1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
|
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package elliptic
// This file contains a constant-time, 32-bit implementation of P256.
import (
"math/big"
)
type p256Curve struct {
*CurveParams
}
var (
p256 p256Curve
// RInverse contains 1/R mod p - the inverse of the Montgomery constant
// (2**257).
p256RInverse *big.Int
)
func initP256() {
// See FIPS 186-3, section D.2.3
p256.CurveParams = new(CurveParams)
p256.P, _ = new(big.Int).SetString("115792089210356248762697446949407573530086143415290314195533631308867097853951", 10)
p256.N, _ = new(big.Int).SetString("115792089210356248762697446949407573529996955224135760342422259061068512044369", 10)
p256.B, _ = new(big.Int).SetString("5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b", 16)
p256.Gx, _ = new(big.Int).SetString("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296", 16)
p256.Gy, _ = new(big.Int).SetString("4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5", 16)
p256.BitSize = 256
p256RInverse, _ = new(big.Int).SetString("7fffffff00000001fffffffe8000000100000000ffffffff0000000180000000", 16)
}
func (curve p256Curve) Params() *CurveParams {
return curve.CurveParams
}
// p256GetScalar endian-swaps the big-endian scalar value from in and writes it
// to out. If the scalar is equal or greater than the order of the group, it's
// reduced modulo that order.
func p256GetScalar(out *[32]byte, in []byte) {
n := new(big.Int).SetBytes(in)
var scalarBytes []byte
if n.Cmp(p256.N) >= 0 {
n.Mod(n, p256.N)
scalarBytes = n.Bytes()
} else {
scalarBytes = in
}
for i, v := range scalarBytes {
out[len(scalarBytes)-(1+i)] = v
}
}
func (p256Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) {
var scalarReversed [32]byte
p256GetScalar(&scalarReversed, scalar)
var x1, y1, z1 [p256Limbs]uint32
p256ScalarBaseMult(&x1, &y1, &z1, &scalarReversed)
return p256ToAffine(&x1, &y1, &z1)
}
func (p256Curve) ScalarMult(bigX, bigY *big.Int, scalar []byte) (x, y *big.Int) {
var scalarReversed [32]byte
p256GetScalar(&scalarReversed, scalar)
var px, py, x1, y1, z1 [p256Limbs]uint32
p256FromBig(&px, bigX)
p256FromBig(&py, bigY)
p256ScalarMult(&x1, &y1, &z1, &px, &py, &scalarReversed)
return p256ToAffine(&x1, &y1, &z1)
}
// Field elements are represented as nine, unsigned 32-bit words.
//
// The value of an field element is:
// x[0] + (x[1] * 2**29) + (x[2] * 2**57) + ... + (x[8] * 2**228)
//
// That is, each limb is alternately 29 or 28-bits wide in little-endian
// order.
//
// This means that a field element hits 2**257, rather than 2**256 as we would
// like. A 28, 29, ... pattern would cause us to hit 2**256, but that causes
// problems when multiplying as terms end up one bit short of a limb which
// would require much bit-shifting to correct.
//
// Finally, the values stored in a field element are in Montgomery form. So the
// value |y| is stored as (y*R) mod p, where p is the P-256 prime and R is
// 2**257.
const (
p256Limbs = 9
bottom29Bits = 0x1fffffff
)
var (
// p256One is the number 1 as a field element.
p256One = [p256Limbs]uint32{2, 0, 0, 0xffff800, 0x1fffffff, 0xfffffff, 0x1fbfffff, 0x1ffffff, 0}
p256Zero = [p256Limbs]uint32{0, 0, 0, 0, 0, 0, 0, 0, 0}
// p256P is the prime modulus as a field element.
p256P = [p256Limbs]uint32{0x1fffffff, 0xfffffff, 0x1fffffff, 0x3ff, 0, 0, 0x200000, 0xf000000, 0xfffffff}
// p2562P is the twice prime modulus as a field element.
p2562P = [p256Limbs]uint32{0x1ffffffe, 0xfffffff, 0x1fffffff, 0x7ff, 0, 0, 0x400000, 0xe000000, 0x1fffffff}
)
// p256Precomputed contains precomputed values to aid the calculation of scalar
// multiples of the base point, G. It's actually two, equal length, tables
// concatenated.
//
// The first table contains (x,y) field element pairs for 16 multiples of the
// base point, G.
//
// Index | Index (binary) | Value
// 0 | 0000 | 0G (all zeros, omitted)
// 1 | 0001 | G
// 2 | 0010 | 2**64G
// 3 | 0011 | 2**64G + G
// 4 | 0100 | 2**128G
// 5 | 0101 | 2**128G + G
// 6 | 0110 | 2**128G + 2**64G
// 7 | 0111 | 2**128G + 2**64G + G
// 8 | 1000 | 2**192G
// 9 | 1001 | 2**192G + G
// 10 | 1010 | 2**192G + 2**64G
// 11 | 1011 | 2**192G + 2**64G + G
// 12 | 1100 | 2**192G + 2**128G
// 13 | 1101 | 2**192G + 2**128G + G
// 14 | 1110 | 2**192G + 2**128G + 2**64G
// 15 | 1111 | 2**192G + 2**128G + 2**64G + G
//
// The second table follows the same style, but the terms are 2**32G,
// 2**96G, 2**160G, 2**224G.
//
// This is ~2KB of data.
