check that each component present is fully initialized
Comp_Elmt := First_Elmt (Components);
while Present (Comp_Elmt) loop
Comp_Id := Node (Comp_Elmt);
if Ekind (Comp_Id) = E_Component
and then (No (Parent (Comp_Id))
or else No (Expression (Parent (Comp_Id))))
and then not Is_Fully_Initialized_Type (Etype (Comp_Id))
then
return False;
end if;
Next_Elmt (Comp_Elmt);
end loop;
return True;
elsif Is_Private_Type (Typ) then
declare
U : constant Entity_Id := Underlying_Type (Typ);
begin
if No (U) then
return False;
else
return Is_Fully_Initialized_Variant (U);
end if;
end;
else
return False;
end if;
end Is_Fully_Initialized_Variant;
----------------------------
-- Is_Inherited_Operation --
----------------------------
function Is_Inherited_Operation (E : Entity_Id) return Boolean is
pragma Assert (Is_Overloadable (E));
Kind : constant Node_Kind := Nkind (Parent (E));
begin
return Kind = N_Full_Type_Declaration
or else Kind = N_Private_Extension_Declaration
or else Kind = N_Subtype_Declaration
or else (Ekind (E) = E_Enumeration_Literal
and then Is_Derived_Type (Etype (E)));
end Is_Inherited_Operation;
-------------------------------------
-- Is_Inherited_Operation_For_Type --
-------------------------------------
function Is_Inherited_Operation_For_Type
(E : Entity_Id;
Typ : Entity_Id) return Boolean
is
begin
-- Check that the operation has been created by the type declaration
return Is_Inherited_Operation (E)
and then Defining_Identifier (Parent (E)) = Typ;
end Is_Inherited_Operation_For_Type;
-----------------
-- Is_Iterator --
-----------------
function Is_Iterator (Typ : Entity_Id) return Boolean is
Ifaces_List : Elist_Id;
Iface_Elmt : Elmt_Id;
Iface : Entity_Id;
begin
if Is_Class_Wide_Type (Typ)
and then Nam_In (Chars (Etype (Typ)), Name_Forward_Iterator,
Name_Reversible_Iterator)
and then
Is_Predefined_File_Name
(Unit_File_Name (Get_Source_Unit (Etype (Typ))))
then
return True;
elsif not Is_Tagged_Type (Typ) or else not Is_Derived_Type (Typ) then
return False;
elsif Present (Find_Value_Of_Aspect (Typ, Aspect_Iterable)) then
return True;
else
Collect_Interfaces (Typ, Ifaces_List);
Iface_Elmt := First_Elmt (Ifaces_List);
while Present (Iface_Elmt) loop
Iface := Node (Iface_Elmt);
if Chars (Iface) = Name_Forward_Iterator
and then
Is_Predefined_File_Name
(Unit_File_Name (Get_Source_Unit (Iface)))
then
return True;
end if;
Next_Elmt (Iface_Elmt);
end loop;
return False;
end if;
end Is_Iterator;
------------
-- Is_LHS --
------------
-- We seem to have a lot of overlapping functions that do similar things
-- (testing for left hand sides or lvalues???).
function Is_LHS (N : Node_Id) return Is_LHS_Result is
P : constant Node_Id := Parent (N);
begin
-- Return True if we are the left hand side of an assignment statement
if Nkind (P) = N_Assignment_Statement then
if Name (P) = N then
return Yes;
else
return No;
end if;
-- Case of prefix of indexed or selected component or slice
elsif Nkind_In (P, N_Indexed_Component, N_Selected_Component, N_Slice)
and then N = Prefix (P)
then
-- Here we have the case where the parent P is N.Q or N(Q .. R).
-- If P is an LHS, then N is also effectively an LHS, but there
-- is an important exception. If N is of an access type, then
-- what we really have is N.all.Q (or N.all(Q .. R)). In either
-- case this makes N.all a left hand side but not N itself.
-- If we don't know the type yet, this is the case where we return
-- Unknown, since the answer depends on the type which is unknown.
if No (Etype (N)) then
return Unknown;
-- We have an Etype set, so we can check it
elsif Is_Access_Type (Etype (N)) then
return No;
-- OK, not access type case, so just test whole expression
else
return Is_LHS (P);
end if;
-- All other cases are not left hand sides
else
return No;
end if;
end Is_LHS;
-----------------------------
-- Is_Library_Level_Entity --
-----------------------------
function Is_Library_Level_Entity (E : Entity_Id) return Boolean is
begin
-- The following is a small optimization, and it also properly handles
-- discriminals, which in task bodies might appear in expressions before
-- the corresponding procedure has been created, and which therefore do
-- not have an assigned scope.
if Is_Formal (E) then
return False;
end if;
-- Normal test is simply that the enclosing dynamic scope is Standard
return Enclosing_Dynamic_Scope (E) = Standard_Standard;
end Is_Library_Level_Entity;
--------------------------------
-- Is_Limited_Class_Wide_Type --
--------------------------------
function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean is
begin
return
Is_Class_Wide_Type (Typ)
and then (Is_Limited_Type (Typ) or else From_Limited_With (Typ));
end Is_Limited_Class_Wide_Type;
---------------------------------
-- Is_Local_Variable_Reference --
---------------------------------
function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean is
begin
if not Is_Entity_Name (Expr) then
return False;
else
declare
Ent : constant Entity_Id := Entity (Expr);
Sub : constant Entity_Id := Enclosing_Subprogram (Ent);
begin
if not Ekind_In (Ent, E_Variable, E_In_Out_Parameter) then
return False;
else
return Present (Sub) and then Sub = Current_Subprogram;
end if;
end;
end if;
end Is_Local_Variable_Reference;
-------------------------
-- Is_Object_Reference --
-------------------------
function Is_Object_Reference (N : Node_Id) return Boolean is
function Is_Internally_Generated_Renaming (N : Node_Id) return Boolean;
-- Determine whether N is the name of an internally-generated renaming
--------------------------------------
-- Is_Internally_Generated_Renaming --
--------------------------------------
function Is_Internally_Generated_Renaming (N : Node_Id) return Boolean is
P : Node_Id;
begin
P := N;
while Present (P) loop
if Nkind (P) = N_Object_Renaming_Declaration then
return not Comes_From_Source (P);
elsif Is_List_Member (P) then
return False;
end if;
P := Parent (P);
end loop;
return False;
end Is_Internally_Generated_Renaming;
-- Start of processing for Is_Object_Reference
begin
if Is_Entity_Name (N) then
return Present (Entity (N)) and then Is_Object (Entity (N));
else
case Nkind (N) is
when N_Indexed_Component | N_Slice =>
return
Is_Object_Reference (Prefix (N))
or else Is_Access_Type (Etype (Prefix (N)));
-- In Ada 95, a function call is a constant object; a procedure
-- call is not.
when N_Function_Call =>
return Etype (N) /= Standard_Void_Type;
-- Attributes 'Input, 'Old and 'Result produce objects
when N_Attribute_Reference =>
return
Nam_In
(Attribute_Name (N), Name_Input, Name_Old, Name_Result);
when N_Selected_Component =>
return
Is_Object_Reference (Selector_Name (N))
and then
(Is_Object_Reference (Prefix (N))
or else Is_Access_Type (Etype (Prefix (N))));
when N_Explicit_Dereference =>
return True;
-- A view conversion of a tagged object is an object reference
when N_Type_Conversion =>
return Is_Tagged_Type (Etype (Subtype_Mark (N)))
and then Is_Tagged_Type (Etype (Expression (N)))
and then Is_Object_Reference (Expression (N));
-- An unchecked type conversion is considered to be an object if
-- the operand is an object (this construction arises only as a
-- result of expansion activities).
when N_Unchecked_Type_Conversion =>
return True;
-- Allow string literals to act as objects as long as they appear
-- in internally-generated renamings. The expansion of iterators
-- may generate such renamings when the range involves a string
-- literal.
when N_String_Literal =>
return Is_Internally_Generated_Renaming (Parent (N));
-- AI05-0003: In Ada 2012 a qualified expression is a name.
-- This allows disambiguation of function calls and the use
-- of aggregates in more contexts.
when N_Qualified_Expression =>
if Ada_Version < Ada_2012 then
return False;
else
return Is_Object_Reference (Expression (N))
or else Nkind (Expression (N)) = N_Aggregate;
end if;
when others =>
return False;
end case;
end if;
end Is_Object_Reference;
-----------------------------------
-- Is_OK_Variable_For_Out_Formal --
-----------------------------------
function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean is
begin
Note_Possible_Modification (AV, Sure => True);
-- We must reject parenthesized variable names. Comes_From_Source is
-- checked because there are currently cases where the compiler violates
-- this rule (e.g. passing a task object to its controlled Initialize
-- routine). This should be properly documented in sinfo???
if Paren_Count (AV) > 0 and then Comes_From_Source (AV) then
return False;
-- A variable is always allowed
elsif Is_Variable (AV) then
return True;
-- Generalized indexing operations are rewritten as explicit
-- dereferences, and it is only during resolution that we can
-- check whether the context requires an access_to_variable type.
elsif Nkind (AV) = N_Explicit_Dereference
and then Ada_Version >= Ada_2012
and then Nkind (Original_Node (AV)) = N_Indexed_Component
and then Present (Etype (Original_Node (AV)))
and then Has_Implicit_Dereference (Etype (Original_Node (AV)))
then
return not Is_Access_Constant (Etype (Prefix (AV)));
-- Unchecked conversions are allowed only if they come from the
-- generated code, which sometimes uses unchecked conversions for out
-- parameters in cases where code generation is unaffected. We tell
-- source unchecked conversions by seeing if they are rewrites of
-- an original Unchecked_Conversion function call, or of an explicit
-- conversion of a function call or an aggregate (as may happen in the
-- expansion of a packed array aggregate).
elsif Nkind (AV) = N_Unchecked_Type_Conversion then
if Nkind_In (Original_Node (AV), N_Function_Call, N_Aggregate) then
return False;
elsif Comes_From_Source (AV)
and then Nkind (Original_Node (Expression (AV))) = N_Function_Call
then
return False;
elsif Nkind (Original_Node (AV)) = N_Type_Conversion then
return Is_OK_Variable_For_Out_Formal (Expression (AV));
else
return True;
end if;
-- Normal type conversions are allowed if argument is a variable
elsif Nkind (AV) = N_Type_Conversion then
if Is_Variable (Expression (AV))
and then Paren_Count (Expression (AV)) = 0
then
Note_Possible_Modification (Expression (AV), Sure => True);
return True;
-- We also allow a non-parenthesized expression that raises
-- constraint error if it rewrites what used to be a variable
elsif Raises_Constraint_Error (Expression (AV))
and then Paren_Count (Expression (AV)) = 0
and then Is_Variable (Original_Node (Expression (AV)))
then
return True;
-- Type conversion of something other than a variable
else
return False;
end if;
-- If this node is rewritten, then test the original form, if that is
-- OK, then we consider the rewritten node OK (for example, if the
-- original node is a conversion, then Is_Variable will not be true
-- but we still want to allow the conversion if it converts a variable).
elsif Original_Node (AV) /= AV then
-- In Ada 2012, the explicit dereference may be a rewritten call to a
-- Reference function.
if Ada_Version >= Ada_2012
and then Nkind (Original_Node (AV)) = N_Function_Call
and then
Has_Implicit_Dereference (Etype (Name (Original_Node (AV))))
then
return True;
else
return Is_OK_Variable_For_Out_Formal (Original_Node (AV));
end if;
-- All other non-variables are rejected
else
return False;
end if;
end Is_OK_Variable_For_Out_Formal;
-----------------------------------
-- Is_Partially_Initialized_Type --
-----------------------------------
function Is_Partially_Initialized_Type
(Typ : Entity_Id;
Include_Implicit : Boolean := True) return Boolean
is
begin
if Is_Scalar_Type (Typ) then
return False;
elsif Is_Access_Type (Typ) then
return Include_Implicit;
elsif Is_Array_Type (Typ) then
-- If component type is partially initialized, so is array type
if Is_Partially_Initialized_Type
(Component_Type (Typ), Include_Implicit)
then
return True;
-- Otherwise we are only partially initialized if we are fully
-- initialized (this is the empty array case, no point in us
-- duplicating that code here).
else
return Is_Fully_Initialized_Type (Typ);
end if;
elsif Is_Record_Type (Typ) then
-- A discriminated type is always partially initialized if in
-- all mode
if Has_Discriminants (Typ) and then Include_Implicit then
return True;
-- A tagged type is always partially initialized
elsif Is_Tagged_Type (Typ) then
return True;
-- Case of non-discriminated record
else
declare
Ent : Entity_Id;
Component_Present : Boolean := False;
-- Set True if at least one component is present. If no
-- components are present, then record type is fully
-- initialized (another odd case, like the null array).
begin
-- Loop through components
Ent := First_Entity (Typ);
while Present (Ent) loop
if Ekind (Ent) = E_Component then
Component_Present := True;
-- If a component has an initialization expression then
-- the enclosing record type is partially initialized
if Present (Parent (Ent))
and then Present (Expression (Parent (Ent)))
then
return True;
-- If a component is of a type which is itself partially
-- initialized, then the enclosing record type is also.
elsif Is_Partially_Initialized_Type
(Etype (Ent), Include_Implicit)
then
return True;
end if;
end if;
Next_Entity (Ent);
end loop;
-- No initialized components found. If we found any components
-- they were all uninitialized so the result is false.
if Component_Present then
return False;
-- But if we found no components, then all the components are
-- initialized so we consider the type to be initialized.
else
return True;
end if;
end;
end if;
-- Concurrent types are always fully initialized
elsif Is_Concurrent_Type (Typ) then
return True;
-- For a private type, go to underlying type. If there is no underlying
-- type then just assume this partially initialized. Not clear if this
-- can happen in a non-error case, but no harm in testing for this.
elsif Is_Private_Type (Typ) then
declare
U : constant Entity_Id := Underlying_Type (Typ);
begin
if No (U) then
return True;
else
return Is_Partially_Initialized_Type (U, Include_Implicit);
end if;
end;
-- For any other type (are there any?) assume partially initialized
else
return True;
end if;
end Is_Partially_Initialized_Type;
------------------------------------
-- Is_Potentially_Persistent_Type --
------------------------------------
function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean is
Comp : Entity_Id;
Indx : Node_Id;
begin
-- For private type, test corresponding full type
if Is_Private_Type (T) then
return Is_Potentially_Persistent_Type (Full_View (T));
-- Scalar types are potentially persistent
elsif Is_Scalar_Type (T) then
return True;
-- Record type is potentially persistent if not tagged and the types of
-- all it components are potentially persistent, and no component has
-- an initialization expression.
elsif Is_Record_Type (T)
and then not Is_Tagged_Type (T)
and then not Is_Partially_Initialized_Type (T)
then
Comp := First_Component (T);
while Present (Comp) loop
if not Is_Potentially_Persistent_Type (Etype (Comp)) then
return False;
else
Next_Entity (Comp);
end if;
end loop;
return True;
-- Array type is potentially persistent if its component type is
-- potentially persistent and if all its constraints are static.
elsif Is_Array_Type (T) then
if not Is_Potentially_Persistent_Type (Component_Type (T)) then
return False;
end if;
Indx := First_Index (T);
while Present (Indx) loop
if not Is_OK_Static_Subtype (Etype (Indx)) then
return False;
else
Next_Index (Indx);
end if;
end loop;
return True;
-- All other types are not potentially persistent
else
return False;
end if;
end Is_Potentially_Persistent_Type;
--------------------------------
-- Is_Potentially_Unevaluated --
--------------------------------
function Is_Potentially_Unevaluated (N : Node_Id) return Boolean is
Par : Node_Id;
Expr : Node_Id;
begin
Expr := N;
Par := Parent (N);
-- A postcondition whose expression is a short-circuit is broken down
-- into individual aspects for better exception reporting. The original
-- short-circuit expression is rewritten as the second operand, and an
-- occurrence of 'Old in that operand is potentially unevaluated.
-- See Sem_ch13.adb for details of this transformation.
if Nkind (Original_Node (Par)) = N_And_Then then
return True;
end if;
while not Nkind_In (Par, N_If_Expression,
N_Case_Expression,
N_And_Then,
N_Or_Else,
N_In,
N_Not_In)
loop
Expr := Par;
Par := Parent (Par);
-- If the context is not an expression, or if is the result of
-- expansion of an enclosing construct (such as another attribute)
-- the predicate does not apply.
if Nkind (Par) not in N_Subexpr
or else not Comes_From_Source (Par)
then
return False;
end if;
end loop;
if Nkind (Par) = N_If_Expression then
return Is_Elsif (Par) or else Expr /= First (Expressions (Par));
elsif Nkind (Par) = N_Case_Expression then
return Expr /= Expression (Par);
elsif Nkind_In (Par, N_And_Then, N_Or_Else) then
return Expr = Right_Opnd (Par);
elsif Nkind_In (Par, N_In, N_Not_In) then
return Expr /= Left_Opnd (Par);
else
return False;
end if;
end Is_Potentially_Unevaluated;
---------------------------------
-- Is_Protected_Self_Reference --
---------------------------------
function Is_Protected_Self_Reference (N : Node_Id) return Boolean is
function In_Access_Definition (N : Node_Id) return Boolean;
-- Returns true if N belongs to an access definition
--------------------------
-- In_Access_Definition --
--------------------------
function In_Access_Definition (N : Node_Id) return Boolean is
P : Node_Id;
begin
P := Parent (N);
while Present (P) loop
if Nkind (P) = N_Access_Definition then
return True;
end if;
P := Parent (P);
end loop;
return False;
end In_Access_Definition;
-- Start of processing for Is_Protected_Self_Reference
begin
-- Verify that prefix is analyzed and has the proper form. Note that
-- the attributes Elab_Spec, Elab_Body, Elab_Subp_Body and UET_Address,
-- which also produce the address of an entity, do not analyze their
-- prefix because they denote entities that are not necessarily visible.
-- Neither of them can apply to a protected type.
return Ada_Version >= Ada_2005
and then Is_Entity_Name (N)
and then Present (Entity (N))
and then Is_Protected_Type (Entity (N))
and then In_Open_Scopes (Entity (N))
and then not In_Access_Definition (N);
end Is_Protected_Self_Reference;
-----------------------------
-- Is_RCI_Pkg_Spec_Or_Body --
-----------------------------
function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean is
function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean;
-- Return True if the unit of Cunit is an RCI package declaration
---------------------------
-- Is_RCI_Pkg_Decl_Cunit --
---------------------------
function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean is
The_Unit : constant Node_Id := Unit (Cunit);
begin
if Nkind (The_Unit) /= N_Package_Declaration then
return False;
end if;
return Is_Remote_Call_Interface (Defining_Entity (The_Unit));
end Is_RCI_Pkg_Decl_Cunit;
-- Start of processing for Is_RCI_Pkg_Spec_Or_Body
begin
return Is_RCI_Pkg_Decl_Cunit (Cunit)
or else
(Nkind (Unit (Cunit)) = N_Package_Body
and then Is_RCI_Pkg_Decl_Cunit (Library_Unit (Cunit)));
end Is_RCI_Pkg_Spec_Or_Body;
-----------------------------------------
-- Is_Remote_Access_To_Class_Wide_Type --
-----------------------------------------
function Is_Remote_Access_To_Class_Wide_Type
(E : Entity_Id) return Boolean
is
begin
-- A remote access to class-wide type is a general access to object type
-- declared in the visible part of a Remote_Types or Remote_Call_
-- Interface unit.
return Ekind (E) = E_General_Access_Type
and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
end Is_Remote_Access_To_Class_Wide_Type;
-----------------------------------------
-- Is_Remote_Access_To_Subprogram_Type --
-----------------------------------------
function Is_Remote_Access_To_Subprogram_Type
(E : Entity_Id) return Boolean
is
begin
return (Ekind (E) = E_Access_Subprogram_Type
or else (Ekind (E) = E_Record_Type
and then Present (Corresponding_Remote_Type (E))))
and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
end Is_Remote_Access_To_Subprogram_Type;
--------------------
-- Is_Remote_Call --
--------------------
function Is_Remote_Call (N : Node_Id) return Boolean is
begin
if Nkind (N) not in N_Subprogram_Call then
-- An entry call cannot be remote
return False;
elsif Nkind (Name (N)) in N_Has_Entity
and then Is_Remote_Call_Interface (Entity (Name (N)))
then
-- A subprogram declared in the spec of a RCI package is remote
return True;
elsif Nkind (Name (N)) = N_Explicit_Dereference
and then Is_Remote_Access_To_Subprogram_Type
(Etype (Prefix (Name (N))))
then
-- The dereference of a RAS is a remote call
return True;
elsif Present (Controlling_Argument (N))
and then Is_Remote_Access_To_Class_Wide_Type
(Etype (Controlling_Argument (N)))
then
-- Any primitive operation call with a controlling argument of
-- a RACW type is a remote call.
return True;
end if;
-- All other calls are local calls
return False;
end Is_Remote_Call;
----------------------
-- Is_Renamed_Entry --
----------------------
function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean is
Orig_Node : Node_Id := Empty;
Subp_Decl : Node_Id := Parent (Parent (Proc_Nam));
function Is_Entry (Nam : Node_Id) return Boolean;
-- Determine whether Nam is an entry. Traverse selectors if there are
-- nested selected components.
