1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
  
     | 
    
      /* libgcc routines for 68000 w/o floating-point hardware.
   Copyright (C) 1994-2015 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */
/* Use this one for any 680x0; assumes no floating point hardware.
   The trailing " '" appearing on some lines is for ANSI preprocessors.  Yuk.
   Some of this code comes from MINIX, via the folks at ericsson.
   D. V. Henkel-Wallace (gumby@cygnus.com) Fete Bastille, 1992
*/
/* These are predefined by new versions of GNU cpp.  */
#ifndef __USER_LABEL_PREFIX__
#define __USER_LABEL_PREFIX__ _
#endif
#ifndef __REGISTER_PREFIX__
#define __REGISTER_PREFIX__
#endif
#ifndef __IMMEDIATE_PREFIX__
#define __IMMEDIATE_PREFIX__ #
#endif
/* ANSI concatenation macros.  */
#define CONCAT1(a, b) CONCAT2(a, b)
#define CONCAT2(a, b) a ## b
/* Use the right prefix for global labels.  */
#define SYM(x) CONCAT1 (__USER_LABEL_PREFIX__, x)
/* Note that X is a function.  */
	
#ifdef __ELF__
#define FUNC(x) .type SYM(x),function
#else
/* The .proc pseudo-op is accepted, but ignored, by GAS.  We could just	
   define this to the empty string for non-ELF systems, but defining it
   to .proc means that the information is available to the assembler if
   the need arises.  */
#define FUNC(x) .proc
#endif
		
/* Use the right prefix for registers.  */
#define REG(x) CONCAT1 (__REGISTER_PREFIX__, x)
/* Use the right prefix for immediate values.  */
#define IMM(x) CONCAT1 (__IMMEDIATE_PREFIX__, x)
#define d0 REG (d0)
#define d1 REG (d1)
#define d2 REG (d2)
#define d3 REG (d3)
#define d4 REG (d4)
#define d5 REG (d5)
#define d6 REG (d6)
#define d7 REG (d7)
#define a0 REG (a0)
#define a1 REG (a1)
#define a2 REG (a2)
#define a3 REG (a3)
#define a4 REG (a4)
#define a5 REG (a5)
#define a6 REG (a6)
#define fp REG (fp)
#define sp REG (sp)
#define pc REG (pc)
/* Provide a few macros to allow for PIC code support.
 * With PIC, data is stored A5 relative so we've got to take a bit of special
 * care to ensure that all loads of global data is via A5.  PIC also requires
 * jumps and subroutine calls to be PC relative rather than absolute.  We cheat
 * a little on this and in the PIC case, we use short offset branches and
 * hope that the final object code is within range (which it should be).
 */
#ifndef __PIC__
	/* Non PIC (absolute/relocatable) versions */
	.macro PICCALL addr
	jbsr	\addr
	.endm
	.macro PICJUMP addr
	jmp	\addr
	.endm
	.macro PICLEA sym, reg
	lea	\sym, \reg
	.endm
	.macro PICPEA sym, areg
	pea	\sym
	.endm
#else /* __PIC__ */
# if defined (__uClinux__)
	/* Versions for uClinux */
#  if defined(__ID_SHARED_LIBRARY__)
	/* -mid-shared-library versions  */
	.macro PICLEA sym, reg
	movel	a5@(_current_shared_library_a5_offset_), \reg
	movel	\sym@GOT(\reg), \reg
	.endm
	.macro PICPEA sym, areg
	movel	a5@(_current_shared_library_a5_offset_), \areg
	movel	\sym@GOT(\areg), sp@-
	.endm
	.macro PICCALL addr
	PICLEA	\addr,a0
	jsr	a0@
	.endm
	.macro PICJUMP addr
	PICLEA	\addr,a0
	jmp	a0@
	.endm
#  else /* !__ID_SHARED_LIBRARY__ */
	/* Versions for -msep-data */
	.macro PICLEA sym, reg
	movel	\sym@GOT(a5), \reg
	.endm
	.macro PICPEA sym, areg
	movel	\sym@GOT(a5), sp@-
	.endm
	.macro PICCALL addr
#if defined (__mcoldfire__) && !defined (__mcfisab__) && !defined (__mcfisac__)
	lea	\addr-.-8,a0
	jsr	pc@(a0)
#else
	jbsr	\addr
#endif
	.endm
	.macro PICJUMP addr
	/* ISA C has no bra.l instruction, and since this assembly file
	   gets assembled into multiple object files, we avoid the
	   bra instruction entirely.  */
#if defined (__mcoldfire__) && !defined (__mcfisab__)
	lea	\addr-.-8,a0
	jmp	pc@(a0)
#else
	bra	\addr
#endif
	.endm
#  endif
# else /* !__uClinux__ */
	/* Versions for Linux */
	.macro PICLEA sym, reg
	movel	#_GLOBAL_OFFSET_TABLE_@GOTPC, \reg
	lea	(-6, pc, \reg), \reg
	movel	\sym@GOT(\reg), \reg
	.endm
	.macro PICPEA sym, areg
	movel	#_GLOBAL_OFFSET_TABLE_@GOTPC, \areg
	lea	(-6, pc, \areg), \areg
	movel	\sym@GOT(\areg), sp@-
	.endm
	.macro PICCALL addr
#if defined (__mcoldfire__) && !defined (__mcfisab__) && !defined (__mcfisac__)
	lea	\addr-.-8,a0
	jsr	pc@(a0)
#else
	jbsr	\addr
#endif
	.endm
	.macro PICJUMP addr
	/* ISA C has no bra.l instruction, and since this assembly file
	   gets assembled into multiple object files, we avoid the
	   bra instruction entirely.  */
#if defined (__mcoldfire__) && !defined (__mcfisab__)
	lea	\addr-.-8,a0
	jmp	pc@(a0)
#else
	bra	\addr
#endif
	.endm
# endif
#endif /* __PIC__ */
#ifdef L_floatex
| This is an attempt at a decent floating point (single, double and 
| extended double) code for the GNU C compiler. It should be easy to
| adapt to other compilers (but beware of the local labels!).
| Starting date: 21 October, 1990
| It is convenient to introduce the notation (s,e,f) for a floating point
| number, where s=sign, e=exponent, f=fraction. We will call a floating
| point number fpn to abbreviate, independently of the precision.
| Let MAX_EXP be in each case the maximum exponent (255 for floats, 1023 
| for doubles and 16383 for long doubles). We then have the following 
| different cases:
|  1. Normalized fpns have 0 < e < MAX_EXP. They correspond to 
|     (-1)^s x 1.f x 2^(e-bias-1).
|  2. Denormalized fpns have e=0. They correspond to numbers of the form
|     (-1)^s x 0.f x 2^(-bias).
|  3. +/-INFINITY have e=MAX_EXP, f=0.
|  4. Quiet NaN (Not a Number) have all bits set.
|  5. Signaling NaN (Not a Number) have s=0, e=MAX_EXP, f=1.
|=============================================================================
|                                  exceptions
|=============================================================================
| This is the floating point condition code register (_fpCCR):
|
| struct {
|   short _exception_bits;	
|   short _trap_enable_bits;	
|   short _sticky_bits;
|   short _rounding_mode;
|   short _format;
|   short _last_operation;
|   union {
|     float sf;
|     double df;
|   } _operand1;
|   union {
|     float sf;
|     double df;
|   } _operand2;
| } _fpCCR;
	.data
	.even
	.globl	SYM (_fpCCR)
	
SYM (_fpCCR):
__exception_bits:
	.word	0
__trap_enable_bits:
	.word	0
__sticky_bits:
	.word	0
__rounding_mode:
	.word	ROUND_TO_NEAREST
__format:
	.word	NIL
__last_operation:
	.word	NOOP
__operand1:
	.long	0
	.long	0
__operand2:
	.long 	0
	.long	0
| Offsets:
EBITS  = __exception_bits - SYM (_fpCCR)
TRAPE  = __trap_enable_bits - SYM (_fpCCR)
STICK  = __sticky_bits - SYM (_fpCCR)
ROUND  = __rounding_mode - SYM (_fpCCR)
FORMT  = __format - SYM (_fpCCR)
LASTO  = __last_operation - SYM (_fpCCR)
OPER1  = __operand1 - SYM (_fpCCR)
OPER2  = __operand2 - SYM (_fpCCR)
| The following exception types are supported:
INEXACT_RESULT 		= 0x0001
UNDERFLOW 		= 0x0002
OVERFLOW 		= 0x0004
DIVIDE_BY_ZERO 		= 0x0008
INVALID_OPERATION 	= 0x0010
| The allowed rounding modes are:
UNKNOWN           = -1
ROUND_TO_NEAREST  = 0 | round result to nearest representable value
ROUND_TO_ZERO     = 1 | round result towards zero
ROUND_TO_PLUS     = 2 | round result towards plus infinity
ROUND_TO_MINUS    = 3 | round result towards minus infinity
| The allowed values of format are:
NIL          = 0
SINGLE_FLOAT = 1
DOUBLE_FLOAT = 2
LONG_FLOAT   = 3
| The allowed values for the last operation are:
NOOP         = 0
ADD          = 1
MULTIPLY     = 2
DIVIDE       = 3
NEGATE       = 4
COMPARE      = 5
EXTENDSFDF   = 6
TRUNCDFSF    = 7
|=============================================================================
|                           __clear_sticky_bits
|=============================================================================
| The sticky bits are normally not cleared (thus the name), whereas the 
| exception type and exception value reflect the last computation. 
| This routine is provided to clear them (you can also write to _fpCCR,
| since it is globally visible).
	.globl  SYM (__clear_sticky_bit)
	.text
	.even
| void __clear_sticky_bits(void);
SYM (__clear_sticky_bit):		
	PICLEA	SYM (_fpCCR),a0
#ifndef __mcoldfire__
	movew	IMM (0),a0@(STICK)
#else
	clr.w	a0@(STICK)
#endif
	rts
|=============================================================================
|                           $_exception_handler
|=============================================================================
	.globl  $_exception_handler
	.text
	.even
| This is the common exit point if an exception occurs.
| NOTE: it is NOT callable from C!
| It expects the exception type in d7, the format (SINGLE_FLOAT,
| DOUBLE_FLOAT or LONG_FLOAT) in d6, and the last operation code in d5.
| It sets the corresponding exception and sticky bits, and the format. 
| Depending on the format if fills the corresponding slots for the 
| operands which produced the exception (all this information is provided
| so if you write your own exception handlers you have enough information
| to deal with the problem).
| Then checks to see if the corresponding exception is trap-enabled, 
| in which case it pushes the address of _fpCCR and traps through 
| trap FPTRAP (15 for the moment).
FPTRAP = 15
$_exception_handler:
	PICLEA	SYM (_fpCCR),a0
	movew	d7,a0@(EBITS)	| set __exception_bits
#ifndef __mcoldfire__
	orw	d7,a0@(STICK)	| and __sticky_bits
#else
	movew	a0@(STICK),d4
	orl	d7,d4
	movew	d4,a0@(STICK)
#endif
	movew	d6,a0@(FORMT)	| and __format
	movew	d5,a0@(LASTO)	| and __last_operation
| Now put the operands in place:
#ifndef __mcoldfire__
	cmpw	IMM (SINGLE_FLOAT),d6
#else
	cmpl	IMM (SINGLE_FLOAT),d6
#endif
	beq	1f
	movel	a6@(8),a0@(OPER1)
	movel	a6@(12),a0@(OPER1+4)
	movel	a6@(16),a0@(OPER2)
	movel	a6@(20),a0@(OPER2+4)
	bra	2f
1:	movel	a6@(8),a0@(OPER1)
	movel	a6@(12),a0@(OPER2)
2:
| And check whether the exception is trap-enabled:
#ifndef __mcoldfire__
	andw	a0@(TRAPE),d7	| is exception trap-enabled?
#else
	clrl	d6
	movew	a0@(TRAPE),d6
	andl	d6,d7
#endif
	beq	1f		| no, exit
	PICPEA	SYM (_fpCCR),a1	| yes, push address of _fpCCR
	trap	IMM (FPTRAP)	| and trap
#ifndef __mcoldfire__
1:	moveml	sp@+,d2-d7	| restore data registers
#else
1:	moveml	sp@,d2-d7
	| XXX if frame pointer is ever removed, stack pointer must
	| be adjusted here.
#endif
	unlk	a6		| and return
	rts
#endif /* L_floatex */
#ifdef  L_mulsi3
	.text
	FUNC(__mulsi3)
	.globl	SYM (__mulsi3)
SYM (__mulsi3):
	movew	sp@(4), d0	/* x0 -> d0 */
	muluw	sp@(10), d0	/* x0*y1 */
	movew	sp@(6), d1	/* x1 -> d1 */
	muluw	sp@(8), d1	/* x1*y0 */
#ifndef __mcoldfire__
	addw	d1, d0
#else
	addl	d1, d0
#endif
	swap	d0
	clrw	d0
	movew	sp@(6), d1	/* x1 -> d1 */
	muluw	sp@(10), d1	/* x1*y1 */
	addl	d1, d0
	rts
#endif /* L_mulsi3 */
#ifdef  L_udivsi3
	.text
	FUNC(__udivsi3)
	.globl	SYM (__udivsi3)
SYM (__udivsi3):
#ifndef __mcoldfire__
	movel	d2, sp@-
	movel	sp@(12), d1	/* d1 = divisor */
	movel	sp@(8), d0	/* d0 = dividend */
	cmpl	IMM (0x10000), d1 /* divisor >= 2 ^ 16 ?   */
	jcc	L3		/* then try next algorithm */
	movel	d0, d2
	clrw	d2
	swap	d2
	divu	d1, d2          /* high quotient in lower word */
	movew	d2, d0		/* save high quotient */
	swap	d0
	movew	sp@(10), d2	/* get low dividend + high rest */
	divu	d1, d2		/* low quotient */
	movew	d2, d0
	jra	L6
L3:	movel	d1, d2		/* use d2 as divisor backup */
L4:	lsrl	IMM (1), d1	/* shift divisor */
	lsrl	IMM (1), d0	/* shift dividend */
	cmpl	IMM (0x10000), d1 /* still divisor >= 2 ^ 16 ?  */
	jcc	L4
	divu	d1, d0		/* now we have 16-bit divisor */
	andl	IMM (0xffff), d0 /* mask out divisor, ignore remainder */
/* Multiply the 16-bit tentative quotient with the 32-bit divisor.  Because of
   the operand ranges, this might give a 33-bit product.  If this product is
   greater than the dividend, the tentative quotient was too large. */
	movel	d2, d1
	mulu	d0, d1		/* low part, 32 bits */
	swap	d2
	mulu	d0, d2		/* high part, at most 17 bits */
	swap	d2		/* align high part with low part */
	tstw	d2		/* high part 17 bits? */
	jne	L5		/* if 17 bits, quotient was too large */
	addl	d2, d1		/* add parts */
	jcs	L5		/* if sum is 33 bits, quotient was too large */
	cmpl	sp@(8), d1	/* compare the sum with the dividend */
	jls	L6		/* if sum > dividend, quotient was too large */
L5:	subql	IMM (1), d0	/* adjust quotient */
L6:	movel	sp@+, d2
	rts
#else /* __mcoldfire__ */
/* ColdFire implementation of non-restoring division algorithm from
   Hennessy & Patterson, Appendix A. */
	link	a6,IMM (-12)
	moveml	d2-d4,sp@
	movel	a6@(8),d0
	movel	a6@(12),d1
	clrl	d2		| clear p
	moveq	IMM (31),d4
L1:	addl	d0,d0		| shift reg pair (p,a) one bit left
	addxl	d2,d2
	movl	d2,d3		| subtract b from p, store in tmp.
	subl	d1,d3
	jcs	L2		| if no carry,
	bset	IMM (0),d0	| set the low order bit of a to 1,
	movl	d3,d2		| and store tmp in p.