var p256Precomputed = [p256Limbs * 2 * 15 * 2]uint32{
0x11522878, 0xe730d41, 0xdb60179, 0x4afe2ff, 0x12883add, 0xcaddd88, 0x119e7edc, 0xd4a6eab, 0x3120bee,
0x1d2aac15, 0xf25357c, 0x19e45cdd, 0x5c721d0, 0x1992c5a5, 0xa237487, 0x154ba21, 0x14b10bb, 0xae3fe3,
0xd41a576, 0x922fc51, 0x234994f, 0x60b60d3, 0x164586ae, 0xce95f18, 0x1fe49073, 0x3fa36cc, 0x5ebcd2c,
0xb402f2f, 0x15c70bf, 0x1561925c, 0x5a26704, 0xda91e90, 0xcdc1c7f, 0x1ea12446, 0xe1ade1e, 0xec91f22,
0x26f7778, 0x566847e, 0xa0bec9e, 0x234f453, 0x1a31f21a, 0xd85e75c, 0x56c7109, 0xa267a00, 0xb57c050,
0x98fb57, 0xaa837cc, 0x60c0792, 0xcfa5e19, 0x61bab9e, 0x589e39b, 0xa324c5, 0x7d6dee7, 0x2976e4b,
0x1fc4124a, 0xa8c244b, 0x1ce86762, 0xcd61c7e, 0x1831c8e0, 0x75774e1, 0x1d96a5a9, 0x843a649, 0xc3ab0fa,
0x6e2e7d5, 0x7673a2a, 0x178b65e8, 0x4003e9b, 0x1a1f11c2, 0x7816ea, 0xf643e11, 0x58c43df, 0xf423fc2,
0x19633ffa, 0x891f2b2, 0x123c231c, 0x46add8c, 0x54700dd, 0x59e2b17, 0x172db40f, 0x83e277d, 0xb0dd609,
0xfd1da12, 0x35c6e52, 0x19ede20c, 0xd19e0c0, 0x97d0f40, 0xb015b19, 0x449e3f5, 0xe10c9e, 0x33ab581,
0x56a67ab, 0x577734d, 0x1dddc062, 0xc57b10d, 0x149b39d, 0x26a9e7b, 0xc35df9f, 0x48764cd, 0x76dbcca,
0xca4b366, 0xe9303ab, 0x1a7480e7, 0x57e9e81, 0x1e13eb50, 0xf466cf3, 0x6f16b20, 0x4ba3173, 0xc168c33,
0x15cb5439, 0x6a38e11, 0x73658bd, 0xb29564f, 0x3f6dc5b, 0x53b97e, 0x1322c4c0, 0x65dd7ff, 0x3a1e4f6,
0x14e614aa, 0x9246317, 0x1bc83aca, 0xad97eed, 0xd38ce4a, 0xf82b006, 0x341f077, 0xa6add89, 0x4894acd,
0x9f162d5, 0xf8410ef, 0x1b266a56, 0xd7f223, 0x3e0cb92, 0xe39b672, 0x6a2901a, 0x69a8556, 0x7e7c0,
0x9b7d8d3, 0x309a80, 0x1ad05f7f, 0xc2fb5dd, 0xcbfd41d, 0x9ceb638, 0x1051825c, 0xda0cf5b, 0x812e881,
0x6f35669, 0x6a56f2c, 0x1df8d184, 0x345820, 0x1477d477, 0x1645db1, 0xbe80c51, 0xc22be3e, 0xe35e65a,
0x1aeb7aa0, 0xc375315, 0xf67bc99, 0x7fdd7b9, 0x191fc1be, 0x61235d, 0x2c184e9, 0x1c5a839, 0x47a1e26,
0xb7cb456, 0x93e225d, 0x14f3c6ed, 0xccc1ac9, 0x17fe37f3, 0x4988989, 0x1a90c502, 0x2f32042, 0xa17769b,
0xafd8c7c, 0x8191c6e, 0x1dcdb237, 0x16200c0, 0x107b32a1, 0x66c08db, 0x10d06a02, 0x3fc93, 0x5620023,
0x16722b27, 0x68b5c59, 0x270fcfc, 0xfad0ecc, 0xe5de1c2, 0xeab466b, 0x2fc513c, 0x407f75c, 0xbaab133,
0x9705fe9, 0xb88b8e7, 0x734c993, 0x1e1ff8f, 0x19156970, 0xabd0f00, 0x10469ea7, 0x3293ac0, 0xcdc98aa,
0x1d843fd, 0xe14bfe8, 0x15be825f, 0x8b5212, 0xeb3fb67, 0x81cbd29, 0xbc62f16, 0x2b6fcc7, 0xf5a4e29,
0x13560b66, 0xc0b6ac2, 0x51ae690, 0xd41e271, 0xf3e9bd4, 0x1d70aab, 0x1029f72, 0x73e1c35, 0xee70fbc,
0xad81baf, 0x9ecc49a, 0x86c741e, 0xfe6be30, 0x176752e7, 0x23d416, 0x1f83de85, 0x27de188, 0x66f70b8,
0x181cd51f, 0x96b6e4c, 0x188f2335, 0xa5df759, 0x17a77eb6, 0xfeb0e73, 0x154ae914, 0x2f3ec51, 0x3826b59,
0xb91f17d, 0x1c72949, 0x1362bf0a, 0xe23fddf, 0xa5614b0, 0xf7d8f, 0x79061, 0x823d9d2, 0x8213f39,
0x1128ae0b, 0xd095d05, 0xb85c0c2, 0x1ecb2ef, 0x24ddc84, 0xe35e901, 0x18411a4a, 0xf5ddc3d, 0x3786689,
0x52260e8, 0x5ae3564, 0x542b10d, 0x8d93a45, 0x19952aa4, 0x996cc41, 0x1051a729, 0x4be3499, 0x52b23aa,
0x109f307e, 0x6f5b6bb, 0x1f84e1e7, 0x77a0cfa, 0x10c4df3f, 0x25a02ea, 0xb048035, 0xe31de66, 0xc6ecaa3,
0x28ea335, 0x2886024, 0x1372f020, 0xf55d35, 0x15e4684c, 0xf2a9e17, 0x1a4a7529, 0xcb7beb1, 0xb2a78a1,
0x1ab21f1f, 0x6361ccf, 0x6c9179d, 0xb135627, 0x1267b974, 0x4408bad, 0x1cbff658, 0xe3d6511, 0xc7d76f,
0x1cc7a69, 0xe7ee31b, 0x54fab4f, 0x2b914f, 0x1ad27a30, 0xcd3579e, 0xc50124c, 0x50daa90, 0xb13f72,
0xb06aa75, 0x70f5cc6, 0x1649e5aa, 0x84a5312, 0x329043c, 0x41c4011, 0x13d32411, 0xb04a838, 0xd760d2d,
0x1713b532, 0xbaa0c03, 0x84022ab, 0x6bcf5c1, 0x2f45379, 0x18ae070, 0x18c9e11e, 0x20bca9a, 0x66f496b,
0x3eef294, 0x67500d2, 0xd7f613c, 0x2dbbeb, 0xb741038, 0xe04133f, 0x1582968d, 0xbe985f7, 0x1acbc1a,
0x1a6a939f, 0x33e50f6, 0xd665ed4, 0xb4b7bd6, 0x1e5a3799, 0x6b33847, 0x17fa56ff, 0x65ef930, 0x21dc4a,
0x2b37659, 0x450fe17, 0xb357b65, 0xdf5efac, 0x15397bef, 0x9d35a7f, 0x112ac15f, 0x624e62e, 0xa90ae2f,
0x107eecd2, 0x1f69bbe, 0x77d6bce, 0x5741394, 0x13c684fc, 0x950c910, 0x725522b, 0xdc78583, 0x40eeabb,
0x1fde328a, 0xbd61d96, 0xd28c387, 0x9e77d89, 0x12550c40, 0x759cb7d, 0x367ef34, 0xae2a960, 0x91b8bdc,
0x93462a9, 0xf469ef, 0xb2e9aef, 0xd2ca771, 0x54e1f42, 0x7aaa49, 0x6316abb, 0x2413c8e, 0x5425bf9,
0x1bed3e3a, 0xf272274, 0x1f5e7326, 0x6416517, 0xea27072, 0x9cedea7, 0x6e7633, 0x7c91952, 0xd806dce,
0x8e2a7e1, 0xe421e1a, 0x418c9e1, 0x1dbc890, 0x1b395c36, 0xa1dc175, 0x1dc4ef73, 0x8956f34, 0xe4b5cf2,
0x1b0d3a18, 0x3194a36, 0x6c2641f, 0xe44124c, 0xa2f4eaa, 0xa8c25ba, 0xf927ed7, 0x627b614, 0x7371cca,
0xba16694, 0x417bc03, 0x7c0a7e3, 0x9c35c19, 0x1168a205, 0x8b6b00d, 0x10e3edc9, 0x9c19bf2, 0x5882229,
