1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate go run encgen.go -output enc_helpers.go
package gob
import (
"encoding"
"math"
"reflect"
)
const uint64Size = 8
type encHelper func(state *encoderState, v reflect.Value) bool
// encoderState is the global execution state of an instance of the encoder.
// Field numbers are delta encoded and always increase. The field
// number is initialized to -1 so 0 comes out as delta(1). A delta of
// 0 terminates the structure.
type encoderState struct {
enc *Encoder
b *encBuffer
sendZero bool // encoding an array element or map key/value pair; send zero values
fieldnum int // the last field number written.
buf [1 + uint64Size]byte // buffer used by the encoder; here to avoid allocation.
next *encoderState // for free list
}
// encBuffer is an extremely simple, fast implementation of a write-only byte buffer.
// It never returns a non-nil error, but Write returns an error value so it matches io.Writer.
type encBuffer struct {
data []byte
scratch [64]byte
}
func (e *encBuffer) WriteByte(c byte) {
e.data = append(e.data, c)
}
func (e *encBuffer) Write(p []byte) (int, error) {
e.data = append(e.data, p...)
return len(p), nil
}
func (e *encBuffer) WriteString(s string) {
e.data = append(e.data, s...)
}
func (e *encBuffer) Len() int {
return len(e.data)
}
func (e *encBuffer) Bytes() []byte {
return e.data
}
func (e *encBuffer) Reset() {
e.data = e.data[0:0]
}
func (enc *Encoder) newEncoderState(b *encBuffer) *encoderState {
e := enc.freeList
if e == nil {
e = new(encoderState)
e.enc = enc
} else {
enc.freeList = e.next
}
e.sendZero = false
e.fieldnum = 0
e.b = b
if len(b.data) == 0 {
b.data = b.scratch[0:0]
}
return e
}
func (enc *Encoder) freeEncoderState(e *encoderState) {
e.next = enc.freeList
enc.freeList = e
}
// Unsigned integers have a two-state encoding. If the number is less
// than 128 (0 through 0x7F), its value is written directly.
// Otherwise the value is written in big-endian byte order preceded
// by the byte length, negated.
// encodeUint writes an encoded unsigned integer to state.b.
func (state *encoderState) encodeUint(x uint64) {
if x <= 0x7F {
state.b.WriteByte(uint8(x))
return
}
i := uint64Size
for x > 0 {
state.buf[i] = uint8(x)
x >>= 8
i--
}
state.buf[i] = uint8(i - uint64Size) // = loop count, negated
state.b.Write(state.buf[i : uint64Size+1])
}
// encodeInt writes an encoded signed integer to state.w.
// The low bit of the encoding says whether to bit complement the (other bits of the)
// uint to recover the int.
func (state *encoderState) encodeInt(i int64) {
var x uint64
if i < 0 {
x = uint64(^i<<1) | 1
} else {
x = uint64(i << 1)
}
state.encodeUint(uint64(x))
}
// encOp is the signature of an encoding operator for a given type.
type encOp func(i *encInstr, state *encoderState, v reflect.Value)
// The 'instructions' of the encoding machine
type encInstr struct {
op encOp
field int // field number in input
index []int // struct index
indir int // how many pointer indirections to reach the value in the struct
}
// update emits a field number and updates the state to record its value for delta encoding.
// If the instruction pointer is nil, it does nothing
func (state *encoderState) update(instr *encInstr) {
if instr != nil {
state.encodeUint(uint64(instr.field - state.fieldnum))
state.fieldnum = instr.field
}
}
// Each encoder for a composite is responsible for handling any
// indirections associated with the elements of the data structure.
// If any pointer so reached is nil, no bytes are written. If the
// data item is zero, no bytes are written. Single values - ints,
// strings etc. - are indirected before calling their encoders.
// Otherwise, the output (for a scalar) is the field number, as an
// encoded integer, followed by the field data in its appropriate
// format.
