1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Annotate Ref in Prog with C types by parsing gcc debug output.
// Conversion of debug output to Go types.
package main
import (
"bytes"
"debug/dwarf"
"debug/elf"
"debug/macho"
"debug/pe"
"encoding/binary"
"errors"
"flag"
"fmt"
"go/ast"
"go/parser"
"go/token"
"os"
"strconv"
"strings"
"unicode"
"unicode/utf8"
)
var debugDefine = flag.Bool("debug-define", false, "print relevant #defines")
var debugGcc = flag.Bool("debug-gcc", false, "print gcc invocations")
var nameToC = map[string]string{
"schar": "signed char",
"uchar": "unsigned char",
"ushort": "unsigned short",
"uint": "unsigned int",
"ulong": "unsigned long",
"longlong": "long long",
"ulonglong": "unsigned long long",
"complexfloat": "float complex",
"complexdouble": "double complex",
}
// cname returns the C name to use for C.s.
// The expansions are listed in nameToC and also
// struct_foo becomes "struct foo", and similarly for
// union and enum.
func cname(s string) string {
if t, ok := nameToC[s]; ok {
return t
}
if strings.HasPrefix(s, "struct_") {
return "struct " + s[len("struct_"):]
}
if strings.HasPrefix(s, "union_") {
return "union " + s[len("union_"):]
}
if strings.HasPrefix(s, "enum_") {
return "enum " + s[len("enum_"):]
}
if strings.HasPrefix(s, "sizeof_") {
return "sizeof(" + cname(s[len("sizeof_"):]) + ")"
}
return s
}
// DiscardCgoDirectives processes the import C preamble, and discards
// all #cgo CFLAGS and LDFLAGS directives, so they don't make their
// way into _cgo_export.h.
func (f *File) DiscardCgoDirectives() {
linesIn := strings.Split(f.Preamble, "\n")
linesOut := make([]string, 0, len(linesIn))
for _, line := range linesIn {
l := strings.TrimSpace(line)
if len(l) < 5 || l[:4] != "#cgo" || !unicode.IsSpace(rune(l[4])) {
linesOut = append(linesOut, line)
} else {
linesOut = append(linesOut, "")
}
}
f.Preamble = strings.Join(linesOut, "\n")
}
// addToFlag appends args to flag. All flags are later written out onto the
// _cgo_flags file for the build system to use.
func (p *Package) addToFlag(flag string, args []string) {
p.CgoFlags[flag] = append(p.CgoFlags[flag], args...)
if flag == "CFLAGS" {
// We'll also need these when preprocessing for dwarf information.
p.GccOptions = append(p.GccOptions, args...)
}
}
// splitQuoted splits the string s around each instance of one or more consecutive
// white space characters while taking into account quotes and escaping, and
// returns an array of substrings of s or an empty list if s contains only white space.
// Single quotes and double quotes are recognized to prevent splitting within the
// quoted region, and are removed from the resulting substrings. If a quote in s
// isn't closed err will be set and r will have the unclosed argument as the
// last element. The backslash is used for escaping.
//
// For example, the following string:
//
// `a b:"c d" 'e''f' "g\""`
//
// Would be parsed as:
//
// []string{"a", "b:c d", "ef", `g"`}
//
func splitQuoted(s string) (r []string, err error) {
var args []string
arg := make([]rune, len(s))
escaped := false
quoted := false
quote := '\x00'
i := 0
for _, r := range s {
switch {
case escaped:
escaped = false
case r == '\\':
escaped = true
continue
case quote != 0:
if r == quote {
quote = 0
continue
}
case r == '"' || r == '\'':
quoted = true
quote = r
continue
case unicode.IsSpace(r):
if quoted || i > 0 {
quoted = false
args = append(args, string(arg[:i]))
i = 0
}
continue
}
arg[i] = r
i++
}
if quoted || i > 0 {
args = append(args, string(arg[:i]))
}
if quote != 0 {
err = errors.New("unclosed quote")
} else if escaped {
err = errors.New("unfinished escaping")
}
return args, err
}
var safeBytes = []byte(`+-.,/0123456789:=ABCDEFGHIJKLMNOPQRSTUVWXYZ\_abcdefghijklmnopqrstuvwxyz`)
func safeName(s string) bool {
if s == "" {
return false
}
for i := 0; i < len(s); i++ {
if c := s[i]; c < 0x80 && bytes.IndexByte(safeBytes, c) < 0 {
return false
}
}
return true
}
// Translate rewrites f.AST, the original Go input, to remove
// references to the imported package C, replacing them with
// references to the equivalent Go types, functions, and variables.
func (p *Package) Translate(f *File) {
for _, cref := range f.Ref {
// Convert C.ulong to C.unsigned long, etc.
cref.Name.C = cname(cref.Name.Go)
}
p.loadDefines(f)
needType := p.guessKinds(f)
if len(needType) > 0 {
p.loadDWARF(f, needType)
}
p.rewriteRef(f)
}
// loadDefines coerces gcc into spitting out the #defines in use
// in the file f and saves relevant renamings in f.Name[name].Define.
func (p *Package) loadDefines(f *File) {
var b bytes.Buffer
b.WriteString(f.Preamble)
b.WriteString(builtinProlog)
stdout := p.gccDefines(b.Bytes())
for _, line := range strings.Split(stdout, "\n") {
if len(line) < 9 || line[0:7] != "#define" {
continue
}
line = strings.TrimSpace(line[8:])
var key, val string
spaceIndex := strings.Index(line, " ")
tabIndex := strings.Index(line, "\t")
if spaceIndex == -1 && tabIndex == -1 {
continue
} else if tabIndex == -1 || (spaceIndex != -1 && spaceIndex < tabIndex) {
key = line[0:spaceIndex]
val = strings.TrimSpace(line[spaceIndex:])
} else {
key = line[0:tabIndex]
val = strings.TrimSpace(line[tabIndex:])
}
if n := f.Name[key]; n != nil {
if *debugDefine {
fmt.Fprintf(os.Stderr, "#define %s %s\n", key, val)
}
n.Define = val
}
}
}
// guessKinds tricks gcc into revealing the kind of each
// name xxx for the references C.xxx in the Go input.