L2:	subql	IMM (1),d4
	jcc	L1
	moveml	sp@,d2-d4	| restore data registers
	unlk	a6		| and return
	rts
#endif /* __mcoldfire__ */
#endif /* L_udivsi3 */
#ifdef  L_divsi3
	.text
	FUNC(__divsi3)
	.globl	SYM (__divsi3)
SYM (__divsi3):
	movel	d2, sp@-
	moveq	IMM (1), d2	/* sign of result stored in d2 (=1 or =-1) */
	movel	sp@(12), d1	/* d1 = divisor */
	jpl	L1
	negl	d1
#ifndef __mcoldfire__
	negb	d2		/* change sign because divisor <0  */
#else
	negl	d2		/* change sign because divisor <0  */
#endif
L1:	movel	sp@(8), d0	/* d0 = dividend */
	jpl	L2
	negl	d0
#ifndef __mcoldfire__
	negb	d2
#else
	negl	d2
#endif
L2:	movel	d1, sp@-
	movel	d0, sp@-
	PICCALL	SYM (__udivsi3)	/* divide abs(dividend) by abs(divisor) */
	addql	IMM (8), sp
	tstb	d2
	jpl	L3
	negl	d0
L3:	movel	sp@+, d2
	rts
#endif /* L_divsi3 */
#ifdef  L_umodsi3
	.text
	FUNC(__umodsi3)
	.globl	SYM (__umodsi3)
SYM (__umodsi3):
	movel	sp@(8), d1	/* d1 = divisor */
	movel	sp@(4), d0	/* d0 = dividend */
	movel	d1, sp@-
	movel	d0, sp@-
	PICCALL	SYM (__udivsi3)
	addql	IMM (8), sp
	movel	sp@(8), d1	/* d1 = divisor */
#ifndef __mcoldfire__
	movel	d1, sp@-
	movel	d0, sp@-
	PICCALL	SYM (__mulsi3)	/* d0 = (a/b)*b */
	addql	IMM (8), sp
#else
	mulsl	d1,d0
#endif
	movel	sp@(4), d1	/* d1 = dividend */
	subl	d0, d1		/* d1 = a - (a/b)*b */
	movel	d1, d0
	rts
#endif /* L_umodsi3 */
#ifdef  L_modsi3
	.text
	FUNC(__modsi3)
	.globl	SYM (__modsi3)
SYM (__modsi3):
	movel	sp@(8), d1	/* d1 = divisor */
	movel	sp@(4), d0	/* d0 = dividend */
	movel	d1, sp@-
	movel	d0, sp@-
	PICCALL	SYM (__divsi3)
	addql	IMM (8), sp
	movel	sp@(8), d1	/* d1 = divisor */
#ifndef __mcoldfire__
	movel	d1, sp@-
	movel	d0, sp@-
	PICCALL	SYM (__mulsi3)	/* d0 = (a/b)*b */
	addql	IMM (8), sp
#else
	mulsl	d1,d0
#endif
	movel	sp@(4), d1	/* d1 = dividend */
	subl	d0, d1		/* d1 = a - (a/b)*b */
	movel	d1, d0
	rts
#endif /* L_modsi3 */
#ifdef  L_double
	.globl	SYM (_fpCCR)
	.globl  $_exception_handler
QUIET_NaN      = 0xffffffff
D_MAX_EXP      = 0x07ff
D_BIAS         = 1022
DBL_MAX_EXP    = D_MAX_EXP - D_BIAS
DBL_MIN_EXP    = 1 - D_BIAS
DBL_MANT_DIG   = 53
INEXACT_RESULT 		= 0x0001
UNDERFLOW 		= 0x0002
OVERFLOW 		= 0x0004
DIVIDE_BY_ZERO 		= 0x0008
INVALID_OPERATION 	= 0x0010
DOUBLE_FLOAT = 2
NOOP         = 0
ADD          = 1
MULTIPLY     = 2
DIVIDE       = 3
NEGATE       = 4
COMPARE      = 5
EXTENDSFDF   = 6
TRUNCDFSF    = 7
UNKNOWN           = -1
ROUND_TO_NEAREST  = 0 | round result to nearest representable value
ROUND_TO_ZERO     = 1 | round result towards zero
ROUND_TO_PLUS     = 2 | round result towards plus infinity
ROUND_TO_MINUS    = 3 | round result towards minus infinity
| Entry points:
	.globl SYM (__adddf3)
	.globl SYM (__subdf3)
	.globl SYM (__muldf3)
	.globl SYM (__divdf3)
	.globl SYM (__negdf2)
	.globl SYM (__cmpdf2)
	.globl SYM (__cmpdf2_internal)
	.hidden SYM (__cmpdf2_internal)
	.text
	.even
| These are common routines to return and signal exceptions.	
Ld$den:
| Return and signal a denormalized number
	orl	d7,d0
	movew	IMM (INEXACT_RESULT+UNDERFLOW),d7
	moveq	IMM (DOUBLE_FLOAT),d6
	PICJUMP	$_exception_handler
Ld$infty:
Ld$overflow:
| Return a properly signed INFINITY and set the exception flags 
	movel	IMM (0x7ff00000),d0
	movel	IMM (0),d1
	orl	d7,d0
	movew	IMM (INEXACT_RESULT+OVERFLOW),d7
	moveq	IMM (DOUBLE_FLOAT),d6
	PICJUMP	$_exception_handler
Ld$underflow:
| Return 0 and set the exception flags 
	movel	IMM (0),d0
	movel	d0,d1
	movew	IMM (INEXACT_RESULT+UNDERFLOW),d7
	moveq	IMM (DOUBLE_FLOAT),d6
	PICJUMP	$_exception_handler
Ld$inop:
| Return a quiet NaN and set the exception flags
	movel	IMM (QUIET_NaN),d0
	movel	d0,d1
	movew	IMM (INEXACT_RESULT+INVALID_OPERATION),d7
	moveq	IMM (DOUBLE_FLOAT),d6
	PICJUMP	$_exception_handler
Ld$div$0:
| Return a properly signed INFINITY and set the exception flags
	movel	IMM (0x7ff00000),d0
	movel	IMM (0),d1
	orl	d7,d0
	movew	IMM (INEXACT_RESULT+DIVIDE_BY_ZERO),d7
	moveq	IMM (DOUBLE_FLOAT),d6
	PICJUMP	$_exception_handler
|=============================================================================
|=============================================================================
|                         double precision routines
|=============================================================================
|=============================================================================
| A double precision floating point number (double) has the format:
|
| struct _double {
|  unsigned int sign      : 1;  /* sign bit */ 
|  unsigned int exponent  : 11; /* exponent, shifted by 126 */
|  unsigned int fraction  : 52; /* fraction */
| } double;
| 
| Thus sizeof(double) = 8 (64 bits). 
|
| All the routines are callable from C programs, and return the result 
| in the register pair d0-d1. They also preserve all registers except 
| d0-d1 and a0-a1.
|=============================================================================
|                              __subdf3
|=============================================================================
| double __subdf3(double, double);
	FUNC(__subdf3)
SYM (__subdf3):
	bchg	IMM (31),sp@(12) | change sign of second operand
				| and fall through, so we always add
|=============================================================================
|                              __adddf3
|=============================================================================
| double __adddf3(double, double);
	FUNC(__adddf3)
SYM (__adddf3):
#ifndef __mcoldfire__
	link	a6,IMM (0)	| everything will be done in registers
	moveml	d2-d7,sp@-	| save all data registers and a2 (but d0-d1)
#else
	link	a6,IMM (-24)
	moveml	d2-d7,sp@
#endif
	movel	a6@(8),d0	| get first operand
	movel	a6@(12),d1	| 
	movel	a6@(16),d2	| get second operand
	movel	a6@(20),d3	| 
	movel	d0,d7		| get d0's sign bit in d7 '
	addl	d1,d1		| check and clear sign bit of a, and gain one
	addxl	d0,d0		| bit of extra precision
	beq	Ladddf$b	| if zero return second operand
	movel	d2,d6		| save sign in d6 
	addl	d3,d3		| get rid of sign bit and gain one bit of
	addxl	d2,d2		| extra precision
	beq	Ladddf$a	| if zero return first operand
	andl	IMM (0x80000000),d7 | isolate a's sign bit '
        swap	d6		| and also b's sign bit '
#ifndef __mcoldfire__
	andw	IMM (0x8000),d6	|
	orw	d6,d7		| and combine them into d7, so that a's sign '
				| bit is in the high word and b's is in the '
				| low word, so d6 is free to be used
#else
	andl	IMM (0x8000),d6
	orl	d6,d7
#endif
	movel	d7,a0		| now save d7 into a0, so d7 is free to
                		| be used also
| Get the exponents and check for denormalized and/or infinity.
	movel	IMM (0x001fffff),d6 | mask for the fraction
	movel	IMM (0x00200000),d7 | mask to put hidden bit back
	movel	d0,d4		| 
	andl	d6,d0		| get fraction in d0
	notl	d6		| make d6 into mask for the exponent
	andl	d6,d4		| get exponent in d4
	beq	Ladddf$a$den	| branch if a is denormalized
	cmpl	d6,d4		| check for INFINITY or NaN
	beq	Ladddf$nf       | 
	orl	d7,d0		| and put hidden bit back
Ladddf$1:
	swap	d4		| shift right exponent so that it starts
#ifndef __mcoldfire__
	lsrw	IMM (5),d4	| in bit 0 and not bit 20
#else
	lsrl	IMM (5),d4	| in bit 0 and not bit 20
#endif
| Now we have a's exponent in d4 and fraction in d0-d1 '
	movel	d2,d5		| save b to get exponent
	andl	d6,d5		| get exponent in d5
	beq	Ladddf$b$den	| branch if b is denormalized
	cmpl	d6,d5		| check for INFINITY or NaN
	beq	Ladddf$nf
	notl	d6		| make d6 into mask for the fraction again
	andl	d6,d2		| and get fraction in d2
	orl	d7,d2		| and put hidden bit back
Ladddf$2:
	swap	d5		| shift right exponent so that it starts
#ifndef __mcoldfire__
	lsrw	IMM (5),d5	| in bit 0 and not bit 20
#else
	lsrl	IMM (5),d5	| in bit 0 and not bit 20
#endif
| Now we have b's exponent in d5 and fraction in d2-d3. '
| The situation now is as follows: the signs are combined in a0, the 
| numbers are in d0-d1 (a) and d2-d3 (b), and the exponents in d4 (a)
| and d5 (b). To do the rounding correctly we need to keep all the
| bits until the end, so we need to use d0-d1-d2-d3 for the first number
| and d4-d5-d6-d7 for the second. To do this we store (temporarily) the
| exponents in a2-a3.
#ifndef __mcoldfire__
	moveml	a2-a3,sp@-	| save the address registers
#else
	movel	a2,sp@-	
	movel	a3,sp@-	
	movel	a4,sp@-	
#endif
	movel	d4,a2		| save the exponents
	movel	d5,a3		| 
	movel	IMM (0),d7	| and move the numbers around
	movel	d7,d6		|
	movel	d3,d5		|
	movel	d2,d4		|
	movel	d7,d3		|
	movel	d7,d2		|
| Here we shift the numbers until the exponents are the same, and put 
| the largest exponent in a2.
#ifndef __mcoldfire__
	exg	d4,a2		| get exponents back
	exg	d5,a3		|
	cmpw	d4,d5		| compare the exponents
#else
	movel	d4,a4		| get exponents back
	movel	a2,d4
	movel	a4,a2
	movel	d5,a4
	movel	a3,d5
	movel	a4,a3
	cmpl	d4,d5		| compare the exponents
#endif
	beq	Ladddf$3	| if equal don't shift '
	bhi	9f		| branch if second exponent is higher
| Here we have a's exponent larger than b's, so we have to shift b. We do 
| this by using as counter d2:
1:	movew	d4,d2		| move largest exponent to d2
#ifndef __mcoldfire__
	subw	d5,d2		| and subtract second exponent
	exg	d4,a2		| get back the longs we saved
	exg	d5,a3		|
#else
	subl	d5,d2		| and subtract second exponent
	movel	d4,a4		| get back the longs we saved
	movel	a2,d4
	movel	a4,a2
	movel	d5,a4
	movel	a3,d5
	movel	a4,a3
#endif
| if difference is too large we don't shift (actually, we can just exit) '
#ifndef __mcoldfire__
	cmpw	IMM (DBL_MANT_DIG+2),d2
#else
	cmpl	IMM (DBL_MANT_DIG+2),d2
#endif
	bge	Ladddf$b$small
#ifndef __mcoldfire__
	cmpw	IMM (32),d2	| if difference >= 32, shift by longs
#else
	cmpl	IMM (32),d2	| if difference >= 32, shift by longs
#endif
	bge	5f
2:
#ifndef __mcoldfire__
	cmpw	IMM (16),d2	| if difference >= 16, shift by words	
#else
	cmpl	IMM (16),d2	| if difference >= 16, shift by words	
#endif
	bge	6f
	bra	3f		| enter dbra loop
4:
#ifndef __mcoldfire__
	lsrl	IMM (1),d4
	roxrl	IMM (1),d5
	roxrl	IMM (1),d6
	roxrl	IMM (1),d7
#else
	lsrl	IMM (1),d7
	btst	IMM (0),d6
	beq	10f
	bset	IMM (31),d7
10:	lsrl	IMM (1),d6
	btst	IMM (0),d5
	beq	11f
	bset	IMM (31),d6
11:	lsrl	IMM (1),d5
	btst	IMM (0),d4
	beq	12f
	bset	IMM (31),d5
12:	lsrl	IMM (1),d4
#endif
3:
#ifndef __mcoldfire__
	dbra	d2,4b
#else
	subql	IMM (1),d2
	bpl	4b	
#endif
	movel	IMM (0),d2
	movel	d2,d3	
	bra	Ladddf$4
5:
	movel	d6,d7
	movel	d5,d6
	movel	d4,d5
	movel	IMM (0),d4
#ifndef __mcoldfire__
	subw	IMM (32),d2
#else
	subl	IMM (32),d2
#endif
	bra	2b
6:
	movew	d6,d7
	swap	d7
	movew	d5,d6
	swap	d6
	movew	d4,d5
	swap	d5
	movew	IMM (0),d4
	swap	d4
#ifndef __mcoldfire__
	subw	IMM (16),d2
#else
	subl	IMM (16),d2
#endif
	bra	3b
	
9:
#ifndef __mcoldfire__
	exg	d4,d5
	movew	d4,d6
	subw	d5,d6		| keep d5 (largest exponent) in d4
	exg	d4,a2
	exg	d5,a3
#else
	movel	d5,d6
	movel	d4,d5
	movel	d6,d4
	subl	d5,d6
	movel	d4,a4
	movel	a2,d4
	movel	a4,a2
	movel	d5,a4
	movel	a3,d5
	movel	a4,a3
#endif
| if difference is too large we don't shift (actually, we can just exit) '
#ifndef __mcoldfire__
	cmpw	IMM (DBL_MANT_DIG+2),d6
#else
	cmpl	IMM (DBL_MANT_DIG+2),d6
#endif
	bge	Ladddf$a$small
#ifndef __mcoldfire__
	cmpw	IMM (32),d6	| if difference >= 32, shift by longs
#else
	cmpl	IMM (32),d6	| if difference >= 32, shift by longs
#endif
	bge	5f
2:
#ifndef __mcoldfire__
	cmpw	IMM (16),d6	| if difference >= 16, shift by words	
#else
	cmpl	IMM (16),d6	| if difference >= 16, shift by words	
#endif
	bge	6f
	bra	3f		| enter dbra loop
4:
#ifndef __mcoldfire__
	lsrl	IMM (1),d0
	roxrl	IMM (1),d1
	roxrl	IMM (1),d2
	roxrl	IMM (1),d3
#else
	lsrl	IMM (1),d3
	btst	IMM (0),d2
	beq	10f
	bset	IMM (31),d3
10:	lsrl	IMM (1),d2
	btst	IMM (0),d1
	beq	11f
	bset	IMM (31),d2
11:	lsrl	IMM (1),d1
	btst	IMM (0),d0
	beq	12f
	bset	IMM (31),d1
12:	lsrl	IMM (1),d0
#endif
3:
#ifndef __mcoldfire__
	dbra	d6,4b
#else
	subql	IMM (1),d6
	bpl	4b
#endif
	movel	IMM (0),d7
	movel	d7,d6
	bra	Ladddf$4
5:
	movel	d2,d3
	movel	d1,d2
	movel	d0,d1
	movel	IMM (0),d0
#ifndef __mcoldfire__
	subw	IMM (32),d6
#else
	subl	IMM (32),d6
#endif
	bra	2b
6:
	movew	d2,d3
	swap	d3
	movew	d1,d2
	swap	d2
	movew	d0,d1
	swap	d1
	movew	IMM (0),d0
	swap	d0
#ifndef __mcoldfire__
	subw	IMM (16),d6
#else
	subl	IMM (16),d6
#endif
	bra	3b
Ladddf$3:
#ifndef __mcoldfire__
	exg	d4,a2	
	exg	d5,a3
#else
	movel	d4,a4
	movel	a2,d4
	movel	a4,a2
	movel	d5,a4
	movel	a3,d5
	movel	a4,a3
#endif
Ladddf$4:	
| Now we have the numbers in d0--d3 and d4--d7, the exponent in a2, and
| the signs in a4.
| Here we have to decide whether to add or subtract the numbers:
#ifndef __mcoldfire__
	exg	d7,a0		| get the signs 
	exg	d6,a3		| a3 is free to be used
#else
	movel	d7,a4
	movel	a0,d7
	movel	a4,a0
	movel	d6,a4
	movel	a3,d6
	movel	a4,a3
#endif
	movel	d7,d6		|
	movew	IMM (0),d7	| get a's sign in d7 '
	swap	d6              |
	movew	IMM (0),d6	| and b's sign in d6 '
	eorl	d7,d6		| compare the signs
	bmi	Lsubdf$0	| if the signs are different we have 
				| to subtract
#ifndef __mcoldfire__
	exg	d7,a0		| else we add the numbers
	exg	d6,a3		|
#else
	movel	d7,a4
	movel	a0,d7
	movel	a4,a0
	movel	d6,a4
	movel	a3,d6
	movel	a4,a3
#endif
	addl	d7,d3		|
	addxl	d6,d2		|
	addxl	d5,d1		| 
	addxl	d4,d0           |
	movel	a2,d4		| return exponent to d4
	movel	a0,d7		| 
	andl	IMM (0x80000000),d7 | d7 now has the sign
#ifndef __mcoldfire__
	moveml	sp@+,a2-a3	
#else
	movel	sp@+,a4	
	movel	sp@+,a3	
	movel	sp@+,a2	
#endif
| Before rounding normalize so bit #DBL_MANT_DIG is set (we will consider
| the case of denormalized numbers in the rounding routine itself).
| As in the addition (not in the subtraction!) we could have set 
| one more bit we check this:
	btst	IMM (DBL_MANT_DIG+1),d0	
	beq	1f
#ifndef __mcoldfire__
	lsrl	IMM (1),d0
	roxrl	IMM (1),d1
	roxrl	IMM (1),d2
	roxrl	IMM (1),d3
	addw	IMM (1),d4
#else
	lsrl	IMM (1),d3
	btst	IMM (0),d2
	beq	10f
	bset	IMM (31),d3
10:	lsrl	IMM (1),d2
	btst	IMM (0),d1
	beq	11f
	bset	IMM (31),d2
11:	lsrl	IMM (1),d1
	btst	IMM (0),d0
	beq	12f
	bset	IMM (31),d1
12:	lsrl	IMM (1),d0
	addl	IMM (1),d4
#endif
1:
	lea	pc@(Ladddf$5),a0 | to return from rounding routine
	PICLEA	SYM (_fpCCR),a1	| check the rounding mode
#ifdef __mcoldfire__
	clrl	d6
#endif
	movew	a1@(6),d6	| rounding mode in d6
	beq	Lround$to$nearest
#ifndef __mcoldfire__
	cmpw	IMM (ROUND_TO_PLUS),d6
#else
	cmpl	IMM (ROUND_TO_PLUS),d6
#endif
	bhi	Lround$to$minus
	blt	Lround$to$zero
	bra	Lround$to$plus
Ladddf$5:
| Put back the exponent and check for overflow
#ifndef __mcoldfire__
	cmpw	IMM (0x7ff),d4	| is the exponent big?