// encIndirect dereferences pv indir times and returns the result.
func encIndirect(pv reflect.Value, indir int) reflect.Value {
for ; indir > 0; indir-- {
if pv.IsNil() {
break
}
pv = pv.Elem()
}
return pv
}
// encBool encodes the bool referenced by v as an unsigned 0 or 1.
func encBool(i *encInstr, state *encoderState, v reflect.Value) {
b := v.Bool()
if b || state.sendZero {
state.update(i)
if b {
state.encodeUint(1)
} else {
state.encodeUint(0)
}
}
}
// encInt encodes the signed integer (int int8 int16 int32 int64) referenced by v.
func encInt(i *encInstr, state *encoderState, v reflect.Value) {
value := v.Int()
if value != 0 || state.sendZero {
state.update(i)
state.encodeInt(value)
}
}
// encUint encodes the unsigned integer (uint uint8 uint16 uint32 uint64 uintptr) referenced by v.
func encUint(i *encInstr, state *encoderState, v reflect.Value) {
value := v.Uint()
if value != 0 || state.sendZero {
state.update(i)
state.encodeUint(value)
}
}
// floatBits returns a uint64 holding the bits of a floating-point number.
// Floating-point numbers are transmitted as uint64s holding the bits
// of the underlying representation. They are sent byte-reversed, with
// the exponent end coming out first, so integer floating point numbers
// (for example) transmit more compactly. This routine does the
// swizzling.
func floatBits(f float64) uint64 {
u := math.Float64bits(f)
var v uint64
for i := 0; i < 8; i++ {
v <<= 8
v |= u & 0xFF
u >>= 8
}
return v
}
// encFloat encodes the floating point value (float32 float64) referenced by v.
func encFloat(i *encInstr, state *encoderState, v reflect.Value) {
f := v.Float()
if f != 0 || state.sendZero {
bits := floatBits(f)
state.update(i)
state.encodeUint(bits)
}
}
// encComplex encodes the complex value (complex64 complex128) referenced by v.
// Complex numbers are just a pair of floating-point numbers, real part first.
func encComplex(i *encInstr, state *encoderState, v reflect.Value) {
c := v.Complex()
if c != 0+0i || state.sendZero {
rpart := floatBits(real(c))
ipart := floatBits(imag(c))
state.update(i)
state.encodeUint(rpart)
state.encodeUint(ipart)
}
}
// encUint8Array encodes the byte array referenced by v.
// Byte arrays are encoded as an unsigned count followed by the raw bytes.
func encUint8Array(i *encInstr, state *encoderState, v reflect.Value) {
b := v.Bytes()
if len(b) > 0 || state.sendZero {
state.update(i)
state.encodeUint(uint64(len(b)))
state.b.Write(b)
}
}
// encString encodes the string referenced by v.
// Strings are encoded as an unsigned count followed by the raw bytes.
func encString(i *encInstr, state *encoderState, v reflect.Value) {
s := v.String()
if len(s) > 0 || state.sendZero {
state.update(i)
state.encodeUint(uint64(len(s)))
state.b.WriteString(s)
}
}
// encStructTerminator encodes the end of an encoded struct
// as delta field number of 0.
func encStructTerminator(i *encInstr, state *encoderState, v reflect.Value) {
state.encodeUint(0)
}
// Execution engine
// encEngine an array of instructions indexed by field number of the encoding
// data, typically a struct. It is executed top to bottom, walking the struct.
type encEngine struct {
instr []encInstr
}
const singletonField = 0
// valid reports whether the value is valid and a non-nil pointer.
// (Slices, maps, and chans take care of themselves.)
func valid(v reflect.Value) bool {
switch v.Kind() {
case reflect.Invalid:
return false
case reflect.Ptr:
return !v.IsNil()
}
return true
}
// encodeSingle encodes a single top-level non-struct value.
func (enc *Encoder) encodeSingle(b *encBuffer, engine *encEngine, value reflect.Value) {
state := enc.newEncoderState(b)
defer enc.freeEncoderState(state)
state.fieldnum = singletonField
// There is no surrounding struct to frame the transmission, so we must
// generate data even if the item is zero. To do this, set sendZero.
state.sendZero = true
instr := &engine.instr[singletonField]
if instr.indir > 0 {
value = encIndirect(value, instr.indir)
}
if valid(value) {
instr.op(instr, state, value)
}
}
// encodeStruct encodes a single struct value.