// The kind is either a constant, type, or variable.
func (p *Package) guessKinds(f *File) []*Name {
// Determine kinds for names we already know about,
// like #defines or 'struct foo', before bothering with gcc.
var names, needType []*Name
for _, key := range nameKeys(f.Name) {
n := f.Name[key]
// If we've already found this name as a #define
// and we can translate it as a constant value, do so.
if n.Define != "" {
isConst := false
if _, err := strconv.Atoi(n.Define); err == nil {
isConst = true
} else if n.Define[0] == '"' || n.Define[0] == '\'' {
if _, err := parser.ParseExpr(n.Define); err == nil {
isConst = true
}
}
if isConst {
n.Kind = "const"
// Turn decimal into hex, just for consistency
// with enum-derived constants. Otherwise
// in the cgo -godefs output half the constants
// are in hex and half are in whatever the #define used.
i, err := strconv.ParseInt(n.Define, 0, 64)
if err == nil {
n.Const = fmt.Sprintf("%#x", i)
} else {
n.Const = n.Define
}
continue
}
if isName(n.Define) {
n.C = n.Define
}
}
needType = append(needType, n)
// If this is a struct, union, or enum type name, no need to guess the kind.
if strings.HasPrefix(n.C, "struct ") || strings.HasPrefix(n.C, "union ") || strings.HasPrefix(n.C, "enum ") {
n.Kind = "type"
continue
}
// Otherwise, we'll need to find out from gcc.
names = append(names, n)
}
// Bypass gcc if there's nothing left to find out.
if len(names) == 0 {
return needType
}
// Coerce gcc into telling us whether each name is a type, a value, or undeclared.
// For names, find out whether they are integer constants.
// We used to look at specific warning or error messages here, but that tied the
// behavior too closely to specific versions of the compilers.
// Instead, arrange that we can infer what we need from only the presence or absence
// of an error on a specific line.
//
// For each name, we generate these lines, where xxx is the index in toSniff plus one.
//
// #line xxx "not-declared"
// void __cgo_f_xxx_1(void) { __typeof__(name) *__cgo_undefined__; }
// #line xxx "not-type"
// void __cgo_f_xxx_2(void) { name *__cgo_undefined__; }
// #line xxx "not-const"
// void __cgo_f_xxx_3(void) { enum { __cgo_undefined__ = (name)*1 }; }
//
// If we see an error at not-declared:xxx, the corresponding name is not declared.
// If we see an error at not-type:xxx, the corresponding name is a type.
// If we see an error at not-const:xxx, the corresponding name is not an integer constant.
// If we see no errors, we assume the name is an expression but not a constant
// (so a variable or a function).
//
// The specific input forms are chosen so that they are valid C syntax regardless of
// whether name denotes a type or an expression.
var b bytes.Buffer
b.WriteString(f.Preamble)
b.WriteString(builtinProlog)
for i, n := range names {
fmt.Fprintf(&b, "#line %d \"not-declared\"\n"+
"void __cgo_f_%d_1(void) { __typeof__(%s) *__cgo_undefined__; }\n"+
"#line %d \"not-type\"\n"+
"void __cgo_f_%d_2(void) { %s *__cgo_undefined__; }\n"+
"#line %d \"not-const\"\n"+
"void __cgo_f_%d_3(void) { enum { __cgo__undefined__ = (%s)*1 }; }\n",
i+1, i+1, n.C,
i+1, i+1, n.C,
i+1, i+1, n.C)
}
fmt.Fprintf(&b, "#line 1 \"completed\"\n"+
"int __cgo__1 = __cgo__2;\n")
stderr := p.gccErrors(b.Bytes())
if stderr == "" {
fatalf("%s produced no output\non input:\n%s", p.gccBaseCmd()[0], b.Bytes())
}
completed := false
sniff := make([]int, len(names))
const (
notType = 1 << iota
notConst
notDeclared
)
for _, line := range strings.Split(stderr, "\n") {
if !strings.Contains(line, ": error:") {
// we only care about errors.
// we tried to turn off warnings on the command line, but one never knows.
continue
}
c1 := strings.Index(line, ":")
if c1 < 0 {
continue
}
c2 := strings.Index(line[c1+1:], ":")
if c2 < 0 {
continue
}
c2 += c1 + 1
filename := line[:c1]
i, _ := strconv.Atoi(line[c1+1 : c2])
i--
if i < 0 || i >= len(names) {
continue
}
switch filename {
case "completed":
// Strictly speaking, there is no guarantee that seeing the error at completed:1
// (at the end of the file) means we've seen all the errors from earlier in the file,
// but usually it does. Certainly if we don't see the completed:1 error, we did
// not get all the errors we expected.
completed = true
case "not-declared":
sniff[i] |= notDeclared
case "not-type":
sniff[i] |= notType
case "not-const":
sniff[i] |= notConst
}
}
if !completed {
fatalf("%s did not produce error at completed:1\non input:\n%s\nfull error output:\n%s", p.gccBaseCmd()[0], b.Bytes(), stderr)
}
for i, n := range names {
switch sniff[i] {
default:
error_(token.NoPos, "could not determine kind of name for C.%s", fixGo(n.Go))
case notType:
n.Kind = "const"
case notConst:
n.Kind = "type"
case notConst | notType:
n.Kind = "not-type"
}
}
if nerrors > 0 {
// Check if compiling the preamble by itself causes any errors,
// because the messages we've printed out so far aren't helpful
// to users debugging preamble mistakes. See issue 8442.
preambleErrors := p.gccErrors([]byte(f.Preamble))
if len(preambleErrors) > 0 {
error_(token.NoPos, "\n%s errors for preamble:\n%s", p.gccBaseCmd()[0], preambleErrors)
}
fatalf("unresolved names")
}
needType = append(needType, names...)
return needType
}
// loadDWARF parses the DWARF debug information generated
// by gcc to learn the details of the constants, variables, and types
// being referred to as C.xxx.
func (p *Package) loadDWARF(f *File, names []*Name) {
// Extract the types from the DWARF section of an object
// from a well-formed C program. Gcc only generates DWARF info
// for symbols in the object file, so it is not enough to print the
// preamble and hope the symbols we care about will be there.
// Instead, emit
// __typeof__(names[i]) *__cgo__i;
// for each entry in names and then dereference the type we
// learn for __cgo__i.
var b bytes.Buffer
b.WriteString(f.Preamble)
b.WriteString(builtinProlog)
for i, n := range names {
fmt.Fprintf(&b, "__typeof__(%s) *__cgo__%d;\n", n.C, i)
if n.Kind == "const" {
fmt.Fprintf(&b, "enum { __cgo_enum__%d = %s };\n", i, n.C)
}
}
// Apple's LLVM-based gcc does not include the enumeration
// names and values in its DWARF debug output. In case we're
// using such a gcc, create a data block initialized with the values.