0x1b2b4162, 0xa5cef1a, 0x1543622b, 0x9bd433e, 0x364e04d, 0x7480792, 0x5c9b5b3, 0xe85ff25, 0x408ef57,
0x1814cfa4, 0x121b41b, 0xd248a0f, 0x3b05222, 0x39bb16a, 0xc75966d, 0xa038113, 0xa4a1769, 0x11fbc6c,
0x917e50e, 0xeec3da8, 0x169d6eac, 0x10c1699, 0xa416153, 0xf724912, 0x15cd60b7, 0x4acbad9, 0x5efc5fa,
0xf150ed7, 0x122b51, 0x1104b40a, 0xcb7f442, 0xfbb28ff, 0x6ac53ca, 0x196142cc, 0x7bf0fa9, 0x957651,
0x4e0f215, 0xed439f8, 0x3f46bd5, 0x5ace82f, 0x110916b6, 0x6db078, 0xffd7d57, 0xf2ecaac, 0xca86dec,
0x15d6b2da, 0x965ecc9, 0x1c92b4c2, 0x1f3811, 0x1cb080f5, 0x2d8b804, 0x19d1c12d, 0xf20bd46, 0x1951fa7,
0xa3656c3, 0x523a425, 0xfcd0692, 0xd44ddc8, 0x131f0f5b, 0xaf80e4a, 0xcd9fc74, 0x99bb618, 0x2db944c,
0xa673090, 0x1c210e1, 0x178c8d23, 0x1474383, 0x10b8743d, 0x985a55b, 0x2e74779, 0x576138, 0x9587927,
0x133130fa, 0xbe05516, 0x9f4d619, 0xbb62570, 0x99ec591, 0xd9468fe, 0x1d07782d, 0xfc72e0b, 0x701b298,
0x1863863b, 0x85954b8, 0x121a0c36, 0x9e7fedf, 0xf64b429, 0x9b9d71e, 0x14e2f5d8, 0xf858d3a, 0x942eea8,
0xda5b765, 0x6edafff, 0xa9d18cc, 0xc65e4ba, 0x1c747e86, 0xe4ea915, 0x1981d7a1, 0x8395659, 0x52ed4e2,
0x87d43b7, 0x37ab11b, 0x19d292ce, 0xf8d4692, 0x18c3053f, 0x8863e13, 0x4c146c0, 0x6bdf55a, 0x4e4457d,
0x16152289, 0xac78ec2, 0x1a59c5a2, 0x2028b97, 0x71c2d01, 0x295851f, 0x404747b, 0x878558d, 0x7d29aa4,
0x13d8341f, 0x8daefd7, 0x139c972d, 0x6b7ea75, 0xd4a9dde, 0xff163d8, 0x81d55d7, 0xa5bef68, 0xb7b30d8,
0xbe73d6f, 0xaa88141, 0xd976c81, 0x7e7a9cc, 0x18beb771, 0xd773cbd, 0x13f51951, 0x9d0c177, 0x1c49a78,
}
// Field element operations:
// nonZeroToAllOnes returns:
// 0xffffffff for 0 < x <= 2**31
// 0 for x == 0 or x > 2**31.
func nonZeroToAllOnes(x uint32) uint32 {
return ((x - 1) >> 31) - 1
}
// p256ReduceCarry adds a multiple of p in order to cancel |carry|,
// which is a term at 2**257.
//
// On entry: carry < 2**3, inout[0,2,...] < 2**29, inout[1,3,...] < 2**28.
// On exit: inout[0,2,..] < 2**30, inout[1,3,...] < 2**29.
func p256ReduceCarry(inout *[p256Limbs]uint32, carry uint32) {
carry_mask := nonZeroToAllOnes(carry)
inout[0] += carry << 1
inout[3] += 0x10000000 & carry_mask
// carry < 2**3 thus (carry << 11) < 2**14 and we added 2**28 in the
// previous line therefore this doesn't underflow.
inout[3] -= carry << 11
inout[4] += (0x20000000 - 1) & carry_mask
inout[5] += (0x10000000 - 1) & carry_mask
inout[6] += (0x20000000 - 1) & carry_mask
inout[6] -= carry << 22
// This may underflow if carry is non-zero but, if so, we'll fix it in the
// next line.
inout[7] -= 1 & carry_mask
inout[7] += carry << 25
}
// p256Sum sets out = in+in2.
//
// On entry, in[i]+in2[i] must not overflow a 32-bit word.
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29
func p256Sum(out, in, in2 *[p256Limbs]uint32) {
carry := uint32(0)
for i := 0; ; i++ {
out[i] = in[i] + in2[i]
out[i] += carry
carry = out[i] >> 29
out[i] &= bottom29Bits
i++
if i == p256Limbs {
break
}
out[i] = in[i] + in2[i]
out[i] += carry
carry = out[i] >> 28
out[i] &= bottom28Bits
}
p256ReduceCarry(out, carry)
}
const (
two30m2 = 1<<30 - 1<<2
two30p13m2 = 1<<30 + 1<<13 - 1<<2
two31m2 = 1<<31 - 1<<2
two31p24m2 = 1<<31 + 1<<24 - 1<<2
two30m27m2 = 1<<30 - 1<<27 - 1<<2
)
// p256Zero31 is 0 mod p.
var p256Zero31 = [p256Limbs]uint32{two31m3, two30m2, two31m2, two30p13m2, two31m2, two30m2, two31p24m2, two30m27m2, two31m2}
// p256Diff sets out = in-in2.
//
// On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and
// in2[0,2,...] < 2**30, in2[1,3,...] < 2**29.
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
func p256Diff(out, in, in2 *[p256Limbs]uint32) {
var carry uint32
for i := 0; ; i++ {
out[i] = in[i] - in2[i]
out[i] += p256Zero31[i]
out[i] += carry
carry = out[i] >> 29
out[i] &= bottom29Bits
i++
if i == p256Limbs {
break
}
out[i] = in[i] - in2[i]
out[i] += p256Zero31[i]
out[i] += carry
carry = out[i] >> 28
out[i] &= bottom28Bits
}
p256ReduceCarry(out, carry)
}
// p256ReduceDegree sets out = tmp/R mod p where tmp contains 64-bit words with
// the same 29,28,... bit positions as an field element.
//
// The values in field elements are in Montgomery form: x*R mod p where R =
// 2**257. Since we just multiplied two Montgomery values together, the result
// is x*y*R*R mod p. We wish to divide by R in order for the result also to be
// in Montgomery form.
//
// On entry: tmp[i] < 2**64
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29
func p256ReduceDegree(out *[p256Limbs]uint32, tmp [17]uint64) {
// The following table may be helpful when reading this code:
//
// Limb number: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10...