--------------
-- Is_Entry --
--------------
function Is_Entry (Nam : Node_Id) return Boolean is
begin
if Nkind (Nam) = N_Selected_Component then
return Is_Entry (Selector_Name (Nam));
end if;
return Ekind (Entity (Nam)) = E_Entry;
end Is_Entry;
-- Start of processing for Is_Renamed_Entry
begin
if Present (Alias (Proc_Nam)) then
Subp_Decl := Parent (Parent (Alias (Proc_Nam)));
end if;
-- Look for a rewritten subprogram renaming declaration
if Nkind (Subp_Decl) = N_Subprogram_Declaration
and then Present (Original_Node (Subp_Decl))
then
Orig_Node := Original_Node (Subp_Decl);
end if;
-- The rewritten subprogram is actually an entry
if Present (Orig_Node)
and then Nkind (Orig_Node) = N_Subprogram_Renaming_Declaration
and then Is_Entry (Name (Orig_Node))
then
return True;
end if;
return False;
end Is_Renamed_Entry;
----------------------------
-- Is_Reversible_Iterator --
----------------------------
function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean is
Ifaces_List : Elist_Id;
Iface_Elmt : Elmt_Id;
Iface : Entity_Id;
begin
if Is_Class_Wide_Type (Typ)
and then Chars (Etype (Typ)) = Name_Reversible_Iterator
and then Is_Predefined_File_Name
(Unit_File_Name (Get_Source_Unit (Etype (Typ))))
then
return True;
elsif not Is_Tagged_Type (Typ) or else not Is_Derived_Type (Typ) then
return False;
else
Collect_Interfaces (Typ, Ifaces_List);
Iface_Elmt := First_Elmt (Ifaces_List);
while Present (Iface_Elmt) loop
Iface := Node (Iface_Elmt);
if Chars (Iface) = Name_Reversible_Iterator
and then
Is_Predefined_File_Name
(Unit_File_Name (Get_Source_Unit (Iface)))
then
return True;
end if;
Next_Elmt (Iface_Elmt);
end loop;
end if;
return False;
end Is_Reversible_Iterator;
----------------------
-- Is_Selector_Name --
----------------------
function Is_Selector_Name (N : Node_Id) return Boolean is
begin
if not Is_List_Member (N) then
declare
P : constant Node_Id := Parent (N);
begin
return Nkind_In (P, N_Expanded_Name,
N_Generic_Association,
N_Parameter_Association,
N_Selected_Component)
and then Selector_Name (P) = N;
end;
else
declare
L : constant List_Id := List_Containing (N);
P : constant Node_Id := Parent (L);
begin
return (Nkind (P) = N_Discriminant_Association
and then Selector_Names (P) = L)
or else
(Nkind (P) = N_Component_Association
and then Choices (P) = L);
end;
end if;
end Is_Selector_Name;
-------------------------------------
-- Is_SPARK_05_Initialization_Expr --
-------------------------------------
function Is_SPARK_05_Initialization_Expr (N : Node_Id) return Boolean is
Is_Ok : Boolean;
Expr : Node_Id;
Comp_Assn : Node_Id;
Orig_N : constant Node_Id := Original_Node (N);
begin
Is_Ok := True;
if not Comes_From_Source (Orig_N) then
goto Done;
end if;
pragma Assert (Nkind (Orig_N) in N_Subexpr);
case Nkind (Orig_N) is
when N_Character_Literal |
N_Integer_Literal |
N_Real_Literal |
N_String_Literal =>
null;
when N_Identifier |
N_Expanded_Name =>
if Is_Entity_Name (Orig_N)
and then Present (Entity (Orig_N)) -- needed in some cases
then
case Ekind (Entity (Orig_N)) is
when E_Constant |
E_Enumeration_Literal |
E_Named_Integer |
E_Named_Real =>
null;
when others =>
if Is_Type (Entity (Orig_N)) then
null;
else
Is_Ok := False;
end if;
end case;
end if;
when N_Qualified_Expression |
N_Type_Conversion =>
Is_Ok := Is_SPARK_05_Initialization_Expr (Expression (Orig_N));
when N_Unary_Op =>
Is_Ok := Is_SPARK_05_Initialization_Expr (Right_Opnd (Orig_N));
when N_Binary_Op |
N_Short_Circuit |
N_Membership_Test =>
Is_Ok := Is_SPARK_05_Initialization_Expr (Left_Opnd (Orig_N))
and then
Is_SPARK_05_Initialization_Expr (Right_Opnd (Orig_N));
when N_Aggregate |
N_Extension_Aggregate =>
if Nkind (Orig_N) = N_Extension_Aggregate then
Is_Ok :=
Is_SPARK_05_Initialization_Expr (Ancestor_Part (Orig_N));
end if;
Expr := First (Expressions (Orig_N));
while Present (Expr) loop
if not Is_SPARK_05_Initialization_Expr (Expr) then
Is_Ok := False;
goto Done;
end if;
Next (Expr);
end loop;
Comp_Assn := First (Component_Associations (Orig_N));
while Present (Comp_Assn) loop
Expr := Expression (Comp_Assn);
-- Note: test for Present here needed for box assocation
if Present (Expr)
and then not Is_SPARK_05_Initialization_Expr (Expr)
then
Is_Ok := False;
goto Done;
end if;
Next (Comp_Assn);
end loop;
when N_Attribute_Reference =>
if Nkind (Prefix (Orig_N)) in N_Subexpr then
Is_Ok := Is_SPARK_05_Initialization_Expr (Prefix (Orig_N));
end if;
Expr := First (Expressions (Orig_N));
while Present (Expr) loop
if not Is_SPARK_05_Initialization_Expr (Expr) then
Is_Ok := False;
goto Done;
end if;
Next (Expr);
end loop;
-- Selected components might be expanded named not yet resolved, so
-- default on the safe side. (Eg on sparklex.ads)
when N_Selected_Component =>
null;
when others =>
Is_Ok := False;
end case;
<<Done>>
return Is_Ok;
end Is_SPARK_05_Initialization_Expr;
----------------------------------
-- Is_SPARK_05_Object_Reference --
----------------------------------
function Is_SPARK_05_Object_Reference (N : Node_Id) return Boolean is
begin
if Is_Entity_Name (N) then
return Present (Entity (N))
and then
(Ekind_In (Entity (N), E_Constant, E_Variable)
or else Ekind (Entity (N)) in Formal_Kind);
else
case Nkind (N) is
when N_Selected_Component =>
return Is_SPARK_05_Object_Reference (Prefix (N));
when others =>
return False;
end case;
end if;
end Is_SPARK_05_Object_Reference;
-----------------------------
-- Is_Specific_Tagged_Type --
-----------------------------
function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean is
Full_Typ : Entity_Id;
begin
-- Handle private types
if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
Full_Typ := Full_View (Typ);
else
Full_Typ := Typ;
end if;
-- A specific tagged type is a non-class-wide tagged type
return Is_Tagged_Type (Full_Typ) and not Is_Class_Wide_Type (Full_Typ);
end Is_Specific_Tagged_Type;
------------------
-- Is_Statement --
------------------
function Is_Statement (N : Node_Id) return Boolean is
begin
return
Nkind (N) in N_Statement_Other_Than_Procedure_Call
or else Nkind (N) = N_Procedure_Call_Statement;
end Is_Statement;
--------------------------------------------------
-- Is_Subprogram_Stub_Without_Prior_Declaration --
--------------------------------------------------
function Is_Subprogram_Stub_Without_Prior_Declaration
(N : Node_Id) return Boolean
is
begin
-- A subprogram stub without prior declaration serves as declaration for
-- the actual subprogram body. As such, it has an attached defining
-- entity of E_[Generic_]Function or E_[Generic_]Procedure.
return Nkind (N) = N_Subprogram_Body_Stub
and then Ekind (Defining_Entity (N)) /= E_Subprogram_Body;
end Is_Subprogram_Stub_Without_Prior_Declaration;
---------------------------------
-- Is_Synchronized_Tagged_Type --
---------------------------------
function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean is
Kind : constant Entity_Kind := Ekind (Base_Type (E));
begin
-- A task or protected type derived from an interface is a tagged type.
-- Such a tagged type is called a synchronized tagged type, as are
-- synchronized interfaces and private extensions whose declaration
-- includes the reserved word synchronized.
return (Is_Tagged_Type (E)
and then (Kind = E_Task_Type
or else
Kind = E_Protected_Type))
or else
(Is_Interface (E)
and then Is_Synchronized_Interface (E))
or else
(Ekind (E) = E_Record_Type_With_Private
and then Nkind (Parent (E)) = N_Private_Extension_Declaration
and then (Synchronized_Present (Parent (E))
or else Is_Synchronized_Interface (Etype (E))));
end Is_Synchronized_Tagged_Type;
-----------------
-- Is_Transfer --
-----------------
function Is_Transfer (N : Node_Id) return Boolean is
Kind : constant Node_Kind := Nkind (N);
begin
if Kind = N_Simple_Return_Statement
or else
Kind = N_Extended_Return_Statement
or else
Kind = N_Goto_Statement
or else
Kind = N_Raise_Statement
or else
Kind = N_Requeue_Statement
then
return True;
elsif (Kind = N_Exit_Statement or else Kind in N_Raise_xxx_Error)
and then No (Condition (N))
then
return True;
elsif Kind = N_Procedure_Call_Statement
and then Is_Entity_Name (Name (N))
and then Present (Entity (Name (N)))
and then No_Return (Entity (Name (N)))
then
return True;
elsif Nkind (Original_Node (N)) = N_Raise_Statement then
return True;
else
return False;
end if;
end Is_Transfer;
-------------
-- Is_True --
-------------
function Is_True (U : Uint) return Boolean is
begin
return (U /= 0);
end Is_True;
--------------------------------------
-- Is_Unchecked_Conversion_Instance --
--------------------------------------
function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean is
Gen_Par : Entity_Id;
begin
-- Look for a function whose generic parent is the predefined intrinsic
-- function Unchecked_Conversion.
if Ekind (Id) = E_Function then
Gen_Par := Generic_Parent (Parent (Id));
return
Present (Gen_Par)
and then Chars (Gen_Par) = Name_Unchecked_Conversion
and then Is_Intrinsic_Subprogram (Gen_Par)
and then Is_Predefined_File_Name
(Unit_File_Name (Get_Source_Unit (Gen_Par)));
end if;
return False;
end Is_Unchecked_Conversion_Instance;
-------------------------------
-- Is_Universal_Numeric_Type --
-------------------------------
function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean is
begin
return T = Universal_Integer or else T = Universal_Real;
end Is_Universal_Numeric_Type;
-------------------
-- Is_Value_Type --
-------------------
function Is_Value_Type (T : Entity_Id) return Boolean is
begin
return VM_Target = CLI_Target
and then Nkind (T) in N_Has_Chars
and then Chars (T) /= No_Name
and then Get_Name_String (Chars (T)) = "valuetype";
end Is_Value_Type;
----------------------------
-- Is_Variable_Size_Array --
----------------------------
function Is_Variable_Size_Array (E : Entity_Id) return Boolean is
Idx : Node_Id;
begin
pragma Assert (Is_Array_Type (E));
-- Check if some index is initialized with a non-constant value
Idx := First_Index (E);
while Present (Idx) loop
if Nkind (Idx) = N_Range then
if not Is_Constant_Bound (Low_Bound (Idx))
or else not Is_Constant_Bound (High_Bound (Idx))
then
return True;
end if;
end if;
Idx := Next_Index (Idx);
end loop;
return False;
end Is_Variable_Size_Array;
-----------------------------
-- Is_Variable_Size_Record --
-----------------------------
function Is_Variable_Size_Record (E : Entity_Id) return Boolean is
Comp : Entity_Id;
Comp_Typ : Entity_Id;
begin
pragma Assert (Is_Record_Type (E));
Comp := First_Entity (E);
while Present (Comp) loop
Comp_Typ := Etype (Comp);
-- Recursive call if the record type has discriminants
if Is_Record_Type (Comp_Typ)
and then Has_Discriminants (Comp_Typ)
and then Is_Variable_Size_Record (Comp_Typ)
then
return True;
elsif Is_Array_Type (Comp_Typ)
and then Is_Variable_Size_Array (Comp_Typ)
then
return True;
end if;
Next_Entity (Comp);
end loop;
return False;
end Is_Variable_Size_Record;
-----------------
-- Is_Variable --
-----------------
function Is_Variable
(N : Node_Id;
Use_Original_Node : Boolean := True) return Boolean
is
Orig_Node : Node_Id;
function In_Protected_Function (E : Entity_Id) return Boolean;
-- Within a protected function, the private components of the enclosing
-- protected type are constants. A function nested within a (protected)
-- procedure is not itself protected. Within the body of a protected
-- function the current instance of the protected type is a constant.
function Is_Variable_Prefix (P : Node_Id) return Boolean;
-- Prefixes can involve implicit dereferences, in which case we must
-- test for the case of a reference of a constant access type, which can
-- can never be a variable.
---------------------------
-- In_Protected_Function --
---------------------------
function In_Protected_Function (E : Entity_Id) return Boolean is
Prot : Entity_Id;
S : Entity_Id;
begin
-- E is the current instance of a type
if Is_Type (E) then
Prot := E;
-- E is an object
else
Prot := Scope (E);
end if;
if not Is_Protected_Type (Prot) then
return False;
else
S := Current_Scope;
while Present (S) and then S /= Prot loop
if Ekind (S) = E_Function and then Scope (S) = Prot then
return True;
end if;
S := Scope (S);
end loop;
return False;
end if;
end In_Protected_Function;
------------------------
-- Is_Variable_Prefix --
------------------------
function Is_Variable_Prefix (P : Node_Id) return Boolean is
begin
if Is_Access_Type (Etype (P)) then
return not Is_Access_Constant (Root_Type (Etype (P)));
-- For the case of an indexed component whose prefix has a packed
-- array type, the prefix has been rewritten into a type conversion.
-- Determine variable-ness from the converted expression.
elsif Nkind (P) = N_Type_Conversion
and then not Comes_From_Source (P)
and then Is_Array_Type (Etype (P))
and then Is_Packed (Etype (P))
then
return Is_Variable (Expression (P));
else
return Is_Variable (P);
end if;
end Is_Variable_Prefix;
-- Start of processing for Is_Variable
begin
-- Check if we perform the test on the original node since this may be a
-- test of syntactic categories which must not be disturbed by whatever
-- rewriting might have occurred. For example, an aggregate, which is
-- certainly NOT a variable, could be turned into a variable by
-- expansion.
if Use_Original_Node then
Orig_Node := Original_Node (N);
else
Orig_Node := N;
end if;
-- Definitely OK if Assignment_OK is set. Since this is something that
-- only gets set for expanded nodes, the test is on N, not Orig_Node.
if Nkind (N) in N_Subexpr and then Assignment_OK (N) then
return True;
-- Normally we go to the original node, but there is one exception where
-- we use the rewritten node, namely when it is an explicit dereference.
-- The generated code may rewrite a prefix which is an access type with
-- an explicit dereference. The dereference is a variable, even though
-- the original node may not be (since it could be a constant of the
-- access type).
-- In Ada 2005 we have a further case to consider: the prefix may be a
-- function call given in prefix notation. The original node appears to
-- be a selected component, but we need to examine the call.
elsif Nkind (N) = N_Explicit_Dereference
and then Nkind (Orig_Node) /= N_Explicit_Dereference
and then Present (Etype (Orig_Node))
and then Is_Access_Type (Etype (Orig_Node))
then
-- Note that if the prefix is an explicit dereference that does not
-- come from source, we must check for a rewritten function call in
-- prefixed notation before other forms of rewriting, to prevent a
-- compiler crash.
return
(Nkind (Orig_Node) = N_Function_Call
and then not Is_Access_Constant (Etype (Prefix (N))))
or else
Is_Variable_Prefix (Original_Node (Prefix (N)));
-- in Ada 2012, the dereference may have been added for a type with
-- a declared implicit dereference aspect. Check that it is not an
-- access to constant.
elsif Nkind (N) = N_Explicit_Dereference
and then Present (Etype (Orig_Node))
and then Ada_Version >= Ada_2012
and then Has_Implicit_Dereference (Etype (Orig_Node))
then
return not Is_Access_Constant (Etype (Prefix (N)));
-- A function call is never a variable
elsif Nkind (N) = N_Function_Call then
return False;
-- All remaining checks use the original node
elsif Is_Entity_Name (Orig_Node)
and then Present (Entity (Orig_Node))
then
declare
E : constant Entity_Id := Entity (Orig_Node);
K : constant Entity_Kind := Ekind (E);
begin
return (K = E_Variable
and then Nkind (Parent (E)) /= N_Exception_Handler)
or else (K = E_Component
and then not In_Protected_Function (E))
or else K = E_Out_Parameter
or else K = E_In_Out_Parameter
or else K = E_Generic_In_Out_Parameter
-- Current instance of type. If this is a protected type, check
-- we are not within the body of one of its protected functions.
or else (Is_Type (E)
and then In_Open_Scopes (E)
and then not In_Protected_Function (E))
or else (Is_Incomplete_Or_Private_Type (E)
and then In_Open_Scopes (Full_View (E)));
end;
else
case Nkind (Orig_Node) is
when N_Indexed_Component | N_Slice =>
return Is_Variable_Prefix (Prefix (Orig_Node));
when N_Selected_Component =>
return (Is_Variable (Selector_Name (Orig_Node))
and then Is_Variable_Prefix (Prefix (Orig_Node)))
or else
(Nkind (N) = N_Expanded_Name
and then Scope (Entity (N)) = Entity (Prefix (N)));
-- For an explicit dereference, the type of the prefix cannot
-- be an access to constant or an access to subprogram.
when N_Explicit_Dereference =>
declare
Typ : constant Entity_Id := Etype (Prefix (Orig_Node));
begin
return Is_Access_Type (Typ)
and then not Is_Access_Constant (Root_Type (Typ))
and then Ekind (Typ) /= E_Access_Subprogram_Type;
end;
-- The type conversion is the case where we do not deal with the
-- context dependent special case of an actual parameter. Thus
-- the type conversion is only considered a variable for the
-- purposes of this routine if the target type is tagged. However,
-- a type conversion is considered to be a variable if it does not
-- come from source (this deals for example with the conversions
-- of expressions to their actual subtypes).
when N_Type_Conversion =>
return Is_Variable (Expression (Orig_Node))
and then
(not Comes_From_Source (Orig_Node)
or else
(Is_Tagged_Type (Etype (Subtype_Mark (Orig_Node)))
and then
Is_Tagged_Type (Etype (Expression (Orig_Node)))));
-- GNAT allows an unchecked type conversion as a variable. This
-- only affects the generation of internal expanded code, since
-- calls to instantiations of Unchecked_Conversion are never
-- considered variables (since they are function calls).
when N_Unchecked_Type_Conversion =>
return Is_Variable (Expression (Orig_Node));
when others =>
return False;
end case;
end if;
end Is_Variable;
---------------------------
-- Is_Visibly_Controlled --
---------------------------
function Is_Visibly_Controlled (T : Entity_Id) return Boolean is
Root : constant Entity_Id := Root_Type (T);
begin
return Chars (Scope (Root)) = Name_Finalization
and then Chars (Scope (Scope (Root))) = Name_Ada
and then Scope (Scope (Scope (Root))) = Standard_Standard;
end Is_Visibly_Controlled;
------------------------
-- Is_Volatile_Object --
------------------------
function Is_Volatile_Object (N : Node_Id) return Boolean is
function Is_Volatile_Prefix (N : Node_Id) return Boolean;
-- If prefix is an implicit dereference, examine designated type
function Object_Has_Volatile_Components (N : Node_Id) return Boolean;
-- Determines if given object has volatile components
------------------------
-- Is_Volatile_Prefix --
------------------------
function Is_Volatile_Prefix (N : Node_Id) return Boolean is
Typ : constant Entity_Id := Etype (N);
begin
if Is_Access_Type (Typ) then
declare
Dtyp : constant Entity_Id := Designated_Type (Typ);
begin
return Is_Volatile (Dtyp)
or else Has_Volatile_Components (Dtyp);
end;
else
return Object_Has_Volatile_Components (N);
end if;
end Is_Volatile_Prefix;
------------------------------------
-- Object_Has_Volatile_Components --
------------------------------------
function Object_Has_Volatile_Components (N : Node_Id) return Boolean is
Typ : constant Entity_Id := Etype (N);
begin
if Is_Volatile (Typ)
or else Has_Volatile_Components (Typ)
then
return True;
elsif Is_Entity_Name (N)
and then (Has_Volatile_Components (Entity (N))
or else Is_Volatile (Entity (N)))
then
return True;
elsif Nkind (N) = N_Indexed_Component
or else Nkind (N) = N_Selected_Component
then
return Is_Volatile_Prefix (Prefix (N));
else
return False;
end if;
end Object_Has_Volatile_Components;
-- Start of processing for Is_Volatile_Object
begin
if Nkind (N) = N_Defining_Identifier then
return Is_Volatile (N) or else Is_Volatile (Etype (N));
elsif Nkind (N) = N_Expanded_Name then
return Is_Volatile_Object (Entity (N));
elsif Is_Volatile (Etype (N))
or else (Is_Entity_Name (N) and then Is_Volatile (Entity (N)))
then
return True;
elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component)
and then Is_Volatile_Prefix (Prefix (N))
then
return True;
elsif Nkind (N) = N_Selected_Component
and then Is_Volatile (Entity (Selector_Name (N)))
then
return True;
else
return False;
end if;
end Is_Volatile_Object;
---------------------------
-- Itype_Has_Declaration --
---------------------------
function Itype_Has_Declaration (Id : Entity_Id) return Boolean is
begin
pragma Assert (Is_Itype (Id));
return Present (Parent (Id))
and then Nkind_In (Parent (Id), N_Full_Type_Declaration,
N_Subtype_Declaration)
and then Defining_Entity (Parent (Id)) = Id;
end Itype_Has_Declaration;
-------------------------
-- Kill_Current_Values --
-------------------------
procedure Kill_Current_Values
(Ent : Entity_Id;
Last_Assignment_Only : Boolean := False)
is
begin
if Is_Assignable (Ent) then
Set_Last_Assignment (Ent, Empty);
end if;
if Is_Object (Ent) then
if not Last_Assignment_Only then
Kill_Checks (Ent);
Set_Current_Value (Ent, Empty);
-- Do not reset the Is_Known_[Non_]Null and Is_Known_Valid flags
-- for a constant. Once the constant is elaborated, its value is
-- not changed, therefore the associated flags that describe the
-- value should not be modified either.
if Ekind (Ent) = E_Constant then
null;
-- Non-constant entities
else
if not Can_Never_Be_Null (Ent) then
Set_Is_Known_Non_Null (Ent, False);
end if;
Set_Is_Known_Null (Ent, False);
-- Reset the Is_Known_Valid flag unless the type is always
-- valid. This does not apply to a loop parameter because its
-- bounds are defined by the loop header and therefore always
-- valid.
if not Is_Known_Valid (Etype (Ent))
and then Ekind (Ent) /= E_Loop_Parameter
then
Set_Is_Known_Valid (Ent, False);
end if;
end if;
end if;
end if;
end Kill_Current_Values;
procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False) is
S : Entity_Id;
procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id);
-- Clear current value for entity E and all entities chained to E
------------------------------------------
-- Kill_Current_Values_For_Entity_Chain --
------------------------------------------
procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id) is
Ent : Entity_Id;
begin
Ent := E;
while Present (Ent) loop
Kill_Current_Values (Ent, Last_Assignment_Only);
Next_Entity (Ent);
end loop;
end Kill_Current_Values_For_Entity_Chain;
-- Start of processing for Kill_Current_Values
begin
-- Kill all saved checks, a special case of killing saved values
if not Last_Assignment_Only then
Kill_All_Checks;
end if;
-- Loop through relevant scopes, which includes the current scope and
-- any parent scopes if the current scope is a block or a package.
S := Current_Scope;
Scope_Loop : loop
-- Clear current values of all entities in current scope
Kill_Current_Values_For_Entity_Chain (First_Entity (S));
-- If scope is a package, also clear current values of all private
-- entities in the scope.
if Is_Package_Or_Generic_Package (S)
or else Is_Concurrent_Type (S)
then
Kill_Current_Values_For_Entity_Chain (First_Private_Entity (S));
end if;
-- If this is a not a subprogram, deal with parents
if not Is_Subprogram (S) then
S := Scope (S);
exit Scope_Loop when S = Standard_Standard;
else
exit Scope_Loop;
end if;
end loop Scope_Loop;
end Kill_Current_Values;
--------------------------
-- Kill_Size_Check_Code --
--------------------------
procedure Kill_Size_Check_Code (E : Entity_Id) is
begin
if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
and then Present (Size_Check_Code (E))
then
Remove (Size_Check_Code (E));
Set_Size_Check_Code (E, Empty);
end if;
end Kill_Size_Check_Code;
--------------------------
-- Known_To_Be_Assigned --
--------------------------
function Known_To_Be_Assigned (N : Node_Id) return Boolean is
P : constant Node_Id := Parent (N);
begin
case Nkind (P) is
-- Test left side of assignment
when N_Assignment_Statement =>
return N = Name (P);
-- Function call arguments are never lvalues
when N_Function_Call =>
return False;
-- Positional parameter for procedure or accept call
when N_Procedure_Call_Statement |
N_Accept_Statement
=>
declare
Proc : Entity_Id;
Form : Entity_Id;
Act : Node_Id;
begin
Proc := Get_Subprogram_Entity (P);
if No (Proc) then
return False;
end if;
-- If we are not a list member, something is strange, so
-- be conservative and return False.
if not Is_List_Member (N) then
return False;
end if;
-- We are going to find the right formal by stepping forward
-- through the formals, as we step backwards in the actuals.
