1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
/* Implementation of the ERFC_SCALED intrinsic, to be included by erfc_scaled.c
Copyright (C) 2008-2015 Free Software Foundation, Inc.
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR a PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/* This implementation of ERFC_SCALED is based on the netlib algorithm
available at http://www.netlib.org/specfun/erf */
#define TYPE KIND_SUFFIX(GFC_REAL_,KIND)
#define CONCAT(x,y) x ## y
#define KIND_SUFFIX(x,y) CONCAT(x,y)
#if (KIND == 4)
# define EXP(x) expf(x)
# define TRUNC(x) truncf(x)
#elif (KIND == 8)
# define EXP(x) exp(x)
# define TRUNC(x) trunc(x)
#elif (KIND == 10)
# ifdef HAVE_EXPL
# define EXP(x) expl(x)
# endif
# ifdef HAVE_TRUNCL
# define TRUNC(x) truncl(x)
# endif
#else
# error "What exactly is it that you want me to do?"
#endif
#if defined(EXP) && defined(TRUNC)
extern TYPE KIND_SUFFIX(erfc_scaled_r,KIND) (TYPE);
export_proto(KIND_SUFFIX(erfc_scaled_r,KIND));
TYPE
KIND_SUFFIX(erfc_scaled_r,KIND) (TYPE x)
{
/* The main computation evaluates near-minimax approximations
from "Rational Chebyshev approximations for the error function"
by W. J. Cody, Math. Comp., 1969, PP. 631-638. This
transportable program uses rational functions that theoretically
approximate erf(x) and erfc(x) to at least 18 significant
decimal digits. The accuracy achieved depends on the arithmetic
system, the compiler, the intrinsic functions, and proper
selection of the machine-dependent constants. */
int i;
TYPE del, res, xden, xnum, y, ysq;
#if (KIND == 4)
static TYPE xneg = -9.382, xsmall = 5.96e-8,
xbig = 9.194, xhuge = 2.90e+3, xmax = 4.79e+37;
#else
static TYPE xneg = -26.628, xsmall = 1.11e-16,
xbig = 26.543, xhuge = 6.71e+7, xmax = 2.53e+307;
#endif
#define SQRPI ((TYPE) 0.56418958354775628695L)
#define THRESH ((TYPE) 0.46875L)
static TYPE a[5] = { 3.16112374387056560l, 113.864154151050156l,
377.485237685302021l, 3209.37758913846947l, 0.185777706184603153l };
static TYPE b[4] = { 23.6012909523441209l, 244.024637934444173l,
1282.61652607737228l, 2844.23683343917062l };
static TYPE c[9] = { 0.564188496988670089l, 8.88314979438837594l,
66.1191906371416295l, 298.635138197400131l, 881.952221241769090l,
1712.04761263407058l, 2051.07837782607147l, 1230.33935479799725l,
2.15311535474403846e-8l };
static TYPE d[8] = { 15.7449261107098347l, 117.693950891312499l,
537.181101862009858l, 1621.38957456669019l, 3290.79923573345963l,
4362.61909014324716l, 3439.36767414372164l, 1230.33935480374942l };
static TYPE p[6] = { 0.305326634961232344l, 0.360344899949804439l,
0.125781726111229246l, 0.0160837851487422766l,
0.000658749161529837803l, 0.0163153871373020978l };
static TYPE q[5] = { 2.56852019228982242l, 1.87295284992346047l,
0.527905102951428412l, 0.0605183413124413191l,
0.00233520497626869185l };
y = (x > 0 ? x : -x);
if (y <= THRESH)
{
ysq = 0;
if (y > xsmall)
ysq = y * y;
xnum = a[4]*ysq;
xden = ysq;
for (i = 0; i <= 2; i++)
{
xnum = (xnum + a[i]) * ysq;
xden = (xden + b[i]) * ysq;
}
res = x * (xnum + a[3]) / (xden + b[3]);
res = 1 - res;
res = EXP(ysq) * res;
return res;
}
else if (y <= 4)
{
xnum = c[8]*y;
xden = y;
for (i = 0; i <= 6; i++)
{
xnum = (xnum + c[i]) * y;
xden = (xden + d[i]) * y;
}
res = (xnum + c[7]) / (xden + d[7]);
}
else
{
res = 0;
if (y >= xbig)
{
if (y >= xmax)
goto finish;
if (y >= xhuge)
{
res = SQRPI / y;
goto finish;
}
}
ysq = ((TYPE) 1) / (y * y);
xnum = p[5]*ysq;
xden = ysq;
for (i = 0; i <= 3; i++)
{
xnum = (xnum + p[i]) * ysq;
xden = (xden + q[i]) * ysq;
}
res = ysq *(xnum + p[4]) / (xden + q[4]);
res = (SQRPI - res) / y;
}
finish:
if (x < 0)
{
if (x < xneg)
res = __builtin_inf ();
else
{
ysq = TRUNC (x*((TYPE) 16))/((TYPE) 16);
del = (x-ysq)*(x+ysq);
y = EXP(ysq*ysq) * EXP(del);
res = (y+y) - res;
}
}
return res;
}
#endif
#undef EXP
#undef TRUNC
#undef CONCAT
#undef TYPE
#undef KIND_SUFFIX
|