func (enc *Encoder) encodeStruct(b *encBuffer, engine *encEngine, value reflect.Value) {
if !valid(value) {
return
}
state := enc.newEncoderState(b)
defer enc.freeEncoderState(state)
state.fieldnum = -1
for i := 0; i < len(engine.instr); i++ {
instr := &engine.instr[i]
if i >= value.NumField() {
// encStructTerminator
instr.op(instr, state, reflect.Value{})
break
}
field := value.FieldByIndex(instr.index)
if instr.indir > 0 {
field = encIndirect(field, instr.indir)
// TODO: Is field guaranteed valid? If so we could avoid this check.
if !valid(field) {
continue
}
}
instr.op(instr, state, field)
}
}
// encodeArray encodes an array.
func (enc *Encoder) encodeArray(b *encBuffer, value reflect.Value, op encOp, elemIndir int, length int, helper encHelper) {
state := enc.newEncoderState(b)
defer enc.freeEncoderState(state)
state.fieldnum = -1
state.sendZero = true
state.encodeUint(uint64(length))
if helper != nil && helper(state, value) {
return
}
for i := 0; i < length; i++ {
elem := value.Index(i)
if elemIndir > 0 {
elem = encIndirect(elem, elemIndir)
// TODO: Is elem guaranteed valid? If so we could avoid this check.
if !valid(elem) {
errorf("encodeArray: nil element")
}
}
op(nil, state, elem)
}
}
// encodeReflectValue is a helper for maps. It encodes the value v.
func encodeReflectValue(state *encoderState, v reflect.Value, op encOp, indir int) {
for i := 0; i < indir && v.IsValid(); i++ {
v = reflect.Indirect(v)
}
if !v.IsValid() {
errorf("encodeReflectValue: nil element")
}
op(nil, state, v)
}
// encodeMap encodes a map as unsigned count followed by key:value pairs.
func (enc *Encoder) encodeMap(b *encBuffer, mv reflect.Value, keyOp, elemOp encOp, keyIndir, elemIndir int) {
state := enc.newEncoderState(b)
state.fieldnum = -1
state.sendZero = true
keys := mv.MapKeys()
state.encodeUint(uint64(len(keys)))
for _, key := range keys {
encodeReflectValue(state, key, keyOp, keyIndir)
encodeReflectValue(state, mv.MapIndex(key), elemOp, elemIndir)
}
enc.freeEncoderState(state)
}
// encodeInterface encodes the interface value iv.
// To send an interface, we send a string identifying the concrete type, followed
// by the type identifier (which might require defining that type right now), followed
// by the concrete value. A nil value gets sent as the empty string for the name,
// followed by no value.
func (enc *Encoder) encodeInterface(b *encBuffer, iv reflect.Value) {
// Gobs can encode nil interface values but not typed interface
// values holding nil pointers, since nil pointers point to no value.
elem := iv.Elem()
if elem.Kind() == reflect.Ptr && elem.IsNil() {
errorf("gob: cannot encode nil pointer of type %s inside interface", iv.Elem().Type())
}
state := enc.newEncoderState(b)
state.fieldnum = -1
state.sendZero = true
if iv.IsNil() {
state.encodeUint(0)
return
}
ut := userType(iv.Elem().Type())
registerLock.RLock()
name, ok := concreteTypeToName[ut.base]
registerLock.RUnlock()
if !ok {
errorf("type not registered for interface: %s", ut.base)
}
// Send the name.
state.encodeUint(uint64(len(name)))
state.b.WriteString(name)
// Define the type id if necessary.
enc.sendTypeDescriptor(enc.writer(), state, ut)
// Send the type id.
enc.sendTypeId(state, ut)
// Encode the value into a new buffer. Any nested type definitions
// should be written to b, before the encoded value.
enc.pushWriter(b)
data := new(encBuffer)
data.Write(spaceForLength)
enc.encode(data, elem, ut)
if enc.err != nil {
error_(enc.err)
}
enc.popWriter()
enc.writeMessage(b, data)
if enc.err != nil {
error_(enc.err)
}
enc.freeEncoderState(state)
}
// isZero reports whether the value is the zero of its type.
func isZero(val reflect.Value) bool {
switch val.Kind() {
case reflect.Array:
for i := 0; i < val.Len(); i++ {
if !isZero(val.Index(i)) {
return false
}
}
return true
case reflect.Map, reflect.Slice, reflect.String:
return val.Len() == 0
case reflect.Bool:
return !val.Bool()
case reflect.Complex64, reflect.Complex128:
return val.Complex() == 0
case reflect.Chan, reflect.Func, reflect.Interface, reflect.Ptr:
return val.IsNil()
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return val.Int() == 0
case reflect.Float32, reflect.Float64:
return val.Float() == 0
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return val.Uint() == 0
case reflect.Struct:
for i := 0; i < val.NumField(); i++ {
if !isZero(val.Field(i)) {
return false
}
}
return true
}
panic("unknown type in isZero " + val.Type().String())
}
// encGobEncoder encodes a value that implements the GobEncoder interface.