Form := First_Formal (Proc);
Act := N;
loop
-- If no formal, something is weird, so be conservative
-- and return False.
if No (Form) then
return False;
end if;
Prev (Act);
exit when No (Act);
Next_Formal (Form);
end loop;
return Ekind (Form) /= E_In_Parameter;
end;
-- Named parameter for procedure or accept call
when N_Parameter_Association =>
declare
Proc : Entity_Id;
Form : Entity_Id;
begin
Proc := Get_Subprogram_Entity (Parent (P));
if No (Proc) then
return False;
end if;
-- Loop through formals to find the one that matches
Form := First_Formal (Proc);
loop
-- If no matching formal, that's peculiar, some kind of
-- previous error, so return False to be conservative.
-- Actually this also happens in legal code in the case
-- where P is a parameter association for an Extra_Formal???
if No (Form) then
return False;
end if;
-- Else test for match
if Chars (Form) = Chars (Selector_Name (P)) then
return Ekind (Form) /= E_In_Parameter;
end if;
Next_Formal (Form);
end loop;
end;
-- Test for appearing in a conversion that itself appears
-- in an lvalue context, since this should be an lvalue.
when N_Type_Conversion =>
return Known_To_Be_Assigned (P);
-- All other references are definitely not known to be modifications
when others =>
return False;
end case;
end Known_To_Be_Assigned;
---------------------------
-- Last_Source_Statement --
---------------------------
function Last_Source_Statement (HSS : Node_Id) return Node_Id is
N : Node_Id;
begin
N := Last (Statements (HSS));
while Present (N) loop
exit when Comes_From_Source (N);
Prev (N);
end loop;
return N;
end Last_Source_Statement;
----------------------------------
-- Matching_Static_Array_Bounds --
----------------------------------
function Matching_Static_Array_Bounds
(L_Typ : Node_Id;
R_Typ : Node_Id) return Boolean
is
L_Ndims : constant Nat := Number_Dimensions (L_Typ);
R_Ndims : constant Nat := Number_Dimensions (R_Typ);
L_Index : Node_Id;
R_Index : Node_Id;
L_Low : Node_Id;
L_High : Node_Id;
L_Len : Uint;
R_Low : Node_Id;
R_High : Node_Id;
R_Len : Uint;
begin
if L_Ndims /= R_Ndims then
return False;
end if;
-- Unconstrained types do not have static bounds
if not Is_Constrained (L_Typ) or else not Is_Constrained (R_Typ) then
return False;
end if;
-- First treat specially the first dimension, as the lower bound and
-- length of string literals are not stored like those of arrays.
if Ekind (L_Typ) = E_String_Literal_Subtype then
L_Low := String_Literal_Low_Bound (L_Typ);
L_Len := String_Literal_Length (L_Typ);
else
L_Index := First_Index (L_Typ);
Get_Index_Bounds (L_Index, L_Low, L_High);
if Is_OK_Static_Expression (L_Low)
and then
Is_OK_Static_Expression (L_High)
then
if Expr_Value (L_High) < Expr_Value (L_Low) then
L_Len := Uint_0;
else
L_Len := (Expr_Value (L_High) - Expr_Value (L_Low)) + 1;
end if;
else
return False;
end if;
end if;
if Ekind (R_Typ) = E_String_Literal_Subtype then
R_Low := String_Literal_Low_Bound (R_Typ);
R_Len := String_Literal_Length (R_Typ);
else
R_Index := First_Index (R_Typ);
Get_Index_Bounds (R_Index, R_Low, R_High);
if Is_OK_Static_Expression (R_Low)
and then
Is_OK_Static_Expression (R_High)
then
if Expr_Value (R_High) < Expr_Value (R_Low) then
R_Len := Uint_0;
else
R_Len := (Expr_Value (R_High) - Expr_Value (R_Low)) + 1;
end if;
else
return False;
end if;
end if;
if (Is_OK_Static_Expression (L_Low)
and then
Is_OK_Static_Expression (R_Low))
and then Expr_Value (L_Low) = Expr_Value (R_Low)
and then L_Len = R_Len
then
null;
else
return False;
end if;
-- Then treat all other dimensions
for Indx in 2 .. L_Ndims loop
Next (L_Index);
Next (R_Index);
Get_Index_Bounds (L_Index, L_Low, L_High);
Get_Index_Bounds (R_Index, R_Low, R_High);
if (Is_OK_Static_Expression (L_Low) and then
Is_OK_Static_Expression (L_High) and then
Is_OK_Static_Expression (R_Low) and then
Is_OK_Static_Expression (R_High))
and then (Expr_Value (L_Low) = Expr_Value (R_Low)
and then
Expr_Value (L_High) = Expr_Value (R_High))
then
null;
else
return False;
end if;
end loop;
-- If we fall through the loop, all indexes matched
return True;
end Matching_Static_Array_Bounds;
-------------------
-- May_Be_Lvalue --
-------------------
function May_Be_Lvalue (N : Node_Id) return Boolean is
P : constant Node_Id := Parent (N);
begin
case Nkind (P) is
-- Test left side of assignment
when N_Assignment_Statement =>
return N = Name (P);
-- Test prefix of component or attribute. Note that the prefix of an
-- explicit or implicit dereference cannot be an l-value.
when N_Attribute_Reference =>
return N = Prefix (P)
and then Name_Implies_Lvalue_Prefix (Attribute_Name (P));
-- For an expanded name, the name is an lvalue if the expanded name
-- is an lvalue, but the prefix is never an lvalue, since it is just
-- the scope where the name is found.
when N_Expanded_Name =>
if N = Prefix (P) then
return May_Be_Lvalue (P);
else
return False;
end if;
-- For a selected component A.B, A is certainly an lvalue if A.B is.
-- B is a little interesting, if we have A.B := 3, there is some
-- discussion as to whether B is an lvalue or not, we choose to say
-- it is. Note however that A is not an lvalue if it is of an access
-- type since this is an implicit dereference.
when N_Selected_Component =>
if N = Prefix (P)
and then Present (Etype (N))
and then Is_Access_Type (Etype (N))
then
return False;
else
return May_Be_Lvalue (P);
end if;
-- For an indexed component or slice, the index or slice bounds is
-- never an lvalue. The prefix is an lvalue if the indexed component
-- or slice is an lvalue, except if it is an access type, where we
-- have an implicit dereference.
when N_Indexed_Component | N_Slice =>
if N /= Prefix (P)
or else (Present (Etype (N)) and then Is_Access_Type (Etype (N)))
then
return False;
else
return May_Be_Lvalue (P);
end if;
-- Prefix of a reference is an lvalue if the reference is an lvalue
when N_Reference =>
return May_Be_Lvalue (P);
-- Prefix of explicit dereference is never an lvalue
when N_Explicit_Dereference =>
return False;
-- Positional parameter for subprogram, entry, or accept call.
-- In older versions of Ada function call arguments are never
-- lvalues. In Ada 2012 functions can have in-out parameters.
when N_Subprogram_Call |
N_Entry_Call_Statement |
N_Accept_Statement
=>
if Nkind (P) = N_Function_Call and then Ada_Version < Ada_2012 then
return False;
end if;
-- The following mechanism is clumsy and fragile. A single flag
-- set in Resolve_Actuals would be preferable ???
declare
Proc : Entity_Id;
Form : Entity_Id;
Act : Node_Id;
begin
Proc := Get_Subprogram_Entity (P);
if No (Proc) then
return True;
end if;
-- If we are not a list member, something is strange, so be
-- conservative and return True.
if not Is_List_Member (N) then
return True;
end if;
-- We are going to find the right formal by stepping forward
-- through the formals, as we step backwards in the actuals.
Form := First_Formal (Proc);
Act := N;
loop
-- If no formal, something is weird, so be conservative and
-- return True.
if No (Form) then
return True;
end if;
Prev (Act);
exit when No (Act);
Next_Formal (Form);
end loop;
return Ekind (Form) /= E_In_Parameter;
end;
-- Named parameter for procedure or accept call
when N_Parameter_Association =>
declare
Proc : Entity_Id;
Form : Entity_Id;
begin
Proc := Get_Subprogram_Entity (Parent (P));
if No (Proc) then
return True;
end if;
-- Loop through formals to find the one that matches
Form := First_Formal (Proc);
loop
-- If no matching formal, that's peculiar, some kind of
-- previous error, so return True to be conservative.
-- Actually happens with legal code for an unresolved call
-- where we may get the wrong homonym???
if No (Form) then
return True;
end if;
-- Else test for match
if Chars (Form) = Chars (Selector_Name (P)) then
return Ekind (Form) /= E_In_Parameter;
end if;
Next_Formal (Form);
end loop;
end;
-- Test for appearing in a conversion that itself appears in an
-- lvalue context, since this should be an lvalue.
when N_Type_Conversion =>
return May_Be_Lvalue (P);
-- Test for appearance in object renaming declaration
when N_Object_Renaming_Declaration =>
return True;
-- All other references are definitely not lvalues
when others =>
return False;
end case;
end May_Be_Lvalue;
-----------------------
-- Mark_Coextensions --
-----------------------
procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id) is
Is_Dynamic : Boolean;
-- Indicates whether the context causes nested coextensions to be
-- dynamic or static
function Mark_Allocator (N : Node_Id) return Traverse_Result;
-- Recognize an allocator node and label it as a dynamic coextension
--------------------
-- Mark_Allocator --
--------------------
function Mark_Allocator (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) = N_Allocator then
if Is_Dynamic then
Set_Is_Dynamic_Coextension (N);
-- If the allocator expression is potentially dynamic, it may
-- be expanded out of order and require dynamic allocation
-- anyway, so we treat the coextension itself as dynamic.
-- Potential optimization ???
elsif Nkind (Expression (N)) = N_Qualified_Expression
and then Nkind (Expression (Expression (N))) = N_Op_Concat
then
Set_Is_Dynamic_Coextension (N);
else
Set_Is_Static_Coextension (N);
end if;
end if;
return OK;
end Mark_Allocator;
procedure Mark_Allocators is new Traverse_Proc (Mark_Allocator);
-- Start of processing Mark_Coextensions
begin
case Nkind (Context_Nod) is
-- Comment here ???
when N_Assignment_Statement =>
Is_Dynamic := Nkind (Expression (Context_Nod)) = N_Allocator;
-- An allocator that is a component of a returned aggregate
-- must be dynamic.
when N_Simple_Return_Statement =>
declare
Expr : constant Node_Id := Expression (Context_Nod);
begin
Is_Dynamic :=
Nkind (Expr) = N_Allocator
or else
(Nkind (Expr) = N_Qualified_Expression
and then Nkind (Expression (Expr)) = N_Aggregate);
end;
-- An alloctor within an object declaration in an extended return
-- statement is of necessity dynamic.
when N_Object_Declaration =>
Is_Dynamic := Nkind (Root_Nod) = N_Allocator
or else
Nkind (Parent (Context_Nod)) = N_Extended_Return_Statement;
-- This routine should not be called for constructs which may not
-- contain coextensions.
when others =>
raise Program_Error;
end case;
Mark_Allocators (Root_Nod);
end Mark_Coextensions;
----------------------
-- Needs_One_Actual --
----------------------
function Needs_One_Actual (E : Entity_Id) return Boolean is
Formal : Entity_Id;
begin
-- Ada 2005 or later, and formals present
if Ada_Version >= Ada_2005 and then Present (First_Formal (E)) then
Formal := Next_Formal (First_Formal (E));
while Present (Formal) loop
if No (Default_Value (Formal)) then
return False;
end if;
Next_Formal (Formal);
end loop;
return True;
-- Ada 83/95 or no formals
else
return False;
end if;
end Needs_One_Actual;
------------------------
-- New_Copy_List_Tree --
------------------------
function New_Copy_List_Tree (List : List_Id) return List_Id is
NL : List_Id;
E : Node_Id;
begin
if List = No_List then
return No_List;
else
NL := New_List;
E := First (List);
while Present (E) loop
Append (New_Copy_Tree (E), NL);
E := Next (E);
end loop;
return NL;
end if;
end New_Copy_List_Tree;
--------------------------------------------------
-- New_Copy_Tree Auxiliary Data and Subprograms --
--------------------------------------------------
use Atree.Unchecked_Access;
use Atree_Private_Part;
-- Our approach here requires a two pass traversal of the tree. The
-- first pass visits all nodes that eventually will be copied looking
-- for defining Itypes. If any defining Itypes are found, then they are
-- copied, and an entry is added to the replacement map. In the second
-- phase, the tree is copied, using the replacement map to replace any
-- Itype references within the copied tree.
-- The following hash tables are used if the Map supplied has more
-- than hash threshold entries to speed up access to the map. If
-- there are fewer entries, then the map is searched sequentially
-- (because setting up a hash table for only a few entries takes
-- more time than it saves.
function New_Copy_Hash (E : Entity_Id) return NCT_Header_Num;
-- Hash function used for hash operations
-------------------
-- New_Copy_Hash --
-------------------
function New_Copy_Hash (E : Entity_Id) return NCT_Header_Num is
begin
return Nat (E) mod (NCT_Header_Num'Last + 1);
end New_Copy_Hash;
---------------
-- NCT_Assoc --
---------------
-- The hash table NCT_Assoc associates old entities in the table
-- with their corresponding new entities (i.e. the pairs of entries
-- presented in the original Map argument are Key-Element pairs).
package NCT_Assoc is new Simple_HTable (
Header_Num => NCT_Header_Num,
Element => Entity_Id,
No_Element => Empty,
Key => Entity_Id,
Hash => New_Copy_Hash,
Equal => Types."=");
---------------------
-- NCT_Itype_Assoc --
---------------------
-- The hash table NCT_Itype_Assoc contains entries only for those
-- old nodes which have a non-empty Associated_Node_For_Itype set.
-- The key is the associated node, and the element is the new node
-- itself (NOT the associated node for the new node).
package NCT_Itype_Assoc is new Simple_HTable (
Header_Num => NCT_Header_Num,
Element => Entity_Id,
No_Element => Empty,
Key => Entity_Id,
Hash => New_Copy_Hash,
Equal => Types."=");
-------------------
-- New_Copy_Tree --
-------------------
function New_Copy_Tree
(Source : Node_Id;
Map : Elist_Id := No_Elist;
New_Sloc : Source_Ptr := No_Location;
New_Scope : Entity_Id := Empty) return Node_Id
is
Actual_Map : Elist_Id := Map;
-- This is the actual map for the copy. It is initialized with the
-- given elements, and then enlarged as required for Itypes that are
-- copied during the first phase of the copy operation. The visit
-- procedures add elements to this map as Itypes are encountered.
-- The reason we cannot use Map directly, is that it may well be
-- (and normally is) initialized to No_Elist, and if we have mapped
-- entities, we have to reset it to point to a real Elist.
function Assoc (N : Node_Or_Entity_Id) return Node_Id;
-- Called during second phase to map entities into their corresponding
-- copies using Actual_Map. If the argument is not an entity, or is not
-- in Actual_Map, then it is returned unchanged.
procedure Build_NCT_Hash_Tables;
-- Builds hash tables (number of elements >= threshold value)
function Copy_Elist_With_Replacement
(Old_Elist : Elist_Id) return Elist_Id;
-- Called during second phase to copy element list doing replacements
procedure Copy_Itype_With_Replacement (New_Itype : Entity_Id);
-- Called during the second phase to process a copied Itype. The actual
-- copy happened during the first phase (so that we could make the entry
-- in the mapping), but we still have to deal with the descendents of
-- the copied Itype and copy them where necessary.
function Copy_List_With_Replacement (Old_List : List_Id) return List_Id;
-- Called during second phase to copy list doing replacements
function Copy_Node_With_Replacement (Old_Node : Node_Id) return Node_Id;
-- Called during second phase to copy node doing replacements
procedure Visit_Elist (E : Elist_Id);
-- Called during first phase to visit all elements of an Elist
procedure Visit_Field (F : Union_Id; N : Node_Id);
-- Visit a single field, recursing to call Visit_Node or Visit_List
-- if the field is a syntactic descendent of the current node (i.e.
-- its parent is Node N).
procedure Visit_Itype (Old_Itype : Entity_Id);
-- Called during first phase to visit subsidiary fields of a defining
-- Itype, and also create a copy and make an entry in the replacement
-- map for the new copy.
procedure Visit_List (L : List_Id);
-- Called during first phase to visit all elements of a List
procedure Visit_Node (N : Node_Or_Entity_Id);
-- Called during first phase to visit a node and all its subtrees
-----------
-- Assoc --
-----------
function Assoc (N : Node_Or_Entity_Id) return Node_Id is
E : Elmt_Id;
Ent : Entity_Id;
begin
if not Has_Extension (N) or else No (Actual_Map) then
return N;
elsif NCT_Hash_Tables_Used then
Ent := NCT_Assoc.Get (Entity_Id (N));
if Present (Ent) then
return Ent;
else
return N;
end if;
-- No hash table used, do serial search
else
E := First_Elmt (Actual_Map);
while Present (E) loop
if Node (E) = N then
return Node (Next_Elmt (E));
else
E := Next_Elmt (Next_Elmt (E));
end if;
end loop;
end if;
return N;
end Assoc;
---------------------------
-- Build_NCT_Hash_Tables --
---------------------------
procedure Build_NCT_Hash_Tables is
Elmt : Elmt_Id;
Ent : Entity_Id;
begin
if NCT_Hash_Table_Setup then
NCT_Assoc.Reset;
NCT_Itype_Assoc.Reset;
end if;
Elmt := First_Elmt (Actual_Map);
while Present (Elmt) loop
Ent := Node (Elmt);
-- Get new entity, and associate old and new
Next_Elmt (Elmt);
NCT_Assoc.Set (Ent, Node (Elmt));
if Is_Type (Ent) then
declare
Anode : constant Entity_Id :=
Associated_Node_For_Itype (Ent);
begin
if Present (Anode) then
-- Enter a link between the associated node of the
-- old Itype and the new Itype, for updating later
-- when node is copied.
NCT_Itype_Assoc.Set (Anode, Node (Elmt));
end if;
end;
end if;
Next_Elmt (Elmt);
end loop;
NCT_Hash_Tables_Used := True;
NCT_Hash_Table_Setup := True;
end Build_NCT_Hash_Tables;
---------------------------------
-- Copy_Elist_With_Replacement --
---------------------------------
function Copy_Elist_With_Replacement
(Old_Elist : Elist_Id) return Elist_Id
is
M : Elmt_Id;
New_Elist : Elist_Id;
begin
if No (Old_Elist) then
return No_Elist;
else
New_Elist := New_Elmt_List;
M := First_Elmt (Old_Elist);
while Present (M) loop
Append_Elmt (Copy_Node_With_Replacement (Node (M)), New_Elist);
Next_Elmt (M);
end loop;
end if;
return New_Elist;
end Copy_Elist_With_Replacement;
---------------------------------
-- Copy_Itype_With_Replacement --
---------------------------------
-- This routine exactly parallels its phase one analog Visit_Itype,
procedure Copy_Itype_With_Replacement (New_Itype : Entity_Id) is
begin
-- Translate Next_Entity, Scope and Etype fields, in case they
-- reference entities that have been mapped into copies.
Set_Next_Entity (New_Itype, Assoc (Next_Entity (New_Itype)));
Set_Etype (New_Itype, Assoc (Etype (New_Itype)));
if Present (New_Scope) then
Set_Scope (New_Itype, New_Scope);
else
Set_Scope (New_Itype, Assoc (Scope (New_Itype)));
end if;
-- Copy referenced fields
if Is_Discrete_Type (New_Itype) then
Set_Scalar_Range (New_Itype,
Copy_Node_With_Replacement (Scalar_Range (New_Itype)));
elsif Has_Discriminants (Base_Type (New_Itype)) then
Set_Discriminant_Constraint (New_Itype,
Copy_Elist_With_Replacement
(Discriminant_Constraint (New_Itype)));
elsif Is_Array_Type (New_Itype) then
if Present (First_Index (New_Itype)) then
Set_First_Index (New_Itype,
First (Copy_List_With_Replacement
(List_Containing (First_Index (New_Itype)))));
end if;
if Is_Packed (New_Itype) then
Set_Packed_Array_Impl_Type (New_Itype,
Copy_Node_With_Replacement
(Packed_Array_Impl_Type (New_Itype)));
end if;
end if;
end Copy_Itype_With_Replacement;
--------------------------------
-- Copy_List_With_Replacement --
--------------------------------
function Copy_List_With_Replacement
(Old_List : List_Id) return List_Id
is
New_List : List_Id;
E : Node_Id;
begin
if Old_List = No_List then
return No_List;
else
New_List := Empty_List;
E := First (Old_List);
while Present (E) loop
Append (Copy_Node_With_Replacement (E), New_List);
Next (E);
end loop;
return New_List;
end if;
end Copy_List_With_Replacement;
--------------------------------
-- Copy_Node_With_Replacement --
--------------------------------
function Copy_Node_With_Replacement
(Old_Node : Node_Id) return Node_Id
is
New_Node : Node_Id;
procedure Adjust_Named_Associations
(Old_Node : Node_Id;
New_Node : Node_Id);
-- If a call node has named associations, these are chained through
-- the First_Named_Actual, Next_Named_Actual links. These must be
-- propagated separately to the new parameter list, because these
-- are not syntactic fields.
function Copy_Field_With_Replacement
(Field : Union_Id) return Union_Id;
-- Given Field, which is a field of Old_Node, return a copy of it
-- if it is a syntactic field (i.e. its parent is Node), setting
-- the parent of the copy to poit to New_Node. Otherwise returns
-- the field (possibly mapped if it is an entity).
-------------------------------
-- Adjust_Named_Associations --
-------------------------------
procedure Adjust_Named_Associations
(Old_Node : Node_Id;
New_Node : Node_Id)
is
Old_E : Node_Id;
New_E : Node_Id;
Old_Next : Node_Id;
New_Next : Node_Id;
begin
Old_E := First (Parameter_Associations (Old_Node));
New_E := First (Parameter_Associations (New_Node));
while Present (Old_E) loop
if Nkind (Old_E) = N_Parameter_Association
and then Present (Next_Named_Actual (Old_E))
then
if First_Named_Actual (Old_Node)
= Explicit_Actual_Parameter (Old_E)
then
Set_First_Named_Actual
(New_Node, Explicit_Actual_Parameter (New_E));
end if;
-- Now scan parameter list from the beginning,to locate
-- next named actual, which can be out of order.