// We can read them out of the object file.
fmt.Fprintf(&b, "long long __cgodebug_data[] = {\n")
for _, n := range names {
if n.Kind == "const" {
fmt.Fprintf(&b, "\t%s,\n", n.C)
} else {
fmt.Fprintf(&b, "\t0,\n")
}
}
// for the last entry, we can not use 0, otherwise
// in case all __cgodebug_data is zero initialized,
// LLVM-based gcc will place the it in the __DATA.__common
// zero-filled section (our debug/macho doesn't support
// this)
fmt.Fprintf(&b, "\t1\n")
fmt.Fprintf(&b, "};\n")
d, bo, debugData := p.gccDebug(b.Bytes())
enumVal := make([]int64, len(debugData)/8)
for i := range enumVal {
enumVal[i] = int64(bo.Uint64(debugData[i*8:]))
}
// Scan DWARF info for top-level TagVariable entries with AttrName __cgo__i.
types := make([]dwarf.Type, len(names))
enums := make([]dwarf.Offset, len(names))
nameToIndex := make(map[*Name]int)
for i, n := range names {
nameToIndex[n] = i
}
nameToRef := make(map[*Name]*Ref)
for _, ref := range f.Ref {
nameToRef[ref.Name] = ref
}
r := d.Reader()
for {
e, err := r.Next()
if err != nil {
fatalf("reading DWARF entry: %s", err)
}
if e == nil {
break
}
switch e.Tag {
case dwarf.TagEnumerationType:
offset := e.Offset
for {
e, err := r.Next()
if err != nil {
fatalf("reading DWARF entry: %s", err)
}
if e.Tag == 0 {
break
}
if e.Tag == dwarf.TagEnumerator {
entryName := e.Val(dwarf.AttrName).(string)
if strings.HasPrefix(entryName, "__cgo_enum__") {
n, _ := strconv.Atoi(entryName[len("__cgo_enum__"):])
if 0 <= n && n < len(names) {
enums[n] = offset
}
}
}
}
case dwarf.TagVariable:
name, _ := e.Val(dwarf.AttrName).(string)
typOff, _ := e.Val(dwarf.AttrType).(dwarf.Offset)
if name == "" || typOff == 0 {
if e.Val(dwarf.AttrSpecification) != nil {
// Since we are reading all the DWARF,
// assume we will see the variable elsewhere.
break
}
fatalf("malformed DWARF TagVariable entry")
}
if !strings.HasPrefix(name, "__cgo__") {
break
}
typ, err := d.Type(typOff)
if err != nil {
fatalf("loading DWARF type: %s", err)
}
t, ok := typ.(*dwarf.PtrType)
if !ok || t == nil {
fatalf("internal error: %s has non-pointer type", name)
}
i, err := strconv.Atoi(name[7:])
if err != nil {
fatalf("malformed __cgo__ name: %s", name)
}
if enums[i] != 0 {
t, err := d.Type(enums[i])
if err != nil {
fatalf("loading DWARF type: %s", err)
}
types[i] = t
} else {
types[i] = t.Type
}
}
if e.Tag != dwarf.TagCompileUnit {
r.SkipChildren()
}
}
// Record types and typedef information.
var conv typeConv
conv.Init(p.PtrSize, p.IntSize)
for i, n := range names {
if types[i] == nil {
continue
}
pos := token.NoPos
if ref, ok := nameToRef[n]; ok {
pos = ref.Pos()
}
f, fok := types[i].(*dwarf.FuncType)
if n.Kind != "type" && fok {
n.Kind = "func"
n.FuncType = conv.FuncType(f, pos)
} else {
n.Type = conv.Type(types[i], pos)
if enums[i] != 0 && n.Type.EnumValues != nil {
k := fmt.Sprintf("__cgo_enum__%d", i)
n.Kind = "const"
n.Const = fmt.Sprintf("%#x", n.Type.EnumValues[k])
// Remove injected enum to ensure the value will deep-compare
// equally in future loads of the same constant.
delete(n.Type.EnumValues, k)
}
// Prefer debug data over DWARF debug output, if we have it.
if n.Kind == "const" && i < len(enumVal) {
n.Const = fmt.Sprintf("%#x", enumVal[i])
}
}
conv.FinishType(pos)
}
}
// mangleName does name mangling to translate names
// from the original Go source files to the names
// used in the final Go files generated by cgo.
func (p *Package) mangleName(n *Name) {
// When using gccgo variables have to be
// exported so that they become global symbols
// that the C code can refer to.
prefix := "_C"
if *gccgo && n.IsVar() {
prefix = "C"
}
n.Mangle = prefix + n.Kind + "_" + n.Go
}
// rewriteRef rewrites all the C.xxx references in f.AST to refer to the
// Go equivalents, now that we have figured out the meaning of all
// the xxx. In *godefs or *cdefs mode, rewriteRef replaces the names
// with full definitions instead of mangled names.
func (p *Package) rewriteRef(f *File) {
// Keep a list of all the functions, to remove the ones
// only used as expressions and avoid generating bridge
// code for them.
functions := make(map[string]bool)
// Assign mangled names.
for _, n := range f.Name {
if n.Kind == "not-type" {
n.Kind = "var"
}
if n.Mangle == "" {
p.mangleName(n)
}
if n.Kind == "func" {
functions[n.Go] = false
}
}
// Now that we have all the name types filled in,
// scan through the Refs to identify the ones that
// are trying to do a ,err call. Also check that
// functions are only used in calls.
for _, r := range f.Ref {
if r.Name.Kind == "const" && r.Name.Const == "" {
error_(r.Pos(), "unable to find value of constant C.%s", fixGo(r.Name.Go))
}
var expr ast.Expr = ast.NewIdent(r.Name.Mangle) // default
switch r.Context {
case "call", "call2":
if r.Name.Kind != "func" {
if r.Name.Kind == "type" {
r.Context = "type"
expr = r.Name.Type.Go
break
}
error_(r.Pos(), "call of non-function C.%s", fixGo(r.Name.Go))
break
}
functions[r.Name.Go] = true
if r.Context == "call2" {
if r.Name.Go == "_CMalloc" {
error_(r.Pos(), "no two-result form for C.malloc")
break
}
// Invent new Name for the two-result function.
n := f.Name["2"+r.Name.Go]
if n == nil {
n = new(Name)
*n = *r.Name
n.AddError = true
n.Mangle = "_C2func_" + n.Go
f.Name["2"+r.Name.Go] = n
}
expr = ast.NewIdent(n.Mangle)
r.Name = n
break
}
case "expr":
if r.Name.Kind == "func" {
// Function is being used in an expression, to e.g. pass around a C function pointer.