// Width (bits): 29| 28| 29| 28| 29| 28| 29| 28| 29| 28| 29
// Start bit: 0 | 29| 57| 86|114|143|171|200|228|257|285
// (odd phase): 0 | 28| 57| 85|114|142|171|199|228|256|285
var tmp2 [18]uint32
var carry, x, xMask uint32
// tmp contains 64-bit words with the same 29,28,29-bit positions as an
// field element. So the top of an element of tmp might overlap with
// another element two positions down. The following loop eliminates
// this overlap.
tmp2[0] = uint32(tmp[0]) & bottom29Bits
tmp2[1] = uint32(tmp[0]) >> 29
tmp2[1] |= (uint32(tmp[0]>>32) << 3) & bottom28Bits
tmp2[1] += uint32(tmp[1]) & bottom28Bits
carry = tmp2[1] >> 28
tmp2[1] &= bottom28Bits
for i := 2; i < 17; i++ {
tmp2[i] = (uint32(tmp[i-2] >> 32)) >> 25
tmp2[i] += (uint32(tmp[i-1])) >> 28
tmp2[i] += (uint32(tmp[i-1]>>32) << 4) & bottom29Bits
tmp2[i] += uint32(tmp[i]) & bottom29Bits
tmp2[i] += carry
carry = tmp2[i] >> 29
tmp2[i] &= bottom29Bits
i++
if i == 17 {
break
}
tmp2[i] = uint32(tmp[i-2]>>32) >> 25
tmp2[i] += uint32(tmp[i-1]) >> 29
tmp2[i] += ((uint32(tmp[i-1] >> 32)) << 3) & bottom28Bits
tmp2[i] += uint32(tmp[i]) & bottom28Bits
tmp2[i] += carry
carry = tmp2[i] >> 28
tmp2[i] &= bottom28Bits
}
tmp2[17] = uint32(tmp[15]>>32) >> 25
tmp2[17] += uint32(tmp[16]) >> 29
tmp2[17] += uint32(tmp[16]>>32) << 3
tmp2[17] += carry
// Montgomery elimination of terms:
//
// Since R is 2**257, we can divide by R with a bitwise shift if we can
// ensure that the right-most 257 bits are all zero. We can make that true
// by adding multiplies of p without affecting the value.
//
// So we eliminate limbs from right to left. Since the bottom 29 bits of p
// are all ones, then by adding tmp2[0]*p to tmp2 we'll make tmp2[0] == 0.
// We can do that for 8 further limbs and then right shift to eliminate the
// extra factor of R.
for i := 0; ; i += 2 {
tmp2[i+1] += tmp2[i] >> 29
x = tmp2[i] & bottom29Bits
xMask = nonZeroToAllOnes(x)
tmp2[i] = 0
// The bounds calculations for this loop are tricky. Each iteration of
// the loop eliminates two words by adding values to words to their
// right.
//
// The following table contains the amounts added to each word (as an
// offset from the value of i at the top of the loop). The amounts are
// accounted for from the first and second half of the loop separately
// and are written as, for example, 28 to mean a value <2**28.
//
// Word: 3 4 5 6 7 8 9 10
// Added in top half: 28 11 29 21 29 28
// 28 29
// 29
// Added in bottom half: 29 10 28 21 28 28
// 29
//
// The value that is currently offset 7 will be offset 5 for the next
// iteration and then offset 3 for the iteration after that. Therefore
// the total value added will be the values added at 7, 5 and 3.
//
// The following table accumulates these values. The sums at the bottom
// are written as, for example, 29+28, to mean a value < 2**29+2**28.
//
// Word: 3 4 5 6 7 8 9 10 11 12 13
// 28 11 10 29 21 29 28 28 28 28 28
// 29 28 11 28 29 28 29 28 29 28
// 29 28 21 21 29 21 29 21
// 10 29 28 21 28 21 28
// 28 29 28 29 28 29 28
// 11 10 29 10 29 10
// 29 28 11 28 11
// 29 29
// --------------------------------------------
// 30+ 31+ 30+ 31+ 30+
// 28+ 29+ 28+ 29+ 21+
// 21+ 28+ 21+ 28+ 10
// 10 21+ 10 21+
// 11 11
//
// So the greatest amount is added to tmp2[10] and tmp2[12]. If
// tmp2[10/12] has an initial value of <2**29, then the maximum value
// will be < 2**31 + 2**30 + 2**28 + 2**21 + 2**11, which is < 2**32,
// as required.
tmp2[i+3] += (x << 10) & bottom28Bits
tmp2[i+4] += (x >> 18)
tmp2[i+6] += (x << 21) & bottom29Bits
tmp2[i+7] += x >> 8
// At position 200, which is the starting bit position for word 7, we
// have a factor of 0xf000000 = 2**28 - 2**24.
tmp2[i+7] += 0x10000000 & xMask
tmp2[i+8] += (x - 1) & xMask
tmp2[i+7] -= (x << 24) & bottom28Bits
tmp2[i+8] -= x >> 4
tmp2[i+8] += 0x20000000 & xMask
tmp2[i+8] -= x
tmp2[i+8] += (x << 28) & bottom29Bits
tmp2[i+9] += ((x >> 1) - 1) & xMask
if i+1 == p256Limbs {
break
}
tmp2[i+2] += tmp2[i+1] >> 28
x = tmp2[i+1] & bottom28Bits
xMask = nonZeroToAllOnes(x)
tmp2[i+1] = 0
tmp2[i+4] += (x << 11) & bottom29Bits
tmp2[i+5] += (x >> 18)
tmp2[i+7] += (x << 21) & bottom28Bits
tmp2[i+8] += x >> 7
// At position 199, which is the starting bit of the 8th word when
// dealing with a context starting on an odd word, we have a factor of
// 0x1e000000 = 2**29 - 2**25. Since we have not updated i, the 8th
// word from i+1 is i+8.
tmp2[i+8] += 0x20000000 & xMask
tmp2[i+9] += (x - 1) & xMask
tmp2[i+8] -= (x << 25) & bottom29Bits
tmp2[i+9] -= x >> 4
tmp2[i+9] += 0x10000000 & xMask
tmp2[i+9] -= x
tmp2[i+10] += (x - 1) & xMask
}
// We merge the right shift with a carry chain. The words above 2**257 have
// widths of 28,29,... which we need to correct when copying them down.
carry = 0
for i := 0; i < 8; i++ {
// The maximum value of tmp2[i + 9] occurs on the first iteration and
// is < 2**30+2**29+2**28. Adding 2**29 (from tmp2[i + 10]) is
// therefore safe.
out[i] = tmp2[i+9]
out[i] += carry
out[i] += (tmp2[i+10] << 28) & bottom29Bits
carry = out[i] >> 29
out[i] &= bottom29Bits
i++
out[i] = tmp2[i+9] >> 1
out[i] += carry
carry = out[i] >> 28
out[i] &= bottom28Bits
}
out[8] = tmp2[17]
out[8] += carry
carry = out[8] >> 29
out[8] &= bottom29Bits
p256ReduceCarry(out, carry)
}
// p256Square sets out=in*in.
//
// On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29.