Old_Next := First (Parameter_Associations (Old_Node));
New_Next := First (Parameter_Associations (New_Node));
while Nkind (Old_Next) /= N_Parameter_Association
or else Explicit_Actual_Parameter (Old_Next) /=
Next_Named_Actual (Old_E)
loop
Next (Old_Next);
Next (New_Next);
end loop;
Set_Next_Named_Actual
(New_E, Explicit_Actual_Parameter (New_Next));
end if;
Next (Old_E);
Next (New_E);
end loop;
end Adjust_Named_Associations;
---------------------------------
-- Copy_Field_With_Replacement --
---------------------------------
function Copy_Field_With_Replacement
(Field : Union_Id) return Union_Id
is
begin
if Field = Union_Id (Empty) then
return Field;
elsif Field in Node_Range then
declare
Old_N : constant Node_Id := Node_Id (Field);
New_N : Node_Id;
begin
-- If syntactic field, as indicated by the parent pointer
-- being set, then copy the referenced node recursively.
if Parent (Old_N) = Old_Node then
New_N := Copy_Node_With_Replacement (Old_N);
if New_N /= Old_N then
Set_Parent (New_N, New_Node);
end if;
-- For semantic fields, update possible entity reference
-- from the replacement map.
else
New_N := Assoc (Old_N);
end if;
return Union_Id (New_N);
end;
elsif Field in List_Range then
declare
Old_L : constant List_Id := List_Id (Field);
New_L : List_Id;
begin
-- If syntactic field, as indicated by the parent pointer,
-- then recursively copy the entire referenced list.
if Parent (Old_L) = Old_Node then
New_L := Copy_List_With_Replacement (Old_L);
Set_Parent (New_L, New_Node);
-- For semantic list, just returned unchanged
else
New_L := Old_L;
end if;
return Union_Id (New_L);
end;
-- Anything other than a list or a node is returned unchanged
else
return Field;
end if;
end Copy_Field_With_Replacement;
-- Start of processing for Copy_Node_With_Replacement
begin
if Old_Node <= Empty_Or_Error then
return Old_Node;
elsif Has_Extension (Old_Node) then
return Assoc (Old_Node);
else
New_Node := New_Copy (Old_Node);
-- If the node we are copying is the associated node of a
-- previously copied Itype, then adjust the associated node
-- of the copy of that Itype accordingly.
if Present (Actual_Map) then
declare
E : Elmt_Id;
Ent : Entity_Id;
begin
-- Case of hash table used
if NCT_Hash_Tables_Used then
Ent := NCT_Itype_Assoc.Get (Old_Node);
if Present (Ent) then
Set_Associated_Node_For_Itype (Ent, New_Node);
end if;
-- Case of no hash table used
else
E := First_Elmt (Actual_Map);
while Present (E) loop
if Is_Itype (Node (E))
and then
Old_Node = Associated_Node_For_Itype (Node (E))
then
Set_Associated_Node_For_Itype
(Node (Next_Elmt (E)), New_Node);
end if;
E := Next_Elmt (Next_Elmt (E));
end loop;
end if;
end;
end if;
-- Recursively copy descendents
Set_Field1
(New_Node, Copy_Field_With_Replacement (Field1 (New_Node)));
Set_Field2
(New_Node, Copy_Field_With_Replacement (Field2 (New_Node)));
Set_Field3
(New_Node, Copy_Field_With_Replacement (Field3 (New_Node)));
Set_Field4
(New_Node, Copy_Field_With_Replacement (Field4 (New_Node)));
Set_Field5
(New_Node, Copy_Field_With_Replacement (Field5 (New_Node)));
-- Adjust Sloc of new node if necessary
if New_Sloc /= No_Location then
Set_Sloc (New_Node, New_Sloc);
-- If we adjust the Sloc, then we are essentially making
-- a completely new node, so the Comes_From_Source flag
-- should be reset to the proper default value.
Nodes.Table (New_Node).Comes_From_Source :=
Default_Node.Comes_From_Source;
end if;
-- If the node is call and has named associations,
-- set the corresponding links in the copy.
if (Nkind (Old_Node) = N_Function_Call
or else Nkind (Old_Node) = N_Entry_Call_Statement
or else
Nkind (Old_Node) = N_Procedure_Call_Statement)
and then Present (First_Named_Actual (Old_Node))
then
Adjust_Named_Associations (Old_Node, New_Node);
end if;
-- Reset First_Real_Statement for Handled_Sequence_Of_Statements.
-- The replacement mechanism applies to entities, and is not used
-- here. Eventually we may need a more general graph-copying
-- routine. For now, do a sequential search to find desired node.
if Nkind (Old_Node) = N_Handled_Sequence_Of_Statements
and then Present (First_Real_Statement (Old_Node))
then
declare
Old_F : constant Node_Id := First_Real_Statement (Old_Node);
N1, N2 : Node_Id;
begin
N1 := First (Statements (Old_Node));
N2 := First (Statements (New_Node));
while N1 /= Old_F loop
Next (N1);
Next (N2);
end loop;
Set_First_Real_Statement (New_Node, N2);
end;
end if;
end if;
-- All done, return copied node
return New_Node;
end Copy_Node_With_Replacement;
-----------------
-- Visit_Elist --
-----------------
procedure Visit_Elist (E : Elist_Id) is
Elmt : Elmt_Id;
begin
if Present (E) then
Elmt := First_Elmt (E);
while Elmt /= No_Elmt loop
Visit_Node (Node (Elmt));
Next_Elmt (Elmt);
end loop;
end if;
end Visit_Elist;
-----------------
-- Visit_Field --
-----------------
procedure Visit_Field (F : Union_Id; N : Node_Id) is
begin
if F = Union_Id (Empty) then
return;
elsif F in Node_Range then
-- Copy node if it is syntactic, i.e. its parent pointer is
-- set to point to the field that referenced it (certain
-- Itypes will also meet this criterion, which is fine, since
-- these are clearly Itypes that do need to be copied, since
-- we are copying their parent.)
if Parent (Node_Id (F)) = N then
Visit_Node (Node_Id (F));
return;
-- Another case, if we are pointing to an Itype, then we want
-- to copy it if its associated node is somewhere in the tree
-- being copied.
-- Note: the exclusion of self-referential copies is just an
-- optimization, since the search of the already copied list
-- would catch it, but it is a common case (Etype pointing
-- to itself for an Itype that is a base type).
elsif Has_Extension (Node_Id (F))
and then Is_Itype (Entity_Id (F))
and then Node_Id (F) /= N
then
declare
P : Node_Id;
begin
P := Associated_Node_For_Itype (Node_Id (F));
while Present (P) loop
if P = Source then
Visit_Node (Node_Id (F));
return;
else
P := Parent (P);
end if;
end loop;
-- An Itype whose parent is not being copied definitely
-- should NOT be copied, since it does not belong in any
-- sense to the copied subtree.
return;
end;
end if;
elsif F in List_Range and then Parent (List_Id (F)) = N then
Visit_List (List_Id (F));
return;
end if;
end Visit_Field;
-----------------
-- Visit_Itype --
-----------------
procedure Visit_Itype (Old_Itype : Entity_Id) is
New_Itype : Entity_Id;
E : Elmt_Id;
Ent : Entity_Id;
begin
-- Itypes that describe the designated type of access to subprograms
-- have the structure of subprogram declarations, with signatures,
-- etc. Either we duplicate the signatures completely, or choose to
-- share such itypes, which is fine because their elaboration will
-- have no side effects.
if Ekind (Old_Itype) = E_Subprogram_Type then
return;
end if;
New_Itype := New_Copy (Old_Itype);
-- The new Itype has all the attributes of the old one, and
-- we just copy the contents of the entity. However, the back-end
-- needs different names for debugging purposes, so we create a
-- new internal name for it in all cases.
Set_Chars (New_Itype, New_Internal_Name ('T'));
-- If our associated node is an entity that has already been copied,
-- then set the associated node of the copy to point to the right
-- copy. If we have copied an Itype that is itself the associated
-- node of some previously copied Itype, then we set the right
-- pointer in the other direction.
if Present (Actual_Map) then
-- Case of hash tables used
if NCT_Hash_Tables_Used then
Ent := NCT_Assoc.Get (Associated_Node_For_Itype (Old_Itype));
if Present (Ent) then
Set_Associated_Node_For_Itype (New_Itype, Ent);
end if;
Ent := NCT_Itype_Assoc.Get (Old_Itype);
if Present (Ent) then
Set_Associated_Node_For_Itype (Ent, New_Itype);
-- If the hash table has no association for this Itype and
-- its associated node, enter one now.
else
NCT_Itype_Assoc.Set
(Associated_Node_For_Itype (Old_Itype), New_Itype);
end if;
-- Case of hash tables not used
else
E := First_Elmt (Actual_Map);
while Present (E) loop
if Associated_Node_For_Itype (Old_Itype) = Node (E) then
Set_Associated_Node_For_Itype
(New_Itype, Node (Next_Elmt (E)));
end if;
if Is_Type (Node (E))
and then Old_Itype = Associated_Node_For_Itype (Node (E))
then
Set_Associated_Node_For_Itype
(Node (Next_Elmt (E)), New_Itype);
end if;
E := Next_Elmt (Next_Elmt (E));
end loop;
end if;
end if;
if Present (Freeze_Node (New_Itype)) then
Set_Is_Frozen (New_Itype, False);
Set_Freeze_Node (New_Itype, Empty);
end if;
-- Add new association to map
if No (Actual_Map) then
Actual_Map := New_Elmt_List;
end if;
Append_Elmt (Old_Itype, Actual_Map);
Append_Elmt (New_Itype, Actual_Map);
if NCT_Hash_Tables_Used then
NCT_Assoc.Set (Old_Itype, New_Itype);
else
NCT_Table_Entries := NCT_Table_Entries + 1;
if NCT_Table_Entries > NCT_Hash_Threshold then
Build_NCT_Hash_Tables;
end if;
end if;
-- If a record subtype is simply copied, the entity list will be
-- shared. Thus cloned_Subtype must be set to indicate the sharing.
if Ekind_In (Old_Itype, E_Record_Subtype, E_Class_Wide_Subtype) then
Set_Cloned_Subtype (New_Itype, Old_Itype);
end if;
-- Visit descendents that eventually get copied
Visit_Field (Union_Id (Etype (Old_Itype)), Old_Itype);
if Is_Discrete_Type (Old_Itype) then
Visit_Field (Union_Id (Scalar_Range (Old_Itype)), Old_Itype);
elsif Has_Discriminants (Base_Type (Old_Itype)) then
-- ??? This should involve call to Visit_Field
Visit_Elist (Discriminant_Constraint (Old_Itype));
elsif Is_Array_Type (Old_Itype) then
if Present (First_Index (Old_Itype)) then
Visit_Field (Union_Id (List_Containing
(First_Index (Old_Itype))),
Old_Itype);
end if;
if Is_Packed (Old_Itype) then
Visit_Field (Union_Id (Packed_Array_Impl_Type (Old_Itype)),
Old_Itype);
end if;
end if;
end Visit_Itype;
----------------
-- Visit_List --
----------------
procedure Visit_List (L : List_Id) is
N : Node_Id;
begin
if L /= No_List then
N := First (L);
while Present (N) loop
Visit_Node (N);
Next (N);
end loop;
end if;
end Visit_List;
----------------
-- Visit_Node --
----------------
procedure Visit_Node (N : Node_Or_Entity_Id) is
-- Start of processing for Visit_Node
begin
-- Handle case of an Itype, which must be copied
if Has_Extension (N) and then Is_Itype (N) then
-- Nothing to do if already in the list. This can happen with an
-- Itype entity that appears more than once in the tree.
-- Note that we do not want to visit descendents in this case.
-- Test for already in list when hash table is used
if NCT_Hash_Tables_Used then
if Present (NCT_Assoc.Get (Entity_Id (N))) then
return;
end if;
-- Test for already in list when hash table not used
else
declare
E : Elmt_Id;
begin
if Present (Actual_Map) then
E := First_Elmt (Actual_Map);
while Present (E) loop
if Node (E) = N then
return;
else
E := Next_Elmt (Next_Elmt (E));
end if;
end loop;
end if;
end;
end if;
Visit_Itype (N);
end if;
-- Visit descendents
Visit_Field (Field1 (N), N);
Visit_Field (Field2 (N), N);
Visit_Field (Field3 (N), N);
Visit_Field (Field4 (N), N);
Visit_Field (Field5 (N), N);
end Visit_Node;
-- Start of processing for New_Copy_Tree
begin
Actual_Map := Map;
-- See if we should use hash table
if No (Actual_Map) then
NCT_Hash_Tables_Used := False;
else
declare
Elmt : Elmt_Id;
begin
NCT_Table_Entries := 0;
Elmt := First_Elmt (Actual_Map);
while Present (Elmt) loop
NCT_Table_Entries := NCT_Table_Entries + 1;
Next_Elmt (Elmt);
Next_Elmt (Elmt);
end loop;
if NCT_Table_Entries > NCT_Hash_Threshold then
Build_NCT_Hash_Tables;
else
NCT_Hash_Tables_Used := False;
end if;
end;
end if;
-- Hash table set up if required, now start phase one by visiting
-- top node (we will recursively visit the descendents).
Visit_Node (Source);
-- Now the second phase of the copy can start. First we process
-- all the mapped entities, copying their descendents.
if Present (Actual_Map) then
declare
Elmt : Elmt_Id;
New_Itype : Entity_Id;
begin
Elmt := First_Elmt (Actual_Map);
while Present (Elmt) loop
Next_Elmt (Elmt);
New_Itype := Node (Elmt);
Copy_Itype_With_Replacement (New_Itype);
Next_Elmt (Elmt);
end loop;
end;
end if;
-- Now we can copy the actual tree
return Copy_Node_With_Replacement (Source);
end New_Copy_Tree;
-------------------------
-- New_External_Entity --
-------------------------
function New_External_Entity
(Kind : Entity_Kind;
Scope_Id : Entity_Id;
Sloc_Value : Source_Ptr;
Related_Id : Entity_Id;
Suffix : Character;
Suffix_Index : Nat := 0;
Prefix : Character := ' ') return Entity_Id
is
N : constant Entity_Id :=
Make_Defining_Identifier (Sloc_Value,
New_External_Name
(Chars (Related_Id), Suffix, Suffix_Index, Prefix));
begin
Set_Ekind (N, Kind);
Set_Is_Internal (N, True);
Append_Entity (N, Scope_Id);
Set_Public_Status (N);
if Kind in Type_Kind then
Init_Size_Align (N);
end if;
return N;
end New_External_Entity;
-------------------------
-- New_Internal_Entity --
-------------------------
function New_Internal_Entity
(Kind : Entity_Kind;
Scope_Id : Entity_Id;
Sloc_Value : Source_Ptr;
Id_Char : Character) return Entity_Id
is
N : constant Entity_Id := Make_Temporary (Sloc_Value, Id_Char);
begin
Set_Ekind (N, Kind);
Set_Is_Internal (N, True);
Append_Entity (N, Scope_Id);
if Kind in Type_Kind then
Init_Size_Align (N);
end if;
return N;
end New_Internal_Entity;
-----------------
-- Next_Actual --
-----------------
function Next_Actual (Actual_Id : Node_Id) return Node_Id is
N : Node_Id;
begin
-- If we are pointing at a positional parameter, it is a member of a
-- node list (the list of parameters), and the next parameter is the
-- next node on the list, unless we hit a parameter association, then
-- we shift to using the chain whose head is the First_Named_Actual in
-- the parent, and then is threaded using the Next_Named_Actual of the
-- Parameter_Association. All this fiddling is because the original node
-- list is in the textual call order, and what we need is the
-- declaration order.
if Is_List_Member (Actual_Id) then
N := Next (Actual_Id);
if Nkind (N) = N_Parameter_Association then
return First_Named_Actual (Parent (Actual_Id));
else
return N;
end if;
else
return Next_Named_Actual (Parent (Actual_Id));
end if;
end Next_Actual;
procedure Next_Actual (Actual_Id : in out Node_Id) is
begin
Actual_Id := Next_Actual (Actual_Id);
end Next_Actual;
-----------------------
-- Normalize_Actuals --
-----------------------
-- Chain actuals according to formals of subprogram. If there are no named
-- associations, the chain is simply the list of Parameter Associations,
-- since the order is the same as the declaration order. If there are named
-- associations, then the First_Named_Actual field in the N_Function_Call
-- or N_Procedure_Call_Statement node points to the Parameter_Association
-- node for the parameter that comes first in declaration order. The
-- remaining named parameters are then chained in declaration order using
-- Next_Named_Actual.
-- This routine also verifies that the number of actuals is compatible with
-- the number and default values of formals, but performs no type checking
-- (type checking is done by the caller).
-- If the matching succeeds, Success is set to True and the caller proceeds
-- with type-checking. If the match is unsuccessful, then Success is set to
-- False, and the caller attempts a different interpretation, if there is
-- one.
-- If the flag Report is on, the call is not overloaded, and a failure to
-- match can be reported here, rather than in the caller.
procedure Normalize_Actuals
(N : Node_Id;
S : Entity_Id;
Report : Boolean;
Success : out Boolean)
is
Actuals : constant List_Id := Parameter_Associations (N);
Actual : Node_Id := Empty;
Formal : Entity_Id;
Last : Node_Id := Empty;
First_Named : Node_Id := Empty;
Found : Boolean;
Formals_To_Match : Integer := 0;
Actuals_To_Match : Integer := 0;
procedure Chain (A : Node_Id);
-- Add named actual at the proper place in the list, using the
-- Next_Named_Actual link.
function Reporting return Boolean;
-- Determines if an error is to be reported. To report an error, we
-- need Report to be True, and also we do not report errors caused
-- by calls to init procs that occur within other init procs. Such
-- errors must always be cascaded errors, since if all the types are
-- declared correctly, the compiler will certainly build decent calls.
-----------
-- Chain --
-----------
procedure Chain (A : Node_Id) is
begin
if No (Last) then
-- Call node points to first actual in list
Set_First_Named_Actual (N, Explicit_Actual_Parameter (A));
else
Set_Next_Named_Actual (Last, Explicit_Actual_Parameter (A));
end if;
Last := A;
Set_Next_Named_Actual (Last, Empty);
end Chain;
---------------
-- Reporting --
---------------
function Reporting return Boolean is
begin
if not Report then
return False;
elsif not Within_Init_Proc then
return True;
elsif Is_Init_Proc (Entity (Name (N))) then
return False;
else
return True;
end if;
end Reporting;
-- Start of processing for Normalize_Actuals
begin
if Is_Access_Type (S) then
-- The name in the call is a function call that returns an access
-- to subprogram. The designated type has the list of formals.
Formal := First_Formal (Designated_Type (S));
else
Formal := First_Formal (S);
end if;
while Present (Formal) loop
Formals_To_Match := Formals_To_Match + 1;
Next_Formal (Formal);
end loop;
-- Find if there is a named association, and verify that no positional
-- associations appear after named ones.
if Present (Actuals) then
Actual := First (Actuals);
end if;
while Present (Actual)
and then Nkind (Actual) /= N_Parameter_Association
loop
Actuals_To_Match := Actuals_To_Match + 1;
Next (Actual);
end loop;
if No (Actual) and Actuals_To_Match = Formals_To_Match then
-- Most common case: positional notation, no defaults
Success := True;
return;
elsif Actuals_To_Match > Formals_To_Match then
-- Too many actuals: will not work
if Reporting then
if Is_Entity_Name (Name (N)) then
Error_Msg_N ("too many arguments in call to&", Name (N));
else
Error_Msg_N ("too many arguments in call", N);
end if;
end if;
Success := False;
return;
end if;
First_Named := Actual;
while Present (Actual) loop
if Nkind (Actual) /= N_Parameter_Association then
Error_Msg_N
("positional parameters not allowed after named ones", Actual);
Success := False;
return;
else
Actuals_To_Match := Actuals_To_Match + 1;
end if;
Next (Actual);
end loop;
if Present (Actuals) then
Actual := First (Actuals);
end if;
Formal := First_Formal (S);
while Present (Formal) loop
-- Match the formals in order. If the corresponding actual is
-- positional, nothing to do. Else scan the list of named actuals
-- to find the one with the right name.
if Present (Actual)
and then Nkind (Actual) /= N_Parameter_Association
then
Next (Actual);
Actuals_To_Match := Actuals_To_Match - 1;
Formals_To_Match := Formals_To_Match - 1;
else
-- For named parameters, search the list of actuals to find
-- one that matches the next formal name.
Actual := First_Named;
Found := False;
while Present (Actual) loop
if Chars (Selector_Name (Actual)) = Chars (Formal) then
Found := True;
Chain (Actual);
Actuals_To_Match := Actuals_To_Match - 1;
Formals_To_Match := Formals_To_Match - 1;
exit;
end if;
Next (Actual);
end loop;
if not Found then
if Ekind (Formal) /= E_In_Parameter
or else No (Default_Value (Formal))
then
if Reporting then
if (Comes_From_Source (S)
or else Sloc (S) = Standard_Location)
and then Is_Overloadable (S)
then
if No (Actuals)
and then
Nkind_In (Parent (N), N_Procedure_Call_Statement,
N_Function_Call,
N_Parameter_Association)
and then Ekind (S) /= E_Function
then
Set_Etype (N, Etype (S));
else
Error_Msg_Name_1 := Chars (S);
Error_Msg_Sloc := Sloc (S);
Error_Msg_NE
("missing argument for parameter & "
& "in call to % declared #", N, Formal);
end if;
elsif Is_Overloadable (S) then
Error_Msg_Name_1 := Chars (S);
-- Point to type derivation that generated the
-- operation.
Error_Msg_Sloc := Sloc (Parent (S));
Error_Msg_NE
("missing argument for parameter & "
& "in call to % (inherited) #", N, Formal);
else
Error_Msg_NE
("missing argument for parameter &", N, Formal);
end if;
end if;
Success := False;
return;
else
Formals_To_Match := Formals_To_Match - 1;
end if;
end if;
end if;
Next_Formal (Formal);
end loop;
if Formals_To_Match = 0 and then Actuals_To_Match = 0 then
Success := True;
return;
else
if Reporting then
-- Find some superfluous named actual that did not get
-- attached to the list of associations.
Actual := First (Actuals);
while Present (Actual) loop
if Nkind (Actual) = N_Parameter_Association
and then Actual /= Last
and then No (Next_Named_Actual (Actual))
then
Error_Msg_N ("unmatched actual & in call",
Selector_Name (Actual));
exit;
end if;
Next (Actual);
end loop;
end if;
Success := False;
return;
end if;
end Normalize_Actuals;
--------------------------------
-- Note_Possible_Modification --
--------------------------------
procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean) is
Modification_Comes_From_Source : constant Boolean :=
Comes_From_Source (Parent (N));
Ent : Entity_Id;
Exp : Node_Id;
begin
-- Loop to find referenced entity, if there is one
Exp := N;
loop
Ent := Empty;
if Is_Entity_Name (Exp) then
Ent := Entity (Exp);
-- If the entity is missing, it is an undeclared identifier,
-- and there is nothing to annotate.
if No (Ent) then
return;
end if;
elsif Nkind (Exp) = N_Explicit_Dereference then
declare
P : constant Node_Id := Prefix (Exp);
begin
-- In formal verification mode, keep track of all reads and
-- writes through explicit dereferences.
if GNATprove_Mode then
SPARK_Specific.Generate_Dereference (N, 'm');
end if;
if Nkind (P) = N_Selected_Component
and then Present (Entry_Formal (Entity (Selector_Name (P))))
then
-- Case of a reference to an entry formal
Ent := Entry_Formal (Entity (Selector_Name (P)));
elsif Nkind (P) = N_Identifier
and then Nkind (Parent (Entity (P))) = N_Object_Declaration
and then Present (Expression (Parent (Entity (P))))
and then Nkind (Expression (Parent (Entity (P)))) =
N_Reference
then
-- Case of a reference to a value on which side effects have
-- been removed.
