1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Semaphore implementation exposed to Go.
// Intended use is provide a sleep and wakeup
// primitive that can be used in the contended case
// of other synchronization primitives.
// Thus it targets the same goal as Linux's futex,
// but it has much simpler semantics.
//
// That is, don't think of these as semaphores.
// Think of them as a way to implement sleep and wakeup
// such that every sleep is paired with a single wakeup,
// even if, due to races, the wakeup happens before the sleep.
//
// See Mullender and Cox, ``Semaphores in Plan 9,''
// http://swtch.com/semaphore.pdf
package sync
#include "runtime.h"
#include "arch.h"
typedef struct SemaWaiter SemaWaiter;
struct SemaWaiter
{
uint32 volatile* addr;
G* g;
int64 releasetime;
int32 nrelease; // -1 for acquire
SemaWaiter* prev;
SemaWaiter* next;
};
typedef struct SemaRoot SemaRoot;
struct SemaRoot
{
Lock;
SemaWaiter* head;
SemaWaiter* tail;
// Number of waiters. Read w/o the lock.
uint32 volatile nwait;
};
// Prime to not correlate with any user patterns.
#define SEMTABLESZ 251
struct semtable
{
SemaRoot;
uint8 pad[CacheLineSize-sizeof(SemaRoot)];
};
static struct semtable semtable[SEMTABLESZ];
static SemaRoot*
semroot(uint32 volatile *addr)
{
return &semtable[((uintptr)addr >> 3) % SEMTABLESZ];
}
static void
semqueue(SemaRoot *root, uint32 volatile *addr, SemaWaiter *s)
{
s->g = runtime_g();
s->addr = addr;
s->next = nil;
s->prev = root->tail;
if(root->tail)
root->tail->next = s;
else
root->head = s;
root->tail = s;
}
static void
semdequeue(SemaRoot *root, SemaWaiter *s)
{
if(s->next)
s->next->prev = s->prev;
else
root->tail = s->prev;
if(s->prev)
s->prev->next = s->next;
else
root->head = s->next;
s->prev = nil;
s->next = nil;
}
static int32
cansemacquire(uint32 volatile *addr)
{
uint32 v;
while((v = runtime_atomicload(addr)) > 0)
if(runtime_cas(addr, v, v-1))
return 1;
return 0;
}
void
runtime_semacquire(uint32 volatile *addr, bool profile)
{
SemaWaiter s; // Needs to be allocated on stack, otherwise garbage collector could deallocate it
SemaRoot *root;
int64 t0;
// Easy case.
if(cansemacquire(addr))
return;
// Harder case:
// increment waiter count
// try cansemacquire one more time, return if succeeded
// enqueue itself as a waiter
// sleep
// (waiter descriptor is dequeued by signaler)
root = semroot(addr);
t0 = 0;
s.releasetime = 0;
if(profile && runtime_blockprofilerate > 0) {
t0 = runtime_cputicks();
s.releasetime = -1;
}
for(;;) {
runtime_lock(root);
// Add ourselves to nwait to disable "easy case" in semrelease.
runtime_xadd(&root->nwait, 1);
// Check cansemacquire to avoid missed wakeup.
if(cansemacquire(addr)) {
runtime_xadd(&root->nwait, -1);
runtime_unlock(root);
return;
}
// Any semrelease after the cansemacquire knows we're waiting
// (we set nwait above), so go to sleep.
semqueue(root, addr, &s);
runtime_parkunlock(root, "semacquire");
if(cansemacquire(addr)) {
if(t0)
runtime_blockevent(s.releasetime - t0, 3);
return;
}
}
}
void
runtime_semrelease(uint32 volatile *addr)
{
SemaWaiter *s;
SemaRoot *root;
root = semroot(addr);
runtime_xadd(addr, 1);
// Easy case: no waiters?
// This check must happen after the xadd, to avoid a missed wakeup
// (see loop in semacquire).
if(runtime_atomicload(&root->nwait) == 0)
return;
// Harder case: search for a waiter and wake it.
runtime_lock(root);
if(runtime_atomicload(&root->nwait) == 0) {
// The count is already consumed by another goroutine,
// so no need to wake up another goroutine.
runtime_unlock(root);
return;
}
for(s = root->head; s; s = s->next) {
if(s->addr == addr) {
runtime_xadd(&root->nwait, -1);
semdequeue(root, s);
break;
}
}
runtime_unlock(root);
if(s) {
if(s->releasetime)
s->releasetime = runtime_cputicks();
runtime_ready(s->g);
}
}
// TODO(dvyukov): move to netpoll.goc once it's used by all OSes.
void net_runtime_Semacquire(uint32 *addr)
__asm__ (GOSYM_PREFIX "net.runtime_Semacquire");
void net_runtime_Semacquire(uint32 *addr)
{
runtime_semacquire(addr, true);
}
void net_runtime_Semrelease(uint32 *addr)
__asm__ (GOSYM_PREFIX "net.runtime_Semrelease");
void net_runtime_Semrelease(uint32 *addr)
{
runtime_semrelease(addr);
}
func runtime_Semacquire(addr *uint32) {
runtime_semacquire(addr, true);
}
func runtime_Semrelease(addr *uint32) {
runtime_semrelease(addr);
}
typedef struct SyncSema SyncSema;
struct SyncSema
{
Lock;
SemaWaiter* head;
SemaWaiter* tail;
};
func runtime_Syncsemcheck(size uintptr) {
if(size != sizeof(SyncSema)) {
runtime_printf("bad SyncSema size: sync:%D runtime:%D\n", (int64)size, (int64)sizeof(SyncSema));
runtime_throw("bad SyncSema size");
}
}
// Syncsemacquire waits for a pairing Syncsemrelease on the same semaphore s.
func runtime_Syncsemacquire(s *SyncSema) {
SemaWaiter w, *wake;
int64 t0;
w.g = runtime_g();
w.nrelease = -1;
w.next = nil;
w.releasetime = 0;
t0 = 0;
if(runtime_blockprofilerate > 0) {
t0 = runtime_cputicks();
w.releasetime = -1;
}
runtime_lock(s);
if(s->head && s->head->nrelease > 0) {
// have pending release, consume it
wake = nil;
s->head->nrelease--;
if(s->head->nrelease == 0) {
wake = s->head;
s->head = wake->next;
if(s->head == nil)
s->tail = nil;
}
runtime_unlock(s);
if(wake)
runtime_ready(wake->g);
} else {
// enqueue itself
if(s->tail == nil)
s->head = &w;
else
s->tail->next = &w;
s->tail = &w;
runtime_parkunlock(s, "semacquire");
if(t0)
runtime_blockevent(w.releasetime - t0, 2);
}
}
// Syncsemrelease waits for n pairing Syncsemacquire on the same semaphore s.
func runtime_Syncsemrelease(s *SyncSema, n uint32) {
SemaWaiter w, *wake;
w.g = runtime_g();
w.nrelease = (int32)n;
w.next = nil;
w.releasetime = 0;
runtime_lock(s);
while(w.nrelease > 0 && s->head && s->head->nrelease < 0) {
// have pending acquire, satisfy it
wake = s->head;
s->head = wake->next;
if(s->head == nil)
s->tail = nil;
if(wake->releasetime)
wake->releasetime = runtime_cputicks();
runtime_ready(wake->g);
w.nrelease--;
}
if(w.nrelease > 0) {
// enqueue itself
if(s->tail == nil)
s->head = &w;
else
s->tail->next = &w;
s->tail = &w;
runtime_parkunlock(s, "semarelease");
} else
runtime_unlock(s);
}
|