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
func p256Square(out, in *[p256Limbs]uint32) {
var tmp [17]uint64
tmp[0] = uint64(in[0]) * uint64(in[0])
tmp[1] = uint64(in[0]) * (uint64(in[1]) << 1)
tmp[2] = uint64(in[0])*(uint64(in[2])<<1) +
uint64(in[1])*(uint64(in[1])<<1)
tmp[3] = uint64(in[0])*(uint64(in[3])<<1) +
uint64(in[1])*(uint64(in[2])<<1)
tmp[4] = uint64(in[0])*(uint64(in[4])<<1) +
uint64(in[1])*(uint64(in[3])<<2) +
uint64(in[2])*uint64(in[2])
tmp[5] = uint64(in[0])*(uint64(in[5])<<1) +
uint64(in[1])*(uint64(in[4])<<1) +
uint64(in[2])*(uint64(in[3])<<1)
tmp[6] = uint64(in[0])*(uint64(in[6])<<1) +
uint64(in[1])*(uint64(in[5])<<2) +
uint64(in[2])*(uint64(in[4])<<1) +
uint64(in[3])*(uint64(in[3])<<1)
tmp[7] = uint64(in[0])*(uint64(in[7])<<1) +
uint64(in[1])*(uint64(in[6])<<1) +
uint64(in[2])*(uint64(in[5])<<1) +
uint64(in[3])*(uint64(in[4])<<1)
// tmp[8] has the greatest value of 2**61 + 2**60 + 2**61 + 2**60 + 2**60,
// which is < 2**64 as required.
tmp[8] = uint64(in[0])*(uint64(in[8])<<1) +
uint64(in[1])*(uint64(in[7])<<2) +
uint64(in[2])*(uint64(in[6])<<1) +
uint64(in[3])*(uint64(in[5])<<2) +
uint64(in[4])*uint64(in[4])
tmp[9] = uint64(in[1])*(uint64(in[8])<<1) +
uint64(in[2])*(uint64(in[7])<<1) +
uint64(in[3])*(uint64(in[6])<<1) +
uint64(in[4])*(uint64(in[5])<<1)
tmp[10] = uint64(in[2])*(uint64(in[8])<<1) +
uint64(in[3])*(uint64(in[7])<<2) +
uint64(in[4])*(uint64(in[6])<<1) +
uint64(in[5])*(uint64(in[5])<<1)
tmp[11] = uint64(in[3])*(uint64(in[8])<<1) +
uint64(in[4])*(uint64(in[7])<<1) +
uint64(in[5])*(uint64(in[6])<<1)
tmp[12] = uint64(in[4])*(uint64(in[8])<<1) +
uint64(in[5])*(uint64(in[7])<<2) +
uint64(in[6])*uint64(in[6])
tmp[13] = uint64(in[5])*(uint64(in[8])<<1) +
uint64(in[6])*(uint64(in[7])<<1)
tmp[14] = uint64(in[6])*(uint64(in[8])<<1) +
uint64(in[7])*(uint64(in[7])<<1)
tmp[15] = uint64(in[7]) * (uint64(in[8]) << 1)
tmp[16] = uint64(in[8]) * uint64(in[8])
p256ReduceDegree(out, tmp)
}
// p256Mul sets out=in*in2.
//
// On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and
// in2[0,2,...] < 2**30, in2[1,3,...] < 2**29.
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
func p256Mul(out, in, in2 *[p256Limbs]uint32) {
var tmp [17]uint64
tmp[0] = uint64(in[0]) * uint64(in2[0])
tmp[1] = uint64(in[0])*(uint64(in2[1])<<0) +
uint64(in[1])*(uint64(in2[0])<<0)
tmp[2] = uint64(in[0])*(uint64(in2[2])<<0) +
uint64(in[1])*(uint64(in2[1])<<1) +
uint64(in[2])*(uint64(in2[0])<<0)
tmp[3] = uint64(in[0])*(uint64(in2[3])<<0) +
uint64(in[1])*(uint64(in2[2])<<0) +
uint64(in[2])*(uint64(in2[1])<<0) +
uint64(in[3])*(uint64(in2[0])<<0)
tmp[4] = uint64(in[0])*(uint64(in2[4])<<0) +
uint64(in[1])*(uint64(in2[3])<<1) +
uint64(in[2])*(uint64(in2[2])<<0) +
uint64(in[3])*(uint64(in2[1])<<1) +
uint64(in[4])*(uint64(in2[0])<<0)
tmp[5] = uint64(in[0])*(uint64(in2[5])<<0) +
uint64(in[1])*(uint64(in2[4])<<0) +
uint64(in[2])*(uint64(in2[3])<<0) +
uint64(in[3])*(uint64(in2[2])<<0) +
uint64(in[4])*(uint64(in2[1])<<0) +
uint64(in[5])*(uint64(in2[0])<<0)
tmp[6] = uint64(in[0])*(uint64(in2[6])<<0) +
uint64(in[1])*(uint64(in2[5])<<1) +
uint64(in[2])*(uint64(in2[4])<<0) +
uint64(in[3])*(uint64(in2[3])<<1) +
uint64(in[4])*(uint64(in2[2])<<0) +
uint64(in[5])*(uint64(in2[1])<<1) +
uint64(in[6])*(uint64(in2[0])<<0)
tmp[7] = uint64(in[0])*(uint64(in2[7])<<0) +
uint64(in[1])*(uint64(in2[6])<<0) +
uint64(in[2])*(uint64(in2[5])<<0) +
uint64(in[3])*(uint64(in2[4])<<0) +
uint64(in[4])*(uint64(in2[3])<<0) +
uint64(in[5])*(uint64(in2[2])<<0) +
uint64(in[6])*(uint64(in2[1])<<0) +
uint64(in[7])*(uint64(in2[0])<<0)
// tmp[8] has the greatest value but doesn't overflow. See logic in
// p256Square.