#else
	cmpl	IMM (0x7ff),d4	| is the exponent big?
#endif
	bge	1f
	bclr	IMM (DBL_MANT_DIG-1),d0
#ifndef __mcoldfire__
	lslw	IMM (4),d4	| put exponent back into position
#else
	lsll	IMM (4),d4	| put exponent back into position
#endif
	swap	d0		| 
#ifndef __mcoldfire__
	orw	d4,d0		|
#else
	orl	d4,d0		|
#endif
	swap	d0		|
	bra	Ladddf$ret
1:
	moveq	IMM (ADD),d5
	bra	Ld$overflow
Lsubdf$0:
| Here we do the subtraction.
#ifndef __mcoldfire__
	exg	d7,a0		| put sign back in a0
	exg	d6,a3		|
#else
	movel	d7,a4
	movel	a0,d7
	movel	a4,a0
	movel	d6,a4
	movel	a3,d6
	movel	a4,a3
#endif
	subl	d7,d3		|
	subxl	d6,d2		|
	subxl	d5,d1		|
	subxl	d4,d0		|
	beq	Ladddf$ret$1	| if zero just exit
	bpl	1f		| if positive skip the following
	movel	a0,d7		|
	bchg	IMM (31),d7	| change sign bit in d7
	movel	d7,a0		|
	negl	d3		|
	negxl	d2		|
	negxl	d1              | and negate result
	negxl	d0              |
1:	
	movel	a2,d4		| return exponent to d4
	movel	a0,d7
	andl	IMM (0x80000000),d7 | isolate sign bit
#ifndef __mcoldfire__
	moveml	sp@+,a2-a3	|
#else
	movel	sp@+,a4
	movel	sp@+,a3
	movel	sp@+,a2
#endif
| Before rounding normalize so bit #DBL_MANT_DIG is set (we will consider
| the case of denormalized numbers in the rounding routine itself).
| As in the addition (not in the subtraction!) we could have set 
| one more bit we check this:
	btst	IMM (DBL_MANT_DIG+1),d0	
	beq	1f
#ifndef __mcoldfire__
	lsrl	IMM (1),d0
	roxrl	IMM (1),d1
	roxrl	IMM (1),d2
	roxrl	IMM (1),d3
	addw	IMM (1),d4
#else
	lsrl	IMM (1),d3
	btst	IMM (0),d2
	beq	10f
	bset	IMM (31),d3
10:	lsrl	IMM (1),d2
	btst	IMM (0),d1
	beq	11f
	bset	IMM (31),d2
11:	lsrl	IMM (1),d1
	btst	IMM (0),d0
	beq	12f
	bset	IMM (31),d1
12:	lsrl	IMM (1),d0
	addl	IMM (1),d4
#endif
1:
	lea	pc@(Lsubdf$1),a0 | to return from rounding routine
	PICLEA	SYM (_fpCCR),a1	| check the rounding mode
#ifdef __mcoldfire__
	clrl	d6
#endif
	movew	a1@(6),d6	| rounding mode in d6
	beq	Lround$to$nearest
#ifndef __mcoldfire__
	cmpw	IMM (ROUND_TO_PLUS),d6
#else
	cmpl	IMM (ROUND_TO_PLUS),d6
#endif
	bhi	Lround$to$minus
	blt	Lround$to$zero
	bra	Lround$to$plus
Lsubdf$1:
| Put back the exponent and sign (we don't have overflow). '
	bclr	IMM (DBL_MANT_DIG-1),d0	
#ifndef __mcoldfire__
	lslw	IMM (4),d4	| put exponent back into position
#else
	lsll	IMM (4),d4	| put exponent back into position
#endif
	swap	d0		| 
#ifndef __mcoldfire__
	orw	d4,d0		|
#else
	orl	d4,d0		|
#endif
	swap	d0		|
	bra	Ladddf$ret
| If one of the numbers was too small (difference of exponents >= 
| DBL_MANT_DIG+1) we return the other (and now we don't have to '
| check for finiteness or zero).
Ladddf$a$small:
#ifndef __mcoldfire__
	moveml	sp@+,a2-a3	
#else
	movel	sp@+,a4
	movel	sp@+,a3
	movel	sp@+,a2
#endif
	movel	a6@(16),d0
	movel	a6@(20),d1
	PICLEA	SYM (_fpCCR),a0
	movew	IMM (0),a0@
#ifndef __mcoldfire__
	moveml	sp@+,d2-d7	| restore data registers
#else
	moveml	sp@,d2-d7
	| XXX if frame pointer is ever removed, stack pointer must
	| be adjusted here.
#endif
	unlk	a6		| and return
	rts
Ladddf$b$small:
#ifndef __mcoldfire__
	moveml	sp@+,a2-a3	
#else
	movel	sp@+,a4	
	movel	sp@+,a3	
	movel	sp@+,a2	
#endif
	movel	a6@(8),d0
	movel	a6@(12),d1
	PICLEA	SYM (_fpCCR),a0
	movew	IMM (0),a0@
#ifndef __mcoldfire__
	moveml	sp@+,d2-d7	| restore data registers
#else
	moveml	sp@,d2-d7
	| XXX if frame pointer is ever removed, stack pointer must
	| be adjusted here.
#endif
	unlk	a6		| and return
	rts
Ladddf$a$den:
	movel	d7,d4		| d7 contains 0x00200000
	bra	Ladddf$1
Ladddf$b$den:
	movel	d7,d5           | d7 contains 0x00200000
	notl	d6
	bra	Ladddf$2
Ladddf$b:
| Return b (if a is zero)
	movel	d2,d0
	movel	d3,d1
	bne	1f			| Check if b is -0
	cmpl	IMM (0x80000000),d0
	bne	1f
	andl	IMM (0x80000000),d7	| Use the sign of a
	clrl	d0
	bra	Ladddf$ret
Ladddf$a:
	movel	a6@(8),d0
	movel	a6@(12),d1
1:
	moveq	IMM (ADD),d5
| Check for NaN and +/-INFINITY.
	movel	d0,d7         		|
	andl	IMM (0x80000000),d7	|
	bclr	IMM (31),d0		|
	cmpl	IMM (0x7ff00000),d0	|
	bge	2f			|
	movel	d0,d0           	| check for zero, since we don't  '
	bne	Ladddf$ret		| want to return -0 by mistake
	bclr	IMM (31),d7		|
	bra	Ladddf$ret		|
2:
	andl	IMM (0x000fffff),d0	| check for NaN (nonzero fraction)
	orl	d1,d0			|
	bne	Ld$inop         	|
	bra	Ld$infty		|
	
Ladddf$ret$1:
#ifndef __mcoldfire__
	moveml	sp@+,a2-a3	| restore regs and exit
#else
	movel	sp@+,a4
	movel	sp@+,a3
	movel	sp@+,a2
#endif
Ladddf$ret:
| Normal exit.
	PICLEA	SYM (_fpCCR),a0
	movew	IMM (0),a0@
	orl	d7,d0		| put sign bit back
#ifndef __mcoldfire__
	moveml	sp@+,d2-d7
#else
	moveml	sp@,d2-d7
	| XXX if frame pointer is ever removed, stack pointer must
	| be adjusted here.
#endif
	unlk	a6
	rts
Ladddf$ret$den:
| Return a denormalized number.
#ifndef __mcoldfire__
	lsrl	IMM (1),d0	| shift right once more
	roxrl	IMM (1),d1	|
#else
	lsrl	IMM (1),d1
	btst	IMM (0),d0
	beq	10f
	bset	IMM (31),d1
10:	lsrl	IMM (1),d0
#endif
	bra	Ladddf$ret
Ladddf$nf:
	moveq	IMM (ADD),d5
| This could be faster but it is not worth the effort, since it is not
| executed very often. We sacrifice speed for clarity here.
	movel	a6@(8),d0	| get the numbers back (remember that we
	movel	a6@(12),d1	| did some processing already)
	movel	a6@(16),d2	| 
	movel	a6@(20),d3	| 
	movel	IMM (0x7ff00000),d4 | useful constant (INFINITY)
	movel	d0,d7		| save sign bits
	movel	d2,d6		| 
	bclr	IMM (31),d0	| clear sign bits
	bclr	IMM (31),d2	| 
| We know that one of them is either NaN of +/-INFINITY
| Check for NaN (if either one is NaN return NaN)
	cmpl	d4,d0		| check first a (d0)
	bhi	Ld$inop		| if d0 > 0x7ff00000 or equal and
	bne	2f
	tstl	d1		| d1 > 0, a is NaN
	bne	Ld$inop		| 
2:	cmpl	d4,d2		| check now b (d1)
	bhi	Ld$inop		| 
	bne	3f
	tstl	d3		| 
	bne	Ld$inop		| 
3:
| Now comes the check for +/-INFINITY. We know that both are (maybe not
| finite) numbers, but we have to check if both are infinite whether we
| are adding or subtracting them.
	eorl	d7,d6		| to check sign bits
	bmi	1f
	andl	IMM (0x80000000),d7 | get (common) sign bit
	bra	Ld$infty
1:
| We know one (or both) are infinite, so we test for equality between the
| two numbers (if they are equal they have to be infinite both, so we
| return NaN).
	cmpl	d2,d0		| are both infinite?
	bne	1f		| if d0 <> d2 they are not equal
	cmpl	d3,d1		| if d0 == d2 test d3 and d1
	beq	Ld$inop		| if equal return NaN
1:	
	andl	IMM (0x80000000),d7 | get a's sign bit '
	cmpl	d4,d0		| test now for infinity
	beq	Ld$infty	| if a is INFINITY return with this sign
	bchg	IMM (31),d7	| else we know b is INFINITY and has
	bra	Ld$infty	| the opposite sign
|=============================================================================
|                              __muldf3
|=============================================================================
| double __muldf3(double, double);
	FUNC(__muldf3)
SYM (__muldf3):
#ifndef __mcoldfire__
	link	a6,IMM (0)
	moveml	d2-d7,sp@-
#else
	link	a6,IMM (-24)
	moveml	d2-d7,sp@
#endif
	movel	a6@(8),d0		| get a into d0-d1
	movel	a6@(12),d1		| 
	movel	a6@(16),d2		| and b into d2-d3
	movel	a6@(20),d3		|
	movel	d0,d7			| d7 will hold the sign of the product
	eorl	d2,d7			|
	andl	IMM (0x80000000),d7	|
	movel	d7,a0			| save sign bit into a0 
	movel	IMM (0x7ff00000),d7	| useful constant (+INFINITY)
	movel	d7,d6			| another (mask for fraction)
	notl	d6			|
	bclr	IMM (31),d0		| get rid of a's sign bit '
	movel	d0,d4			| 
	orl	d1,d4			| 
	beq	Lmuldf$a$0		| branch if a is zero
	movel	d0,d4			|
	bclr	IMM (31),d2		| get rid of b's sign bit '
	movel	d2,d5			|
	orl	d3,d5			| 
	beq	Lmuldf$b$0		| branch if b is zero
	movel	d2,d5			| 
	cmpl	d7,d0			| is a big?
	bhi	Lmuldf$inop		| if a is NaN return NaN
	beq	Lmuldf$a$nf		| we still have to check d1 and b ...
	cmpl	d7,d2			| now compare b with INFINITY
	bhi	Lmuldf$inop		| is b NaN?
	beq	Lmuldf$b$nf 		| we still have to check d3 ...
| Here we have both numbers finite and nonzero (and with no sign bit).
| Now we get the exponents into d4 and d5.
	andl	d7,d4			| isolate exponent in d4
	beq	Lmuldf$a$den		| if exponent zero, have denormalized
	andl	d6,d0			| isolate fraction
	orl	IMM (0x00100000),d0	| and put hidden bit back
	swap	d4			| I like exponents in the first byte
#ifndef __mcoldfire__
	lsrw	IMM (4),d4		| 
#else
	lsrl	IMM (4),d4		| 
#endif
Lmuldf$1:			
	andl	d7,d5			|
	beq	Lmuldf$b$den		|
	andl	d6,d2			|
	orl	IMM (0x00100000),d2	| and put hidden bit back
	swap	d5			|
#ifndef __mcoldfire__
	lsrw	IMM (4),d5		|
#else
	lsrl	IMM (4),d5		|
#endif
Lmuldf$2:				|
#ifndef __mcoldfire__
	addw	d5,d4			| add exponents
	subw	IMM (D_BIAS+1),d4	| and subtract bias (plus one)
#else
	addl	d5,d4			| add exponents
	subl	IMM (D_BIAS+1),d4	| and subtract bias (plus one)
#endif
| We are now ready to do the multiplication. The situation is as follows:
| both a and b have bit 52 ( bit 20 of d0 and d2) set (even if they were 
| denormalized to start with!), which means that in the product bit 104 
| (which will correspond to bit 8 of the fourth long) is set.
| Here we have to do the product.
| To do it we have to juggle the registers back and forth, as there are not
| enough to keep everything in them. So we use the address registers to keep
| some intermediate data.
#ifndef __mcoldfire__
	moveml	a2-a3,sp@-	| save a2 and a3 for temporary use
#else
	movel	a2,sp@-
	movel	a3,sp@-
	movel	a4,sp@-
#endif
	movel	IMM (0),a2	| a2 is a null register
	movel	d4,a3		| and a3 will preserve the exponent
| First, shift d2-d3 so bit 20 becomes bit 31:
#ifndef __mcoldfire__
	rorl	IMM (5),d2	| rotate d2 5 places right
	swap	d2		| and swap it
	rorl	IMM (5),d3	| do the same thing with d3
	swap	d3		|
	movew	d3,d6		| get the rightmost 11 bits of d3
	andw	IMM (0x07ff),d6	|
	orw	d6,d2		| and put them into d2
	andw	IMM (0xf800),d3	| clear those bits in d3
#else
	moveq	IMM (11),d7	| left shift d2 11 bits
	lsll	d7,d2
	movel	d3,d6		| get a copy of d3
	lsll	d7,d3		| left shift d3 11 bits
	andl	IMM (0xffe00000),d6 | get the top 11 bits of d3
	moveq	IMM (21),d7	| right shift them 21 bits
	lsrl	d7,d6
	orl	d6,d2		| stick them at the end of d2
#endif
	movel	d2,d6		| move b into d6-d7
	movel	d3,d7           | move a into d4-d5
	movel	d0,d4           | and clear d0-d1-d2-d3 (to put result)
	movel	d1,d5           |
	movel	IMM (0),d3	|
	movel	d3,d2           |
	movel	d3,d1           |
	movel	d3,d0	        |
| We use a1 as counter:	
	movel	IMM (DBL_MANT_DIG-1),a1		
#ifndef __mcoldfire__
	exg	d7,a1
#else
	movel	d7,a4
	movel	a1,d7
	movel	a4,a1
#endif
1:
#ifndef __mcoldfire__
	exg	d7,a1		| put counter back in a1
#else
	movel	d7,a4
	movel	a1,d7
	movel	a4,a1
#endif
	addl	d3,d3		| shift sum once left
	addxl	d2,d2           |
	addxl	d1,d1           |
	addxl	d0,d0           |
	addl	d7,d7		|
	addxl	d6,d6		|
	bcc	2f		| if bit clear skip the following
#ifndef __mcoldfire__
	exg	d7,a2		|
#else
	movel	d7,a4
	movel	a2,d7
	movel	a4,a2
#endif
	addl	d5,d3		| else add a to the sum
	addxl	d4,d2		|
	addxl	d7,d1		|
	addxl	d7,d0		|
#ifndef __mcoldfire__
	exg	d7,a2		| 
#else
	movel	d7,a4
	movel	a2,d7
	movel	a4,a2
#endif
2:
#ifndef __mcoldfire__
	exg	d7,a1		| put counter in d7
	dbf	d7,1b		| decrement and branch
#else
	movel	d7,a4
	movel	a1,d7
	movel	a4,a1
	subql	IMM (1),d7
	bpl	1b
#endif
	movel	a3,d4		| restore exponent
#ifndef __mcoldfire__
	moveml	sp@+,a2-a3
#else
	movel	sp@+,a4
	movel	sp@+,a3
	movel	sp@+,a2
#endif
| Now we have the product in d0-d1-d2-d3, with bit 8 of d0 set. The 
| first thing to do now is to normalize it so bit 8 becomes bit 
| DBL_MANT_DIG-32 (to do the rounding); later we will shift right.