Exp := Prefix (Expression (Parent (Entity (P))));
goto Continue;
else
return;
end if;
end;
elsif Nkind_In (Exp, N_Type_Conversion,
N_Unchecked_Type_Conversion)
then
Exp := Expression (Exp);
goto Continue;
elsif Nkind_In (Exp, N_Slice,
N_Indexed_Component,
N_Selected_Component)
then
-- Special check, if the prefix is an access type, then return
-- since we are modifying the thing pointed to, not the prefix.
-- When we are expanding, most usually the prefix is replaced
-- by an explicit dereference, and this test is not needed, but
-- in some cases (notably -gnatc mode and generics) when we do
-- not do full expansion, we need this special test.
if Is_Access_Type (Etype (Prefix (Exp))) then
return;
-- Otherwise go to prefix and keep going
else
Exp := Prefix (Exp);
goto Continue;
end if;
-- All other cases, not a modification
else
return;
end if;
-- Now look for entity being referenced
if Present (Ent) then
if Is_Object (Ent) then
if Comes_From_Source (Exp)
or else Modification_Comes_From_Source
then
-- Give warning if pragma unmodified given and we are
-- sure this is a modification.
if Has_Pragma_Unmodified (Ent) and then Sure then
Error_Msg_NE ("??pragma Unmodified given for &!", N, Ent);
end if;
Set_Never_Set_In_Source (Ent, False);
end if;
Set_Is_True_Constant (Ent, False);
Set_Current_Value (Ent, Empty);
Set_Is_Known_Null (Ent, False);
if not Can_Never_Be_Null (Ent) then
Set_Is_Known_Non_Null (Ent, False);
end if;
-- Follow renaming chain
if (Ekind (Ent) = E_Variable or else Ekind (Ent) = E_Constant)
and then Present (Renamed_Object (Ent))
then
Exp := Renamed_Object (Ent);
-- If the entity is the loop variable in an iteration over
-- a container, retrieve container expression to indicate
-- possible modification.
if Present (Related_Expression (Ent))
and then Nkind (Parent (Related_Expression (Ent))) =
N_Iterator_Specification
then
Exp := Original_Node (Related_Expression (Ent));
end if;
goto Continue;
-- The expression may be the renaming of a subcomponent of an
-- array or container. The assignment to the subcomponent is
-- a modification of the container.
elsif Comes_From_Source (Original_Node (Exp))
and then Nkind_In (Original_Node (Exp), N_Selected_Component,
N_Indexed_Component)
then
Exp := Prefix (Original_Node (Exp));
goto Continue;
end if;
-- Generate a reference only if the assignment comes from
-- source. This excludes, for example, calls to a dispatching
-- assignment operation when the left-hand side is tagged. In
-- GNATprove mode, we need those references also on generated
-- code, as these are used to compute the local effects of
-- subprograms.
if Modification_Comes_From_Source or GNATprove_Mode then
Generate_Reference (Ent, Exp, 'm');
-- If the target of the assignment is the bound variable
-- in an iterator, indicate that the corresponding array
-- or container is also modified.
if Ada_Version >= Ada_2012
and then Nkind (Parent (Ent)) = N_Iterator_Specification
then
declare
Domain : constant Node_Id := Name (Parent (Ent));
begin
-- TBD : in the full version of the construct, the
-- domain of iteration can be given by an expression.
if Is_Entity_Name (Domain) then
Generate_Reference (Entity (Domain), Exp, 'm');
Set_Is_True_Constant (Entity (Domain), False);
Set_Never_Set_In_Source (Entity (Domain), False);
end if;
end;
end if;
end if;
Check_Nested_Access (N, Ent);
end if;
Kill_Checks (Ent);
-- If we are sure this is a modification from source, and we know
-- this modifies a constant, then give an appropriate warning.
if Overlays_Constant (Ent)
and then (Modification_Comes_From_Source and Sure)
then
declare
A : constant Node_Id := Address_Clause (Ent);
begin
if Present (A) then
declare
Exp : constant Node_Id := Expression (A);
begin
if Nkind (Exp) = N_Attribute_Reference
and then Attribute_Name (Exp) = Name_Address
and then Is_Entity_Name (Prefix (Exp))
then
Error_Msg_Sloc := Sloc (A);
Error_Msg_NE
("constant& may be modified via address "
& "clause#??", N, Entity (Prefix (Exp)));
end if;
end;
end if;
end;
end if;
return;
end if;
<<Continue>>
null;
end loop;
end Note_Possible_Modification;
-------------------------
-- Object_Access_Level --
-------------------------
-- Returns the static accessibility level of the view denoted by Obj. Note
-- that the value returned is the result of a call to Scope_Depth. Only
-- scope depths associated with dynamic scopes can actually be returned.
-- Since only relative levels matter for accessibility checking, the fact
-- that the distance between successive levels of accessibility is not
-- always one is immaterial (invariant: if level(E2) is deeper than
-- level(E1), then Scope_Depth(E1) < Scope_Depth(E2)).
function Object_Access_Level (Obj : Node_Id) return Uint is
function Is_Interface_Conversion (N : Node_Id) return Boolean;
-- Determine whether N is a construct of the form
-- Some_Type (Operand._tag'Address)
-- This construct appears in the context of dispatching calls.
function Reference_To (Obj : Node_Id) return Node_Id;
-- An explicit dereference is created when removing side-effects from
-- expressions for constraint checking purposes. In this case a local
-- access type is created for it. The correct access level is that of
-- the original source node. We detect this case by noting that the
-- prefix of the dereference is created by an object declaration whose
-- initial expression is a reference.
-----------------------------
-- Is_Interface_Conversion --
-----------------------------
function Is_Interface_Conversion (N : Node_Id) return Boolean is
begin
return Nkind (N) = N_Unchecked_Type_Conversion
and then Nkind (Expression (N)) = N_Attribute_Reference
and then Attribute_Name (Expression (N)) = Name_Address;
end Is_Interface_Conversion;
------------------
-- Reference_To --
------------------
function Reference_To (Obj : Node_Id) return Node_Id is
Pref : constant Node_Id := Prefix (Obj);
begin
if Is_Entity_Name (Pref)
and then Nkind (Parent (Entity (Pref))) = N_Object_Declaration
and then Present (Expression (Parent (Entity (Pref))))
and then Nkind (Expression (Parent (Entity (Pref)))) = N_Reference
then
return (Prefix (Expression (Parent (Entity (Pref)))));
else
return Empty;
end if;
end Reference_To;
-- Local variables
E : Entity_Id;
-- Start of processing for Object_Access_Level
begin
if Nkind (Obj) = N_Defining_Identifier
or else Is_Entity_Name (Obj)
then
if Nkind (Obj) = N_Defining_Identifier then
E := Obj;
else
E := Entity (Obj);
end if;
if Is_Prival (E) then
E := Prival_Link (E);
end if;
-- If E is a type then it denotes a current instance. For this case
-- we add one to the normal accessibility level of the type to ensure
-- that current instances are treated as always being deeper than
-- than the level of any visible named access type (see 3.10.2(21)).
if Is_Type (E) then
return Type_Access_Level (E) + 1;
elsif Present (Renamed_Object (E)) then
return Object_Access_Level (Renamed_Object (E));
-- Similarly, if E is a component of the current instance of a
-- protected type, any instance of it is assumed to be at a deeper
-- level than the type. For a protected object (whose type is an
-- anonymous protected type) its components are at the same level
-- as the type itself.
elsif not Is_Overloadable (E)
and then Ekind (Scope (E)) = E_Protected_Type
and then Comes_From_Source (Scope (E))
then
return Type_Access_Level (Scope (E)) + 1;
else
-- Aliased formals take their access level from the point of call.
-- This is smaller than the level of the subprogram itself.
if Is_Formal (E) and then Is_Aliased (E) then
return Type_Access_Level (Etype (E));
else
return Scope_Depth (Enclosing_Dynamic_Scope (E));
end if;
end if;
elsif Nkind (Obj) = N_Selected_Component then
if Is_Access_Type (Etype (Prefix (Obj))) then
return Type_Access_Level (Etype (Prefix (Obj)));
else
return Object_Access_Level (Prefix (Obj));
end if;
elsif Nkind (Obj) = N_Indexed_Component then
if Is_Access_Type (Etype (Prefix (Obj))) then
return Type_Access_Level (Etype (Prefix (Obj)));
else
return Object_Access_Level (Prefix (Obj));
end if;
elsif Nkind (Obj) = N_Explicit_Dereference then
-- If the prefix is a selected access discriminant then we make a
-- recursive call on the prefix, which will in turn check the level
-- of the prefix object of the selected discriminant.
-- In Ada 2012, if the discriminant has implicit dereference and
-- the context is a selected component, treat this as an object of
-- unknown scope (see below). This is necessary in compile-only mode;
-- otherwise expansion will already have transformed the prefix into
-- a temporary.
if Nkind (Prefix (Obj)) = N_Selected_Component
and then Ekind (Etype (Prefix (Obj))) = E_Anonymous_Access_Type
and then
Ekind (Entity (Selector_Name (Prefix (Obj)))) = E_Discriminant
and then
(not Has_Implicit_Dereference
(Entity (Selector_Name (Prefix (Obj))))
or else Nkind (Parent (Obj)) /= N_Selected_Component)
then
return Object_Access_Level (Prefix (Obj));
-- Detect an interface conversion in the context of a dispatching
-- call. Use the original form of the conversion to find the access
-- level of the operand.
elsif Is_Interface (Etype (Obj))
and then Is_Interface_Conversion (Prefix (Obj))
and then Nkind (Original_Node (Obj)) = N_Type_Conversion
then
return Object_Access_Level (Original_Node (Obj));
elsif not Comes_From_Source (Obj) then
declare
Ref : constant Node_Id := Reference_To (Obj);
begin
if Present (Ref) then
return Object_Access_Level (Ref);
else
return Type_Access_Level (Etype (Prefix (Obj)));
end if;
end;
else
return Type_Access_Level (Etype (Prefix (Obj)));
end if;
elsif Nkind_In (Obj, N_Type_Conversion, N_Unchecked_Type_Conversion) then
return Object_Access_Level (Expression (Obj));
elsif Nkind (Obj) = N_Function_Call then
-- Function results are objects, so we get either the access level of
-- the function or, in the case of an indirect call, the level of the
-- access-to-subprogram type. (This code is used for Ada 95, but it
-- looks wrong, because it seems that we should be checking the level
-- of the call itself, even for Ada 95. However, using the Ada 2005
-- version of the code causes regressions in several tests that are
-- compiled with -gnat95. ???)
if Ada_Version < Ada_2005 then
if Is_Entity_Name (Name (Obj)) then
return Subprogram_Access_Level (Entity (Name (Obj)));
else
return Type_Access_Level (Etype (Prefix (Name (Obj))));
end if;
-- For Ada 2005, the level of the result object of a function call is
-- defined to be the level of the call's innermost enclosing master.
-- We determine that by querying the depth of the innermost enclosing
-- dynamic scope.
else
Return_Master_Scope_Depth_Of_Call : declare
function Innermost_Master_Scope_Depth
(N : Node_Id) return Uint;
-- Returns the scope depth of the given node's innermost
-- enclosing dynamic scope (effectively the accessibility
-- level of the innermost enclosing master).
----------------------------------
-- Innermost_Master_Scope_Depth --
----------------------------------
function Innermost_Master_Scope_Depth
(N : Node_Id) return Uint
is
Node_Par : Node_Id := Parent (N);
begin
-- Locate the nearest enclosing node (by traversing Parents)
-- that Defining_Entity can be applied to, and return the
-- depth of that entity's nearest enclosing dynamic scope.
while Present (Node_Par) loop
case Nkind (Node_Par) is
when N_Component_Declaration |
N_Entry_Declaration |
N_Formal_Object_Declaration |
N_Formal_Type_Declaration |
N_Full_Type_Declaration |
N_Incomplete_Type_Declaration |
N_Loop_Parameter_Specification |
N_Object_Declaration |
N_Protected_Type_Declaration |
N_Private_Extension_Declaration |
N_Private_Type_Declaration |
N_Subtype_Declaration |
N_Function_Specification |
N_Procedure_Specification |
N_Task_Type_Declaration |
N_Body_Stub |
N_Generic_Instantiation |
N_Proper_Body |
N_Implicit_Label_Declaration |
N_Package_Declaration |
N_Single_Task_Declaration |
N_Subprogram_Declaration |
N_Generic_Declaration |
N_Renaming_Declaration |
N_Block_Statement |
N_Formal_Subprogram_Declaration |
N_Abstract_Subprogram_Declaration |
N_Entry_Body |
N_Exception_Declaration |
N_Formal_Package_Declaration |
N_Number_Declaration |
N_Package_Specification |
N_Parameter_Specification |
N_Single_Protected_Declaration |
N_Subunit =>
return Scope_Depth
(Nearest_Dynamic_Scope
(Defining_Entity (Node_Par)));
when others =>
null;
end case;
Node_Par := Parent (Node_Par);
end loop;
pragma Assert (False);
-- Should never reach the following return
return Scope_Depth (Current_Scope) + 1;
end Innermost_Master_Scope_Depth;
-- Start of processing for Return_Master_Scope_Depth_Of_Call
begin
return Innermost_Master_Scope_Depth (Obj);
end Return_Master_Scope_Depth_Of_Call;
end if;
-- For convenience we handle qualified expressions, even though they
-- aren't technically object names.
elsif Nkind (Obj) = N_Qualified_Expression then
return Object_Access_Level (Expression (Obj));
-- Ditto for aggregates. They have the level of the temporary that
-- will hold their value.
elsif Nkind (Obj) = N_Aggregate then
return Object_Access_Level (Current_Scope);
-- Otherwise return the scope level of Standard. (If there are cases
-- that fall through to this point they will be treated as having
-- global accessibility for now. ???)
else
return Scope_Depth (Standard_Standard);
end if;
end Object_Access_Level;
---------------------------------
-- Original_Aspect_Pragma_Name --
---------------------------------
function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id is
Item : Node_Id;
Item_Nam : Name_Id;
begin
pragma Assert (Nkind_In (N, N_Aspect_Specification, N_Pragma));
Item := N;
-- The pragma was generated to emulate an aspect, use the original
-- aspect specification.
if Nkind (Item) = N_Pragma and then From_Aspect_Specification (Item) then
Item := Corresponding_Aspect (Item);
end if;
-- Retrieve the name of the aspect/pragma. Note that Pre, Pre_Class,
-- Post and Post_Class rewrite their pragma identifier to preserve the
-- original name.
-- ??? this is kludgey
if Nkind (Item) = N_Pragma then
Item_Nam := Chars (Original_Node (Pragma_Identifier (Item)));
else
pragma Assert (Nkind (Item) = N_Aspect_Specification);
Item_Nam := Chars (Identifier (Item));
end if;
-- Deal with 'Class by converting the name to its _XXX form
if Class_Present (Item) then
if Item_Nam = Name_Invariant then
Item_Nam := Name_uInvariant;
elsif Item_Nam = Name_Post then
Item_Nam := Name_uPost;
elsif Item_Nam = Name_Pre then
Item_Nam := Name_uPre;
elsif Nam_In (Item_Nam, Name_Type_Invariant,
Name_Type_Invariant_Class)
then
Item_Nam := Name_uType_Invariant;
-- Nothing to do for other cases (e.g. a Check that derived from
-- Pre_Class and has the flag set). Also we do nothing if the name
-- is already in special _xxx form.
end if;
end if;
return Item_Nam;
end Original_Aspect_Pragma_Name;
--------------------------------------
-- Original_Corresponding_Operation --
--------------------------------------
function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id
is
Typ : constant Entity_Id := Find_Dispatching_Type (S);
begin
-- If S is an inherited primitive S2 the original corresponding
-- operation of S is the original corresponding operation of S2
if Present (Alias (S))
and then Find_Dispatching_Type (Alias (S)) /= Typ
then
return Original_Corresponding_Operation (Alias (S));
-- If S overrides an inherited subprogram S2 the original corresponding
-- operation of S is the original corresponding operation of S2
elsif Present (Overridden_Operation (S)) then
return Original_Corresponding_Operation (Overridden_Operation (S));
-- otherwise it is S itself
else
return S;
end if;
end Original_Corresponding_Operation;
----------------------
-- Policy_In_Effect --
----------------------
function Policy_In_Effect (Policy : Name_Id) return Name_Id is
function Policy_In_List (List : Node_Id) return Name_Id;
-- Determine the the mode of a policy in a N_Pragma list
--------------------
-- Policy_In_List --
--------------------
function Policy_In_List (List : Node_Id) return Name_Id is
Arg : Node_Id;
Expr : Node_Id;
Prag : Node_Id;
begin
Prag := List;
while Present (Prag) loop
Arg := First (Pragma_Argument_Associations (Prag));
Expr := Get_Pragma_Arg (Arg);
-- The current Check_Policy pragma matches the requested policy,
-- return the second argument which denotes the policy identifier.
if Chars (Expr) = Policy then
return Chars (Get_Pragma_Arg (Next (Arg)));
end if;
Prag := Next_Pragma (Prag);
end loop;
return No_Name;
end Policy_In_List;
-- Local variables
Kind : Name_Id;
-- Start of processing for Policy_In_Effect
begin
if not Is_Valid_Assertion_Kind (Policy) then
raise Program_Error;
end if;
-- Inspect all policy pragmas that appear within scopes (if any)
Kind := Policy_In_List (Check_Policy_List);
-- Inspect all configuration policy pragmas (if any)
if Kind = No_Name then
Kind := Policy_In_List (Check_Policy_List_Config);
end if;
-- The context lacks policy pragmas, determine the mode based on whether
-- assertions are enabled at the configuration level. This ensures that
-- the policy is preserved when analyzing generics.
if Kind = No_Name then
if Assertions_Enabled_Config then
Kind := Name_Check;
else
Kind := Name_Ignore;
end if;
end if;
return Kind;
end Policy_In_Effect;
----------------------------------
-- Predicate_Tests_On_Arguments --
----------------------------------
function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean is
begin
-- Always test predicates on indirect call
if Ekind (Subp) = E_Subprogram_Type then
return True;
-- Do not test predicates on call to generated default Finalize, since
-- we are not interested in whether something we are finalizing (and
-- typically destroying) satisfies its predicates.
elsif Chars (Subp) = Name_Finalize
and then not Comes_From_Source (Subp)
then
return False;
-- Do not test predicates on any internally generated routines
elsif Is_Internal_Name (Chars (Subp)) then
return False;
-- Do not test predicates on call to Init_Proc, since if needed the
-- predicate test will occur at some other point.
elsif Is_Init_Proc (Subp) then
return False;
-- Do not test predicates on call to predicate function, since this
-- would cause infinite recursion.
elsif Ekind (Subp) = E_Function
and then (Is_Predicate_Function (Subp)
or else
Is_Predicate_Function_M (Subp))
then
return False;
-- For now, no other exceptions
else
return True;
end if;
end Predicate_Tests_On_Arguments;
-----------------------
-- Private_Component --
-----------------------
function Private_Component (Type_Id : Entity_Id) return Entity_Id is
Ancestor : constant Entity_Id := Base_Type (Type_Id);
function Trace_Components
(T : Entity_Id;
Check : Boolean) return Entity_Id;
-- Recursive function that does the work, and checks against circular
-- definition for each subcomponent type.
----------------------
-- Trace_Components --
----------------------
function Trace_Components
(T : Entity_Id;
Check : Boolean) return Entity_Id
is
Btype : constant Entity_Id := Base_Type (T);
Component : Entity_Id;
P : Entity_Id;
Candidate : Entity_Id := Empty;
begin
if Check and then Btype = Ancestor then
Error_Msg_N ("circular type definition", Type_Id);
return Any_Type;
end if;
if Is_Private_Type (Btype) and then not Is_Generic_Type (Btype) then
if Present (Full_View (Btype))
and then Is_Record_Type (Full_View (Btype))
and then not Is_Frozen (Btype)
then
-- To indicate that the ancestor depends on a private type, the
-- current Btype is sufficient. However, to check for circular
-- definition we must recurse on the full view.
Candidate := Trace_Components (Full_View (Btype), True);
if Candidate = Any_Type then
return Any_Type;
else
return Btype;
end if;
else
return Btype;
end if;
elsif Is_Array_Type (Btype) then
return Trace_Components (Component_Type (Btype), True);
elsif Is_Record_Type (Btype) then
Component := First_Entity (Btype);
while Present (Component)
and then Comes_From_Source (Component)
loop
-- Skip anonymous types generated by constrained components
if not Is_Type (Component) then
P := Trace_Components (Etype (Component), True);
if Present (P) then
if P = Any_Type then
return P;
else
Candidate := P;
end if;
end if;
end if;
Next_Entity (Component);
end loop;
return Candidate;
else
return Empty;
end if;
end Trace_Components;
-- Start of processing for Private_Component
begin
return Trace_Components (Type_Id, False);
end Private_Component;
---------------------------
-- Primitive_Names_Match --
---------------------------
function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean is
function Non_Internal_Name (E : Entity_Id) return Name_Id;
-- Given an internal name, returns the corresponding non-internal name
------------------------
-- Non_Internal_Name --
------------------------
function Non_Internal_Name (E : Entity_Id) return Name_Id is
begin
Get_Name_String (Chars (E));
Name_Len := Name_Len - 1;
return Name_Find;
end Non_Internal_Name;
-- Start of processing for Primitive_Names_Match
begin
pragma Assert (Present (E1) and then Present (E2));
return Chars (E1) = Chars (E2)
or else
(not Is_Internal_Name (Chars (E1))
and then Is_Internal_Name (Chars (E2))
and then Non_Internal_Name (E2) = Chars (E1))
or else
(not Is_Internal_Name (Chars (E2))
and then Is_Internal_Name (Chars (E1))
and then Non_Internal_Name (E1) = Chars (E2))
or else
(Is_Predefined_Dispatching_Operation (E1)
and then Is_Predefined_Dispatching_Operation (E2)
and then Same_TSS (E1, E2))
or else
(Is_Init_Proc (E1) and then Is_Init_Proc (E2));
end Primitive_Names_Match;
-----------------------
-- Process_End_Label --
-----------------------
procedure Process_End_Label
(N : Node_Id;
Typ : Character;
Ent : Entity_Id)
is
Loc : Source_Ptr;
Nam : Node_Id;
Scop : Entity_Id;
Label_Ref : Boolean;
-- Set True if reference to end label itself is required
Endl : Node_Id;
-- Gets set to the operator symbol or identifier that references the
-- entity Ent. For the child unit case, this is the identifier from the
-- designator. For other cases, this is simply Endl.
procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id);
-- N is an identifier node that appears as a parent unit reference in
-- the case where Ent is a child unit. This procedure generates an
-- appropriate cross-reference entry. E is the corresponding entity.