// Create a new Name for this Ref which causes the variable to be declared in Go land.
fpName := "fp_" + r.Name.Go
name := f.Name[fpName]
if name == nil {
name = &Name{
Go: fpName,
C: r.Name.C,
Kind: "fpvar",
Type: &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("void*"), Go: ast.NewIdent("unsafe.Pointer")},
}
p.mangleName(name)
f.Name[fpName] = name
}
r.Name = name
// Rewrite into call to _Cgo_ptr to prevent assignments. The _Cgo_ptr
// function is defined in out.go and simply returns its argument. See
// issue 7757.
expr = &ast.CallExpr{
Fun: &ast.Ident{NamePos: (*r.Expr).Pos(), Name: "_Cgo_ptr"},
Args: []ast.Expr{ast.NewIdent(name.Mangle)},
}
} else if r.Name.Kind == "type" {
// Okay - might be new(T)
expr = r.Name.Type.Go
} else if r.Name.Kind == "var" {
expr = &ast.StarExpr{Star: (*r.Expr).Pos(), X: expr}
}
case "type":
if r.Name.Kind != "type" {
error_(r.Pos(), "expression C.%s used as type", fixGo(r.Name.Go))
} else if r.Name.Type == nil {
// Use of C.enum_x, C.struct_x or C.union_x without C definition.
// GCC won't raise an error when using pointers to such unknown types.
error_(r.Pos(), "type C.%s: undefined C type '%s'", fixGo(r.Name.Go), r.Name.C)
} else {
expr = r.Name.Type.Go
}
default:
if r.Name.Kind == "func" {
error_(r.Pos(), "must call C.%s", fixGo(r.Name.Go))
}
}
if *godefs || *cdefs {
// Substitute definition for mangled type name.
if id, ok := expr.(*ast.Ident); ok {
if t := typedef[id.Name]; t != nil {
expr = t.Go
}
if id.Name == r.Name.Mangle && r.Name.Const != "" {
expr = ast.NewIdent(r.Name.Const)
}
}
}
// Copy position information from old expr into new expr,
// in case expression being replaced is first on line.
// See golang.org/issue/6563.
pos := (*r.Expr).Pos()
switch x := expr.(type) {
case *ast.Ident:
expr = &ast.Ident{NamePos: pos, Name: x.Name}
}
*r.Expr = expr
}
// Remove functions only used as expressions, so their respective
// bridge functions are not generated.
for name, used := range functions {
if !used {
delete(f.Name, name)
}
}
}
// gccBaseCmd returns the start of the compiler command line.
// It uses $CC if set, or else $GCC, or else the compiler recorded
// during the initial build as defaultCC.
// defaultCC is defined in zdefaultcc.go, written by cmd/dist.
func (p *Package) gccBaseCmd() []string {
// Use $CC if set, since that's what the build uses.
if ret := strings.Fields(os.Getenv("CC")); len(ret) > 0 {
return ret
}
// Try $GCC if set, since that's what we used to use.
if ret := strings.Fields(os.Getenv("GCC")); len(ret) > 0 {
return ret
}
return strings.Fields(defaultCC)
}
// gccMachine returns the gcc -m flag to use, either "-m32", "-m64" or "-marm".
func (p *Package) gccMachine() []string {
switch goarch {
case "amd64":
return []string{"-m64"}
case "386":
return []string{"-m32"}
case "arm":
return []string{"-marm"} // not thumb
}
return nil
}
func gccTmp() string {
return *objDir + "_cgo_.o"
}
// gccCmd returns the gcc command line to use for compiling
// the input.
func (p *Package) gccCmd() []string {
c := append(p.gccBaseCmd(),
"-w", // no warnings
"-Wno-error", // warnings are not errors
"-o"+gccTmp(), // write object to tmp
"-gdwarf-2", // generate DWARF v2 debugging symbols
"-c", // do not link
"-xc", // input language is C
)
if strings.Contains(c[0], "clang") {
c = append(c,
"-ferror-limit=0",
// Apple clang version 1.7 (tags/Apple/clang-77) (based on LLVM 2.9svn)
// doesn't have -Wno-unneeded-internal-declaration, so we need yet another
// flag to disable the warning. Yes, really good diagnostics, clang.
"-Wno-unknown-warning-option",
"-Wno-unneeded-internal-declaration",
"-Wno-unused-function",
"-Qunused-arguments",
// Clang embeds prototypes for some builtin functions,
// like malloc and calloc, but all size_t parameters are
// incorrectly typed unsigned long. We work around that
// by disabling the builtin functions (this is safe as
// it won't affect the actual compilation of the C code).
// See: http://golang.org/issue/6506.
"-fno-builtin",
)
}
c = append(c, p.GccOptions...)
c = append(c, p.gccMachine()...)
c = append(c, "-") //read input from standard input
return c
}
// gccDebug runs gcc -gdwarf-2 over the C program stdin and
// returns the corresponding DWARF data and, if present, debug data block.
func (p *Package) gccDebug(stdin []byte) (*dwarf.Data, binary.ByteOrder, []byte) {
runGcc(stdin, p.gccCmd())
isDebugData := func(s string) bool {
// Some systems use leading _ to denote non-assembly symbols.
return s == "__cgodebug_data" || s == "___cgodebug_data"
}
if f, err := macho.Open(gccTmp()); err == nil {
defer f.Close()
d, err := f.DWARF()
if err != nil {
fatalf("cannot load DWARF output from %s: %v", gccTmp(), err)
}
var data []byte
if f.Symtab != nil {
for i := range f.Symtab.Syms {
s := &f.Symtab.Syms[i]
if isDebugData(s.Name) {
// Found it. Now find data section.
if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) {
sect := f.Sections[i]
if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
if sdat, err := sect.Data(); err == nil {
data = sdat[s.Value-sect.Addr:]
}
}
}
}
}
}
return d, f.ByteOrder, data
}
if f, err := elf.Open(gccTmp()); err == nil {
defer f.Close()
d, err := f.DWARF()
if err != nil {
fatalf("cannot load DWARF output from %s: %v", gccTmp(), err)
}
var data []byte
symtab, err := f.Symbols()
if err == nil {
for i := range symtab {
s := &symtab[i]
if isDebugData(s.Name) {
// Found it. Now find data section.
if i := int(s.Section); 0 <= i && i < len(f.Sections) {
sect := f.Sections[i]
if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
if sdat, err := sect.Data(); err == nil {
data = sdat[s.Value-sect.Addr:]
}
}
}
}
}
}
return d, f.ByteOrder, data
}
if f, err := pe.Open(gccTmp()); err == nil {
defer f.Close()
d, err := f.DWARF()
if err != nil {
fatalf("cannot load DWARF output from %s: %v", gccTmp(), err)
}
var data []byte
for _, s := range f.Symbols {
if isDebugData(s.Name) {
if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) {
sect := f.Sections[i]
if s.Value < sect.Size {
if sdat, err := sect.Data(); err == nil {
data = sdat[s.Value:]
}
}
}
}
}
return d, binary.LittleEndian, data
}
fatalf("cannot parse gcc output %s as ELF, Mach-O, PE object", gccTmp())
panic("not reached")
}
// gccDefines runs gcc -E -dM -xc - over the C program stdin
// and returns the corresponding standard output, which is the
// #defines that gcc encountered while processing the input
// and its included files.