	swap	d0
	swap	d1
	movew	d1,d0
	swap	d2
	movew	d2,d1
	swap	d3
	movew	d3,d2
	movew	IMM (0),d3
#ifndef __mcoldfire__
	lsrl	IMM (1),d0
	roxrl	IMM (1),d1
	roxrl	IMM (1),d2
	roxrl	IMM (1),d3
	lsrl	IMM (1),d0
	roxrl	IMM (1),d1
	roxrl	IMM (1),d2
	roxrl	IMM (1),d3
	lsrl	IMM (1),d0
	roxrl	IMM (1),d1
	roxrl	IMM (1),d2
	roxrl	IMM (1),d3
#else
	moveq	IMM (29),d6
	lsrl	IMM (3),d3
	movel	d2,d7
	lsll	d6,d7
	orl	d7,d3
	lsrl	IMM (3),d2
	movel	d1,d7
	lsll	d6,d7
	orl	d7,d2
	lsrl	IMM (3),d1
	movel	d0,d7
	lsll	d6,d7
	orl	d7,d1
	lsrl	IMM (3),d0
#endif
	
| Now round, check for over- and underflow, and exit.
	movel	a0,d7		| get sign bit back into d7
	moveq	IMM (MULTIPLY),d5
	btst	IMM (DBL_MANT_DIG+1-32),d0
	beq	Lround$exit
#ifndef __mcoldfire__
	lsrl	IMM (1),d0
	roxrl	IMM (1),d1
	addw	IMM (1),d4
#else
	lsrl	IMM (1),d1
	btst	IMM (0),d0
	beq	10f
	bset	IMM (31),d1
10:	lsrl	IMM (1),d0
	addl	IMM (1),d4
#endif
	bra	Lround$exit
Lmuldf$inop:
	moveq	IMM (MULTIPLY),d5
	bra	Ld$inop
Lmuldf$b$nf:
	moveq	IMM (MULTIPLY),d5
	movel	a0,d7		| get sign bit back into d7
	tstl	d3		| we know d2 == 0x7ff00000, so check d3
	bne	Ld$inop		| if d3 <> 0 b is NaN
	bra	Ld$overflow	| else we have overflow (since a is finite)
Lmuldf$a$nf:
	moveq	IMM (MULTIPLY),d5
	movel	a0,d7		| get sign bit back into d7
	tstl	d1		| we know d0 == 0x7ff00000, so check d1
	bne	Ld$inop		| if d1 <> 0 a is NaN
	bra	Ld$overflow	| else signal overflow
| If either number is zero return zero, unless the other is +/-INFINITY or
| NaN, in which case we return NaN.
Lmuldf$b$0:
	moveq	IMM (MULTIPLY),d5
#ifndef __mcoldfire__
	exg	d2,d0		| put b (==0) into d0-d1
	exg	d3,d1		| and a (with sign bit cleared) into d2-d3
	movel	a0,d0		| set result sign
#else
	movel	d0,d2		| put a into d2-d3
	movel	d1,d3
	movel	a0,d0		| put result zero into d0-d1
	movq	IMM(0),d1
#endif
	bra	1f
Lmuldf$a$0:
	movel	a0,d0		| set result sign
	movel	a6@(16),d2	| put b into d2-d3 again
	movel	a6@(20),d3	|
	bclr	IMM (31),d2	| clear sign bit
1:	cmpl	IMM (0x7ff00000),d2 | check for non-finiteness
	bge	Ld$inop		| in case NaN or +/-INFINITY return NaN
	PICLEA	SYM (_fpCCR),a0
	movew	IMM (0),a0@
#ifndef __mcoldfire__
	moveml	sp@+,d2-d7
#else
	moveml	sp@,d2-d7
	| XXX if frame pointer is ever removed, stack pointer must
	| be adjusted here.
#endif
	unlk	a6
	rts
| If a number is denormalized we put an exponent of 1 but do not put the 
| hidden bit back into the fraction; instead we shift left until bit 21
| (the hidden bit) is set, adjusting the exponent accordingly. We do this
| to ensure that the product of the fractions is close to 1.
Lmuldf$a$den:
	movel	IMM (1),d4
	andl	d6,d0
1:	addl	d1,d1           | shift a left until bit 20 is set
	addxl	d0,d0		|
#ifndef __mcoldfire__
	subw	IMM (1),d4	| and adjust exponent
#else
	subl	IMM (1),d4	| and adjust exponent
#endif
	btst	IMM (20),d0	|
	bne	Lmuldf$1        |
	bra	1b
Lmuldf$b$den:
	movel	IMM (1),d5
	andl	d6,d2
1:	addl	d3,d3		| shift b left until bit 20 is set
	addxl	d2,d2		|
#ifndef __mcoldfire__
	subw	IMM (1),d5	| and adjust exponent
#else
	subql	IMM (1),d5	| and adjust exponent
#endif
	btst	IMM (20),d2	|
	bne	Lmuldf$2	|
	bra	1b
|=============================================================================
|                              __divdf3
|=============================================================================
| double __divdf3(double, double);
	FUNC(__divdf3)
SYM (__divdf3):
#ifndef __mcoldfire__
	link	a6,IMM (0)
	moveml	d2-d7,sp@-
#else
	link	a6,IMM (-24)
	moveml	d2-d7,sp@
#endif
	movel	a6@(8),d0	| get a into d0-d1
	movel	a6@(12),d1	| 
	movel	a6@(16),d2	| and b into d2-d3
	movel	a6@(20),d3	|
	movel	d0,d7		| d7 will hold the sign of the result
	eorl	d2,d7		|
	andl	IMM (0x80000000),d7
	movel	d7,a0		| save sign into a0
	movel	IMM (0x7ff00000),d7 | useful constant (+INFINITY)
	movel	d7,d6		| another (mask for fraction)
	notl	d6		|
	bclr	IMM (31),d0	| get rid of a's sign bit '
	movel	d0,d4		|
	orl	d1,d4		|
	beq	Ldivdf$a$0	| branch if a is zero
	movel	d0,d4		|
	bclr	IMM (31),d2	| get rid of b's sign bit '
	movel	d2,d5		|
	orl	d3,d5		|
	beq	Ldivdf$b$0	| branch if b is zero
	movel	d2,d5
	cmpl	d7,d0		| is a big?
	bhi	Ldivdf$inop	| if a is NaN return NaN
	beq	Ldivdf$a$nf	| if d0 == 0x7ff00000 we check d1
	cmpl	d7,d2		| now compare b with INFINITY 
	bhi	Ldivdf$inop	| if b is NaN return NaN
	beq	Ldivdf$b$nf	| if d2 == 0x7ff00000 we check d3
| Here we have both numbers finite and nonzero (and with no sign bit).
| Now we get the exponents into d4 and d5 and normalize the numbers to
| ensure that the ratio of the fractions is around 1. We do this by
| making sure that both numbers have bit #DBL_MANT_DIG-32-1 (hidden bit)
| set, even if they were denormalized to start with.
| Thus, the result will satisfy: 2 > result > 1/2.
	andl	d7,d4		| and isolate exponent in d4
	beq	Ldivdf$a$den	| if exponent is zero we have a denormalized
	andl	d6,d0		| and isolate fraction
	orl	IMM (0x00100000),d0 | and put hidden bit back
	swap	d4		| I like exponents in the first byte
#ifndef __mcoldfire__
	lsrw	IMM (4),d4	| 
#else
	lsrl	IMM (4),d4	| 
#endif
Ldivdf$1:			| 
	andl	d7,d5		|
	beq	Ldivdf$b$den	|
	andl	d6,d2		|
	orl	IMM (0x00100000),d2
	swap	d5		|
#ifndef __mcoldfire__
	lsrw	IMM (4),d5	|
#else
	lsrl	IMM (4),d5	|
#endif
Ldivdf$2:			|
#ifndef __mcoldfire__
	subw	d5,d4		| subtract exponents
	addw	IMM (D_BIAS),d4	| and add bias
#else
	subl	d5,d4		| subtract exponents
	addl	IMM (D_BIAS),d4	| and add bias
#endif
| We are now ready to do the division. We have prepared things in such a way
| that the ratio of the fractions will be less than 2 but greater than 1/2.
| At this point the registers in use are:
| d0-d1	hold a (first operand, bit DBL_MANT_DIG-32=0, bit 
| DBL_MANT_DIG-1-32=1)
| d2-d3	hold b (second operand, bit DBL_MANT_DIG-32=1)
| d4	holds the difference of the exponents, corrected by the bias
| a0	holds the sign of the ratio
| To do the rounding correctly we need to keep information about the
| nonsignificant bits. One way to do this would be to do the division
| using four registers; another is to use two registers (as originally
| I did), but use a sticky bit to preserve information about the 
| fractional part. Note that we can keep that info in a1, which is not
| used.
	movel	IMM (0),d6	| d6-d7 will hold the result
	movel	d6,d7		| 
	movel	IMM (0),a1	| and a1 will hold the sticky bit
	movel	IMM (DBL_MANT_DIG-32+1),d5	
	
1:	cmpl	d0,d2		| is a < b?
	bhi	3f		| if b > a skip the following
	beq	4f		| if d0==d2 check d1 and d3
2:	subl	d3,d1		| 
	subxl	d2,d0		| a <-- a - b
	bset	d5,d6		| set the corresponding bit in d6
3:	addl	d1,d1		| shift a by 1
	addxl	d0,d0		|
#ifndef __mcoldfire__
	dbra	d5,1b		| and branch back
#else
	subql	IMM (1), d5
	bpl	1b
#endif
	bra	5f			
4:	cmpl	d1,d3		| here d0==d2, so check d1 and d3
	bhi	3b		| if d1 > d2 skip the subtraction
	bra	2b		| else go do it
5:
| Here we have to start setting the bits in the second long.
	movel	IMM (31),d5	| again d5 is counter
1:	cmpl	d0,d2		| is a < b?
	bhi	3f		| if b > a skip the following
	beq	4f		| if d0==d2 check d1 and d3
2:	subl	d3,d1		| 
	subxl	d2,d0		| a <-- a - b
	bset	d5,d7		| set the corresponding bit in d7
3:	addl	d1,d1		| shift a by 1
	addxl	d0,d0		|
#ifndef __mcoldfire__
	dbra	d5,1b		| and branch back
#else
	subql	IMM (1), d5
	bpl	1b
#endif
	bra	5f			
4:	cmpl	d1,d3		| here d0==d2, so check d1 and d3
	bhi	3b		| if d1 > d2 skip the subtraction
	bra	2b		| else go do it
5:
| Now go ahead checking until we hit a one, which we store in d2.
	movel	IMM (DBL_MANT_DIG),d5
1:	cmpl	d2,d0		| is a < b?
	bhi	4f		| if b < a, exit
	beq	3f		| if d0==d2 check d1 and d3
2:	addl	d1,d1		| shift a by 1
	addxl	d0,d0		|
#ifndef __mcoldfire__
	dbra	d5,1b		| and branch back
#else
	subql	IMM (1), d5
	bpl	1b
#endif
	movel	IMM (0),d2	| here no sticky bit was found
	movel	d2,d3
	bra	5f			
3:	cmpl	d1,d3		| here d0==d2, so check d1 and d3
	bhi	2b		| if d1 > d2 go back
4:
| Here put the sticky bit in d2-d3 (in the position which actually corresponds
| to it; if you don't do this the algorithm loses in some cases). '
	movel	IMM (0),d2
	movel	d2,d3
#ifndef __mcoldfire__
	subw	IMM (DBL_MANT_DIG),d5
	addw	IMM (63),d5
	cmpw	IMM (31),d5
#else
	subl	IMM (DBL_MANT_DIG),d5
	addl	IMM (63),d5
	cmpl	IMM (31),d5
#endif
	bhi	2f
1:	bset	d5,d3
	bra	5f
#ifndef __mcoldfire__
	subw	IMM (32),d5
#else
	subl	IMM (32),d5
#endif
2:	bset	d5,d2
5:
| Finally we are finished! Move the longs in the address registers to
| their final destination:
	movel	d6,d0
	movel	d7,d1
	movel	IMM (0),d3
| Here we have finished the division, with the result in d0-d1-d2-d3, with
| 2^21 <= d6 < 2^23. Thus bit 23 is not set, but bit 22 could be set.
| If it is not, then definitely bit 21 is set. Normalize so bit 22 is
| not set:
	btst	IMM (DBL_MANT_DIG-32+1),d0
	beq	1f
#ifndef __mcoldfire__
	lsrl	IMM (1),d0
	roxrl	IMM (1),d1
	roxrl	IMM (1),d2
	roxrl	IMM (1),d3
	addw	IMM (1),d4
#else
	lsrl	IMM (1),d3
	btst	IMM (0),d2
	beq	10f
	bset	IMM (31),d3
10:	lsrl	IMM (1),d2
	btst	IMM (0),d1
	beq	11f
	bset	IMM (31),d2
11:	lsrl	IMM (1),d1
	btst	IMM (0),d0
	beq	12f
	bset	IMM (31),d1
12:	lsrl	IMM (1),d0
	addl	IMM (1),d4
#endif
1:
| Now round, check for over- and underflow, and exit.
	movel	a0,d7		| restore sign bit to d7
	moveq	IMM (DIVIDE),d5
	bra	Lround$exit
Ldivdf$inop:
	moveq	IMM (DIVIDE),d5
	bra	Ld$inop
Ldivdf$a$0:
| If a is zero check to see whether b is zero also. In that case return
| NaN; then check if b is NaN, and return NaN also in that case. Else
| return a properly signed zero.
	moveq	IMM (DIVIDE),d5
	bclr	IMM (31),d2	|
	movel	d2,d4		| 
	orl	d3,d4		| 
	beq	Ld$inop		| if b is also zero return NaN
	cmpl	IMM (0x7ff00000),d2 | check for NaN
	bhi	Ld$inop		| 
	blt	1f		|
	tstl	d3		|
	bne	Ld$inop		|
1:	movel	a0,d0		| else return signed zero
	moveq	IMM(0),d1	| 
	PICLEA	SYM (_fpCCR),a0	| clear exception flags
	movew	IMM (0),a0@	|
#ifndef __mcoldfire__
	moveml	sp@+,d2-d7	| 
#else
	moveml	sp@,d2-d7	| 
	| XXX if frame pointer is ever removed, stack pointer must
	| be adjusted here.
#endif
	unlk	a6		| 
	rts			| 	
Ldivdf$b$0:
	moveq	IMM (DIVIDE),d5
| If we got here a is not zero. Check if a is NaN; in that case return NaN,
| else return +/-INFINITY. Remember that a is in d0 with the sign bit 
| cleared already.
	movel	a0,d7		| put a's sign bit back in d7 '
	cmpl	IMM (0x7ff00000),d0 | compare d0 with INFINITY
	bhi	Ld$inop		| if larger it is NaN
	tstl	d1		| 
	bne	Ld$inop		| 
	bra	Ld$div$0	| else signal DIVIDE_BY_ZERO
Ldivdf$b$nf:
	moveq	IMM (DIVIDE),d5
| If d2 == 0x7ff00000 we have to check d3.
	tstl	d3		|
	bne	Ld$inop		| if d3 <> 0, b is NaN
	bra	Ld$underflow	| else b is +/-INFINITY, so signal underflow
Ldivdf$a$nf:
	moveq	IMM (DIVIDE),d5
| If d0 == 0x7ff00000 we have to check d1.
	tstl	d1		|
	bne	Ld$inop		| if d1 <> 0, a is NaN
| If a is INFINITY we have to check b
	cmpl	d7,d2		| compare b with INFINITY 
	bge	Ld$inop		| if b is NaN or INFINITY return NaN
	tstl	d3		|
	bne	Ld$inop		| 
	bra	Ld$overflow	| else return overflow
| If a number is denormalized we put an exponent of 1 but do not put the 
| bit back into the fraction.