tmp[8] = uint64(in[0])*(uint64(in2[8])<<0) +
uint64(in[1])*(uint64(in2[7])<<1) +
uint64(in[2])*(uint64(in2[6])<<0) +
uint64(in[3])*(uint64(in2[5])<<1) +
uint64(in[4])*(uint64(in2[4])<<0) +
uint64(in[5])*(uint64(in2[3])<<1) +
uint64(in[6])*(uint64(in2[2])<<0) +
uint64(in[7])*(uint64(in2[1])<<1) +
uint64(in[8])*(uint64(in2[0])<<0)
tmp[9] = uint64(in[1])*(uint64(in2[8])<<0) +
uint64(in[2])*(uint64(in2[7])<<0) +
uint64(in[3])*(uint64(in2[6])<<0) +
uint64(in[4])*(uint64(in2[5])<<0) +
uint64(in[5])*(uint64(in2[4])<<0) +
uint64(in[6])*(uint64(in2[3])<<0) +
uint64(in[7])*(uint64(in2[2])<<0) +
uint64(in[8])*(uint64(in2[1])<<0)
tmp[10] = uint64(in[2])*(uint64(in2[8])<<0) +
uint64(in[3])*(uint64(in2[7])<<1) +
uint64(in[4])*(uint64(in2[6])<<0) +
uint64(in[5])*(uint64(in2[5])<<1) +
uint64(in[6])*(uint64(in2[4])<<0) +
uint64(in[7])*(uint64(in2[3])<<1) +
uint64(in[8])*(uint64(in2[2])<<0)
tmp[11] = uint64(in[3])*(uint64(in2[8])<<0) +
uint64(in[4])*(uint64(in2[7])<<0) +
uint64(in[5])*(uint64(in2[6])<<0) +
uint64(in[6])*(uint64(in2[5])<<0) +
uint64(in[7])*(uint64(in2[4])<<0) +
uint64(in[8])*(uint64(in2[3])<<0)
tmp[12] = uint64(in[4])*(uint64(in2[8])<<0) +
uint64(in[5])*(uint64(in2[7])<<1) +
uint64(in[6])*(uint64(in2[6])<<0) +
uint64(in[7])*(uint64(in2[5])<<1) +
uint64(in[8])*(uint64(in2[4])<<0)
tmp[13] = uint64(in[5])*(uint64(in2[8])<<0) +
uint64(in[6])*(uint64(in2[7])<<0) +
uint64(in[7])*(uint64(in2[6])<<0) +
uint64(in[8])*(uint64(in2[5])<<0)
tmp[14] = uint64(in[6])*(uint64(in2[8])<<0) +
uint64(in[7])*(uint64(in2[7])<<1) +
uint64(in[8])*(uint64(in2[6])<<0)
tmp[15] = uint64(in[7])*(uint64(in2[8])<<0) +
uint64(in[8])*(uint64(in2[7])<<0)
tmp[16] = uint64(in[8]) * (uint64(in2[8]) << 0)
p256ReduceDegree(out, tmp)
}
func p256Assign(out, in *[p256Limbs]uint32) {
*out = *in
}
// p256Invert calculates |out| = |in|^{-1}
//
// Based on Fermat's Little Theorem:
// a^p = a (mod p)
// a^{p-1} = 1 (mod p)
// a^{p-2} = a^{-1} (mod p)
func p256Invert(out, in *[p256Limbs]uint32) {
var ftmp, ftmp2 [p256Limbs]uint32
// each e_I will hold |in|^{2^I - 1}
var e2, e4, e8, e16, e32, e64 [p256Limbs]uint32
p256Square(&ftmp, in) // 2^1
p256Mul(&ftmp, in, &ftmp) // 2^2 - 2^0
p256Assign(&e2, &ftmp)
p256Square(&ftmp, &ftmp) // 2^3 - 2^1
p256Square(&ftmp, &ftmp) // 2^4 - 2^2
p256Mul(&ftmp, &ftmp, &e2) // 2^4 - 2^0
p256Assign(&e4, &ftmp)
p256Square(&ftmp, &ftmp) // 2^5 - 2^1
p256Square(&ftmp, &ftmp) // 2^6 - 2^2
p256Square(&ftmp, &ftmp) // 2^7 - 2^3
p256Square(&ftmp, &ftmp) // 2^8 - 2^4
p256Mul(&ftmp, &ftmp, &e4) // 2^8 - 2^0
p256Assign(&e8, &ftmp)
for i := 0; i < 8; i++ {
p256Square(&ftmp, &ftmp)
} // 2^16 - 2^8
p256Mul(&ftmp, &ftmp, &e8) // 2^16 - 2^0
p256Assign(&e16, &ftmp)
for i := 0; i < 16; i++ {
p256Square(&ftmp, &ftmp)
} // 2^32 - 2^16
p256Mul(&ftmp, &ftmp, &e16) // 2^32 - 2^0
p256Assign(&e32, &ftmp)
for i := 0; i < 32; i++ {
p256Square(&ftmp, &ftmp)
} // 2^64 - 2^32
p256Assign(&e64, &ftmp)
p256Mul(&ftmp, &ftmp, in) // 2^64 - 2^32 + 2^0
for i := 0; i < 192; i++ {
p256Square(&ftmp, &ftmp)
} // 2^256 - 2^224 + 2^192
p256Mul(&ftmp2, &e64, &e32) // 2^64 - 2^0
for i := 0; i < 16; i++ {
p256Square(&ftmp2, &ftmp2)
} // 2^80 - 2^16
p256Mul(&ftmp2, &ftmp2, &e16) // 2^80 - 2^0
for i := 0; i < 8; i++ {
p256Square(&ftmp2, &ftmp2)
} // 2^88 - 2^8
p256Mul(&ftmp2, &ftmp2, &e8) // 2^88 - 2^0
for i := 0; i < 4; i++ {
p256Square(&ftmp2, &ftmp2)
} // 2^92 - 2^4
p256Mul(&ftmp2, &ftmp2, &e4) // 2^92 - 2^0
p256Square(&ftmp2, &ftmp2) // 2^93 - 2^1
p256Square(&ftmp2, &ftmp2) // 2^94 - 2^2
p256Mul(&ftmp2, &ftmp2, &e2) // 2^94 - 2^0
p256Square(&ftmp2, &ftmp2) // 2^95 - 2^1
p256Square(&ftmp2, &ftmp2) // 2^96 - 2^2
p256Mul(&ftmp2, &ftmp2, in) // 2^96 - 3
p256Mul(out, &ftmp2, &ftmp) // 2^256 - 2^224 + 2^192 + 2^96 - 3
}
// p256Scalar3 sets out=3*out.
//
// On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
func p256Scalar3(out *[p256Limbs]uint32) {
var carry uint32
for i := 0; ; i++ {
out[i] *= 3
out[i] += carry
carry = out[i] >> 29
out[i] &= bottom29Bits
i++
if i == p256Limbs {
break
}
out[i] *= 3
out[i] += carry
carry = out[i] >> 28
out[i] &= bottom28Bits
}
p256ReduceCarry(out, carry)
}
// p256Scalar4 sets out=4*out.
//
// On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
func p256Scalar4(out *[p256Limbs]uint32) {
var carry, nextCarry uint32
for i := 0; ; i++ {
nextCarry = out[i] >> 27
out[i] <<= 2
out[i] &= bottom29Bits
out[i] += carry
carry = nextCarry + (out[i] >> 29)
out[i] &= bottom29Bits
i++
if i == p256Limbs {
break
}
nextCarry = out[i] >> 26
out[i] <<= 2
out[i] &= bottom28Bits
out[i] += carry
carry = nextCarry + (out[i] >> 28)
out[i] &= bottom28Bits
}
p256ReduceCarry(out, carry)
}
// p256Scalar8 sets out=8*out.
//
// On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
func p256Scalar8(out *[p256Limbs]uint32) {
var carry, nextCarry uint32
for i := 0; ; i++ {
nextCarry = out[i] >> 26
out[i] <<= 3
out[i] &= bottom29Bits
out[i] += carry
carry = nextCarry + (out[i] >> 29)
out[i] &= bottom29Bits
i++
if i == p256Limbs {
break
}
nextCarry = out[i] >> 25
out[i] <<= 3
out[i] &= bottom28Bits
out[i] += carry
carry = nextCarry + (out[i] >> 28)
out[i] &= bottom28Bits
}
p256ReduceCarry(out, carry)
}
// Group operations:
//
// Elements of the elliptic curve group are represented in Jacobian
// coordinates: (x, y, z). An affine point (x', y') is x'=x/z**2, y'=y/z**3 in
// Jacobian form.