-------------------------
-- Generate_Parent_Ref --
-------------------------
procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id) is
begin
-- If names do not match, something weird, skip reference
if Chars (E) = Chars (N) then
-- Generate the reference. We do NOT consider this as a reference
-- for unreferenced symbol purposes.
Generate_Reference (E, N, 'r', Set_Ref => False, Force => True);
if Style_Check then
Style.Check_Identifier (N, E);
end if;
end if;
end Generate_Parent_Ref;
-- Start of processing for Process_End_Label
begin
-- If no node, ignore. This happens in some error situations, and
-- also for some internally generated structures where no end label
-- references are required in any case.
if No (N) then
return;
end if;
-- Nothing to do if no End_Label, happens for internally generated
-- constructs where we don't want an end label reference anyway. Also
-- nothing to do if Endl is a string literal, which means there was
-- some prior error (bad operator symbol)
Endl := End_Label (N);
if No (Endl) or else Nkind (Endl) = N_String_Literal then
return;
end if;
-- Reference node is not in extended main source unit
if not In_Extended_Main_Source_Unit (N) then
-- Generally we do not collect references except for the extended
-- main source unit. The one exception is the 'e' entry for a
-- package spec, where it is useful for a client to have the
-- ending information to define scopes.
if Typ /= 'e' then
return;
else
Label_Ref := False;
-- For this case, we can ignore any parent references, but we
-- need the package name itself for the 'e' entry.
if Nkind (Endl) = N_Designator then
Endl := Identifier (Endl);
end if;
end if;
-- Reference is in extended main source unit
else
Label_Ref := True;
-- For designator, generate references for the parent entries
if Nkind (Endl) = N_Designator then
-- Generate references for the prefix if the END line comes from
-- source (otherwise we do not need these references) We climb the
-- scope stack to find the expected entities.
if Comes_From_Source (Endl) then
Nam := Name (Endl);
Scop := Current_Scope;
while Nkind (Nam) = N_Selected_Component loop
Scop := Scope (Scop);
exit when No (Scop);
Generate_Parent_Ref (Selector_Name (Nam), Scop);
Nam := Prefix (Nam);
end loop;
if Present (Scop) then
Generate_Parent_Ref (Nam, Scope (Scop));
end if;
end if;
Endl := Identifier (Endl);
end if;
end if;
-- If the end label is not for the given entity, then either we have
-- some previous error, or this is a generic instantiation for which
-- we do not need to make a cross-reference in this case anyway. In
-- either case we simply ignore the call.
if Chars (Ent) /= Chars (Endl) then
return;
end if;
-- If label was really there, then generate a normal reference and then
-- adjust the location in the end label to point past the name (which
-- should almost always be the semicolon).
Loc := Sloc (Endl);
if Comes_From_Source (Endl) then
-- If a label reference is required, then do the style check and
-- generate an l-type cross-reference entry for the label
if Label_Ref then
if Style_Check then
Style.Check_Identifier (Endl, Ent);
end if;
Generate_Reference (Ent, Endl, 'l', Set_Ref => False);
end if;
-- Set the location to point past the label (normally this will
-- mean the semicolon immediately following the label). This is
-- done for the sake of the 'e' or 't' entry generated below.
Get_Decoded_Name_String (Chars (Endl));
Set_Sloc (Endl, Sloc (Endl) + Source_Ptr (Name_Len));
else
-- In SPARK mode, no missing label is allowed for packages and
-- subprogram bodies. Detect those cases by testing whether
-- Process_End_Label was called for a body (Typ = 't') or a package.
if Restriction_Check_Required (SPARK_05)
and then (Typ = 't' or else Ekind (Ent) = E_Package)
then
Error_Msg_Node_1 := Endl;
Check_SPARK_05_Restriction
("`END &` required", Endl, Force => True);
end if;
end if;
-- Now generate the e/t reference
Generate_Reference (Ent, Endl, Typ, Set_Ref => False, Force => True);
-- Restore Sloc, in case modified above, since we have an identifier
-- and the normal Sloc should be left set in the tree.
Set_Sloc (Endl, Loc);
end Process_End_Label;
----------------
-- Referenced --
----------------
function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean is
Seen : Boolean := False;
function Is_Reference (N : Node_Id) return Traverse_Result;
-- Determine whether node N denotes a reference to Id. If this is the
-- case, set global flag Seen to True and stop the traversal.
------------------
-- Is_Reference --
------------------
function Is_Reference (N : Node_Id) return Traverse_Result is
begin
if Is_Entity_Name (N)
and then Present (Entity (N))
and then Entity (N) = Id
then
Seen := True;
return Abandon;
else
return OK;
end if;
end Is_Reference;
procedure Inspect_Expression is new Traverse_Proc (Is_Reference);
-- Start of processing for Referenced
begin
Inspect_Expression (Expr);
return Seen;
end Referenced;
------------------------------------
-- References_Generic_Formal_Type --
------------------------------------
function References_Generic_Formal_Type (N : Node_Id) return Boolean is
function Process (N : Node_Id) return Traverse_Result;
-- Process one node in search for generic formal type
-------------
-- Process --
-------------
function Process (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) in N_Has_Entity then
declare
E : constant Entity_Id := Entity (N);
begin
if Present (E) then
if Is_Generic_Type (E) then
return Abandon;
elsif Present (Etype (E))
and then Is_Generic_Type (Etype (E))
then
return Abandon;
end if;
end if;
end;
end if;
return Atree.OK;
end Process;
function Traverse is new Traverse_Func (Process);
-- Traverse tree to look for generic type
begin
if Inside_A_Generic then
return Traverse (N) = Abandon;
else
return False;
end if;
end References_Generic_Formal_Type;
--------------------
-- Remove_Homonym --
--------------------
procedure Remove_Homonym (E : Entity_Id) is
Prev : Entity_Id := Empty;
H : Entity_Id;
begin
if E = Current_Entity (E) then
if Present (Homonym (E)) then
Set_Current_Entity (Homonym (E));
else
Set_Name_Entity_Id (Chars (E), Empty);
end if;
else
H := Current_Entity (E);
while Present (H) and then H /= E loop
Prev := H;
H := Homonym (H);
end loop;
-- If E is not on the homonym chain, nothing to do
if Present (H) then
Set_Homonym (Prev, Homonym (E));
end if;
end if;
end Remove_Homonym;
---------------------
-- Rep_To_Pos_Flag --
---------------------
function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id is
begin
return New_Occurrence_Of
(Boolean_Literals (not Range_Checks_Suppressed (E)), Loc);
end Rep_To_Pos_Flag;
--------------------
-- Require_Entity --
--------------------
procedure Require_Entity (N : Node_Id) is
begin
if Is_Entity_Name (N) and then No (Entity (N)) then
if Total_Errors_Detected /= 0 then
Set_Entity (N, Any_Id);
else
raise Program_Error;
end if;
end if;
end Require_Entity;
-------------------------------
-- Requires_State_Refinement --
-------------------------------
function Requires_State_Refinement
(Spec_Id : Entity_Id;
Body_Id : Entity_Id) return Boolean
is
function Mode_Is_Off (Prag : Node_Id) return Boolean;
-- Given pragma SPARK_Mode, determine whether the mode is Off
-----------------
-- Mode_Is_Off --
-----------------
function Mode_Is_Off (Prag : Node_Id) return Boolean is
Mode : Node_Id;
begin
-- The default SPARK mode is On
if No (Prag) then
return False;
end if;
Mode := Get_Pragma_Arg (First (Pragma_Argument_Associations (Prag)));
-- Then the pragma lacks an argument, the default mode is On
if No (Mode) then
return False;
else
return Chars (Mode) = Name_Off;
end if;
end Mode_Is_Off;
-- Start of processing for Requires_State_Refinement
begin
-- A package that does not define at least one abstract state cannot
-- possibly require refinement.
if No (Abstract_States (Spec_Id)) then
return False;
-- The package instroduces a single null state which does not merit
-- refinement.
elsif Has_Null_Abstract_State (Spec_Id) then
return False;
-- Check whether the package body is subject to pragma SPARK_Mode. If
-- it is and the mode is Off, the package body is considered to be in
-- regular Ada and does not require refinement.
elsif Mode_Is_Off (SPARK_Pragma (Body_Id)) then
return False;
-- The body's SPARK_Mode may be inherited from a similar pragma that
-- appears in the private declarations of the spec. The pragma we are
-- interested appears as the second entry in SPARK_Pragma.
elsif Present (SPARK_Pragma (Spec_Id))
and then Mode_Is_Off (Next_Pragma (SPARK_Pragma (Spec_Id)))
then
return False;
-- The spec defines at least one abstract state and the body has no way
-- of circumventing the refinement.
else
return True;
end if;
end Requires_State_Refinement;
------------------------------
-- Requires_Transient_Scope --
------------------------------
-- A transient scope is required when variable-sized temporaries are
-- allocated in the primary or secondary stack, or when finalization
-- actions must be generated before the next instruction.
function Requires_Transient_Scope (Id : Entity_Id) return Boolean is
Typ : constant Entity_Id := Underlying_Type (Id);
-- Start of processing for Requires_Transient_Scope
begin
-- This is a private type which is not completed yet. This can only
-- happen in a default expression (of a formal parameter or of a
-- record component). Do not expand transient scope in this case
if No (Typ) then
return False;
-- Do not expand transient scope for non-existent procedure return
elsif Typ = Standard_Void_Type then
return False;
-- Elementary types do not require a transient scope
elsif Is_Elementary_Type (Typ) then
return False;
-- Generally, indefinite subtypes require a transient scope, since the
-- back end cannot generate temporaries, since this is not a valid type
-- for declaring an object. It might be possible to relax this in the
-- future, e.g. by declaring the maximum possible space for the type.
elsif Is_Indefinite_Subtype (Typ) then
return True;
-- Functions returning tagged types may dispatch on result so their
-- returned value is allocated on the secondary stack. Controlled
-- type temporaries need finalization.
elsif Is_Tagged_Type (Typ)
or else Has_Controlled_Component (Typ)
then
return not Is_Value_Type (Typ);
-- Record type
elsif Is_Record_Type (Typ) then
declare
Comp : Entity_Id;
begin
Comp := First_Entity (Typ);
while Present (Comp) loop
if Ekind (Comp) = E_Component
and then Requires_Transient_Scope (Etype (Comp))
then
return True;
else
Next_Entity (Comp);
end if;
end loop;
end;
return False;
-- String literal types never require transient scope
elsif Ekind (Typ) = E_String_Literal_Subtype then
return False;
-- Array type. Note that we already know that this is a constrained
-- array, since unconstrained arrays will fail the indefinite test.
elsif Is_Array_Type (Typ) then
-- If component type requires a transient scope, the array does too
if Requires_Transient_Scope (Component_Type (Typ)) then
return True;
-- Otherwise, we only need a transient scope if the size depends on
-- the value of one or more discriminants.
else
return Size_Depends_On_Discriminant (Typ);
end if;
-- All other cases do not require a transient scope
else
return False;
end if;
end Requires_Transient_Scope;
--------------------------
-- Reset_Analyzed_Flags --
--------------------------
procedure Reset_Analyzed_Flags (N : Node_Id) is
function Clear_Analyzed (N : Node_Id) return Traverse_Result;
-- Function used to reset Analyzed flags in tree. Note that we do
-- not reset Analyzed flags in entities, since there is no need to
-- reanalyze entities, and indeed, it is wrong to do so, since it
-- can result in generating auxiliary stuff more than once.
--------------------
-- Clear_Analyzed --
--------------------
function Clear_Analyzed (N : Node_Id) return Traverse_Result is
begin
if not Has_Extension (N) then
Set_Analyzed (N, False);
end if;
return OK;
end Clear_Analyzed;
procedure Reset_Analyzed is new Traverse_Proc (Clear_Analyzed);
-- Start of processing for Reset_Analyzed_Flags
begin
Reset_Analyzed (N);
end Reset_Analyzed_Flags;
------------------------
-- Restore_SPARK_Mode --
------------------------
procedure Restore_SPARK_Mode (Mode : SPARK_Mode_Type) is
begin
SPARK_Mode := Mode;
end Restore_SPARK_Mode;
--------------------------------
-- Returns_Unconstrained_Type --
--------------------------------
function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean is
begin
return Ekind (Subp) = E_Function
and then not Is_Scalar_Type (Etype (Subp))
and then not Is_Access_Type (Etype (Subp))
and then not Is_Constrained (Etype (Subp));
end Returns_Unconstrained_Type;
----------------------------
-- Root_Type_Of_Full_View --
----------------------------
function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id is
Rtyp : constant Entity_Id := Root_Type (T);
begin
-- The root type of the full view may itself be a private type. Keep
-- looking for the ultimate derivation parent.
if Is_Private_Type (Rtyp) and then Present (Full_View (Rtyp)) then
return Root_Type_Of_Full_View (Full_View (Rtyp));
else
return Rtyp;
end if;
end Root_Type_Of_Full_View;
---------------------------
-- Safe_To_Capture_Value --
---------------------------
function Safe_To_Capture_Value
(N : Node_Id;
Ent : Entity_Id;
Cond : Boolean := False) return Boolean
is
begin
-- The only entities for which we track constant values are variables
-- which are not renamings, constants, out parameters, and in out
-- parameters, so check if we have this case.
-- Note: it may seem odd to track constant values for constants, but in
-- fact this routine is used for other purposes than simply capturing
-- the value. In particular, the setting of Known[_Non]_Null.
if (Ekind (Ent) = E_Variable and then No (Renamed_Object (Ent)))
or else
Ekind_In (Ent, E_Constant, E_Out_Parameter, E_In_Out_Parameter)
then
null;
-- For conditionals, we also allow loop parameters and all formals,
-- including in parameters.
elsif Cond and then Ekind_In (Ent, E_Loop_Parameter, E_In_Parameter) then
null;
-- For all other cases, not just unsafe, but impossible to capture
-- Current_Value, since the above are the only entities which have
-- Current_Value fields.
else
return False;
end if;
-- Skip if volatile or aliased, since funny things might be going on in
-- these cases which we cannot necessarily track. Also skip any variable
-- for which an address clause is given, or whose address is taken. Also
-- never capture value of library level variables (an attempt to do so
-- can occur in the case of package elaboration code).
if Treat_As_Volatile (Ent)
or else Is_Aliased (Ent)
or else Present (Address_Clause (Ent))
or else Address_Taken (Ent)
or else (Is_Library_Level_Entity (Ent)
and then Ekind (Ent) = E_Variable)
then
return False;
end if;
-- OK, all above conditions are met. We also require that the scope of
-- the reference be the same as the scope of the entity, not counting
-- packages and blocks and loops.
declare
E_Scope : constant Entity_Id := Scope (Ent);
R_Scope : Entity_Id;
begin
R_Scope := Current_Scope;
while R_Scope /= Standard_Standard loop
exit when R_Scope = E_Scope;
if not Ekind_In (R_Scope, E_Package, E_Block, E_Loop) then
return False;
else
R_Scope := Scope (R_Scope);
end if;
end loop;
end;
-- We also require that the reference does not appear in a context
-- where it is not sure to be executed (i.e. a conditional context
-- or an exception handler). We skip this if Cond is True, since the
-- capturing of values from conditional tests handles this ok.
if Cond then
return True;
end if;
declare
Desc : Node_Id;
P : Node_Id;
begin
Desc := N;
-- Seems dubious that case expressions are not handled here ???
P := Parent (N);
while Present (P) loop
if Nkind (P) = N_If_Statement
or else Nkind (P) = N_Case_Statement
or else (Nkind (P) in N_Short_Circuit
and then Desc = Right_Opnd (P))
or else (Nkind (P) = N_If_Expression
and then Desc /= First (Expressions (P)))
or else Nkind (P) = N_Exception_Handler
or else Nkind (P) = N_Selective_Accept
or else Nkind (P) = N_Conditional_Entry_Call
or else Nkind (P) = N_Timed_Entry_Call
or else Nkind (P) = N_Asynchronous_Select
then
return False;
else
Desc := P;
P := Parent (P);
-- A special Ada 2012 case: the original node may be part
-- of the else_actions of a conditional expression, in which
-- case it might not have been expanded yet, and appears in
-- a non-syntactic list of actions. In that case it is clearly
-- not safe to save a value.
if No (P)
and then Is_List_Member (Desc)
and then No (Parent (List_Containing (Desc)))
then
return False;
end if;
end if;
end loop;
end;
-- OK, looks safe to set value
return True;
end Safe_To_Capture_Value;
---------------
-- Same_Name --
---------------
function Same_Name (N1, N2 : Node_Id) return Boolean is
K1 : constant Node_Kind := Nkind (N1);
K2 : constant Node_Kind := Nkind (N2);
begin
if (K1 = N_Identifier or else K1 = N_Defining_Identifier)
and then (K2 = N_Identifier or else K2 = N_Defining_Identifier)
then
return Chars (N1) = Chars (N2);
elsif (K1 = N_Selected_Component or else K1 = N_Expanded_Name)
and then (K2 = N_Selected_Component or else K2 = N_Expanded_Name)
then
return Same_Name (Selector_Name (N1), Selector_Name (N2))
and then Same_Name (Prefix (N1), Prefix (N2));
else
return False;
end if;
end Same_Name;
-----------------
-- Same_Object --
-----------------
function Same_Object (Node1, Node2 : Node_Id) return Boolean is
N1 : constant Node_Id := Original_Node (Node1);
N2 : constant Node_Id := Original_Node (Node2);
-- We do the tests on original nodes, since we are most interested
-- in the original source, not any expansion that got in the way.
K1 : constant Node_Kind := Nkind (N1);
K2 : constant Node_Kind := Nkind (N2);
begin
-- First case, both are entities with same entity
if K1 in N_Has_Entity and then K2 in N_Has_Entity then
declare
EN1 : constant Entity_Id := Entity (N1);
EN2 : constant Entity_Id := Entity (N2);
begin
if Present (EN1) and then Present (EN2)
and then (Ekind_In (EN1, E_Variable, E_Constant)
or else Is_Formal (EN1))
and then EN1 = EN2
then
return True;
end if;
end;
end if;
-- Second case, selected component with same selector, same record
if K1 = N_Selected_Component
and then K2 = N_Selected_Component
and then Chars (Selector_Name (N1)) = Chars (Selector_Name (N2))
then
return Same_Object (Prefix (N1), Prefix (N2));
-- Third case, indexed component with same subscripts, same array
elsif K1 = N_Indexed_Component
and then K2 = N_Indexed_Component
and then Same_Object (Prefix (N1), Prefix (N2))
then
declare
E1, E2 : Node_Id;
begin
E1 := First (Expressions (N1));
E2 := First (Expressions (N2));
while Present (E1) loop
if not Same_Value (E1, E2) then
return False;
else
Next (E1);
Next (E2);
end if;
end loop;
return True;
end;
-- Fourth case, slice of same array with same bounds
elsif K1 = N_Slice
and then K2 = N_Slice
and then Nkind (Discrete_Range (N1)) = N_Range
and then Nkind (Discrete_Range (N2)) = N_Range
and then Same_Value (Low_Bound (Discrete_Range (N1)),
Low_Bound (Discrete_Range (N2)))
and then Same_Value (High_Bound (Discrete_Range (N1)),
High_Bound (Discrete_Range (N2)))
then
return Same_Name (Prefix (N1), Prefix (N2));
-- All other cases, not clearly the same object
else
return False;
end if;
end Same_Object;
---------------
-- Same_Type --
---------------
function Same_Type (T1, T2 : Entity_Id) return Boolean is
begin
if T1 = T2 then
return True;
elsif not Is_Constrained (T1)
and then not Is_Constrained (T2)
and then Base_Type (T1) = Base_Type (T2)
then
return True;
-- For now don't bother with case of identical constraints, to be
-- fiddled with later on perhaps (this is only used for optimization
-- purposes, so it is not critical to do a best possible job)
else
return False;
end if;
end Same_Type;
----------------
-- Same_Value --
----------------
function Same_Value (Node1, Node2 : Node_Id) return Boolean is
begin
if Compile_Time_Known_Value (Node1)
and then Compile_Time_Known_Value (Node2)
and then Expr_Value (Node1) = Expr_Value (Node2)
then
return True;
elsif Same_Object (Node1, Node2) then
return True;
else
return False;
end if;
end Same_Value;
-----------------------------
-- Save_SPARK_Mode_And_Set --
-----------------------------
procedure Save_SPARK_Mode_And_Set
(Context : Entity_Id;
Mode : out SPARK_Mode_Type)
is
begin
-- Save the current mode in effect
Mode := SPARK_Mode;
-- Do not consider illegal or partially decorated constructs
if Ekind (Context) = E_Void or else Error_Posted (Context) then
null;
elsif Present (SPARK_Pragma (Context)) then
SPARK_Mode := Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Context));
end if;
end Save_SPARK_Mode_And_Set;
-------------------------
-- Scalar_Part_Present --
-------------------------
function Scalar_Part_Present (T : Entity_Id) return Boolean is
C : Entity_Id;
begin
if Is_Scalar_Type (T) then
return True;
elsif Is_Array_Type (T) then
return Scalar_Part_Present (Component_Type (T));
elsif Is_Record_Type (T) or else Has_Discriminants (T) then
C := First_Component_Or_Discriminant (T);
while Present (C) loop
if Scalar_Part_Present (Etype (C)) then
return True;
else
Next_Component_Or_Discriminant (C);
end if;
end loop;
end if;
return False;
end Scalar_Part_Present;
------------------------
-- Scope_Is_Transient --
------------------------
function Scope_Is_Transient return Boolean is
begin
return Scope_Stack.Table (Scope_Stack.Last).Is_Transient;
end Scope_Is_Transient;
------------------
-- Scope_Within --
------------------
function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean is
Scop : Entity_Id;
begin
Scop := Scope1;
while Scop /= Standard_Standard loop
Scop := Scope (Scop);
if Scop = Scope2 then
return True;
end if;
end loop;
return False;
end Scope_Within;
--------------------------
-- Scope_Within_Or_Same --
--------------------------
function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean is
Scop : Entity_Id;
begin
Scop := Scope1;
while Scop /= Standard_Standard loop
if Scop = Scope2 then
return True;
else
Scop := Scope (Scop);
end if;
end loop;
return False;
end Scope_Within_Or_Same;
--------------------
-- Set_Convention --
--------------------
procedure Set_Convention (E : Entity_Id; Val : Snames.Convention_Id) is
begin
Basic_Set_Convention (E, Val);
if Is_Type (E)
and then Is_Access_Subprogram_Type (Base_Type (E))
and then Has_Foreign_Convention (E)
then
-- A convention pragma in an instance may apply to the subtype
-- created for a formal, in which case we have already verified
-- that conventions of actual and formal match and there is nothing
-- to flag on the subtype.
if In_Instance then
null;
else
Set_Can_Use_Internal_Rep (E, False);
end if;
end if;
-- If E is an object or component, and the type of E is an anonymous
-- access type with no convention set, then also set the convention of
-- the anonymous access type. We do not do this for anonymous protected
-- types, since protected types always have the default convention.
if Present (Etype (E))
and then (Is_Object (E)
or else Ekind (E) = E_Component
-- Allow E_Void (happens for pragma Convention appearing
-- in the middle of a record applying to a component)
or else Ekind (E) = E_Void)
then
declare
Typ : constant Entity_Id := Etype (E);
begin
if Ekind_In (Typ, E_Anonymous_Access_Type,
E_Anonymous_Access_Subprogram_Type)
and then not Has_Convention_Pragma (Typ)
then
Basic_Set_Convention (Typ, Val);
Set_Has_Convention_Pragma (Typ);
-- And for the access subprogram type, deal similarly with the
-- designated E_Subprogram_Type if it is also internal (which
-- it always is?)
if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then
declare
Dtype : constant Entity_Id := Designated_Type (Typ);
begin
if Ekind (Dtype) = E_Subprogram_Type
and then Is_Itype (Dtype)
and then not Has_Convention_Pragma (Dtype)
then
Basic_Set_Convention (Dtype, Val);
Set_Has_Convention_Pragma (Dtype);
end if;
end;
end if;
end if;
end;
end if;
end Set_Convention;
------------------------
-- Set_Current_Entity --
------------------------
-- The given entity is to be set as the currently visible definition of its
-- associated name (i.e. the Node_Id associated with its name). All we have
-- to do is to get the name from the identifier, and then set the
-- associated Node_Id to point to the given entity.
procedure Set_Current_Entity (E : Entity_Id) is
begin
Set_Name_Entity_Id (Chars (E), E);
end Set_Current_Entity;
---------------------------
-- Set_Debug_Info_Needed --
---------------------------
procedure Set_Debug_Info_Needed (T : Entity_Id) is
procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id);
pragma Inline (Set_Debug_Info_Needed_If_Not_Set);
-- Used to set debug info in a related node if not set already
--------------------------------------
-- Set_Debug_Info_Needed_If_Not_Set --
--------------------------------------
procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id) is
begin
if Present (E) and then not Needs_Debug_Info (E) then
Set_Debug_Info_Needed (E);
-- For a private type, indicate that the full view also needs
-- debug information.
if Is_Type (E)
and then Is_Private_Type (E)
and then Present (Full_View (E))
then
Set_Debug_Info_Needed (Full_View (E));
end if;
end if;
end Set_Debug_Info_Needed_If_Not_Set;
-- Start of processing for Set_Debug_Info_Needed
begin
-- Nothing to do if argument is Empty or has Debug_Info_Off set, which
-- indicates that Debug_Info_Needed is never required for the entity.