Ldivdf$a$den:
	movel	IMM (1),d4
	andl	d6,d0
1:	addl	d1,d1		| shift a left until bit 20 is set
	addxl	d0,d0
#ifndef __mcoldfire__
	subw	IMM (1),d4	| and adjust exponent
#else
	subl	IMM (1),d4	| and adjust exponent
#endif
	btst	IMM (DBL_MANT_DIG-32-1),d0
	bne	Ldivdf$1
	bra	1b
Ldivdf$b$den:
	movel	IMM (1),d5
	andl	d6,d2
1:	addl	d3,d3		| shift b left until bit 20 is set
	addxl	d2,d2
#ifndef __mcoldfire__
	subw	IMM (1),d5	| and adjust exponent
#else
	subql	IMM (1),d5	| and adjust exponent
#endif
	btst	IMM (DBL_MANT_DIG-32-1),d2
	bne	Ldivdf$2
	bra	1b
Lround$exit:
| This is a common exit point for __muldf3 and __divdf3. When they enter
| this point the sign of the result is in d7, the result in d0-d1, normalized
| so that 2^21 <= d0 < 2^22, and the exponent is in the lower byte of d4.
| First check for underlow in the exponent:
#ifndef __mcoldfire__
	cmpw	IMM (-DBL_MANT_DIG-1),d4		
#else
	cmpl	IMM (-DBL_MANT_DIG-1),d4		
#endif
	blt	Ld$underflow	
| It could happen that the exponent is less than 1, in which case the 
| number is denormalized. In this case we shift right and adjust the 
| exponent until it becomes 1 or the fraction is zero (in the latter case 
| we signal underflow and return zero).
	movel	d7,a0		|
	movel	IMM (0),d6	| use d6-d7 to collect bits flushed right
	movel	d6,d7		| use d6-d7 to collect bits flushed right
#ifndef __mcoldfire__
	cmpw	IMM (1),d4	| if the exponent is less than 1 we 
#else
	cmpl	IMM (1),d4	| if the exponent is less than 1 we 
#endif
	bge	2f		| have to shift right (denormalize)
1:
#ifndef __mcoldfire__
	addw	IMM (1),d4	| adjust the exponent
	lsrl	IMM (1),d0	| shift right once 
	roxrl	IMM (1),d1	|
	roxrl	IMM (1),d2	|
	roxrl	IMM (1),d3	|
	roxrl	IMM (1),d6	| 
	roxrl	IMM (1),d7	|
	cmpw	IMM (1),d4	| is the exponent 1 already?
#else
	addl	IMM (1),d4	| adjust the exponent
	lsrl	IMM (1),d7
	btst	IMM (0),d6
	beq	13f
	bset	IMM (31),d7
13:	lsrl	IMM (1),d6
	btst	IMM (0),d3
	beq	14f
	bset	IMM (31),d6
14:	lsrl	IMM (1),d3
	btst	IMM (0),d2
	beq	10f
	bset	IMM (31),d3
10:	lsrl	IMM (1),d2
	btst	IMM (0),d1
	beq	11f
	bset	IMM (31),d2
11:	lsrl	IMM (1),d1
	btst	IMM (0),d0
	beq	12f
	bset	IMM (31),d1
12:	lsrl	IMM (1),d0
	cmpl	IMM (1),d4	| is the exponent 1 already?
#endif
	beq	2f		| if not loop back
	bra	1b              |
	bra	Ld$underflow	| safety check, shouldn't execute '
2:	orl	d6,d2		| this is a trick so we don't lose  '
	orl	d7,d3		| the bits which were flushed right
	movel	a0,d7		| get back sign bit into d7
| Now call the rounding routine (which takes care of denormalized numbers):
	lea	pc@(Lround$0),a0 | to return from rounding routine
	PICLEA	SYM (_fpCCR),a1	| check the rounding mode
#ifdef __mcoldfire__
	clrl	d6
#endif
	movew	a1@(6),d6	| rounding mode in d6
	beq	Lround$to$nearest
#ifndef __mcoldfire__
	cmpw	IMM (ROUND_TO_PLUS),d6
#else
	cmpl	IMM (ROUND_TO_PLUS),d6
#endif
	bhi	Lround$to$minus
	blt	Lround$to$zero
	bra	Lround$to$plus
Lround$0:
| Here we have a correctly rounded result (either normalized or denormalized).
| Here we should have either a normalized number or a denormalized one, and
| the exponent is necessarily larger or equal to 1 (so we don't have to  '
| check again for underflow!). We have to check for overflow or for a 
| denormalized number (which also signals underflow).
| Check for overflow (i.e., exponent >= 0x7ff).
#ifndef __mcoldfire__
	cmpw	IMM (0x07ff),d4
#else
	cmpl	IMM (0x07ff),d4
#endif
	bge	Ld$overflow
| Now check for a denormalized number (exponent==0):
	movew	d4,d4
	beq	Ld$den
1:
| Put back the exponents and sign and return.
#ifndef __mcoldfire__
	lslw	IMM (4),d4	| exponent back to fourth byte
#else
	lsll	IMM (4),d4	| exponent back to fourth byte
#endif
	bclr	IMM (DBL_MANT_DIG-32-1),d0
	swap	d0		| and put back exponent
#ifndef __mcoldfire__
	orw	d4,d0		| 
#else
	orl	d4,d0		| 
#endif
	swap	d0		|
	orl	d7,d0		| and sign also
	PICLEA	SYM (_fpCCR),a0
	movew	IMM (0),a0@
#ifndef __mcoldfire__
	moveml	sp@+,d2-d7
#else
	moveml	sp@,d2-d7
	| XXX if frame pointer is ever removed, stack pointer must
	| be adjusted here.
#endif
	unlk	a6
	rts
|=============================================================================
|                              __negdf2
|=============================================================================
| double __negdf2(double, double);
	FUNC(__negdf2)
SYM (__negdf2):
#ifndef __mcoldfire__
	link	a6,IMM (0)
	moveml	d2-d7,sp@-
#else
	link	a6,IMM (-24)
	moveml	d2-d7,sp@
#endif
	moveq	IMM (NEGATE),d5
	movel	a6@(8),d0	| get number to negate in d0-d1
	movel	a6@(12),d1	|
	bchg	IMM (31),d0	| negate
	movel	d0,d2		| make a positive copy (for the tests)
	bclr	IMM (31),d2	|
	movel	d2,d4		| check for zero
	orl	d1,d4		|
	beq	2f		| if zero (either sign) return +zero
	cmpl	IMM (0x7ff00000),d2 | compare to +INFINITY
	blt	1f		| if finite, return
	bhi	Ld$inop		| if larger (fraction not zero) is NaN
	tstl	d1		| if d2 == 0x7ff00000 check d1
	bne	Ld$inop		|
	movel	d0,d7		| else get sign and return INFINITY
	andl	IMM (0x80000000),d7
	bra	Ld$infty		
1:	PICLEA	SYM (_fpCCR),a0
	movew	IMM (0),a0@
#ifndef __mcoldfire__
	moveml	sp@+,d2-d7
#else
	moveml	sp@,d2-d7
	| XXX if frame pointer is ever removed, stack pointer must
	| be adjusted here.
#endif
	unlk	a6
	rts
2:	bclr	IMM (31),d0
	bra	1b
|=============================================================================
|                              __cmpdf2
|=============================================================================
GREATER =  1
LESS    = -1
EQUAL   =  0
| int __cmpdf2_internal(double, double, int);
SYM (__cmpdf2_internal):
#ifndef __mcoldfire__
	link	a6,IMM (0)
	moveml	d2-d7,sp@- 	| save registers
#else
	link	a6,IMM (-24)
	moveml	d2-d7,sp@
#endif
	moveq	IMM (COMPARE),d5
	movel	a6@(8),d0	| get first operand
	movel	a6@(12),d1	|
	movel	a6@(16),d2	| get second operand
	movel	a6@(20),d3	|
| First check if a and/or b are (+/-) zero and in that case clear
| the sign bit.
	movel	d0,d6		| copy signs into d6 (a) and d7(b)
	bclr	IMM (31),d0	| and clear signs in d0 and d2
	movel	d2,d7		|
	bclr	IMM (31),d2	|
	cmpl	IMM (0x7ff00000),d0 | check for a == NaN
	bhi	Lcmpd$inop		| if d0 > 0x7ff00000, a is NaN
	beq	Lcmpdf$a$nf	| if equal can be INFINITY, so check d1
	movel	d0,d4		| copy into d4 to test for zero
	orl	d1,d4		|
	beq	Lcmpdf$a$0	|
Lcmpdf$0:
	cmpl	IMM (0x7ff00000),d2 | check for b == NaN
	bhi	Lcmpd$inop		| if d2 > 0x7ff00000, b is NaN
	beq	Lcmpdf$b$nf	| if equal can be INFINITY, so check d3
	movel	d2,d4		|
	orl	d3,d4		|
	beq	Lcmpdf$b$0	|
Lcmpdf$1:
| Check the signs
	eorl	d6,d7
	bpl	1f
| If the signs are not equal check if a >= 0
	tstl	d6
	bpl	Lcmpdf$a$gt$b	| if (a >= 0 && b < 0) => a > b
	bmi	Lcmpdf$b$gt$a	| if (a < 0 && b >= 0) => a < b
1:
| If the signs are equal check for < 0
	tstl	d6
	bpl	1f
| If both are negative exchange them
#ifndef __mcoldfire__
	exg	d0,d2
	exg	d1,d3
#else
	movel	d0,d7
	movel	d2,d0
	movel	d7,d2
	movel	d1,d7
	movel	d3,d1
	movel	d7,d3
#endif
1:
| Now that they are positive we just compare them as longs (does this also
| work for denormalized numbers?).
	cmpl	d0,d2
	bhi	Lcmpdf$b$gt$a	| |b| > |a|
	bne	Lcmpdf$a$gt$b	| |b| < |a|
| If we got here d0 == d2, so we compare d1 and d3.
	cmpl	d1,d3
	bhi	Lcmpdf$b$gt$a	| |b| > |a|
	bne	Lcmpdf$a$gt$b	| |b| < |a|
| If we got here a == b.
	movel	IMM (EQUAL),d0
#ifndef __mcoldfire__
	moveml	sp@+,d2-d7 	| put back the registers
#else
	moveml	sp@,d2-d7
	| XXX if frame pointer is ever removed, stack pointer must
	| be adjusted here.
#endif
	unlk	a6
	rts
Lcmpdf$a$gt$b:
	movel	IMM (GREATER),d0
#ifndef __mcoldfire__
	moveml	sp@+,d2-d7 	| put back the registers
#else
	moveml	sp@,d2-d7
	| XXX if frame pointer is ever removed, stack pointer must
	| be adjusted here.
#endif
	unlk	a6
	rts
Lcmpdf$b$gt$a:
	movel	IMM (LESS),d0
#ifndef __mcoldfire__
	moveml	sp@+,d2-d7 	| put back the registers
#else
	moveml	sp@,d2-d7
	| XXX if frame pointer is ever removed, stack pointer must
	| be adjusted here.
#endif
	unlk	a6
	rts
Lcmpdf$a$0:	
	bclr	IMM (31),d6
	bra	Lcmpdf$0
Lcmpdf$b$0:
	bclr	IMM (31),d7
	bra	Lcmpdf$1
Lcmpdf$a$nf:
	tstl	d1
	bne	Ld$inop
	bra	Lcmpdf$0
Lcmpdf$b$nf:
	tstl	d3
	bne	Ld$inop
	bra	Lcmpdf$1
Lcmpd$inop:
	movl	a6@(24),d0
	moveq	IMM (INEXACT_RESULT+INVALID_OPERATION),d7
	moveq	IMM (DOUBLE_FLOAT),d6
	PICJUMP	$_exception_handler
| int __cmpdf2(double, double);
	FUNC(__cmpdf2)
SYM (__cmpdf2):
	link	a6,IMM (0)
	pea	1
	movl	a6@(20),sp@-
	movl	a6@(16),sp@-
	movl	a6@(12),sp@-
	movl	a6@(8),sp@-
	PICCALL	SYM (__cmpdf2_internal)
	unlk	a6
	rts
|=============================================================================
|                           rounding routines
|=============================================================================
| The rounding routines expect the number to be normalized in registers
| d0-d1-d2-d3, with the exponent in register d4. They assume that the 
| exponent is larger or equal to 1. They return a properly normalized number
| if possible, and a denormalized number otherwise. The exponent is returned
| in d4.
Lround$to$nearest:
| We now normalize as suggested by D. Knuth ("Seminumerical Algorithms"):
| Here we assume that the exponent is not too small (this should be checked
| before entering the rounding routine), but the number could be denormalized.
| Check for denormalized numbers:
1:	btst	IMM (DBL_MANT_DIG-32),d0
	bne	2f		| if set the number is normalized
| Normalize shifting left until bit #DBL_MANT_DIG-32 is set or the exponent 
| is one (remember that a denormalized number corresponds to an 
| exponent of -D_BIAS+1).
#ifndef __mcoldfire__
	cmpw	IMM (1),d4	| remember that the exponent is at least one
#else
	cmpl	IMM (1),d4	| remember that the exponent is at least one
#endif
 	beq	2f		| an exponent of one means denormalized
	addl	d3,d3		| else shift and adjust the exponent
	addxl	d2,d2		|
	addxl	d1,d1		|
	addxl	d0,d0		|
#ifndef __mcoldfire__
	dbra	d4,1b		|
#else
	subql	IMM (1), d4
	bpl	1b
#endif
2:
| Now round: we do it as follows: after the shifting we can write the
| fraction part as f + delta, where 1 < f < 2^25, and 0 <= delta <= 2.
| If delta < 1, do nothing. If delta > 1, add 1 to f. 
| If delta == 1, we make sure the rounded number will be even (odd?) 
| (after shifting).
	btst	IMM (0),d1	| is delta < 1?
	beq	2f		| if so, do not do anything
	orl	d2,d3		| is delta == 1?
	bne	1f		| if so round to even
	movel	d1,d3		| 
	andl	IMM (2),d3	| bit 1 is the last significant bit
	movel	IMM (0),d2	|
	addl	d3,d1		|
	addxl	d2,d0		|
	bra	2f		| 
1:	movel	IMM (1),d3	| else add 1 
	movel	IMM (0),d2	|
	addl	d3,d1		|
	addxl	d2,d0
| Shift right once (because we used bit #DBL_MANT_DIG-32!).
2:
#ifndef __mcoldfire__
	lsrl	IMM (1),d0
	roxrl	IMM (1),d1		
#else
	lsrl	IMM (1),d1
	btst	IMM (0),d0
	beq	10f
	bset	IMM (31),d1
10:	lsrl	IMM (1),d0
#endif
| Now check again bit #DBL_MANT_DIG-32 (rounding could have produced a
| 'fraction overflow' ...).
	btst	IMM (DBL_MANT_DIG-32),d0	
	beq	1f
#ifndef __mcoldfire__
	lsrl	IMM (1),d0
	roxrl	IMM (1),d1
	addw	IMM (1),d4
#else
	lsrl	IMM (1),d1
	btst	IMM (0),d0
	beq	10f
	bset	IMM (31),d1
10:	lsrl	IMM (1),d0
	addl	IMM (1),d4
#endif
1:
| If bit #DBL_MANT_DIG-32-1 is clear we have a denormalized number, so we 
| have to put the exponent to zero and return a denormalized number.
	btst	IMM (DBL_MANT_DIG-32-1),d0
	beq	1f
	jmp	a0@
1:	movel	IMM (0),d4
	jmp	a0@
Lround$to$zero:
Lround$to$plus:
Lround$to$minus:
	jmp	a0@
#endif /* L_double */
#ifdef  L_float
	.globl	SYM (_fpCCR)
	.globl  $_exception_handler
QUIET_NaN    = 0xffffffff
SIGNL_NaN    = 0x7f800001
INFINITY     = 0x7f800000
F_MAX_EXP      = 0xff
F_BIAS         = 126
FLT_MAX_EXP    = F_MAX_EXP - F_BIAS
FLT_MIN_EXP    = 1 - F_BIAS
FLT_MANT_DIG   = 24
INEXACT_RESULT 		= 0x0001
UNDERFLOW 		= 0x0002
OVERFLOW 		= 0x0004
DIVIDE_BY_ZERO 		= 0x0008
INVALID_OPERATION 	= 0x0010
SINGLE_FLOAT = 1
NOOP         = 0
ADD          = 1
MULTIPLY     = 2
DIVIDE       = 3
NEGATE       = 4
COMPARE      = 5
EXTENDSFDF   = 6
TRUNCDFSF    = 7
UNKNOWN           = -1
ROUND_TO_NEAREST  = 0 | round result to nearest representable value
ROUND_TO_ZERO     = 1 | round result towards zero
ROUND_TO_PLUS     = 2 | round result towards plus infinity
ROUND_TO_MINUS    = 3 | round result towards minus infinity
| Entry points:
	.globl SYM (__addsf3)
	.globl SYM (__subsf3)
	.globl SYM (__mulsf3)
	.globl SYM (__divsf3)
	.globl SYM (__negsf2)
	.globl SYM (__cmpsf2)
	.globl SYM (__cmpsf2_internal)
	.hidden SYM (__cmpsf2_internal)
| These are common routines to return and signal exceptions.	