// p256PointDouble sets {xOut,yOut,zOut} = 2*{x,y,z}.
//
// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
func p256PointDouble(xOut, yOut, zOut, x, y, z *[p256Limbs]uint32) {
var delta, gamma, alpha, beta, tmp, tmp2 [p256Limbs]uint32
p256Square(&delta, z)
p256Square(&gamma, y)
p256Mul(&beta, x, &gamma)
p256Sum(&tmp, x, &delta)
p256Diff(&tmp2, x, &delta)
p256Mul(&alpha, &tmp, &tmp2)
p256Scalar3(&alpha)
p256Sum(&tmp, y, z)
p256Square(&tmp, &tmp)
p256Diff(&tmp, &tmp, &gamma)
p256Diff(zOut, &tmp, &delta)
p256Scalar4(&beta)
p256Square(xOut, &alpha)
p256Diff(xOut, xOut, &beta)
p256Diff(xOut, xOut, &beta)
p256Diff(&tmp, &beta, xOut)
p256Mul(&tmp, &alpha, &tmp)
p256Square(&tmp2, &gamma)
p256Scalar8(&tmp2)
p256Diff(yOut, &tmp, &tmp2)
}
// p256PointAddMixed sets {xOut,yOut,zOut} = {x1,y1,z1} + {x2,y2,1}.
// (i.e. the second point is affine.)
//
// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
//
// Note that this function does not handle P+P, infinity+P nor P+infinity
// correctly.
func p256PointAddMixed(xOut, yOut, zOut, x1, y1, z1, x2, y2 *[p256Limbs]uint32) {
var z1z1, z1z1z1, s2, u2, h, i, j, r, rr, v, tmp [p256Limbs]uint32
p256Square(&z1z1, z1)
p256Sum(&tmp, z1, z1)
p256Mul(&u2, x2, &z1z1)
p256Mul(&z1z1z1, z1, &z1z1)
p256Mul(&s2, y2, &z1z1z1)
p256Diff(&h, &u2, x1)
p256Sum(&i, &h, &h)
p256Square(&i, &i)
p256Mul(&j, &h, &i)
p256Diff(&r, &s2, y1)
p256Sum(&r, &r, &r)
p256Mul(&v, x1, &i)
p256Mul(zOut, &tmp, &h)
p256Square(&rr, &r)
p256Diff(xOut, &rr, &j)
p256Diff(xOut, xOut, &v)
p256Diff(xOut, xOut, &v)
p256Diff(&tmp, &v, xOut)
p256Mul(yOut, &tmp, &r)
p256Mul(&tmp, y1, &j)
p256Diff(yOut, yOut, &tmp)
p256Diff(yOut, yOut, &tmp)
}
// p256PointAdd sets {xOut,yOut,zOut} = {x1,y1,z1} + {x2,y2,z2}.
//
// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
//
// Note that this function does not handle P+P, infinity+P nor P+infinity
// correctly.
func p256PointAdd(xOut, yOut, zOut, x1, y1, z1, x2, y2, z2 *[p256Limbs]uint32) {
var z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp [p256Limbs]uint32
p256Square(&z1z1, z1)
p256Square(&z2z2, z2)
p256Mul(&u1, x1, &z2z2)
p256Sum(&tmp, z1, z2)
p256Square(&tmp, &tmp)
p256Diff(&tmp, &tmp, &z1z1)
p256Diff(&tmp, &tmp, &z2z2)
p256Mul(&z2z2z2, z2, &z2z2)
p256Mul(&s1, y1, &z2z2z2)
p256Mul(&u2, x2, &z1z1)
p256Mul(&z1z1z1, z1, &z1z1)
p256Mul(&s2, y2, &z1z1z1)
p256Diff(&h, &u2, &u1)
p256Sum(&i, &h, &h)
p256Square(&i, &i)
p256Mul(&j, &h, &i)
p256Diff(&r, &s2, &s1)
p256Sum(&r, &r, &r)
p256Mul(&v, &u1, &i)
p256Mul(zOut, &tmp, &h)
p256Square(&rr, &r)
p256Diff(xOut, &rr, &j)
p256Diff(xOut, xOut, &v)
p256Diff(xOut, xOut, &v)
p256Diff(&tmp, &v, xOut)
p256Mul(yOut, &tmp, &r)
p256Mul(&tmp, &s1, &j)
p256Diff(yOut, yOut, &tmp)
p256Diff(yOut, yOut, &tmp)
}
// p256CopyConditional sets out=in if mask = 0xffffffff in constant time.
//
// On entry: mask is either 0 or 0xffffffff.
func p256CopyConditional(out, in *[p256Limbs]uint32, mask uint32) {
for i := 0; i < p256Limbs; i++ {
tmp := mask & (in[i] ^ out[i])
out[i] ^= tmp
}
}
// p256SelectAffinePoint sets {out_x,out_y} to the index'th entry of table.
// On entry: index < 16, table[0] must be zero.
func p256SelectAffinePoint(xOut, yOut *[p256Limbs]uint32, table []uint32, index uint32) {
for i := range xOut {
xOut[i] = 0
}
for i := range yOut {
yOut[i] = 0
}
for i := uint32(1); i < 16; i++ {
mask := i ^ index
mask |= mask >> 2
mask |= mask >> 1
mask &= 1
mask--
for j := range xOut {
xOut[j] |= table[0] & mask
table = table[1:]
}
for j := range yOut {
yOut[j] |= table[0] & mask
table = table[1:]
}
}
}
// p256SelectJacobianPoint sets {out_x,out_y,out_z} to the index'th entry of
// table.
// On entry: index < 16, table[0] must be zero.
func p256SelectJacobianPoint(xOut, yOut, zOut *[p256Limbs]uint32, table *[16][3][p256Limbs]uint32, index uint32) {
for i := range xOut {
xOut[i] = 0
}
for i := range yOut {
yOut[i] = 0
}
for i := range zOut {
zOut[i] = 0
}
// The implicit value at index 0 is all zero. We don't need to perform that
// iteration of the loop because we already set out_* to zero.
for i := uint32(1); i < 16; i++ {
mask := i ^ index
mask |= mask >> 2
mask |= mask >> 1
mask &= 1
mask--
for j := range xOut {
xOut[j] |= table[i][0][j] & mask
}
for j := range yOut {
yOut[j] |= table[i][1][j] & mask
}
for j := range zOut {
zOut[j] |= table[i][2][j] & mask
}
}
}
// p256GetBit returns the bit'th bit of scalar.
func p256GetBit(scalar *[32]uint8, bit uint) uint32 {
return uint32(((scalar[bit>>3]) >> (bit & 7)) & 1)
}
// p256ScalarBaseMult sets {xOut,yOut,zOut} = scalar*G where scalar is a
// little-endian number. Note that the value of scalar must be less than the
// order of the group.