-- Nothing to do if entity comes from a predefined file. Library files
-- are compiled without debug information, but inlined bodies of these
-- routines may appear in user code, and debug information on them ends
-- up complicating debugging the user code.
if No (T)
or else Debug_Info_Off (T)
then
return;
elsif In_Inlined_Body
and then Is_Predefined_File_Name
(Unit_File_Name (Get_Source_Unit (Sloc (T))))
then
Set_Needs_Debug_Info (T, False);
end if;
-- Set flag in entity itself. Note that we will go through the following
-- circuitry even if the flag is already set on T. That's intentional,
-- it makes sure that the flag will be set in subsidiary entities.
Set_Needs_Debug_Info (T);
-- Set flag on subsidiary entities if not set already
if Is_Object (T) then
Set_Debug_Info_Needed_If_Not_Set (Etype (T));
elsif Is_Type (T) then
Set_Debug_Info_Needed_If_Not_Set (Etype (T));
if Is_Record_Type (T) then
declare
Ent : Entity_Id := First_Entity (T);
begin
while Present (Ent) loop
Set_Debug_Info_Needed_If_Not_Set (Ent);
Next_Entity (Ent);
end loop;
end;
-- For a class wide subtype, we also need debug information
-- for the equivalent type.
if Ekind (T) = E_Class_Wide_Subtype then
Set_Debug_Info_Needed_If_Not_Set (Equivalent_Type (T));
end if;
elsif Is_Array_Type (T) then
Set_Debug_Info_Needed_If_Not_Set (Component_Type (T));
declare
Indx : Node_Id := First_Index (T);
begin
while Present (Indx) loop
Set_Debug_Info_Needed_If_Not_Set (Etype (Indx));
Indx := Next_Index (Indx);
end loop;
end;
-- For a packed array type, we also need debug information for
-- the type used to represent the packed array. Conversely, we
-- also need it for the former if we need it for the latter.
if Is_Packed (T) then
Set_Debug_Info_Needed_If_Not_Set (Packed_Array_Impl_Type (T));
end if;
if Is_Packed_Array_Impl_Type (T) then
Set_Debug_Info_Needed_If_Not_Set (Original_Array_Type (T));
end if;
elsif Is_Access_Type (T) then
Set_Debug_Info_Needed_If_Not_Set (Directly_Designated_Type (T));
elsif Is_Private_Type (T) then
Set_Debug_Info_Needed_If_Not_Set (Full_View (T));
elsif Is_Protected_Type (T) then
Set_Debug_Info_Needed_If_Not_Set (Corresponding_Record_Type (T));
elsif Is_Scalar_Type (T) then
-- If the subrange bounds are materialized by dedicated constant
-- objects, also include them in the debug info to make sure the
-- debugger can properly use them.
if Present (Scalar_Range (T))
and then Nkind (Scalar_Range (T)) = N_Range
then
declare
Low_Bnd : constant Node_Id := Type_Low_Bound (T);
High_Bnd : constant Node_Id := Type_High_Bound (T);
begin
if Is_Entity_Name (Low_Bnd) then
Set_Debug_Info_Needed_If_Not_Set (Entity (Low_Bnd));
end if;
if Is_Entity_Name (High_Bnd) then
Set_Debug_Info_Needed_If_Not_Set (Entity (High_Bnd));
end if;
end;
end if;
end if;
end if;
end Set_Debug_Info_Needed;
----------------------------
-- Set_Entity_With_Checks --
----------------------------
procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id) is
Val_Actual : Entity_Id;
Nod : Node_Id;
Post_Node : Node_Id;
begin
-- Unconditionally set the entity
Set_Entity (N, Val);
-- The node to post on is the selector in the case of an expanded name,
-- and otherwise the node itself.
if Nkind (N) = N_Expanded_Name then
Post_Node := Selector_Name (N);
else
Post_Node := N;
end if;
-- Check for violation of No_Fixed_IO
if Restriction_Check_Required (No_Fixed_IO)
and then
((RTU_Loaded (Ada_Text_IO)
and then (Is_RTE (Val, RE_Decimal_IO)
or else
Is_RTE (Val, RE_Fixed_IO)))
or else
(RTU_Loaded (Ada_Wide_Text_IO)
and then (Is_RTE (Val, RO_WT_Decimal_IO)
or else
Is_RTE (Val, RO_WT_Fixed_IO)))
or else
(RTU_Loaded (Ada_Wide_Wide_Text_IO)
and then (Is_RTE (Val, RO_WW_Decimal_IO)
or else
Is_RTE (Val, RO_WW_Fixed_IO))))
-- A special extra check, don't complain about a reference from within
-- the Ada.Interrupts package itself!
and then not In_Same_Extended_Unit (N, Val)
then
Check_Restriction (No_Fixed_IO, Post_Node);
end if;
-- Remaining checks are only done on source nodes. Note that we test
-- for violation of No_Fixed_IO even on non-source nodes, because the
-- cases for checking violations of this restriction are instantiations
-- where the reference in the instance has Comes_From_Source False.
if not Comes_From_Source (N) then
return;
end if;
-- Check for violation of No_Abort_Statements, which is triggered by
-- call to Ada.Task_Identification.Abort_Task.
if Restriction_Check_Required (No_Abort_Statements)
and then (Is_RTE (Val, RE_Abort_Task))
-- A special extra check, don't complain about a reference from within
-- the Ada.Task_Identification package itself!
and then not In_Same_Extended_Unit (N, Val)
then
Check_Restriction (No_Abort_Statements, Post_Node);
end if;
if Val = Standard_Long_Long_Integer then
Check_Restriction (No_Long_Long_Integers, Post_Node);
end if;
-- Check for violation of No_Dynamic_Attachment
if Restriction_Check_Required (No_Dynamic_Attachment)
and then RTU_Loaded (Ada_Interrupts)
and then (Is_RTE (Val, RE_Is_Reserved) or else
Is_RTE (Val, RE_Is_Attached) or else
Is_RTE (Val, RE_Current_Handler) or else
Is_RTE (Val, RE_Attach_Handler) or else
Is_RTE (Val, RE_Exchange_Handler) or else
Is_RTE (Val, RE_Detach_Handler) or else
Is_RTE (Val, RE_Reference))
-- A special extra check, don't complain about a reference from within
-- the Ada.Interrupts package itself!
and then not In_Same_Extended_Unit (N, Val)
then
Check_Restriction (No_Dynamic_Attachment, Post_Node);
end if;
-- Check for No_Implementation_Identifiers
if Restriction_Check_Required (No_Implementation_Identifiers) then
-- We have an implementation defined entity if it is marked as
-- implementation defined, or is defined in a package marked as
-- implementation defined. However, library packages themselves
-- are excluded (we don't want to flag Interfaces itself, just
-- the entities within it).
if (Is_Implementation_Defined (Val)
or else
(Present (Scope (Val))
and then Is_Implementation_Defined (Scope (Val))))
and then not (Ekind_In (Val, E_Package, E_Generic_Package)
and then Is_Library_Level_Entity (Val))
then
Check_Restriction (No_Implementation_Identifiers, Post_Node);
end if;
end if;
-- Do the style check
if Style_Check
and then not Suppress_Style_Checks (Val)
and then not In_Instance
then
if Nkind (N) = N_Identifier then
Nod := N;
elsif Nkind (N) = N_Expanded_Name then
Nod := Selector_Name (N);
else
return;
end if;
-- A special situation arises for derived operations, where we want
-- to do the check against the parent (since the Sloc of the derived
-- operation points to the derived type declaration itself).
Val_Actual := Val;
while not Comes_From_Source (Val_Actual)
and then Nkind (Val_Actual) in N_Entity
and then (Ekind (Val_Actual) = E_Enumeration_Literal
or else Is_Subprogram_Or_Generic_Subprogram (Val_Actual))
and then Present (Alias (Val_Actual))
loop
Val_Actual := Alias (Val_Actual);
end loop;
-- Renaming declarations for generic actuals do not come from source,
-- and have a different name from that of the entity they rename, so
-- there is no style check to perform here.
if Chars (Nod) = Chars (Val_Actual) then
Style.Check_Identifier (Nod, Val_Actual);
end if;
end if;
Set_Entity (N, Val);
end Set_Entity_With_Checks;
------------------------
-- Set_Name_Entity_Id --
------------------------
procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id) is
begin
Set_Name_Table_Int (Id, Int (Val));
end Set_Name_Entity_Id;
---------------------
-- Set_Next_Actual --
---------------------
procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id) is
begin
if Nkind (Parent (Ass1_Id)) = N_Parameter_Association then
Set_First_Named_Actual (Parent (Ass1_Id), Ass2_Id);
end if;
end Set_Next_Actual;
----------------------------------
-- Set_Optimize_Alignment_Flags --
----------------------------------
procedure Set_Optimize_Alignment_Flags (E : Entity_Id) is
begin
if Optimize_Alignment = 'S' then
Set_Optimize_Alignment_Space (E);
elsif Optimize_Alignment = 'T' then
Set_Optimize_Alignment_Time (E);
end if;
end Set_Optimize_Alignment_Flags;
-----------------------
-- Set_Public_Status --
-----------------------
procedure Set_Public_Status (Id : Entity_Id) is
S : constant Entity_Id := Current_Scope;
function Within_HSS_Or_If (E : Entity_Id) return Boolean;
-- Determines if E is defined within handled statement sequence or
-- an if statement, returns True if so, False otherwise.
----------------------
-- Within_HSS_Or_If --
----------------------
function Within_HSS_Or_If (E : Entity_Id) return Boolean is
N : Node_Id;
begin
N := Declaration_Node (E);
loop
N := Parent (N);
if No (N) then
return False;
elsif Nkind_In (N, N_Handled_Sequence_Of_Statements,
N_If_Statement)
then
return True;
end if;
end loop;
end Within_HSS_Or_If;
-- Start of processing for Set_Public_Status
begin
-- Everything in the scope of Standard is public
if S = Standard_Standard then
Set_Is_Public (Id);
-- Entity is definitely not public if enclosing scope is not public
elsif not Is_Public (S) then
return;
-- An object or function declaration that occurs in a handled sequence
-- of statements or within an if statement is the declaration for a
-- temporary object or local subprogram generated by the expander. It
-- never needs to be made public and furthermore, making it public can
-- cause back end problems.
elsif Nkind_In (Parent (Id), N_Object_Declaration,
N_Function_Specification)
and then Within_HSS_Or_If (Id)
then
return;
-- Entities in public packages or records are public
elsif Ekind (S) = E_Package or Is_Record_Type (S) then
Set_Is_Public (Id);
-- The bounds of an entry family declaration can generate object
-- declarations that are visible to the back-end, e.g. in the
-- the declaration of a composite type that contains tasks.
elsif Is_Concurrent_Type (S)
and then not Has_Completion (S)
and then Nkind (Parent (Id)) = N_Object_Declaration
then
Set_Is_Public (Id);
end if;
end Set_Public_Status;
-----------------------------
-- Set_Referenced_Modified --
-----------------------------
procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean) is
Pref : Node_Id;
begin
-- Deal with indexed or selected component where prefix is modified
if Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
Pref := Prefix (N);
-- If prefix is access type, then it is the designated object that is
-- being modified, which means we have no entity to set the flag on.
if No (Etype (Pref)) or else Is_Access_Type (Etype (Pref)) then
return;
-- Otherwise chase the prefix
else
Set_Referenced_Modified (Pref, Out_Param);
end if;
-- Otherwise see if we have an entity name (only other case to process)
elsif Is_Entity_Name (N) and then Present (Entity (N)) then
Set_Referenced_As_LHS (Entity (N), not Out_Param);
Set_Referenced_As_Out_Parameter (Entity (N), Out_Param);
end if;
end Set_Referenced_Modified;
----------------------------
-- Set_Scope_Is_Transient --
----------------------------
procedure Set_Scope_Is_Transient (V : Boolean := True) is
begin
Scope_Stack.Table (Scope_Stack.Last).Is_Transient := V;
end Set_Scope_Is_Transient;
-------------------
-- Set_Size_Info --
-------------------
procedure Set_Size_Info (T1, T2 : Entity_Id) is
begin
-- We copy Esize, but not RM_Size, since in general RM_Size is
-- subtype specific and does not get inherited by all subtypes.
Set_Esize (T1, Esize (T2));
Set_Has_Biased_Representation (T1, Has_Biased_Representation (T2));
if Is_Discrete_Or_Fixed_Point_Type (T1)
and then
Is_Discrete_Or_Fixed_Point_Type (T2)
then
Set_Is_Unsigned_Type (T1, Is_Unsigned_Type (T2));
end if;
Set_Alignment (T1, Alignment (T2));
end Set_Size_Info;
--------------------
-- Static_Boolean --
--------------------
function Static_Boolean (N : Node_Id) return Uint is
begin
Analyze_And_Resolve (N, Standard_Boolean);
if N = Error
or else Error_Posted (N)
or else Etype (N) = Any_Type
then
return No_Uint;
end if;
if Is_OK_Static_Expression (N) then
if not Raises_Constraint_Error (N) then
return Expr_Value (N);
else
return No_Uint;
end if;
elsif Etype (N) = Any_Type then
return No_Uint;
else
Flag_Non_Static_Expr
("static boolean expression required here", N);
return No_Uint;
end if;
end Static_Boolean;
--------------------
-- Static_Integer --
--------------------
function Static_Integer (N : Node_Id) return Uint is
begin
Analyze_And_Resolve (N, Any_Integer);
if N = Error
or else Error_Posted (N)
or else Etype (N) = Any_Type
then
return No_Uint;
end if;
if Is_OK_Static_Expression (N) then
if not Raises_Constraint_Error (N) then
return Expr_Value (N);
else
return No_Uint;
end if;
elsif Etype (N) = Any_Type then
return No_Uint;
else
Flag_Non_Static_Expr
("static integer expression required here", N);
return No_Uint;
end if;
end Static_Integer;
--------------------------
-- Statically_Different --
--------------------------
function Statically_Different (E1, E2 : Node_Id) return Boolean is
R1 : constant Node_Id := Get_Referenced_Object (E1);
R2 : constant Node_Id := Get_Referenced_Object (E2);
begin
return Is_Entity_Name (R1)
and then Is_Entity_Name (R2)
and then Entity (R1) /= Entity (R2)
and then not Is_Formal (Entity (R1))
and then not Is_Formal (Entity (R2));
end Statically_Different;
--------------------------------------
-- Subject_To_Loop_Entry_Attributes --
--------------------------------------
function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean is
Stmt : Node_Id;
begin
Stmt := N;
-- The expansion mechanism transform a loop subject to at least one
-- 'Loop_Entry attribute into a conditional block. Infinite loops lack
-- the conditional part.
if Nkind_In (Stmt, N_Block_Statement, N_If_Statement)
and then Nkind (Original_Node (N)) = N_Loop_Statement
then
Stmt := Original_Node (N);
end if;
return
Nkind (Stmt) = N_Loop_Statement
and then Present (Identifier (Stmt))
and then Present (Entity (Identifier (Stmt)))
and then Has_Loop_Entry_Attributes (Entity (Identifier (Stmt)));
end Subject_To_Loop_Entry_Attributes;
-----------------------------
-- Subprogram_Access_Level --
-----------------------------
function Subprogram_Access_Level (Subp : Entity_Id) return Uint is
begin
if Present (Alias (Subp)) then
return Subprogram_Access_Level (Alias (Subp));
else
return Scope_Depth (Enclosing_Dynamic_Scope (Subp));
end if;
end Subprogram_Access_Level;
-------------------------------
-- Support_Atomic_Primitives --
-------------------------------
function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean is
Size : Int;
begin
-- Verify the alignment of Typ is known
if not Known_Alignment (Typ) then
return False;
end if;
if Known_Static_Esize (Typ) then
Size := UI_To_Int (Esize (Typ));
-- If the Esize (Object_Size) is unknown at compile time, look at the
-- RM_Size (Value_Size) which may have been set by an explicit rep item.
elsif Known_Static_RM_Size (Typ) then
Size := UI_To_Int (RM_Size (Typ));
-- Otherwise, the size is considered to be unknown.
else
return False;
end if;
-- Check that the size of the component is 8, 16, 32 or 64 bits and that
-- Typ is properly aligned.
case Size is
when 8 | 16 | 32 | 64 =>
return Size = UI_To_Int (Alignment (Typ)) * 8;
when others =>
return False;
end case;
end Support_Atomic_Primitives;
-----------------
-- Trace_Scope --
-----------------
procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String) is
begin
if Debug_Flag_W then
for J in 0 .. Scope_Stack.Last loop
Write_Str (" ");
end loop;
Write_Str (Msg);
Write_Name (Chars (E));
Write_Str (" from ");
Write_Location (Sloc (N));
Write_Eol;
end if;
end Trace_Scope;
-----------------------
-- Transfer_Entities --
-----------------------
procedure Transfer_Entities (From : Entity_Id; To : Entity_Id) is
procedure Set_Public_Status_Of (Id : Entity_Id);
-- Set the Is_Public attribute of arbitrary entity Id by calling routine
-- Set_Public_Status. If successfull and Id denotes a record type, set
-- the Is_Public attribute of its fields.
--------------------------
-- Set_Public_Status_Of --
--------------------------
procedure Set_Public_Status_Of (Id : Entity_Id) is
Field : Entity_Id;
begin
if not Is_Public (Id) then
Set_Public_Status (Id);
-- When the input entity is a public record type, ensure that all
-- its internal fields are also exposed to the linker. The fields
-- of a class-wide type are never made public.
if Is_Public (Id)
and then Is_Record_Type (Id)
and then not Is_Class_Wide_Type (Id)
then
Field := First_Entity (Id);
while Present (Field) loop
Set_Is_Public (Field);
Next_Entity (Field);
end loop;
end if;
end if;
end Set_Public_Status_Of;
-- Local variables
Full_Id : Entity_Id;
Id : Entity_Id;
-- Start of processing for Transfer_Entities
begin
Id := First_Entity (From);
if Present (Id) then
-- Merge the entity chain of the source scope with that of the
-- destination scope.
if Present (Last_Entity (To)) then
Set_Next_Entity (Last_Entity (To), Id);
else
Set_First_Entity (To, Id);
end if;
Set_Last_Entity (To, Last_Entity (From));
-- Inspect the entities of the source scope and update their Scope
-- attribute.
while Present (Id) loop
Set_Scope (Id, To);
Set_Public_Status_Of (Id);
-- Handle an internally generated full view for a private type
if Is_Private_Type (Id)
and then Present (Full_View (Id))
and then Is_Itype (Full_View (Id))
then
Full_Id := Full_View (Id);
Set_Scope (Full_Id, To);
Set_Public_Status_Of (Full_Id);
end if;
Next_Entity (Id);
end loop;
Set_First_Entity (From, Empty);
Set_Last_Entity (From, Empty);
end if;
end Transfer_Entities;
-----------------------
-- Type_Access_Level --
-----------------------
function Type_Access_Level (Typ : Entity_Id) return Uint is
Btyp : Entity_Id;
begin
Btyp := Base_Type (Typ);
-- Ada 2005 (AI-230): For most cases of anonymous access types, we
-- simply use the level where the type is declared. This is true for
-- stand-alone object declarations, and for anonymous access types
-- associated with components the level is the same as that of the
-- enclosing composite type. However, special treatment is needed for
-- the cases of access parameters, return objects of an anonymous access
-- type, and, in Ada 95, access discriminants of limited types.
if Is_Access_Type (Btyp) then
if Ekind (Btyp) = E_Anonymous_Access_Type then
-- If the type is a nonlocal anonymous access type (such as for
-- an access parameter) we treat it as being declared at the
-- library level to ensure that names such as X.all'access don't
-- fail static accessibility checks.
if not Is_Local_Anonymous_Access (Typ) then
return Scope_Depth (Standard_Standard);
-- If this is a return object, the accessibility level is that of
-- the result subtype of the enclosing function. The test here is
-- little complicated, because we have to account for extended
-- return statements that have been rewritten as blocks, in which
-- case we have to find and the Is_Return_Object attribute of the
-- itype's associated object. It would be nice to find a way to
-- simplify this test, but it doesn't seem worthwhile to add a new
-- flag just for purposes of this test. ???
elsif Ekind (Scope (Btyp)) = E_Return_Statement
or else
(Is_Itype (Btyp)
and then Nkind (Associated_Node_For_Itype (Btyp)) =
N_Object_Declaration
and then Is_Return_Object
(Defining_Identifier
(Associated_Node_For_Itype (Btyp))))
then
declare
Scop : Entity_Id;
begin
Scop := Scope (Scope (Btyp));
while Present (Scop) loop
exit when Ekind (Scop) = E_Function;
Scop := Scope (Scop);
end loop;
-- Treat the return object's type as having the level of the
-- function's result subtype (as per RM05-6.5(5.3/2)).
return Type_Access_Level (Etype (Scop));
end;
end if;
end if;
Btyp := Root_Type (Btyp);
-- The accessibility level of anonymous access types associated with
-- discriminants is that of the current instance of the type, and
-- that's deeper than the type itself (AARM 3.10.2 (12.3.21)).