// The data is sent as a byte array.
func (enc *Encoder) encodeGobEncoder(b *encBuffer, ut *userTypeInfo, v reflect.Value) {
// TODO: should we catch panics from the called method?
var data []byte
var err error
// We know it's one of these.
switch ut.externalEnc {
case xGob:
data, err = v.Interface().(GobEncoder).GobEncode()
case xBinary:
data, err = v.Interface().(encoding.BinaryMarshaler).MarshalBinary()
case xText:
data, err = v.Interface().(encoding.TextMarshaler).MarshalText()
}
if err != nil {
error_(err)
}
state := enc.newEncoderState(b)
state.fieldnum = -1
state.encodeUint(uint64(len(data)))
state.b.Write(data)
enc.freeEncoderState(state)
}
var encOpTable = [...]encOp{
reflect.Bool: encBool,
reflect.Int: encInt,
reflect.Int8: encInt,
reflect.Int16: encInt,
reflect.Int32: encInt,
reflect.Int64: encInt,
reflect.Uint: encUint,
reflect.Uint8: encUint,
reflect.Uint16: encUint,
reflect.Uint32: encUint,
reflect.Uint64: encUint,
reflect.Uintptr: encUint,
reflect.Float32: encFloat,
reflect.Float64: encFloat,
reflect.Complex64: encComplex,
reflect.Complex128: encComplex,
reflect.String: encString,
}
// encOpFor returns (a pointer to) the encoding op for the base type under rt and
// the indirection count to reach it.
func encOpFor(rt reflect.Type, inProgress map[reflect.Type]*encOp, building map[*typeInfo]bool) (*encOp, int) {
ut := userType(rt)
// If the type implements GobEncoder, we handle it without further processing.
if ut.externalEnc != 0 {
return gobEncodeOpFor(ut)
}
// If this type is already in progress, it's a recursive type (e.g. map[string]*T).
// Return the pointer to the op we're already building.
if opPtr := inProgress[rt]; opPtr != nil {
return opPtr, ut.indir
}
typ := ut.base
indir := ut.indir
k := typ.Kind()
var op encOp
if int(k) < len(encOpTable) {
op = encOpTable[k]
}
if op == nil {
inProgress[rt] = &op
// Special cases
switch t := typ; t.Kind() {
case reflect.Slice:
if t.Elem().Kind() == reflect.Uint8 {
op = encUint8Array
break
}
// Slices have a header; we decode it to find the underlying array.
elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building)
helper := encSliceHelper[t.Elem().Kind()]
op = func(i *encInstr, state *encoderState, slice reflect.Value) {
if !state.sendZero && slice.Len() == 0 {
return
}
state.update(i)
state.enc.encodeArray(state.b, slice, *elemOp, elemIndir, slice.Len(), helper)
}
case reflect.Array:
// True arrays have size in the type.
elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building)
helper := encArrayHelper[t.Elem().Kind()]
op = func(i *encInstr, state *encoderState, array reflect.Value) {
state.update(i)
state.enc.encodeArray(state.b, array, *elemOp, elemIndir, array.Len(), helper)
}
case reflect.Map:
keyOp, keyIndir := encOpFor(t.Key(), inProgress, building)
elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building)
op = func(i *encInstr, state *encoderState, mv reflect.Value) {
// We send zero-length (but non-nil) maps because the
// receiver might want to use the map. (Maps don't use append.)
if !state.sendZero && mv.IsNil() {
return
}
state.update(i)
state.enc.encodeMap(state.b, mv, *keyOp, *elemOp, keyIndir, elemIndir)
}
case reflect.Struct:
// Generate a closure that calls out to the engine for the nested type.