func (p *Package) gccDefines(stdin []byte) string {
base := append(p.gccBaseCmd(), "-E", "-dM", "-xc")
base = append(base, p.gccMachine()...)
stdout, _ := runGcc(stdin, append(append(base, p.GccOptions...), "-"))
return stdout
}
// gccErrors runs gcc over the C program stdin and returns
// the errors that gcc prints. That is, this function expects
// gcc to fail.
func (p *Package) gccErrors(stdin []byte) string {
// TODO(rsc): require failure
args := p.gccCmd()
if *debugGcc {
fmt.Fprintf(os.Stderr, "$ %s <<EOF\n", strings.Join(args, " "))
os.Stderr.Write(stdin)
fmt.Fprint(os.Stderr, "EOF\n")
}
stdout, stderr, _ := run(stdin, args)
if *debugGcc {
os.Stderr.Write(stdout)
os.Stderr.Write(stderr)
}
return string(stderr)
}
// runGcc runs the gcc command line args with stdin on standard input.
// If the command exits with a non-zero exit status, runGcc prints
// details about what was run and exits.
// Otherwise runGcc returns the data written to standard output and standard error.
// Note that for some of the uses we expect useful data back
// on standard error, but for those uses gcc must still exit 0.
func runGcc(stdin []byte, args []string) (string, string) {
if *debugGcc {
fmt.Fprintf(os.Stderr, "$ %s <<EOF\n", strings.Join(args, " "))
os.Stderr.Write(stdin)
fmt.Fprint(os.Stderr, "EOF\n")
}
stdout, stderr, ok := run(stdin, args)
if *debugGcc {
os.Stderr.Write(stdout)
os.Stderr.Write(stderr)
}
if !ok {
os.Stderr.Write(stderr)
os.Exit(2)
}
return string(stdout), string(stderr)
}
// A typeConv is a translator from dwarf types to Go types
// with equivalent memory layout.
type typeConv struct {
// Cache of already-translated or in-progress types.
m map[dwarf.Type]*Type
typedef map[string]ast.Expr
// Map from types to incomplete pointers to those types.
ptrs map[dwarf.Type][]*Type
// Keys of ptrs in insertion order (deterministic worklist)
ptrKeys []dwarf.Type
// Predeclared types.
bool ast.Expr
byte ast.Expr // denotes padding
int8, int16, int32, int64 ast.Expr
uint8, uint16, uint32, uint64, uintptr ast.Expr
float32, float64 ast.Expr
complex64, complex128 ast.Expr
void ast.Expr
string ast.Expr
goVoid ast.Expr // _Ctype_void, denotes C's void
goVoidPtr ast.Expr // unsafe.Pointer or *byte
ptrSize int64
intSize int64
}
var tagGen int
var typedef = make(map[string]*Type)
var goIdent = make(map[string]*ast.Ident)
func (c *typeConv) Init(ptrSize, intSize int64) {
c.ptrSize = ptrSize
c.intSize = intSize
c.m = make(map[dwarf.Type]*Type)
c.ptrs = make(map[dwarf.Type][]*Type)
c.bool = c.Ident("bool")
c.byte = c.Ident("byte")
c.int8 = c.Ident("int8")
c.int16 = c.Ident("int16")
c.int32 = c.Ident("int32")
c.int64 = c.Ident("int64")
c.uint8 = c.Ident("uint8")
c.uint16 = c.Ident("uint16")
c.uint32 = c.Ident("uint32")
c.uint64 = c.Ident("uint64")
c.uintptr = c.Ident("uintptr")
c.float32 = c.Ident("float32")
c.float64 = c.Ident("float64")
c.complex64 = c.Ident("complex64")
c.complex128 = c.Ident("complex128")
c.void = c.Ident("void")
c.string = c.Ident("string")
c.goVoid = c.Ident("_Ctype_void")
// Normally cgo translates void* to unsafe.Pointer,
// but for historical reasons -cdefs and -godefs use *byte instead.
if *cdefs || *godefs {
c.goVoidPtr = &ast.StarExpr{X: c.byte}
} else {
c.goVoidPtr = c.Ident("unsafe.Pointer")
}
}
// base strips away qualifiers and typedefs to get the underlying type
func base(dt dwarf.Type) dwarf.Type {
for {
if d, ok := dt.(*dwarf.QualType); ok {
dt = d.Type
continue
}
if d, ok := dt.(*dwarf.TypedefType); ok {
dt = d.Type
continue
}
break
}
return dt
}
// Map from dwarf text names to aliases we use in package "C".
var dwarfToName = map[string]string{
"long int": "long",
"long unsigned int": "ulong",
"unsigned int": "uint",
"short unsigned int": "ushort",
"short int": "short",
"long long int": "longlong",
"long long unsigned int": "ulonglong",
"signed char": "schar",
"float complex": "complexfloat",
"double complex": "complexdouble",
}
const signedDelta = 64
// String returns the current type representation. Format arguments
// are assembled within this method so that any changes in mutable
// values are taken into account.
func (tr *TypeRepr) String() string {
if len(tr.Repr) == 0 {
return ""
}
if len(tr.FormatArgs) == 0 {
return tr.Repr
}
return fmt.Sprintf(tr.Repr, tr.FormatArgs...)
}
// Empty returns true if the result of String would be "".
func (tr *TypeRepr) Empty() bool {
return len(tr.Repr) == 0
}
// Set modifies the type representation.
// If fargs are provided, repr is used as a format for fmt.Sprintf.
// Otherwise, repr is used unprocessed as the type representation.
func (tr *TypeRepr) Set(repr string, fargs ...interface{}) {
tr.Repr = repr
tr.FormatArgs = fargs
}
// FinishType completes any outstanding type mapping work.
// In particular, it resolves incomplete pointer types.
func (c *typeConv) FinishType(pos token.Pos) {
// Completing one pointer type might produce more to complete.
// Keep looping until they're all done.
for len(c.ptrKeys) > 0 {
dtype := c.ptrKeys[0]
c.ptrKeys = c.ptrKeys[1:]
// Note Type might invalidate c.ptrs[dtype].
t := c.Type(dtype, pos)
for _, ptr := range c.ptrs[dtype] {
ptr.Go.(*ast.StarExpr).X = t.Go
ptr.C.Set("%s*", t.C)
}
c.ptrs[dtype] = nil // retain the map key
}
}
// Type returns a *Type with the same memory layout as
// dtype when used as the type of a variable or a struct field.
func (c *typeConv) Type(dtype dwarf.Type, pos token.Pos) *Type {
if t, ok := c.m[dtype]; ok {
if t.Go == nil {
fatalf("%s: type conversion loop at %s", lineno(pos), dtype)
}
return t
}
t := new(Type)
t.Size = dtype.Size() // note: wrong for array of pointers, corrected below
t.Align = -1
t.C = &TypeRepr{Repr: dtype.Common().Name}
c.m[dtype] = t
switch dt := dtype.(type) {
default:
fatalf("%s: unexpected type: %s", lineno(pos), dtype)
case *dwarf.AddrType:
if t.Size != c.ptrSize {
fatalf("%s: unexpected: %d-byte address type - %s", lineno(pos), t.Size, dtype)
}
t.Go = c.uintptr
t.Align = t.Size
case *dwarf.ArrayType:
if dt.StrideBitSize > 0 {
// Cannot represent bit-sized elements in Go.
t.Go = c.Opaque(t.Size)
break
}
count := dt.Count
if count == -1 {
// Indicates flexible array member, which Go doesn't support.