	.text
	.even
Lf$den:
| Return and signal a denormalized number
	orl	d7,d0
	moveq	IMM (INEXACT_RESULT+UNDERFLOW),d7
	moveq	IMM (SINGLE_FLOAT),d6
	PICJUMP	$_exception_handler
Lf$infty:
Lf$overflow:
| Return a properly signed INFINITY and set the exception flags 
	movel	IMM (INFINITY),d0
	orl	d7,d0
	moveq	IMM (INEXACT_RESULT+OVERFLOW),d7
	moveq	IMM (SINGLE_FLOAT),d6
	PICJUMP	$_exception_handler
Lf$underflow:
| Return 0 and set the exception flags 
	moveq	IMM (0),d0
	moveq	IMM (INEXACT_RESULT+UNDERFLOW),d7
	moveq	IMM (SINGLE_FLOAT),d6
	PICJUMP	$_exception_handler
Lf$inop:
| Return a quiet NaN and set the exception flags
	movel	IMM (QUIET_NaN),d0
	moveq	IMM (INEXACT_RESULT+INVALID_OPERATION),d7
	moveq	IMM (SINGLE_FLOAT),d6
	PICJUMP	$_exception_handler
Lf$div$0:
| Return a properly signed INFINITY and set the exception flags
	movel	IMM (INFINITY),d0
	orl	d7,d0
	moveq	IMM (INEXACT_RESULT+DIVIDE_BY_ZERO),d7
	moveq	IMM (SINGLE_FLOAT),d6
	PICJUMP	$_exception_handler
|=============================================================================
|=============================================================================
|                         single precision routines
|=============================================================================
|=============================================================================
| A single precision floating point number (float) has the format:
|
| struct _float {
|  unsigned int sign      : 1;  /* sign bit */ 
|  unsigned int exponent  : 8;  /* exponent, shifted by 126 */
|  unsigned int fraction  : 23; /* fraction */
| } float;
| 
| Thus sizeof(float) = 4 (32 bits). 
|
| All the routines are callable from C programs, and return the result 
| in the single register d0. They also preserve all registers except 
| d0-d1 and a0-a1.
|=============================================================================
|                              __subsf3
|=============================================================================
| float __subsf3(float, float);
	FUNC(__subsf3)
SYM (__subsf3):
	bchg	IMM (31),sp@(8)	| change sign of second operand
				| and fall through
|=============================================================================
|                              __addsf3
|=============================================================================
| float __addsf3(float, float);
	FUNC(__addsf3)
SYM (__addsf3):
#ifndef __mcoldfire__
	link	a6,IMM (0)	| everything will be done in registers
	moveml	d2-d7,sp@-	| save all data registers but d0-d1
#else
	link	a6,IMM (-24)
	moveml	d2-d7,sp@
#endif
	movel	a6@(8),d0	| get first operand
	movel	a6@(12),d1	| get second operand
	movel	d0,a0		| get d0's sign bit '
	addl	d0,d0		| check and clear sign bit of a
	beq	Laddsf$b	| if zero return second operand
	movel	d1,a1		| save b's sign bit '
	addl	d1,d1		| get rid of sign bit
	beq	Laddsf$a	| if zero return first operand
| Get the exponents and check for denormalized and/or infinity.
	movel	IMM (0x00ffffff),d4	| mask to get fraction
	movel	IMM (0x01000000),d5	| mask to put hidden bit back
	movel	d0,d6		| save a to get exponent
	andl	d4,d0		| get fraction in d0
	notl 	d4		| make d4 into a mask for the exponent
	andl	d4,d6		| get exponent in d6
	beq	Laddsf$a$den	| branch if a is denormalized
	cmpl	d4,d6		| check for INFINITY or NaN
	beq	Laddsf$nf
	swap	d6		| put exponent into first word
	orl	d5,d0		| and put hidden bit back
Laddsf$1:
| Now we have a's exponent in d6 (second byte) and the mantissa in d0. '
	movel	d1,d7		| get exponent in d7
	andl	d4,d7		| 
	beq	Laddsf$b$den	| branch if b is denormalized
	cmpl	d4,d7		| check for INFINITY or NaN
	beq	Laddsf$nf
	swap	d7		| put exponent into first word
	notl 	d4		| make d4 into a mask for the fraction
	andl	d4,d1		| get fraction in d1
	orl	d5,d1		| and put hidden bit back
Laddsf$2:
| Now we have b's exponent in d7 (second byte) and the mantissa in d1. '
| Note that the hidden bit corresponds to bit #FLT_MANT_DIG-1, and we 
| shifted right once, so bit #FLT_MANT_DIG is set (so we have one extra
| bit).
	movel	d1,d2		| move b to d2, since we want to use
				| two registers to do the sum
	movel	IMM (0),d1	| and clear the new ones
	movel	d1,d3		|
| Here we shift the numbers in registers d0 and d1 so the exponents are the
| same, and put the largest exponent in d6. Note that we are using two
| registers for each number (see the discussion by D. Knuth in "Seminumerical 
| Algorithms").
#ifndef __mcoldfire__
	cmpw	d6,d7		| compare exponents
#else
	cmpl	d6,d7		| compare exponents
#endif
	beq	Laddsf$3	| if equal don't shift '
	bhi	5f		| branch if second exponent largest
1:
	subl	d6,d7		| keep the largest exponent
	negl	d7
#ifndef __mcoldfire__
	lsrw	IMM (8),d7	| put difference in lower byte
#else
	lsrl	IMM (8),d7	| put difference in lower byte
#endif
| if difference is too large we don't shift (actually, we can just exit) '
#ifndef __mcoldfire__
	cmpw	IMM (FLT_MANT_DIG+2),d7		
#else
	cmpl	IMM (FLT_MANT_DIG+2),d7		
#endif
	bge	Laddsf$b$small
#ifndef __mcoldfire__
	cmpw	IMM (16),d7	| if difference >= 16 swap
#else
	cmpl	IMM (16),d7	| if difference >= 16 swap
#endif
	bge	4f
2:
#ifndef __mcoldfire__
	subw	IMM (1),d7
#else
	subql	IMM (1), d7
#endif
3:
#ifndef __mcoldfire__
	lsrl	IMM (1),d2	| shift right second operand
	roxrl	IMM (1),d3
	dbra	d7,3b
#else
	lsrl	IMM (1),d3
	btst	IMM (0),d2
	beq	10f
	bset	IMM (31),d3
10:	lsrl	IMM (1),d2
	subql	IMM (1), d7
	bpl	3b
#endif
	bra	Laddsf$3
4:
	movew	d2,d3
	swap	d3
	movew	d3,d2
	swap	d2
#ifndef __mcoldfire__
	subw	IMM (16),d7
#else
	subl	IMM (16),d7
#endif
	bne	2b		| if still more bits, go back to normal case
	bra	Laddsf$3
5:
#ifndef __mcoldfire__
	exg	d6,d7		| exchange the exponents
#else
	eorl	d6,d7
	eorl	d7,d6
	eorl	d6,d7
#endif
	subl	d6,d7		| keep the largest exponent
	negl	d7		|
#ifndef __mcoldfire__
	lsrw	IMM (8),d7	| put difference in lower byte
#else
	lsrl	IMM (8),d7	| put difference in lower byte
#endif
| if difference is too large we don't shift (and exit!) '
#ifndef __mcoldfire__
	cmpw	IMM (FLT_MANT_DIG+2),d7		
#else
	cmpl	IMM (FLT_MANT_DIG+2),d7		
#endif
	bge	Laddsf$a$small
#ifndef __mcoldfire__
	cmpw	IMM (16),d7	| if difference >= 16 swap
#else
	cmpl	IMM (16),d7	| if difference >= 16 swap
#endif
	bge	8f
6:
#ifndef __mcoldfire__
	subw	IMM (1),d7
#else
	subl	IMM (1),d7
#endif
7:
#ifndef __mcoldfire__
	lsrl	IMM (1),d0	| shift right first operand
	roxrl	IMM (1),d1
	dbra	d7,7b
#else
	lsrl	IMM (1),d1
	btst	IMM (0),d0
	beq	10f
	bset	IMM (31),d1
10:	lsrl	IMM (1),d0
	subql	IMM (1),d7
	bpl	7b
#endif
	bra	Laddsf$3
8:
	movew	d0,d1
	swap	d1
	movew	d1,d0
	swap	d0
#ifndef __mcoldfire__
	subw	IMM (16),d7
#else
	subl	IMM (16),d7
#endif
	bne	6b		| if still more bits, go back to normal case
				| otherwise we fall through
| Now we have a in d0-d1, b in d2-d3, and the largest exponent in d6 (the
| signs are stored in a0 and a1).
Laddsf$3:
| Here we have to decide whether to add or subtract the numbers
#ifndef __mcoldfire__
	exg	d6,a0		| get signs back
	exg	d7,a1		| and save the exponents
#else
	movel	d6,d4
	movel	a0,d6
	movel	d4,a0
	movel	d7,d4
	movel	a1,d7
	movel	d4,a1
#endif
	eorl	d6,d7		| combine sign bits
	bmi	Lsubsf$0	| if negative a and b have opposite 
				| sign so we actually subtract the
				| numbers
| Here we have both positive or both negative
#ifndef __mcoldfire__
	exg	d6,a0		| now we have the exponent in d6
#else
	movel	d6,d4
	movel	a0,d6
	movel	d4,a0
#endif
	movel	a0,d7		| and sign in d7
	andl	IMM (0x80000000),d7
| Here we do the addition.
	addl	d3,d1
	addxl	d2,d0
| Note: now we have d2, d3, d4 and d5 to play with! 
| Put the exponent, in the first byte, in d2, to use the "standard" rounding
| routines:
	movel	d6,d2
#ifndef __mcoldfire__
	lsrw	IMM (8),d2
#else
	lsrl	IMM (8),d2
#endif
| Before rounding normalize so bit #FLT_MANT_DIG is set (we will consider
| the case of denormalized numbers in the rounding routine itself).
| As in the addition (not in the subtraction!) we could have set 
| one more bit we check this:
	btst	IMM (FLT_MANT_DIG+1),d0	
	beq	1f
#ifndef __mcoldfire__
	lsrl	IMM (1),d0
	roxrl	IMM (1),d1
#else
	lsrl	IMM (1),d1
	btst	IMM (0),d0
	beq	10f
	bset	IMM (31),d1
10:	lsrl	IMM (1),d0
#endif
	addl	IMM (1),d2
1:
	lea	pc@(Laddsf$4),a0 | to return from rounding routine
	PICLEA	SYM (_fpCCR),a1	| check the rounding mode
#ifdef __mcoldfire__
	clrl	d6
#endif
	movew	a1@(6),d6	| rounding mode in d6
	beq	Lround$to$nearest
#ifndef __mcoldfire__
	cmpw	IMM (ROUND_TO_PLUS),d6
#else
	cmpl	IMM (ROUND_TO_PLUS),d6
#endif
	bhi	Lround$to$minus
	blt	Lround$to$zero
	bra	Lround$to$plus
Laddsf$4:
| Put back the exponent, but check for overflow.
#ifndef __mcoldfire__
	cmpw	IMM (0xff),d2
#else
	cmpl	IMM (0xff),d2
#endif
	bhi	1f
	bclr	IMM (FLT_MANT_DIG-1),d0
#ifndef __mcoldfire__
	lslw	IMM (7),d2
#else
	lsll	IMM (7),d2
#endif
	swap	d2
	orl	d2,d0
	bra	Laddsf$ret
1:
	moveq	IMM (ADD),d5
	bra	Lf$overflow
Lsubsf$0:
| We are here if a > 0 and b < 0 (sign bits cleared).
| Here we do the subtraction.
	movel	d6,d7		| put sign in d7
	andl	IMM (0x80000000),d7
	subl	d3,d1		| result in d0-d1
	subxl	d2,d0		|
	beq	Laddsf$ret	| if zero just exit
	bpl	1f		| if positive skip the following
	bchg	IMM (31),d7	| change sign bit in d7
	negl	d1
	negxl	d0
1:
#ifndef __mcoldfire__
	exg	d2,a0		| now we have the exponent in d2
	lsrw	IMM (8),d2	| put it in the first byte
#else
	movel	d2,d4
	movel	a0,d2
	movel	d4,a0
	lsrl	IMM (8),d2	| put it in the first byte
#endif
| Now d0-d1 is positive and the sign bit is in d7.
| Note that we do not have to normalize, since in the subtraction bit
| #FLT_MANT_DIG+1 is never set, and denormalized numbers are handled by
| the rounding routines themselves.
	lea	pc@(Lsubsf$1),a0 | to return from rounding routine
	PICLEA	SYM (_fpCCR),a1	| check the rounding mode
#ifdef __mcoldfire__
	clrl	d6
#endif
	movew	a1@(6),d6	| rounding mode in d6
	beq	Lround$to$nearest
#ifndef __mcoldfire__
	cmpw	IMM (ROUND_TO_PLUS),d6
#else
	cmpl	IMM (ROUND_TO_PLUS),d6
#endif
	bhi	Lround$to$minus
	blt	Lround$to$zero
	bra	Lround$to$plus
Lsubsf$1:
| Put back the exponent (we can't have overflow!). '
	bclr	IMM (FLT_MANT_DIG-1),d0
#ifndef __mcoldfire__
	lslw	IMM (7),d2
#else
	lsll	IMM (7),d2
#endif
	swap	d2
	orl	d2,d0
	bra	Laddsf$ret
| If one of the numbers was too small (difference of exponents >= 
| FLT_MANT_DIG+2) we return the other (and now we don't have to '
| check for finiteness or zero).
Laddsf$a$small:
	movel	a6@(12),d0
	PICLEA	SYM (_fpCCR),a0
	movew	IMM (0),a0@
#ifndef __mcoldfire__
	moveml	sp@+,d2-d7	| restore data registers
#else
	moveml	sp@,d2-d7
	| XXX if frame pointer is ever removed, stack pointer must
	| be adjusted here.
#endif
	unlk	a6		| and return
	rts
Laddsf$b$small:
	movel	a6@(8),d0
	PICLEA	SYM (_fpCCR),a0
	movew	IMM (0),a0@
#ifndef __mcoldfire__
	moveml	sp@+,d2-d7	| restore data registers
#else
	moveml	sp@,d2-d7
	| XXX if frame pointer is ever removed, stack pointer must
	| be adjusted here.
#endif
	unlk	a6		| and return
	rts
| If the numbers are denormalized remember to put exponent equal to 1.
Laddsf$a$den:
	movel	d5,d6		| d5 contains 0x01000000
	swap	d6
	bra	Laddsf$1
Laddsf$b$den:
	movel	d5,d7
	swap	d7
	notl 	d4		| make d4 into a mask for the fraction
				| (this was not executed after the jump)
	bra	Laddsf$2
| The rest is mainly code for the different results which can be 
| returned (checking always for +/-INFINITY and NaN).
Laddsf$b:
| Return b (if a is zero).
	movel	a6@(12),d0
	cmpl	IMM (0x80000000),d0	| Check if b is -0
	bne	1f
	movel	a0,d7
	andl	IMM (0x80000000),d7	| Use the sign of a
	clrl	d0
	bra	Laddsf$ret
Laddsf$a:
| Return a (if b is zero).
	movel	a6@(8),d0
1:
	moveq	IMM (ADD),d5
| We have to check for NaN and +/-infty.
	movel	d0,d7
	andl	IMM (0x80000000),d7	| put sign in d7
	bclr	IMM (31),d0		| clear sign
	cmpl	IMM (INFINITY),d0	| check for infty or NaN
	bge	2f
	movel	d0,d0		| check for zero (we do this because we don't '
	bne	Laddsf$ret	| want to return -0 by mistake
	bclr	IMM (31),d7	| if zero be sure to clear sign
	bra	Laddsf$ret	| if everything OK just return
2:
| The value to be returned is either +/-infty or NaN
	andl	IMM (0x007fffff),d0	| check for NaN
	bne	Lf$inop			| if mantissa not zero is NaN
	bra	Lf$infty
Laddsf$ret:
| Normal exit (a and b nonzero, result is not NaN nor +/-infty).
| We have to clear the exception flags (just the exception type).
	PICLEA	SYM (_fpCCR),a0
	movew	IMM (0),a0@
	orl	d7,d0		| put sign bit
#ifndef __mcoldfire__
	moveml	sp@+,d2-d7	| restore data registers
#else
	moveml	sp@,d2-d7
	| XXX if frame pointer is ever removed, stack pointer must
	| be adjusted here.
#endif
	unlk	a6		| and return
	rts
Laddsf$ret$den:
| Return a denormalized number (for addition we don't signal underflow) '
	lsrl	IMM (1),d0	| remember to shift right back once
	bra	Laddsf$ret	| and return
| Note: when adding two floats of the same sign if either one is 
| NaN we return NaN without regard to whether the other is finite or 
| not. When subtracting them (i.e., when adding two numbers of 
| opposite signs) things are more complicated: if both are INFINITY 
| we return NaN, if only one is INFINITY and the other is NaN we return
| NaN, but if it is finite we return INFINITY with the corresponding sign.