getEncEngine(userType(typ), building)
info := mustGetTypeInfo(typ)
op = func(i *encInstr, state *encoderState, sv reflect.Value) {
state.update(i)
// indirect through info to delay evaluation for recursive structs
enc := info.encoder.Load().(*encEngine)
state.enc.encodeStruct(state.b, enc, sv)
}
case reflect.Interface:
op = func(i *encInstr, state *encoderState, iv reflect.Value) {
if !state.sendZero && (!iv.IsValid() || iv.IsNil()) {
return
}
state.update(i)
state.enc.encodeInterface(state.b, iv)
}
}
}
if op == nil {
errorf("can't happen: encode type %s", rt)
}
return &op, indir
}
// gobEncodeOpFor returns the op for a type that is known to implement GobEncoder.
func gobEncodeOpFor(ut *userTypeInfo) (*encOp, int) {
rt := ut.user
if ut.encIndir == -1 {
rt = reflect.PtrTo(rt)
} else if ut.encIndir > 0 {
for i := int8(0); i < ut.encIndir; i++ {
rt = rt.Elem()
}
}
var op encOp
op = func(i *encInstr, state *encoderState, v reflect.Value) {
if ut.encIndir == -1 {
// Need to climb up one level to turn value into pointer.
if !v.CanAddr() {
errorf("unaddressable value of type %s", rt)
}
v = v.Addr()
}
if !state.sendZero && isZero(v) {
return
}
state.update(i)
state.enc.encodeGobEncoder(state.b, ut, v)
}
return &op, int(ut.encIndir) // encIndir: op will get called with p == address of receiver.
}
// compileEnc returns the engine to compile the type.
func compileEnc(ut *userTypeInfo, building map[*typeInfo]bool) *encEngine {
srt := ut.base
engine := new(encEngine)
seen := make(map[reflect.Type]*encOp)
rt := ut.base
if ut.externalEnc != 0 {
rt = ut.user
}
if ut.externalEnc == 0 && srt.Kind() == reflect.Struct {
for fieldNum, wireFieldNum := 0, 0; fieldNum < srt.NumField(); fieldNum++ {
f := srt.Field(fieldNum)
if !isSent(&f) {
continue
}
op, indir := encOpFor(f.Type, seen, building)
engine.instr = append(engine.instr, encInstr{*op, wireFieldNum, f.Index, indir})
wireFieldNum++
}
if srt.NumField() > 0 && len(engine.instr) == 0 {
errorf("type %s has no exported fields", rt)
}
engine.instr = append(engine.instr, encInstr{encStructTerminator, 0, nil, 0})
} else {
engine.instr = make([]encInstr, 1)
op, indir := encOpFor(rt, seen, building)
engine.instr[0] = encInstr{*op, singletonField, nil, indir}
}
return engine
}
// getEncEngine returns the engine to compile the type.
func getEncEngine(ut *userTypeInfo, building map[*typeInfo]bool) *encEngine {
info, err := getTypeInfo(ut)
if err != nil {
error_(err)
}
enc, ok := info.encoder.Load().(*encEngine)
if !ok {
enc = buildEncEngine(info, ut, building)
}
return enc
}
func buildEncEngine(info *typeInfo, ut *userTypeInfo, building map[*typeInfo]bool) *encEngine {
// Check for recursive types.
if building != nil && building[info] {
return nil
}
info.encInit.Lock()
defer info.encInit.Unlock()
enc, ok := info.encoder.Load().(*encEngine)
if !ok {
if building == nil {
building = make(map[*typeInfo]bool)
}
building[info] = true
enc = compileEnc(ut, building)
info.encoder.Store(enc)
}
return enc
}
func (enc *Encoder) encode(b *encBuffer, value reflect.Value, ut *userTypeInfo) {
defer catchError(&enc.err)
engine := getEncEngine(ut, nil)
indir := ut.indir
if ut.externalEnc != 0 {
indir = int(ut.encIndir)
}
for i := 0; i < indir; i++ {
value = reflect.Indirect(value)
}
if ut.externalEnc == 0 && value.Type().Kind() == reflect.Struct {
enc.encodeStruct(b, engine, value)
} else {
enc.encodeSingle(b, engine, value)
}
}
|