// Translate to zero-length array instead.
count = 0
}
sub := c.Type(dt.Type, pos)
t.Align = sub.Align
t.Go = &ast.ArrayType{
Len: c.intExpr(count),
Elt: sub.Go,
}
// Recalculate t.Size now that we know sub.Size.
t.Size = count * sub.Size
t.C.Set("__typeof__(%s[%d])", sub.C, dt.Count)
case *dwarf.BoolType:
t.Go = c.bool
t.Align = 1
case *dwarf.CharType:
if t.Size != 1 {
fatalf("%s: unexpected: %d-byte char type - %s", lineno(pos), t.Size, dtype)
}
t.Go = c.int8
t.Align = 1
case *dwarf.EnumType:
if t.Align = t.Size; t.Align >= c.ptrSize {
t.Align = c.ptrSize
}
t.C.Set("enum " + dt.EnumName)
signed := 0
t.EnumValues = make(map[string]int64)
for _, ev := range dt.Val {
t.EnumValues[ev.Name] = ev.Val
if ev.Val < 0 {
signed = signedDelta
}
}
switch t.Size + int64(signed) {
default:
fatalf("%s: unexpected: %d-byte enum type - %s", lineno(pos), t.Size, dtype)
case 1:
t.Go = c.uint8
case 2:
t.Go = c.uint16
case 4:
t.Go = c.uint32
case 8:
t.Go = c.uint64
case 1 + signedDelta:
t.Go = c.int8
case 2 + signedDelta:
t.Go = c.int16
case 4 + signedDelta:
t.Go = c.int32
case 8 + signedDelta:
t.Go = c.int64
}
case *dwarf.FloatType:
switch t.Size {
default:
fatalf("%s: unexpected: %d-byte float type - %s", lineno(pos), t.Size, dtype)
case 4:
t.Go = c.float32
case 8:
t.Go = c.float64
}
if t.Align = t.Size; t.Align >= c.ptrSize {
t.Align = c.ptrSize
}
case *dwarf.ComplexType:
switch t.Size {
default:
fatalf("%s: unexpected: %d-byte complex type - %s", lineno(pos), t.Size, dtype)
case 8:
t.Go = c.complex64
case 16:
t.Go = c.complex128
}
if t.Align = t.Size; t.Align >= c.ptrSize {
t.Align = c.ptrSize
}
case *dwarf.FuncType:
// No attempt at translation: would enable calls
// directly between worlds, but we need to moderate those.
t.Go = c.uintptr
t.Align = c.ptrSize
case *dwarf.IntType:
if dt.BitSize > 0 {
fatalf("%s: unexpected: %d-bit int type - %s", lineno(pos), dt.BitSize, dtype)
}
switch t.Size {
default:
fatalf("%s: unexpected: %d-byte int type - %s", lineno(pos), t.Size, dtype)
case 1:
t.Go = c.int8
case 2:
t.Go = c.int16
case 4:
t.Go = c.int32
case 8:
t.Go = c.int64
}
if t.Align = t.Size; t.Align >= c.ptrSize {
t.Align = c.ptrSize
}
case *dwarf.PtrType:
// Clang doesn't emit DW_AT_byte_size for pointer types.
if t.Size != c.ptrSize && t.Size != -1 {
fatalf("%s: unexpected: %d-byte pointer type - %s", lineno(pos), t.Size, dtype)
}
t.Size = c.ptrSize
t.Align = c.ptrSize
if _, ok := base(dt.Type).(*dwarf.VoidType); ok {
t.Go = c.goVoidPtr
t.C.Set("void*")
break
}
// Placeholder initialization; completed in FinishType.
t.Go = &ast.StarExpr{}
t.C.Set("<incomplete>*")
if _, ok := c.ptrs[dt.Type]; !ok {
c.ptrKeys = append(c.ptrKeys, dt.Type)
}
c.ptrs[dt.Type] = append(c.ptrs[dt.Type], t)
case *dwarf.QualType:
// Ignore qualifier.
t = c.Type(dt.Type, pos)
c.m[dtype] = t
return t
case *dwarf.StructType:
// Convert to Go struct, being careful about alignment.
// Have to give it a name to simulate C "struct foo" references.
tag := dt.StructName
if dt.ByteSize < 0 && tag == "" { // opaque unnamed struct - should not be possible
break
}
if tag == "" {
tag = "__" + strconv.Itoa(tagGen)
tagGen++
} else if t.C.Empty() {
t.C.Set(dt.Kind + " " + tag)
}
name := c.Ident("_Ctype_" + dt.Kind + "_" + tag)
t.Go = name // publish before recursive calls
goIdent[name.Name] = name
if dt.ByteSize < 0 {
// Size calculation in c.Struct/c.Opaque will die with size=-1 (unknown),
// so execute the basic things that the struct case would do
// other than try to determine a Go representation.
tt := *t
tt.C = &TypeRepr{"%s %s", []interface{}{dt.Kind, tag}}
tt.Go = c.Ident("struct{}")
typedef[name.Name] = &tt
break
}
switch dt.Kind {
case "class", "union":
t.Go = c.Opaque(t.Size)
if t.C.Empty() {
t.C.Set("__typeof__(unsigned char[%d])", t.Size)
}
t.Align = 1 // TODO: should probably base this on field alignment.
typedef[name.Name] = t
case "struct":
g, csyntax, align := c.Struct(dt, pos)
if t.C.Empty() {
t.C.Set(csyntax)
}
t.Align = align
tt := *t
if tag != "" {
tt.C = &TypeRepr{"struct %s", []interface{}{tag}}
}
tt.Go = g
typedef[name.Name] = &tt
}
case *dwarf.TypedefType:
// Record typedef for printing.
if dt.Name == "_GoString_" {
// Special C name for Go string type.
// Knows string layout used by compilers: pointer plus length,
// which rounds up to 2 pointers after alignment.
t.Go = c.string
t.Size = c.ptrSize * 2
t.Align = c.ptrSize
break
}
if dt.Name == "_GoBytes_" {
// Special C name for Go []byte type.