Laddsf$nf:
	moveq	IMM (ADD),d5
| This could be faster but it is not worth the effort, since it is not
| executed very often. We sacrifice speed for clarity here.
	movel	a6@(8),d0	| get the numbers back (remember that we
	movel	a6@(12),d1	| did some processing already)
	movel	IMM (INFINITY),d4 | useful constant (INFINITY)
	movel	d0,d2		| save sign bits
	movel	d1,d3
	bclr	IMM (31),d0	| clear sign bits
	bclr	IMM (31),d1
| We know that one of them is either NaN of +/-INFINITY
| Check for NaN (if either one is NaN return NaN)
	cmpl	d4,d0		| check first a (d0)
	bhi	Lf$inop		
	cmpl	d4,d1		| check now b (d1)
	bhi	Lf$inop		
| Now comes the check for +/-INFINITY. We know that both are (maybe not
| finite) numbers, but we have to check if both are infinite whether we
| are adding or subtracting them.
	eorl	d3,d2		| to check sign bits
	bmi	1f
	movel	d0,d7
	andl	IMM (0x80000000),d7	| get (common) sign bit
	bra	Lf$infty
1:
| We know one (or both) are infinite, so we test for equality between the
| two numbers (if they are equal they have to be infinite both, so we
| return NaN).
	cmpl	d1,d0		| are both infinite?
	beq	Lf$inop		| if so return NaN
	movel	d0,d7
	andl	IMM (0x80000000),d7 | get a's sign bit '
	cmpl	d4,d0		| test now for infinity
	beq	Lf$infty	| if a is INFINITY return with this sign
	bchg	IMM (31),d7	| else we know b is INFINITY and has
	bra	Lf$infty	| the opposite sign
|=============================================================================
|                             __mulsf3
|=============================================================================
| float __mulsf3(float, float);
	FUNC(__mulsf3)
SYM (__mulsf3):
#ifndef __mcoldfire__
	link	a6,IMM (0)
	moveml	d2-d7,sp@-
#else
	link	a6,IMM (-24)
	moveml	d2-d7,sp@
#endif
	movel	a6@(8),d0	| get a into d0
	movel	a6@(12),d1	| and b into d1
	movel	d0,d7		| d7 will hold the sign of the product
	eorl	d1,d7		|
	andl	IMM (0x80000000),d7
	movel	IMM (INFINITY),d6	| useful constant (+INFINITY)
	movel	d6,d5			| another (mask for fraction)
	notl	d5			|
	movel	IMM (0x00800000),d4	| this is to put hidden bit back
	bclr	IMM (31),d0		| get rid of a's sign bit '
	movel	d0,d2			|
	beq	Lmulsf$a$0		| branch if a is zero
	bclr	IMM (31),d1		| get rid of b's sign bit '
	movel	d1,d3		|
	beq	Lmulsf$b$0	| branch if b is zero
	cmpl	d6,d0		| is a big?
	bhi	Lmulsf$inop	| if a is NaN return NaN
	beq	Lmulsf$inf	| if a is INFINITY we have to check b
	cmpl	d6,d1		| now compare b with INFINITY
	bhi	Lmulsf$inop	| is b NaN?
	beq	Lmulsf$overflow | is b INFINITY?
| Here we have both numbers finite and nonzero (and with no sign bit).
| Now we get the exponents into d2 and d3.
	andl	d6,d2		| and isolate exponent in d2
	beq	Lmulsf$a$den	| if exponent is zero we have a denormalized
	andl	d5,d0		| and isolate fraction
	orl	d4,d0		| and put hidden bit back
	swap	d2		| I like exponents in the first byte
#ifndef __mcoldfire__
	lsrw	IMM (7),d2	| 
#else
	lsrl	IMM (7),d2	| 
#endif
Lmulsf$1:			| number
	andl	d6,d3		|
	beq	Lmulsf$b$den	|
	andl	d5,d1		|
	orl	d4,d1		|
	swap	d3		|
#ifndef __mcoldfire__
	lsrw	IMM (7),d3	|
#else
	lsrl	IMM (7),d3	|
#endif
Lmulsf$2:			|
#ifndef __mcoldfire__
	addw	d3,d2		| add exponents
	subw	IMM (F_BIAS+1),d2 | and subtract bias (plus one)
#else
	addl	d3,d2		| add exponents
	subl	IMM (F_BIAS+1),d2 | and subtract bias (plus one)
#endif
| We are now ready to do the multiplication. The situation is as follows:
| both a and b have bit FLT_MANT_DIG-1 set (even if they were 
| denormalized to start with!), which means that in the product 
| bit 2*(FLT_MANT_DIG-1) (that is, bit 2*FLT_MANT_DIG-2-32 of the 
| high long) is set. 
| To do the multiplication let us move the number a little bit around ...
	movel	d1,d6		| second operand in d6
	movel	d0,d5		| first operand in d4-d5
	movel	IMM (0),d4
	movel	d4,d1		| the sums will go in d0-d1
	movel	d4,d0
| now bit FLT_MANT_DIG-1 becomes bit 31:
	lsll	IMM (31-FLT_MANT_DIG+1),d6		
| Start the loop (we loop #FLT_MANT_DIG times):
	moveq	IMM (FLT_MANT_DIG-1),d3	
1:	addl	d1,d1		| shift sum 
	addxl	d0,d0
	lsll	IMM (1),d6	| get bit bn
	bcc	2f		| if not set skip sum
	addl	d5,d1		| add a
	addxl	d4,d0
2:
#ifndef __mcoldfire__
	dbf	d3,1b		| loop back
#else
	subql	IMM (1),d3
	bpl	1b
#endif
| Now we have the product in d0-d1, with bit (FLT_MANT_DIG - 1) + FLT_MANT_DIG
| (mod 32) of d0 set. The first thing to do now is to normalize it so bit 
| FLT_MANT_DIG is set (to do the rounding).
#ifndef __mcoldfire__
	rorl	IMM (6),d1
	swap	d1
	movew	d1,d3
	andw	IMM (0x03ff),d3
	andw	IMM (0xfd00),d1
#else
	movel	d1,d3
	lsll	IMM (8),d1
	addl	d1,d1
	addl	d1,d1
	moveq	IMM (22),d5
	lsrl	d5,d3
	orl	d3,d1
	andl	IMM (0xfffffd00),d1
#endif
	lsll	IMM (8),d0
	addl	d0,d0
	addl	d0,d0
#ifndef __mcoldfire__
	orw	d3,d0
#else
	orl	d3,d0
#endif
	moveq	IMM (MULTIPLY),d5
	
	btst	IMM (FLT_MANT_DIG+1),d0
	beq	Lround$exit
#ifndef __mcoldfire__
	lsrl	IMM (1),d0
	roxrl	IMM (1),d1
	addw	IMM (1),d2
#else
	lsrl	IMM (1),d1
	btst	IMM (0),d0
	beq	10f
	bset	IMM (31),d1
10:	lsrl	IMM (1),d0
	addql	IMM (1),d2
#endif
	bra	Lround$exit
Lmulsf$inop:
	moveq	IMM (MULTIPLY),d5
	bra	Lf$inop
Lmulsf$overflow:
	moveq	IMM (MULTIPLY),d5
	bra	Lf$overflow
Lmulsf$inf:
	moveq	IMM (MULTIPLY),d5
| If either is NaN return NaN; else both are (maybe infinite) numbers, so
| return INFINITY with the correct sign (which is in d7).
	cmpl	d6,d1		| is b NaN?
	bhi	Lf$inop		| if so return NaN
	bra	Lf$overflow	| else return +/-INFINITY
| If either number is zero return zero, unless the other is +/-INFINITY, 
| or NaN, in which case we return NaN.
Lmulsf$b$0:
| Here d1 (==b) is zero.
	movel	a6@(8),d1	| get a again to check for non-finiteness
	bra	1f
Lmulsf$a$0:
	movel	a6@(12),d1	| get b again to check for non-finiteness
1:	bclr	IMM (31),d1	| clear sign bit 
	cmpl	IMM (INFINITY),d1 | and check for a large exponent
	bge	Lf$inop		| if b is +/-INFINITY or NaN return NaN
	movel	d7,d0		| else return signed zero
	PICLEA	SYM (_fpCCR),a0	|
	movew	IMM (0),a0@	| 
#ifndef __mcoldfire__
	moveml	sp@+,d2-d7	| 
#else
	moveml	sp@,d2-d7
	| XXX if frame pointer is ever removed, stack pointer must
	| be adjusted here.
#endif
	unlk	a6		| 
	rts			| 
| If a number is denormalized we put an exponent of 1 but do not put the 
| hidden bit back into the fraction; instead we shift left until bit 23
| (the hidden bit) is set, adjusting the exponent accordingly. We do this
| to ensure that the product of the fractions is close to 1.
Lmulsf$a$den:
	movel	IMM (1),d2
	andl	d5,d0
1:	addl	d0,d0		| shift a left (until bit 23 is set)
#ifndef __mcoldfire__
	subw	IMM (1),d2	| and adjust exponent
#else
	subql	IMM (1),d2	| and adjust exponent
#endif
	btst	IMM (FLT_MANT_DIG-1),d0
	bne	Lmulsf$1	|
	bra	1b		| else loop back
Lmulsf$b$den:
	movel	IMM (1),d3
	andl	d5,d1
1:	addl	d1,d1		| shift b left until bit 23 is set
#ifndef __mcoldfire__
	subw	IMM (1),d3	| and adjust exponent
#else
	subql	IMM (1),d3	| and adjust exponent
#endif
	btst	IMM (FLT_MANT_DIG-1),d1
	bne	Lmulsf$2	|
	bra	1b		| else loop back
|=============================================================================
|                             __divsf3
|=============================================================================
| float __divsf3(float, float);
	FUNC(__divsf3)
SYM (__divsf3):
#ifndef __mcoldfire__
	link	a6,IMM (0)
	moveml	d2-d7,sp@-
#else
	link	a6,IMM (-24)
	moveml	d2-d7,sp@
#endif
	movel	a6@(8),d0		| get a into d0
	movel	a6@(12),d1		| and b into d1
	movel	d0,d7			| d7 will hold the sign of the result
	eorl	d1,d7			|
	andl	IMM (0x80000000),d7	| 
	movel	IMM (INFINITY),d6	| useful constant (+INFINITY)
	movel	d6,d5			| another (mask for fraction)
	notl	d5			|
	movel	IMM (0x00800000),d4	| this is to put hidden bit back
	bclr	IMM (31),d0		| get rid of a's sign bit '
	movel	d0,d2			|
	beq	Ldivsf$a$0		| branch if a is zero
	bclr	IMM (31),d1		| get rid of b's sign bit '
	movel	d1,d3			|
	beq	Ldivsf$b$0		| branch if b is zero
	cmpl	d6,d0			| is a big?
	bhi	Ldivsf$inop		| if a is NaN return NaN
	beq	Ldivsf$inf		| if a is INFINITY we have to check b
	cmpl	d6,d1			| now compare b with INFINITY 
	bhi	Ldivsf$inop		| if b is NaN return NaN
	beq	Ldivsf$underflow
| Here we have both numbers finite and nonzero (and with no sign bit).
| Now we get the exponents into d2 and d3 and normalize the numbers to
| ensure that the ratio of the fractions is close to 1. We do this by
| making sure that bit #FLT_MANT_DIG-1 (hidden bit) is set.
	andl	d6,d2		| and isolate exponent in d2
	beq	Ldivsf$a$den	| if exponent is zero we have a denormalized
	andl	d5,d0		| and isolate fraction
	orl	d4,d0		| and put hidden bit back
	swap	d2		| I like exponents in the first byte
#ifndef __mcoldfire__
	lsrw	IMM (7),d2	| 
#else
	lsrl	IMM (7),d2	| 
#endif
Ldivsf$1:			| 
	andl	d6,d3		|
	beq	Ldivsf$b$den	|
	andl	d5,d1		|
	orl	d4,d1		|
	swap	d3		|
#ifndef __mcoldfire__
	lsrw	IMM (7),d3	|
#else
	lsrl	IMM (7),d3	|
#endif
Ldivsf$2:			|
#ifndef __mcoldfire__
	subw	d3,d2		| subtract exponents
 	addw	IMM (F_BIAS),d2	| and add bias
#else
	subl	d3,d2		| subtract exponents
 	addl	IMM (F_BIAS),d2	| and add bias
#endif
 
| We are now ready to do the division. We have prepared things in such a way
| that the ratio of the fractions will be less than 2 but greater than 1/2.
| At this point the registers in use are:
| d0	holds a (first operand, bit FLT_MANT_DIG=0, bit FLT_MANT_DIG-1=1)
| d1	holds b (second operand, bit FLT_MANT_DIG=1)
| d2	holds the difference of the exponents, corrected by the bias
| d7	holds the sign of the ratio
| d4, d5, d6 hold some constants
	movel	d7,a0		| d6-d7 will hold the ratio of the fractions
	movel	IMM (0),d6	| 
	movel	d6,d7
	moveq	IMM (FLT_MANT_DIG+1),d3
1:	cmpl	d0,d1		| is a < b?
	bhi	2f		|
	bset	d3,d6		| set a bit in d6
	subl	d1,d0		| if a >= b  a <-- a-b
	beq	3f		| if a is zero, exit
2:	addl	d0,d0		| multiply a by 2
#ifndef __mcoldfire__
	dbra	d3,1b
#else
	subql	IMM (1),d3
	bpl	1b
#endif
| Now we keep going to set the sticky bit ...
	moveq	IMM (FLT_MANT_DIG),d3
1:	cmpl	d0,d1
	ble	2f
	addl	d0,d0
#ifndef __mcoldfire__
	dbra	d3,1b
#else
	subql	IMM(1),d3
	bpl	1b
#endif
	movel	IMM (0),d1
	bra	3f
2:	movel	IMM (0),d1
#ifndef __mcoldfire__
	subw	IMM (FLT_MANT_DIG),d3
	addw	IMM (31),d3
#else
	subl	IMM (FLT_MANT_DIG),d3
	addl	IMM (31),d3
#endif
	bset	d3,d1
3:
	movel	d6,d0		| put the ratio in d0-d1
	movel	a0,d7		| get sign back
| Because of the normalization we did before we are guaranteed that 
| d0 is smaller than 2^26 but larger than 2^24. Thus bit 26 is not set,
| bit 25 could be set, and if it is not set then bit 24 is necessarily set.
	btst	IMM (FLT_MANT_DIG+1),d0		
	beq	1f              | if it is not set, then bit 24 is set
	lsrl	IMM (1),d0	|
#ifndef __mcoldfire__
	addw	IMM (1),d2	|
#else
	addl	IMM (1),d2	|
#endif
1:
| Now round, check for over- and underflow, and exit.
	moveq	IMM (DIVIDE),d5
	bra	Lround$exit
Ldivsf$inop:
	moveq	IMM (DIVIDE),d5
	bra	Lf$inop
Ldivsf$overflow:
	moveq	IMM (DIVIDE),d5
	bra	Lf$overflow
Ldivsf$underflow:
	moveq	IMM (DIVIDE),d5
	bra	Lf$underflow
Ldivsf$a$0:
	moveq	IMM (DIVIDE),d5
| If a is zero check to see whether b is zero also. In that case return
| NaN; then check if b is NaN, and return NaN also in that case. Else
| return a properly signed zero.
	andl	IMM (0x7fffffff),d1	| clear sign bit and test b
	beq	Lf$inop			| if b is also zero return NaN
	cmpl	IMM (INFINITY),d1	| check for NaN
	bhi	Lf$inop			| 
	movel	d7,d0			| else return signed zero
	PICLEA	SYM (_fpCCR),a0		|
	movew	IMM (0),a0@		|
#ifndef __mcoldfire__
	moveml	sp@+,d2-d7		| 
#else
	moveml	sp@,d2-d7		| 
	| XXX if frame pointer is ever removed, stack pointer must
	| be adjusted here.
#endif
	unlk	a6			| 
	rts				| 
	
Ldivsf$b$0:
	moveq	IMM (DIVIDE),d5
| If we got here a is not zero. Check if a is NaN; in that case return NaN,
| else return +/-INFINITY. Remember that a is in d0 with the sign bit 
| cleared already.
	cmpl	IMM (INFINITY),d0	| compare d0 with INFINITY
	bhi	Lf$inop			| if larger it is NaN
	bra	Lf$div$0		| else signal DIVIDE_BY_ZERO
Ldivsf$inf:
	moveq	IMM (DIVIDE),d5
| If a is INFINITY we have to check b
	cmpl	IMM (INFINITY),d1	| compare b with INFINITY 
	bge	Lf$inop			| if b is NaN or INFINITY return NaN
	bra	Lf$overflow		| else return overflow
| If a number is denormalized we put an exponent of 1 but do not put the 
| bit back into the fraction.
Ldivsf$a$den:
	movel	IMM (1),d2
	andl	d5,d0
1:	addl	d0,d0		| shift a left until bit FLT_MANT_DIG-1 is set
#ifndef __mcoldfire__
	subw	IMM (1),d2	| and adjust exponent
#else
	subl	IMM (1),d2	| and adjust exponent
#endif
	btst	IMM (FLT_MANT_DIG-1),d0
	bne	Ldivsf$1
	bra	1b
Ldivsf$b$den:
	movel	IMM (1),d3
	andl	d5,d1
1:	addl	d1,d1		| shift b left until bit FLT_MANT_DIG is set
#ifndef __mcoldfire__
	subw	IMM (1),d3	| and adjust exponent
#else
	subl	IMM (1),d3	| and adjust exponent
#endif
	btst	IMM (FLT_MANT_DIG-1),d1
	bne	Ldivsf$2
	bra	1b
Lround$exit:
| This is a common exit point for __mulsf3 and __divsf3. 
| First check for underlow in the exponent:
#ifndef __mcoldfire__
	cmpw	IMM (-FLT_MANT_DIG-1),d2		
#else
	cmpl	IMM (-FLT_MANT_DIG-1),d2		
#endif
	blt	Lf$underflow	
| It could happen that the exponent is less than 1, in which case the 
| number is denormalized. In this case we shift right and adjust the 
| exponent until it becomes 1 or the fraction is zero (in the latter case 
| we signal underflow and return zero).
	movel	IMM (0),d6	| d6 is used temporarily
#ifndef __mcoldfire__
	cmpw	IMM (1),d2	| if the exponent is less than 1 we 
#else
	cmpl	IMM (1),d2	| if the exponent is less than 1 we 
#endif
	bge	2f		| have to shift right (denormalize)
1:
#ifndef __mcoldfire__
	addw	IMM (1),d2	| adjust the exponent
	lsrl	IMM (1),d0	| shift right once 
	roxrl	IMM (1),d1	|
	roxrl	IMM (1),d6	| d6 collect bits we would lose otherwise
	cmpw	IMM (1),d2	| is the exponent 1 already?