func p256ScalarBaseMult(xOut, yOut, zOut *[p256Limbs]uint32, scalar *[32]uint8) {
nIsInfinityMask := ^uint32(0)
var pIsNoninfiniteMask, mask, tableOffset uint32
var px, py, tx, ty, tz [p256Limbs]uint32
for i := range xOut {
xOut[i] = 0
}
for i := range yOut {
yOut[i] = 0
}
for i := range zOut {
zOut[i] = 0
}
// The loop adds bits at positions 0, 64, 128 and 192, followed by
// positions 32,96,160 and 224 and does this 32 times.
for i := uint(0); i < 32; i++ {
if i != 0 {
p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut)
}
tableOffset = 0
for j := uint(0); j <= 32; j += 32 {
bit0 := p256GetBit(scalar, 31-i+j)
bit1 := p256GetBit(scalar, 95-i+j)
bit2 := p256GetBit(scalar, 159-i+j)
bit3 := p256GetBit(scalar, 223-i+j)
index := bit0 | (bit1 << 1) | (bit2 << 2) | (bit3 << 3)
p256SelectAffinePoint(&px, &py, p256Precomputed[tableOffset:], index)
tableOffset += 30 * p256Limbs
// Since scalar is less than the order of the group, we know that
// {xOut,yOut,zOut} != {px,py,1}, unless both are zero, which we handle
// below.
p256PointAddMixed(&tx, &ty, &tz, xOut, yOut, zOut, &px, &py)
// The result of pointAddMixed is incorrect if {xOut,yOut,zOut} is zero
// (a.k.a. the point at infinity). We handle that situation by
// copying the point from the table.
p256CopyConditional(xOut, &px, nIsInfinityMask)
p256CopyConditional(yOut, &py, nIsInfinityMask)
p256CopyConditional(zOut, &p256One, nIsInfinityMask)
// Equally, the result is also wrong if the point from the table is
// zero, which happens when the index is zero. We handle that by
// only copying from {tx,ty,tz} to {xOut,yOut,zOut} if index != 0.
pIsNoninfiniteMask = nonZeroToAllOnes(index)
mask = pIsNoninfiniteMask & ^nIsInfinityMask
p256CopyConditional(xOut, &tx, mask)
p256CopyConditional(yOut, &ty, mask)
p256CopyConditional(zOut, &tz, mask)
// If p was not zero, then n is now non-zero.
nIsInfinityMask &= ^pIsNoninfiniteMask
}
}
}
// p256PointToAffine converts a Jacobian point to an affine point. If the input
// is the point at infinity then it returns (0, 0) in constant time.
func p256PointToAffine(xOut, yOut, x, y, z *[p256Limbs]uint32) {
var zInv, zInvSq [p256Limbs]uint32
p256Invert(&zInv, z)
p256Square(&zInvSq, &zInv)
p256Mul(xOut, x, &zInvSq)
p256Mul(&zInv, &zInv, &zInvSq)
p256Mul(yOut, y, &zInv)
}
// p256ToAffine returns a pair of *big.Int containing the affine representation
// of {x,y,z}.
func p256ToAffine(x, y, z *[p256Limbs]uint32) (xOut, yOut *big.Int) {
var xx, yy [p256Limbs]uint32
p256PointToAffine(&xx, &yy, x, y, z)
return p256ToBig(&xx), p256ToBig(&yy)
}
// p256ScalarMult sets {xOut,yOut,zOut} = scalar*{x,y}.
func p256ScalarMult(xOut, yOut, zOut, x, y *[p256Limbs]uint32, scalar *[32]uint8) {
var px, py, pz, tx, ty, tz [p256Limbs]uint32
var precomp [16][3][p256Limbs]uint32
var nIsInfinityMask, index, pIsNoninfiniteMask, mask uint32
// We precompute 0,1,2,... times {x,y}.
precomp[1][0] = *x
precomp[1][1] = *y
precomp[1][2] = p256One
for i := 2; i < 16; i += 2 {
p256PointDouble(&precomp[i][0], &precomp[i][1], &precomp[i][2], &precomp[i/2][0], &precomp[i/2][1], &precomp[i/2][2])
p256PointAddMixed(&precomp[i+1][0], &precomp[i+1][1], &precomp[i+1][2], &precomp[i][0], &precomp[i][1], &precomp[i][2], x, y)
}
for i := range xOut {
xOut[i] = 0
}
for i := range yOut {
yOut[i] = 0
}
for i := range zOut {
zOut[i] = 0
}
nIsInfinityMask = ^uint32(0)
// We add in a window of four bits each iteration and do this 64 times.
for i := 0; i < 64; i++ {
if i != 0 {
p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut)
p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut)
p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut)
p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut)
}
index = uint32(scalar[31-i/2])
if (i & 1) == 1 {
index &= 15
} else {
index >>= 4
}
// See the comments in scalarBaseMult about handling infinities.
p256SelectJacobianPoint(&px, &py, &pz, &precomp, index)
p256PointAdd(&tx, &ty, &tz, xOut, yOut, zOut, &px, &py, &pz)
p256CopyConditional(xOut, &px, nIsInfinityMask)
p256CopyConditional(yOut, &py, nIsInfinityMask)
p256CopyConditional(zOut, &pz, nIsInfinityMask)
pIsNoninfiniteMask = nonZeroToAllOnes(index)
mask = pIsNoninfiniteMask & ^nIsInfinityMask
p256CopyConditional(xOut, &tx, mask)
p256CopyConditional(yOut, &ty, mask)
p256CopyConditional(zOut, &tz, mask)
nIsInfinityMask &= ^pIsNoninfiniteMask
}
}
// p256FromBig sets out = R*in.
func p256FromBig(out *[p256Limbs]uint32, in *big.Int) {
tmp := new(big.Int).Lsh(in, 257)
tmp.Mod(tmp, p256.P)
for i := 0; i < p256Limbs; i++ {
if bits := tmp.Bits(); len(bits) > 0 {
out[i] = uint32(bits[0]) & bottom29Bits
} else {
out[i] = 0
}
tmp.Rsh(tmp, 29)
i++
if i == p256Limbs {
break
}
if bits := tmp.Bits(); len(bits) > 0 {
out[i] = uint32(bits[0]) & bottom28Bits
} else {
out[i] = 0
}
tmp.Rsh(tmp, 28)
}
}
// p256ToBig returns a *big.Int containing the value of in.
func p256ToBig(in *[p256Limbs]uint32) *big.Int {
result, tmp := new(big.Int), new(big.Int)
result.SetInt64(int64(in[p256Limbs-1]))
for i := p256Limbs - 2; i >= 0; i-- {
if (i & 1) == 0 {
result.Lsh(result, 29)
} else {
result.Lsh(result, 28)
}
tmp.SetInt64(int64(in[i]))
result.Add(result, tmp)
}
result.Mul(result, p256RInverse)
result.Mod(result, p256.P)
return result
}
|