// Knows slice layout used by compilers: pointer, length, cap.
t.Go = c.Ident("[]byte")
t.Size = c.ptrSize + 4 + 4
t.Align = c.ptrSize
break
}
name := c.Ident("_Ctype_" + dt.Name)
goIdent[name.Name] = name
sub := c.Type(dt.Type, pos)
t.Go = name
t.Size = sub.Size
t.Align = sub.Align
oldType := typedef[name.Name]
if oldType == nil {
tt := *t
tt.Go = sub.Go
typedef[name.Name] = &tt
}
// If sub.Go.Name is "_Ctype_struct_foo" or "_Ctype_union_foo" or "_Ctype_class_foo",
// use that as the Go form for this typedef too, so that the typedef will be interchangeable
// with the base type.
// In -godefs and -cdefs mode, do this for all typedefs.
if isStructUnionClass(sub.Go) || *godefs || *cdefs {
t.Go = sub.Go
if isStructUnionClass(sub.Go) {
// Use the typedef name for C code.
typedef[sub.Go.(*ast.Ident).Name].C = t.C
}
// If we've seen this typedef before, and it
// was an anonymous struct/union/class before
// too, use the old definition.
// TODO: it would be safer to only do this if
// we verify that the types are the same.
if oldType != nil && isStructUnionClass(oldType.Go) {
t.Go = oldType.Go
}
}
case *dwarf.UcharType:
if t.Size != 1 {
fatalf("%s: unexpected: %d-byte uchar type - %s", lineno(pos), t.Size, dtype)
}
t.Go = c.uint8
t.Align = 1
case *dwarf.UintType:
if dt.BitSize > 0 {
fatalf("%s: unexpected: %d-bit uint type - %s", lineno(pos), dt.BitSize, dtype)
}
switch t.Size {
default:
fatalf("%s: unexpected: %d-byte uint type - %s", lineno(pos), t.Size, dtype)
case 1:
t.Go = c.uint8
case 2:
t.Go = c.uint16
case 4:
t.Go = c.uint32
case 8:
t.Go = c.uint64
}
if t.Align = t.Size; t.Align >= c.ptrSize {
t.Align = c.ptrSize
}
case *dwarf.VoidType:
t.Go = c.goVoid
t.C.Set("void")
t.Align = 1
}
switch dtype.(type) {
case *dwarf.AddrType, *dwarf.BoolType, *dwarf.CharType, *dwarf.IntType, *dwarf.FloatType, *dwarf.UcharType, *dwarf.UintType:
s := dtype.Common().Name
if s != "" {
if ss, ok := dwarfToName[s]; ok {
s = ss
}
s = strings.Join(strings.Split(s, " "), "") // strip spaces
name := c.Ident("_Ctype_" + s)
tt := *t
typedef[name.Name] = &tt
if !*godefs && !*cdefs {
t.Go = name
}
}
}
if t.Size < 0 {
// Unsized types are [0]byte, unless they're typedefs of other types
// or structs with tags.
// if so, use the name we've already defined.
t.Size = 0
switch dt := dtype.(type) {
case *dwarf.TypedefType:
// ok
case *dwarf.StructType:
if dt.StructName != "" {
break
}
t.Go = c.Opaque(0)
default:
t.Go = c.Opaque(0)
}
if t.C.Empty() {
t.C.Set("void")
}
}
if t.C.Empty() {
fatalf("%s: internal error: did not create C name for %s", lineno(pos), dtype)
}
return t
}
// isStructUnionClass reports whether the type described by the Go syntax x
// is a struct, union, or class with a tag.
func isStructUnionClass(x ast.Expr) bool {
id, ok := x.(*ast.Ident)
if !ok {
return false
}
name := id.Name
return strings.HasPrefix(name, "_Ctype_struct_") ||
strings.HasPrefix(name, "_Ctype_union_") ||
strings.HasPrefix(name, "_Ctype_class_")
}
// FuncArg returns a Go type with the same memory layout as
// dtype when used as the type of a C function argument.
func (c *typeConv) FuncArg(dtype dwarf.Type, pos token.Pos) *Type {
t := c.Type(dtype, pos)
switch dt := dtype.(type) {
case *dwarf.ArrayType:
// Arrays are passed implicitly as pointers in C.
// In Go, we must be explicit.
tr := &TypeRepr{}
tr.Set("%s*", t.C)
return &Type{
Size: c.ptrSize,
Align: c.ptrSize,
Go: &ast.StarExpr{X: t.Go},
C: tr,
}
case *dwarf.TypedefType:
// C has much more relaxed rules than Go for
// implicit type conversions. When the parameter
// is type T defined as *X, simulate a little of the
// laxness of C by making the argument *X instead of T.
if ptr, ok := base(dt.Type).(*dwarf.PtrType); ok {
// Unless the typedef happens to point to void* since
// Go has special rules around using unsafe.Pointer.
if _, void := base(ptr.Type).(*dwarf.VoidType); void {
break
}
t = c.Type(ptr, pos)
if t == nil {
return nil
}
// Remember the C spelling, in case the struct
// has __attribute__((unavailable)) on it. See issue 2888.
t.Typedef = dt.Name
}
}
return t
}
// FuncType returns the Go type analogous to dtype.
// There is no guarantee about matching memory layout.
func (c *typeConv) FuncType(dtype *dwarf.FuncType, pos token.Pos) *FuncType {
p := make([]*Type, len(dtype.ParamType))
gp := make([]*ast.Field, len(dtype.ParamType))
for i, f := range dtype.ParamType {
// gcc's DWARF generator outputs a single DotDotDotType parameter for
// function pointers that specify no parameters (e.g. void
// (*__cgo_0)()). Treat this special case as void. This case is
// invalid according to ISO C anyway (i.e. void (*__cgo_1)(...) is not
// legal).
if _, ok := f.(*dwarf.DotDotDotType); ok && i == 0 {
p, gp = nil, nil
break
}
p[i] = c.FuncArg(f, pos)
gp[i] = &ast.Field{Type: p[i].Go}
}
var r *Type
var gr []*ast.Field
if _, ok := dtype.ReturnType.(*dwarf.VoidType); ok {
gr = []*ast.Field{{Type: c.goVoid}}
} else if dtype.ReturnType != nil {
r = c.Type(dtype.ReturnType, pos)
gr = []*ast.Field{{Type: r.Go}}
}
return &FuncType{
Params: p,
Result: r,
Go: &ast.FuncType{
Params: &ast.FieldList{List: gp},
Results: &ast.FieldList{List: gr},
},
}
}
// Identifier
func (c *typeConv) Ident(s string) *ast.Ident {
return ast.NewIdent(s)
}
// Opaque type of n bytes.