#else
	addql	IMM (1),d2	| adjust the exponent
	lsrl	IMM (1),d6
	btst	IMM (0),d1
	beq	11f
	bset	IMM (31),d6
11:	lsrl	IMM (1),d1
	btst	IMM (0),d0
	beq	10f
	bset	IMM (31),d1
10:	lsrl	IMM (1),d0
	cmpl	IMM (1),d2	| is the exponent 1 already?
#endif
	beq	2f		| if not loop back
	bra	1b              |
	bra	Lf$underflow	| safety check, shouldn't execute '
2:	orl	d6,d1		| this is a trick so we don't lose  '
				| the extra bits which were flushed right
| Now call the rounding routine (which takes care of denormalized numbers):
	lea	pc@(Lround$0),a0 | to return from rounding routine
	PICLEA	SYM (_fpCCR),a1	| check the rounding mode
#ifdef __mcoldfire__
	clrl	d6
#endif
	movew	a1@(6),d6	| rounding mode in d6
	beq	Lround$to$nearest
#ifndef __mcoldfire__
	cmpw	IMM (ROUND_TO_PLUS),d6
#else
	cmpl	IMM (ROUND_TO_PLUS),d6
#endif
	bhi	Lround$to$minus
	blt	Lround$to$zero
	bra	Lround$to$plus
Lround$0:
| Here we have a correctly rounded result (either normalized or denormalized).
| Here we should have either a normalized number or a denormalized one, and
| the exponent is necessarily larger or equal to 1 (so we don't have to  '
| check again for underflow!). We have to check for overflow or for a 
| denormalized number (which also signals underflow).
| Check for overflow (i.e., exponent >= 255).
#ifndef __mcoldfire__
	cmpw	IMM (0x00ff),d2
#else
	cmpl	IMM (0x00ff),d2
#endif
	bge	Lf$overflow
| Now check for a denormalized number (exponent==0).
	movew	d2,d2
	beq	Lf$den
1:
| Put back the exponents and sign and return.
#ifndef __mcoldfire__
	lslw	IMM (7),d2	| exponent back to fourth byte
#else
	lsll	IMM (7),d2	| exponent back to fourth byte
#endif
	bclr	IMM (FLT_MANT_DIG-1),d0
	swap	d0		| and put back exponent
#ifndef __mcoldfire__
	orw	d2,d0		| 
#else
	orl	d2,d0
#endif
	swap	d0		|
	orl	d7,d0		| and sign also
	PICLEA	SYM (_fpCCR),a0
	movew	IMM (0),a0@
#ifndef __mcoldfire__
	moveml	sp@+,d2-d7
#else
	moveml	sp@,d2-d7
	| XXX if frame pointer is ever removed, stack pointer must
	| be adjusted here.
#endif
	unlk	a6
	rts
|=============================================================================
|                             __negsf2
|=============================================================================
| This is trivial and could be shorter if we didn't bother checking for NaN '
| and +/-INFINITY.
| float __negsf2(float);
	FUNC(__negsf2)
SYM (__negsf2):
#ifndef __mcoldfire__
	link	a6,IMM (0)
	moveml	d2-d7,sp@-
#else
	link	a6,IMM (-24)
	moveml	d2-d7,sp@
#endif
	moveq	IMM (NEGATE),d5
	movel	a6@(8),d0	| get number to negate in d0
	bchg	IMM (31),d0	| negate
	movel	d0,d1		| make a positive copy
	bclr	IMM (31),d1	|
	tstl	d1		| check for zero
	beq	2f		| if zero (either sign) return +zero
	cmpl	IMM (INFINITY),d1 | compare to +INFINITY
	blt	1f		|
	bhi	Lf$inop		| if larger (fraction not zero) is NaN
	movel	d0,d7		| else get sign and return INFINITY
	andl	IMM (0x80000000),d7
	bra	Lf$infty		
1:	PICLEA	SYM (_fpCCR),a0
	movew	IMM (0),a0@
#ifndef __mcoldfire__
	moveml	sp@+,d2-d7
#else
	moveml	sp@,d2-d7
	| XXX if frame pointer is ever removed, stack pointer must
	| be adjusted here.
#endif
	unlk	a6
	rts
2:	bclr	IMM (31),d0
	bra	1b
|=============================================================================
|                             __cmpsf2
|=============================================================================
GREATER =  1
LESS    = -1
EQUAL   =  0
| int __cmpsf2_internal(float, float, int);
SYM (__cmpsf2_internal):
#ifndef __mcoldfire__
	link	a6,IMM (0)
	moveml	d2-d7,sp@- 	| save registers
#else
	link	a6,IMM (-24)
	moveml	d2-d7,sp@
#endif
	moveq	IMM (COMPARE),d5
	movel	a6@(8),d0	| get first operand
	movel	a6@(12),d1	| get second operand
| Check if either is NaN, and in that case return garbage and signal
| INVALID_OPERATION. Check also if either is zero, and clear the signs
| if necessary.
	movel	d0,d6
	andl	IMM (0x7fffffff),d0
	beq	Lcmpsf$a$0
	cmpl	IMM (0x7f800000),d0
	bhi	Lcmpf$inop
Lcmpsf$1:
	movel	d1,d7
	andl	IMM (0x7fffffff),d1
	beq	Lcmpsf$b$0
	cmpl	IMM (0x7f800000),d1
	bhi	Lcmpf$inop
Lcmpsf$2:
| Check the signs
	eorl	d6,d7
	bpl	1f
| If the signs are not equal check if a >= 0
	tstl	d6
	bpl	Lcmpsf$a$gt$b	| if (a >= 0 && b < 0) => a > b
	bmi	Lcmpsf$b$gt$a	| if (a < 0 && b >= 0) => a < b
1:
| If the signs are equal check for < 0
	tstl	d6
	bpl	1f
| If both are negative exchange them
#ifndef __mcoldfire__
	exg	d0,d1
#else
	movel	d0,d7
	movel	d1,d0
	movel	d7,d1
#endif
1:
| Now that they are positive we just compare them as longs (does this also
| work for denormalized numbers?).
	cmpl	d0,d1
	bhi	Lcmpsf$b$gt$a	| |b| > |a|
	bne	Lcmpsf$a$gt$b	| |b| < |a|
| If we got here a == b.
	movel	IMM (EQUAL),d0
#ifndef __mcoldfire__
	moveml	sp@+,d2-d7 	| put back the registers
#else
	moveml	sp@,d2-d7
#endif
	unlk	a6
	rts
Lcmpsf$a$gt$b:
	movel	IMM (GREATER),d0
#ifndef __mcoldfire__
	moveml	sp@+,d2-d7 	| put back the registers
#else
	moveml	sp@,d2-d7
	| XXX if frame pointer is ever removed, stack pointer must
	| be adjusted here.
#endif
	unlk	a6
	rts
Lcmpsf$b$gt$a:
	movel	IMM (LESS),d0
#ifndef __mcoldfire__
	moveml	sp@+,d2-d7 	| put back the registers
#else
	moveml	sp@,d2-d7
	| XXX if frame pointer is ever removed, stack pointer must
	| be adjusted here.
#endif
	unlk	a6
	rts
Lcmpsf$a$0:	
	bclr	IMM (31),d6
	bra	Lcmpsf$1
Lcmpsf$b$0:
	bclr	IMM (31),d7
	bra	Lcmpsf$2
Lcmpf$inop:
	movl	a6@(16),d0
	moveq	IMM (INEXACT_RESULT+INVALID_OPERATION),d7
	moveq	IMM (SINGLE_FLOAT),d6
	PICJUMP	$_exception_handler
| int __cmpsf2(float, float);
	FUNC(__cmpsf2)
SYM (__cmpsf2):
	link	a6,IMM (0)
	pea	1
	movl	a6@(12),sp@-
	movl	a6@(8),sp@-
	PICCALL SYM (__cmpsf2_internal)
	unlk	a6
	rts
|=============================================================================
|                           rounding routines
|=============================================================================
| The rounding routines expect the number to be normalized in registers
| d0-d1, with the exponent in register d2. They assume that the 
| exponent is larger or equal to 1. They return a properly normalized number
| if possible, and a denormalized number otherwise. The exponent is returned
| in d2.
Lround$to$nearest:
| We now normalize as suggested by D. Knuth ("Seminumerical Algorithms"):
| Here we assume that the exponent is not too small (this should be checked
| before entering the rounding routine), but the number could be denormalized.
| Check for denormalized numbers:
1:	btst	IMM (FLT_MANT_DIG),d0
	bne	2f		| if set the number is normalized
| Normalize shifting left until bit #FLT_MANT_DIG is set or the exponent 
| is one (remember that a denormalized number corresponds to an 
| exponent of -F_BIAS+1).
#ifndef __mcoldfire__
	cmpw	IMM (1),d2	| remember that the exponent is at least one
#else
	cmpl	IMM (1),d2	| remember that the exponent is at least one
#endif
 	beq	2f		| an exponent of one means denormalized
	addl	d1,d1		| else shift and adjust the exponent
	addxl	d0,d0		|
#ifndef __mcoldfire__
	dbra	d2,1b		|
#else
	subql	IMM (1),d2
	bpl	1b
#endif
2:
| Now round: we do it as follows: after the shifting we can write the
| fraction part as f + delta, where 1 < f < 2^25, and 0 <= delta <= 2.
| If delta < 1, do nothing. If delta > 1, add 1 to f. 
| If delta == 1, we make sure the rounded number will be even (odd?) 
| (after shifting).
	btst	IMM (0),d0	| is delta < 1?
	beq	2f		| if so, do not do anything
	tstl	d1		| is delta == 1?
	bne	1f		| if so round to even
	movel	d0,d1		| 
	andl	IMM (2),d1	| bit 1 is the last significant bit
	addl	d1,d0		| 
	bra	2f		| 
1:	movel	IMM (1),d1	| else add 1 
	addl	d1,d0		|
| Shift right once (because we used bit #FLT_MANT_DIG!).
2:	lsrl	IMM (1),d0		
| Now check again bit #FLT_MANT_DIG (rounding could have produced a
| 'fraction overflow' ...).
	btst	IMM (FLT_MANT_DIG),d0	
	beq	1f
	lsrl	IMM (1),d0
#ifndef __mcoldfire__
	addw	IMM (1),d2
#else
	addql	IMM (1),d2
#endif
1:
| If bit #FLT_MANT_DIG-1 is clear we have a denormalized number, so we 
| have to put the exponent to zero and return a denormalized number.
	btst	IMM (FLT_MANT_DIG-1),d0
	beq	1f
	jmp	a0@
1:	movel	IMM (0),d2
	jmp	a0@
Lround$to$zero:
Lround$to$plus:
Lround$to$minus:
	jmp	a0@
#endif /* L_float */
| gcc expects the routines __eqdf2, __nedf2, __gtdf2, __gedf2,
| __ledf2, __ltdf2 to all return the same value as a direct call to
| __cmpdf2 would.  In this implementation, each of these routines
| simply calls __cmpdf2.  It would be more efficient to give the
| __cmpdf2 routine several names, but separating them out will make it
| easier to write efficient versions of these routines someday.
| If the operands recompare unordered unordered __gtdf2 and __gedf2 return -1.
| The other routines return 1.
#ifdef  L_eqdf2
	.text
	FUNC(__eqdf2)
	.globl	SYM (__eqdf2)
SYM (__eqdf2):
	link	a6,IMM (0)
	pea	1
	movl	a6@(20),sp@-
	movl	a6@(16),sp@-
	movl	a6@(12),sp@-
	movl	a6@(8),sp@-
	PICCALL	SYM (__cmpdf2_internal)
	unlk	a6
	rts
#endif /* L_eqdf2 */
#ifdef  L_nedf2
	.text
	FUNC(__nedf2)
	.globl	SYM (__nedf2)
SYM (__nedf2):
	link	a6,IMM (0)
	pea	1
	movl	a6@(20),sp@-
	movl	a6@(16),sp@-
	movl	a6@(12),sp@-
	movl	a6@(8),sp@-
	PICCALL	SYM (__cmpdf2_internal)
	unlk	a6
	rts
#endif /* L_nedf2 */
#ifdef  L_gtdf2
	.text
	FUNC(__gtdf2)
	.globl	SYM (__gtdf2)
SYM (__gtdf2):
	link	a6,IMM (0)
	pea	-1
	movl	a6@(20),sp@-
	movl	a6@(16),sp@-
	movl	a6@(12),sp@-
	movl	a6@(8),sp@-
	PICCALL	SYM (__cmpdf2_internal)
	unlk	a6
	rts
#endif /* L_gtdf2 */
#ifdef  L_gedf2
	.text
	FUNC(__gedf2)
	.globl	SYM (__gedf2)
SYM (__gedf2):
	link	a6,IMM (0)
	pea	-1
	movl	a6@(20),sp@-
	movl	a6@(16),sp@-
	movl	a6@(12),sp@-
	movl	a6@(8),sp@-
	PICCALL	SYM (__cmpdf2_internal)
	unlk	a6
	rts
#endif /* L_gedf2 */
#ifdef  L_ltdf2
	.text
	FUNC(__ltdf2)
	.globl	SYM (__ltdf2)
SYM (__ltdf2):
	link	a6,IMM (0)
	pea	1
	movl	a6@(20),sp@-
	movl	a6@(16),sp@-
	movl	a6@(12),sp@-
	movl	a6@(8),sp@-
	PICCALL	SYM (__cmpdf2_internal)
	unlk	a6
	rts
#endif /* L_ltdf2 */
#ifdef  L_ledf2
	.text
	FUNC(__ledf2)
	.globl	SYM (__ledf2)
SYM (__ledf2):
	link	a6,IMM (0)
	pea	1
	movl	a6@(20),sp@-
	movl	a6@(16),sp@-
	movl	a6@(12),sp@-
	movl	a6@(8),sp@-
	PICCALL	SYM (__cmpdf2_internal)
	unlk	a6
	rts
#endif /* L_ledf2 */
| The comments above about __eqdf2, et. al., also apply to __eqsf2,
| et. al., except that the latter call __cmpsf2 rather than __cmpdf2.
#ifdef  L_eqsf2
	.text
	FUNC(__eqsf2)
	.globl	SYM (__eqsf2)
SYM (__eqsf2):
	link	a6,IMM (0)
	pea	1
	movl	a6@(12),sp@-
	movl	a6@(8),sp@-
	PICCALL	SYM (__cmpsf2_internal)
	unlk	a6
	rts
#endif /* L_eqsf2 */
#ifdef  L_nesf2
	.text
	FUNC(__nesf2)
	.globl	SYM (__nesf2)
SYM (__nesf2):
	link	a6,IMM (0)
	pea	1
	movl	a6@(12),sp@-
	movl	a6@(8),sp@-
	PICCALL	SYM (__cmpsf2_internal)
	unlk	a6
	rts
#endif /* L_nesf2 */
#ifdef  L_gtsf2
	.text
	FUNC(__gtsf2)
	.globl	SYM (__gtsf2)
SYM (__gtsf2):
	link	a6,IMM (0)
	pea	-1
	movl	a6@(12),sp@-
	movl	a6@(8),sp@-
	PICCALL	SYM (__cmpsf2_internal)
	unlk	a6
	rts
#endif /* L_gtsf2 */
#ifdef  L_gesf2
	.text
	FUNC(__gesf2)
	.globl	SYM (__gesf2)
SYM (__gesf2):
	link	a6,IMM (0)
	pea	-1
	movl	a6@(12),sp@-
	movl	a6@(8),sp@-
	PICCALL	SYM (__cmpsf2_internal)
	unlk	a6
	rts
#endif /* L_gesf2 */
#ifdef  L_ltsf2
	.text
	FUNC(__ltsf2)
	.globl	SYM (__ltsf2)
SYM (__ltsf2):
	link	a6,IMM (0)
	pea	1
	movl	a6@(12),sp@-
	movl	a6@(8),sp@-
	PICCALL	SYM (__cmpsf2_internal)
	unlk	a6
	rts
#endif /* L_ltsf2 */
#ifdef  L_lesf2
	.text
	FUNC(__lesf2)
	.globl	SYM (__lesf2)
SYM (__lesf2):
	link	a6,IMM (0)
	pea	1
	movl	a6@(12),sp@-
	movl	a6@(8),sp@-
	PICCALL	SYM (__cmpsf2_internal)
	unlk	a6
	rts
#endif /* L_lesf2 */
#if defined (__ELF__) && defined (__linux__)
	/* Make stack non-executable for ELF linux targets.  */
	.section	.note.GNU-stack,"",@progbits
#endif
 
     |