-- AI-402: access discriminants have accessibility based on the
-- object rather than the type in Ada 2005, so the above paragraph
-- doesn't apply.
-- ??? Needs completion with rules from AI-416
if Ada_Version <= Ada_95
and then Ekind (Typ) = E_Anonymous_Access_Type
and then Present (Associated_Node_For_Itype (Typ))
and then Nkind (Associated_Node_For_Itype (Typ)) =
N_Discriminant_Specification
then
return Scope_Depth (Enclosing_Dynamic_Scope (Btyp)) + 1;
end if;
end if;
-- Return library level for a generic formal type. This is done because
-- RM(10.3.2) says that "The statically deeper relationship does not
-- apply to ... a descendant of a generic formal type". Rather than
-- checking at each point where a static accessibility check is
-- performed to see if we are dealing with a formal type, this rule is
-- implemented by having Type_Access_Level and Deepest_Type_Access_Level
-- return extreme values for a formal type; Deepest_Type_Access_Level
-- returns Int'Last. By calling the appropriate function from among the
-- two, we ensure that the static accessibility check will pass if we
-- happen to run into a formal type. More specifically, we should call
-- Deepest_Type_Access_Level instead of Type_Access_Level whenever the
-- call occurs as part of a static accessibility check and the error
-- case is the case where the type's level is too shallow (as opposed
-- to too deep).
if Is_Generic_Type (Root_Type (Btyp)) then
return Scope_Depth (Standard_Standard);
end if;
return Scope_Depth (Enclosing_Dynamic_Scope (Btyp));
end Type_Access_Level;
------------------------------------
-- Type_Without_Stream_Operation --
------------------------------------
function Type_Without_Stream_Operation
(T : Entity_Id;
Op : TSS_Name_Type := TSS_Null) return Entity_Id
is
BT : constant Entity_Id := Base_Type (T);
Op_Missing : Boolean;
begin
if not Restriction_Active (No_Default_Stream_Attributes) then
return Empty;
end if;
if Is_Elementary_Type (T) then
if Op = TSS_Null then
Op_Missing :=
No (TSS (BT, TSS_Stream_Read))
or else No (TSS (BT, TSS_Stream_Write));
else
Op_Missing := No (TSS (BT, Op));
end if;
if Op_Missing then
return T;
else
return Empty;
end if;
elsif Is_Array_Type (T) then
return Type_Without_Stream_Operation (Component_Type (T), Op);
elsif Is_Record_Type (T) then
declare
Comp : Entity_Id;
C_Typ : Entity_Id;
begin
Comp := First_Component (T);
while Present (Comp) loop
C_Typ := Type_Without_Stream_Operation (Etype (Comp), Op);
if Present (C_Typ) then
return C_Typ;
end if;
Next_Component (Comp);
end loop;
return Empty;
end;
elsif Is_Private_Type (T) and then Present (Full_View (T)) then
return Type_Without_Stream_Operation (Full_View (T), Op);
else
return Empty;
end if;
end Type_Without_Stream_Operation;
----------------------------
-- Unique_Defining_Entity --
----------------------------
function Unique_Defining_Entity (N : Node_Id) return Entity_Id is
begin
return Unique_Entity (Defining_Entity (N));
end Unique_Defining_Entity;
-------------------
-- Unique_Entity --
-------------------
function Unique_Entity (E : Entity_Id) return Entity_Id is
U : Entity_Id := E;
P : Node_Id;
begin
case Ekind (E) is
when E_Constant =>
if Present (Full_View (E)) then
U := Full_View (E);
end if;
when Type_Kind =>
if Present (Full_View (E)) then
U := Full_View (E);
end if;
when E_Package_Body =>
P := Parent (E);
if Nkind (P) = N_Defining_Program_Unit_Name then
P := Parent (P);
end if;
U := Corresponding_Spec (P);
when E_Subprogram_Body =>
P := Parent (E);
if Nkind (P) = N_Defining_Program_Unit_Name then
P := Parent (P);
end if;
P := Parent (P);
if Nkind (P) = N_Subprogram_Body_Stub then
if Present (Library_Unit (P)) then
-- Get to the function or procedure (generic) entity through
-- the body entity.
U :=
Unique_Entity (Defining_Entity (Get_Body_From_Stub (P)));
end if;
else
U := Corresponding_Spec (P);
end if;
when Formal_Kind =>
if Present (Spec_Entity (E)) then
U := Spec_Entity (E);
end if;
when others =>
null;
end case;
return U;
end Unique_Entity;
-----------------
-- Unique_Name --
-----------------
function Unique_Name (E : Entity_Id) return String is
-- Names of E_Subprogram_Body or E_Package_Body entities are not
-- reliable, as they may not include the overloading suffix. Instead,
-- when looking for the name of E or one of its enclosing scope, we get
-- the name of the corresponding Unique_Entity.
function Get_Scoped_Name (E : Entity_Id) return String;
-- Return the name of E prefixed by all the names of the scopes to which
-- E belongs, except for Standard.
---------------------
-- Get_Scoped_Name --
---------------------
function Get_Scoped_Name (E : Entity_Id) return String is
Name : constant String := Get_Name_String (Chars (E));
begin
if Has_Fully_Qualified_Name (E)
or else Scope (E) = Standard_Standard
then
return Name;
else
return Get_Scoped_Name (Unique_Entity (Scope (E))) & "__" & Name;
end if;
end Get_Scoped_Name;
-- Start of processing for Unique_Name
begin
if E = Standard_Standard then
return Get_Name_String (Name_Standard);
elsif Scope (E) = Standard_Standard
and then not (Ekind (E) = E_Package or else Is_Subprogram (E))
then
return Get_Name_String (Name_Standard) & "__" &
Get_Name_String (Chars (E));
elsif Ekind (E) = E_Enumeration_Literal then
return Unique_Name (Etype (E)) & "__" & Get_Name_String (Chars (E));
else
return Get_Scoped_Name (Unique_Entity (E));
end if;
end Unique_Name;
---------------------
-- Unit_Is_Visible --
---------------------
function Unit_Is_Visible (U : Entity_Id) return Boolean is
Curr : constant Node_Id := Cunit (Current_Sem_Unit);
Curr_Entity : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
function Unit_In_Parent_Context (Par_Unit : Node_Id) return Boolean;
-- For a child unit, check whether unit appears in a with_clause
-- of a parent.
function Unit_In_Context (Comp_Unit : Node_Id) return Boolean;
-- Scan the context clause of one compilation unit looking for a
-- with_clause for the unit in question.
----------------------------
-- Unit_In_Parent_Context --
----------------------------
function Unit_In_Parent_Context (Par_Unit : Node_Id) return Boolean is
begin
if Unit_In_Context (Par_Unit) then
return True;
elsif Is_Child_Unit (Defining_Entity (Unit (Par_Unit))) then
return Unit_In_Parent_Context (Parent_Spec (Unit (Par_Unit)));
else
return False;
end if;
end Unit_In_Parent_Context;
---------------------
-- Unit_In_Context --
---------------------
function Unit_In_Context (Comp_Unit : Node_Id) return Boolean is
Clause : Node_Id;
begin
Clause := First (Context_Items (Comp_Unit));
while Present (Clause) loop
if Nkind (Clause) = N_With_Clause then
if Library_Unit (Clause) = U then
return True;
-- The with_clause may denote a renaming of the unit we are
-- looking for, eg. Text_IO which renames Ada.Text_IO.
elsif
Renamed_Entity (Entity (Name (Clause))) =
Defining_Entity (Unit (U))
then
return True;
end if;
end if;
Next (Clause);
end loop;
return False;
end Unit_In_Context;
-- Start of processing for Unit_Is_Visible
begin
-- The currrent unit is directly visible
if Curr = U then
return True;
elsif Unit_In_Context (Curr) then
return True;
-- If the current unit is a body, check the context of the spec
elsif Nkind (Unit (Curr)) = N_Package_Body
or else
(Nkind (Unit (Curr)) = N_Subprogram_Body
and then not Acts_As_Spec (Unit (Curr)))
then
if Unit_In_Context (Library_Unit (Curr)) then
return True;
end if;
end if;
-- If the spec is a child unit, examine the parents
if Is_Child_Unit (Curr_Entity) then
if Nkind (Unit (Curr)) in N_Unit_Body then
return
Unit_In_Parent_Context
(Parent_Spec (Unit (Library_Unit (Curr))));
else
return Unit_In_Parent_Context (Parent_Spec (Unit (Curr)));
end if;
else
return False;
end if;
end Unit_Is_Visible;
------------------------------
-- Universal_Interpretation --
------------------------------
function Universal_Interpretation (Opnd : Node_Id) return Entity_Id is
Index : Interp_Index;
It : Interp;
begin
-- The argument may be a formal parameter of an operator or subprogram
-- with multiple interpretations, or else an expression for an actual.
if Nkind (Opnd) = N_Defining_Identifier
or else not Is_Overloaded (Opnd)
then
if Etype (Opnd) = Universal_Integer
or else Etype (Opnd) = Universal_Real
then
return Etype (Opnd);
else
return Empty;
end if;
else
Get_First_Interp (Opnd, Index, It);
while Present (It.Typ) loop
if It.Typ = Universal_Integer
or else It.Typ = Universal_Real
then
return It.Typ;
end if;
Get_Next_Interp (Index, It);
end loop;
return Empty;
end if;
end Universal_Interpretation;
---------------
-- Unqualify --
---------------
function Unqualify (Expr : Node_Id) return Node_Id is
begin
-- Recurse to handle unlikely case of multiple levels of qualification
if Nkind (Expr) = N_Qualified_Expression then
return Unqualify (Expression (Expr));
-- Normal case, not a qualified expression
else
return Expr;
end if;
end Unqualify;
-----------------------
-- Visible_Ancestors --
-----------------------
function Visible_Ancestors (Typ : Entity_Id) return Elist_Id is
List_1 : Elist_Id;
List_2 : Elist_Id;
Elmt : Elmt_Id;
begin
pragma Assert (Is_Record_Type (Typ) and then Is_Tagged_Type (Typ));
-- Collect all the parents and progenitors of Typ. If the full-view of
-- private parents and progenitors is available then it is used to
-- generate the list of visible ancestors; otherwise their partial
-- view is added to the resulting list.
Collect_Parents
(T => Typ,
List => List_1,
Use_Full_View => True);
Collect_Interfaces
(T => Typ,
Ifaces_List => List_2,
Exclude_Parents => True,
Use_Full_View => True);
-- Join the two lists. Avoid duplications because an interface may
-- simultaneously be parent and progenitor of a type.
Elmt := First_Elmt (List_2);
while Present (Elmt) loop
Append_Unique_Elmt (Node (Elmt), List_1);
Next_Elmt (Elmt);
end loop;
return List_1;
end Visible_Ancestors;
----------------------
-- Within_Init_Proc --
----------------------
function Within_Init_Proc return Boolean is
S : Entity_Id;
begin
S := Current_Scope;
while not Is_Overloadable (S) loop
if S = Standard_Standard then
return False;
else
S := Scope (S);
end if;
end loop;
return Is_Init_Proc (S);
end Within_Init_Proc;
------------------
-- Within_Scope --
------------------
function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean is
SE : Entity_Id;
begin
SE := Scope (E);
loop
if SE = S then
return True;
elsif SE = Standard_Standard then
return False;
else
SE := Scope (SE);
end if;
end loop;
end Within_Scope;
----------------
-- Wrong_Type --
----------------
procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id) is
Found_Type : constant Entity_Id := First_Subtype (Etype (Expr));
Expec_Type : constant Entity_Id := First_Subtype (Expected_Type);
Matching_Field : Entity_Id;
-- Entity to give a more precise suggestion on how to write a one-
-- element positional aggregate.
function Has_One_Matching_Field return Boolean;
-- Determines if Expec_Type is a record type with a single component or
-- discriminant whose type matches the found type or is one dimensional
-- array whose component type matches the found type. In the case of
-- one discriminant, we ignore the variant parts. That's not accurate,
-- but good enough for the warning.
----------------------------
-- Has_One_Matching_Field --
----------------------------
function Has_One_Matching_Field return Boolean is
E : Entity_Id;
begin
Matching_Field := Empty;
if Is_Array_Type (Expec_Type)
and then Number_Dimensions (Expec_Type) = 1
and then Covers (Etype (Component_Type (Expec_Type)), Found_Type)
then
-- Use type name if available. This excludes multidimensional
-- arrays and anonymous arrays.
if Comes_From_Source (Expec_Type) then
Matching_Field := Expec_Type;
-- For an assignment, use name of target
elsif Nkind (Parent (Expr)) = N_Assignment_Statement
and then Is_Entity_Name (Name (Parent (Expr)))
then
Matching_Field := Entity (Name (Parent (Expr)));
end if;
return True;
elsif not Is_Record_Type (Expec_Type) then
return False;
else
E := First_Entity (Expec_Type);
loop
if No (E) then
return False;
elsif not Ekind_In (E, E_Discriminant, E_Component)
or else Nam_In (Chars (E), Name_uTag, Name_uParent)
then
Next_Entity (E);
else
exit;
end if;
end loop;
if not Covers (Etype (E), Found_Type) then
return False;
elsif Present (Next_Entity (E))
and then (Ekind (E) = E_Component
or else Ekind (Next_Entity (E)) = E_Discriminant)
then
return False;
else
Matching_Field := E;
return True;
end if;
end if;
end Has_One_Matching_Field;
-- Start of processing for Wrong_Type
begin
-- Don't output message if either type is Any_Type, or if a message
-- has already been posted for this node. We need to do the latter
-- check explicitly (it is ordinarily done in Errout), because we
-- are using ! to force the output of the error messages.
if Expec_Type = Any_Type
or else Found_Type = Any_Type
or else Error_Posted (Expr)
then
return;
-- If one of the types is a Taft-Amendment type and the other it its
-- completion, it must be an illegal use of a TAT in the spec, for
-- which an error was already emitted. Avoid cascaded errors.
elsif Is_Incomplete_Type (Expec_Type)
and then Has_Completion_In_Body (Expec_Type)
and then Full_View (Expec_Type) = Etype (Expr)
then
return;
elsif Is_Incomplete_Type (Etype (Expr))
and then Has_Completion_In_Body (Etype (Expr))
and then Full_View (Etype (Expr)) = Expec_Type
then
return;
-- In an instance, there is an ongoing problem with completion of
-- type derived from private types. Their structure is what Gigi
-- expects, but the Etype is the parent type rather than the
-- derived private type itself. Do not flag error in this case. The
-- private completion is an entity without a parent, like an Itype.
-- Similarly, full and partial views may be incorrect in the instance.
-- There is no simple way to insure that it is consistent ???
-- A similar view discrepancy can happen in an inlined body, for the
-- same reason: inserted body may be outside of the original package
-- and only partial views are visible at the point of insertion.
elsif In_Instance or else In_Inlined_Body then
if Etype (Etype (Expr)) = Etype (Expected_Type)
and then
(Has_Private_Declaration (Expected_Type)
or else Has_Private_Declaration (Etype (Expr)))
and then No (Parent (Expected_Type))
then
return;
elsif Nkind (Parent (Expr)) = N_Qualified_Expression
and then Entity (Subtype_Mark (Parent (Expr))) = Expected_Type
then
return;
elsif Is_Private_Type (Expected_Type)
and then Present (Full_View (Expected_Type))
and then Covers (Full_View (Expected_Type), Etype (Expr))
then
return;
end if;
end if;
-- An interesting special check. If the expression is parenthesized
-- and its type corresponds to the type of the sole component of the
-- expected record type, or to the component type of the expected one
-- dimensional array type, then assume we have a bad aggregate attempt.
if Nkind (Expr) in N_Subexpr
and then Paren_Count (Expr) /= 0
and then Has_One_Matching_Field
then
Error_Msg_N ("positional aggregate cannot have one component", Expr);
if Present (Matching_Field) then
if Is_Array_Type (Expec_Type) then
Error_Msg_NE
("\write instead `&''First ='> ...`", Expr, Matching_Field);
else
Error_Msg_NE
("\write instead `& ='> ...`", Expr, Matching_Field);
end if;
end if;
-- Another special check, if we are looking for a pool-specific access
-- type and we found an E_Access_Attribute_Type, then we have the case
-- of an Access attribute being used in a context which needs a pool-
-- specific type, which is never allowed. The one extra check we make
-- is that the expected designated type covers the Found_Type.
elsif Is_Access_Type (Expec_Type)
and then Ekind (Found_Type) = E_Access_Attribute_Type
and then Ekind (Base_Type (Expec_Type)) /= E_General_Access_Type
and then Ekind (Base_Type (Expec_Type)) /= E_Anonymous_Access_Type
and then Covers
(Designated_Type (Expec_Type), Designated_Type (Found_Type))
then
Error_Msg_N -- CODEFIX
("result must be general access type!", Expr);
Error_Msg_NE -- CODEFIX
("add ALL to }!", Expr, Expec_Type);
-- Another special check, if the expected type is an integer type,
-- but the expression is of type System.Address, and the parent is
-- an addition or subtraction operation whose left operand is the
-- expression in question and whose right operand is of an integral
-- type, then this is an attempt at address arithmetic, so give
-- appropriate message.
elsif Is_Integer_Type (Expec_Type)
and then Is_RTE (Found_Type, RE_Address)
and then Nkind_In (Parent (Expr), N_Op_Add, N_Op_Subtract)
and then Expr = Left_Opnd (Parent (Expr))
and then Is_Integer_Type (Etype (Right_Opnd (Parent (Expr))))
then
Error_Msg_N
("address arithmetic not predefined in package System",
Parent (Expr));
Error_Msg_N
("\possible missing with/use of System.Storage_Elements",
Parent (Expr));
return;
-- If the expected type is an anonymous access type, as for access
-- parameters and discriminants, the error is on the designated types.
elsif Ekind (Expec_Type) = E_Anonymous_Access_Type then
if Comes_From_Source (Expec_Type) then
Error_Msg_NE ("expected}!", Expr, Expec_Type);
else
Error_Msg_NE
("expected an access type with designated}",
Expr, Designated_Type (Expec_Type));
end if;
if Is_Access_Type (Found_Type)
and then not Comes_From_Source (Found_Type)
then
Error_Msg_NE
("\\found an access type with designated}!",
Expr, Designated_Type (Found_Type));
else
if From_Limited_With (Found_Type) then
Error_Msg_NE ("\\found incomplete}!", Expr, Found_Type);
Error_Msg_Qual_Level := 99;
Error_Msg_NE -- CODEFIX
("\\missing `WITH &;", Expr, Scope (Found_Type));
Error_Msg_Qual_Level := 0;
else
Error_Msg_NE ("found}!", Expr, Found_Type);
end if;
end if;
-- Normal case of one type found, some other type expected
else
-- If the names of the two types are the same, see if some number
-- of levels of qualification will help. Don't try more than three
-- levels, and if we get to standard, it's no use (and probably
-- represents an error in the compiler) Also do not bother with
-- internal scope names.
declare
Expec_Scope : Entity_Id;
Found_Scope : Entity_Id;
begin
Expec_Scope := Expec_Type;
Found_Scope := Found_Type;
for Levels in Int range 0 .. 3 loop
if Chars (Expec_Scope) /= Chars (Found_Scope) then
Error_Msg_Qual_Level := Levels;
exit;
end if;
Expec_Scope := Scope (Expec_Scope);
Found_Scope := Scope (Found_Scope);
exit when Expec_Scope = Standard_Standard
or else Found_Scope = Standard_Standard
or else not Comes_From_Source (Expec_Scope)
or else not Comes_From_Source (Found_Scope);
end loop;
end;
if Is_Record_Type (Expec_Type)
and then Present (Corresponding_Remote_Type (Expec_Type))
then
Error_Msg_NE ("expected}!", Expr,
Corresponding_Remote_Type (Expec_Type));
else
Error_Msg_NE ("expected}!", Expr, Expec_Type);
end if;
if Is_Entity_Name (Expr)
and then Is_Package_Or_Generic_Package (Entity (Expr))
then
Error_Msg_N ("\\found package name!", Expr);
elsif Is_Entity_Name (Expr)
and then Ekind_In (Entity (Expr), E_Procedure, E_Generic_Procedure)
then
if Ekind (Expec_Type) = E_Access_Subprogram_Type then
Error_Msg_N
("found procedure name, possibly missing Access attribute!",
Expr);
else
Error_Msg_N
("\\found procedure name instead of function!", Expr);
end if;
elsif Nkind (Expr) = N_Function_Call
and then Ekind (Expec_Type) = E_Access_Subprogram_Type
and then Etype (Designated_Type (Expec_Type)) = Etype (Expr)
and then No (Parameter_Associations (Expr))
then
Error_Msg_N
("found function name, possibly missing Access attribute!",
Expr);
-- Catch common error: a prefix or infix operator which is not
-- directly visible because the type isn't.
elsif Nkind (Expr) in N_Op
and then Is_Overloaded (Expr)
and then not Is_Immediately_Visible (Expec_Type)
and then not Is_Potentially_Use_Visible (Expec_Type)
and then not In_Use (Expec_Type)
and then Has_Compatible_Type (Right_Opnd (Expr), Expec_Type)
then
Error_Msg_N
("operator of the type is not directly visible!", Expr);
elsif Ekind (Found_Type) = E_Void
and then Present (Parent (Found_Type))
and then Nkind (Parent (Found_Type)) = N_Full_Type_Declaration
then
Error_Msg_NE ("\\found premature usage of}!", Expr, Found_Type);
else
Error_Msg_NE ("\\found}!", Expr, Found_Type);
end if;
-- A special check for cases like M1 and M2 = 0 where M1 and M2 are
-- of the same modular type, and (M1 and M2) = 0 was intended.
if Expec_Type = Standard_Boolean
and then Is_Modular_Integer_Type (Found_Type)
and then Nkind_In (Parent (Expr), N_Op_And, N_Op_Or, N_Op_Xor)
and then Nkind (Right_Opnd (Parent (Expr))) in N_Op_Compare
then
declare
Op : constant Node_Id := Right_Opnd (Parent (Expr));
L : constant Node_Id := Left_Opnd (Op);
R : constant Node_Id := Right_Opnd (Op);
begin
-- The case for the message is when the left operand of the
-- comparison is the same modular type, or when it is an
-- integer literal (or other universal integer expression),
-- which would have been typed as the modular type if the
-- parens had been there.
if (Etype (L) = Found_Type
or else
Etype (L) = Universal_Integer)
and then Is_Integer_Type (Etype (R))
then
Error_Msg_N
("\\possible missing parens for modular operation", Expr);
end if;
end;
end if;
-- Reset error message qualification indication
Error_Msg_Qual_Level := 0;
end if;
end Wrong_Type;
end Sem_Util;
|