func (c *typeConv) Opaque(n int64) ast.Expr {
return &ast.ArrayType{
Len: c.intExpr(n),
Elt: c.byte,
}
}
// Expr for integer n.
func (c *typeConv) intExpr(n int64) ast.Expr {
return &ast.BasicLit{
Kind: token.INT,
Value: strconv.FormatInt(n, 10),
}
}
// Add padding of given size to fld.
func (c *typeConv) pad(fld []*ast.Field, size int64) []*ast.Field {
n := len(fld)
fld = fld[0 : n+1]
fld[n] = &ast.Field{Names: []*ast.Ident{c.Ident("_")}, Type: c.Opaque(size)}
return fld
}
// Struct conversion: return Go and (6g) C syntax for type.
func (c *typeConv) Struct(dt *dwarf.StructType, pos token.Pos) (expr *ast.StructType, csyntax string, align int64) {
// Minimum alignment for a struct is 1 byte.
align = 1
var buf bytes.Buffer
buf.WriteString("struct {")
fld := make([]*ast.Field, 0, 2*len(dt.Field)+1) // enough for padding around every field
off := int64(0)
// Rename struct fields that happen to be named Go keywords into
// _{keyword}. Create a map from C ident -> Go ident. The Go ident will
// be mangled. Any existing identifier that already has the same name on
// the C-side will cause the Go-mangled version to be prefixed with _.
// (e.g. in a struct with fields '_type' and 'type', the latter would be
// rendered as '__type' in Go).
ident := make(map[string]string)
used := make(map[string]bool)
for _, f := range dt.Field {
ident[f.Name] = f.Name
used[f.Name] = true
}
if !*godefs && !*cdefs {
for cid, goid := range ident {
if token.Lookup(goid).IsKeyword() {
// Avoid keyword
goid = "_" + goid
// Also avoid existing fields
for _, exist := used[goid]; exist; _, exist = used[goid] {
goid = "_" + goid
}
used[goid] = true
ident[cid] = goid
}
}
}
anon := 0
for _, f := range dt.Field {
if f.ByteOffset > off {
fld = c.pad(fld, f.ByteOffset-off)
off = f.ByteOffset
}
name := f.Name
ft := f.Type
// In godefs or cdefs mode, if this field is a C11
// anonymous union then treat the first field in the
// union as the field in the struct. This handles
// cases like the glibc <sys/resource.h> file; see
// issue 6677.
if *godefs || *cdefs {
if st, ok := f.Type.(*dwarf.StructType); ok && name == "" && st.Kind == "union" && len(st.Field) > 0 && !used[st.Field[0].Name] {
name = st.Field[0].Name
ident[name] = name
ft = st.Field[0].Type
}
}
// TODO: Handle fields that are anonymous structs by
// promoting the fields of the inner struct.
t := c.Type(ft, pos)
tgo := t.Go
size := t.Size
talign := t.Align
if f.BitSize > 0 {
if f.BitSize%8 != 0 {
continue
}
size = f.BitSize / 8
name := tgo.(*ast.Ident).String()
if strings.HasPrefix(name, "int") {
name = "int"
} else {
name = "uint"
}
tgo = ast.NewIdent(name + fmt.Sprint(f.BitSize))
talign = size
}
if talign > 0 && f.ByteOffset%talign != 0 && !*cdefs {
// Drop misaligned fields, the same way we drop integer bit fields.
// The goal is to make available what can be made available.
// Otherwise one bad and unneeded field in an otherwise okay struct
// makes the whole program not compile. Much of the time these
// structs are in system headers that cannot be corrected.
// Exception: In -cdefs mode, we use #pragma pack, so misaligned
// fields should still work.
continue
}
n := len(fld)
fld = fld[0 : n+1]
if name == "" {
name = fmt.Sprintf("anon%d", anon)
anon++
ident[name] = name
}
fld[n] = &ast.Field{Names: []*ast.Ident{c.Ident(ident[name])}, Type: tgo}
off += size
buf.WriteString(t.C.String())
buf.WriteString(" ")
buf.WriteString(name)
buf.WriteString("; ")
if talign > align {
align = talign
}
}
if off < dt.ByteSize {
fld = c.pad(fld, dt.ByteSize-off)
off = dt.ByteSize
}
if off != dt.ByteSize {
fatalf("%s: struct size calculation error off=%d bytesize=%d", lineno(pos), off, dt.ByteSize)
}
buf.WriteString("}")
csyntax = buf.String()
if *godefs || *cdefs {
godefsFields(fld)
}
expr = &ast.StructType{Fields: &ast.FieldList{List: fld}}
return
}
func upper(s string) string {
if s == "" {
return ""
}
r, size := utf8.DecodeRuneInString(s)
if r == '_' {
return "X" + s
}
return string(unicode.ToUpper(r)) + s[size:]
}
// godefsFields rewrites field names for use in Go or C definitions.
// It strips leading common prefixes (like tv_ in tv_sec, tv_usec)
// converts names to upper case, and rewrites _ into Pad_godefs_n,
// so that all fields are exported.
func godefsFields(fld []*ast.Field) {
prefix := fieldPrefix(fld)
npad := 0
for _, f := range fld {
for _, n := range f.Names {
if n.Name != prefix {
n.Name = strings.TrimPrefix(n.Name, prefix)
}
if n.Name == "_" {
// Use exported name instead.
n.Name = "Pad_cgo_" + strconv.Itoa(npad)
npad++
}
if !*cdefs {
n.Name = upper(n.Name)
}
}
}
}
// fieldPrefix returns the prefix that should be removed from all the
// field names when generating the C or Go code. For generated
// C, we leave the names as is (tv_sec, tv_usec), since that's what
// people are used to seeing in C. For generated Go code, such as
// package syscall's data structures, we drop a common prefix
// (so sec, usec, which will get turned into Sec, Usec for exporting).
func fieldPrefix(fld []*ast.Field) string {
if *cdefs {
return ""
}
prefix := ""
for _, f := range fld {
for _, n := range f.Names {
// Ignore field names that don't have the prefix we're
// looking for. It is common in C headers to have fields
// named, say, _pad in an otherwise prefixed header.
// If the struct has 3 fields tv_sec, tv_usec, _pad1, then we
// still want to remove the tv_ prefix.
// The check for "orig_" here handles orig_eax in the
// x86 ptrace register sets, which otherwise have all fields
// with reg_ prefixes.
if strings.HasPrefix(n.Name, "orig_") || strings.HasPrefix(n.Name, "_") {
continue
}
i := strings.Index(n.Name, "_")
if i < 0 {
continue
}
if prefix == "" {
prefix = n.Name[:i+1]
} else if prefix != n.Name[:i+1] {
return ""
}
}
}
return prefix
}
|