1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
/* Complex sine hyperbole function for complex __float128.
Copyright (C) 1997-2012 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include "quadmath-imp.h"
#ifdef HAVE_FENV_H
# include <fenv.h>
#endif
__complex128
csinhq (__complex128 x)
{
__complex128 retval;
int negate = signbitq (__real__ x);
int rcls = fpclassifyq (__real__ x);
int icls = fpclassifyq (__imag__ x);
__real__ x = fabsq (__real__ x);
if (__builtin_expect (rcls >= QUADFP_ZERO, 1))
{
/* Real part is finite. */
if (__builtin_expect (icls >= QUADFP_ZERO, 1))
{
/* Imaginary part is finite. */
const int t = (int) ((FLT128_MAX_EXP - 1) * M_LN2q);
__float128 sinix, cosix;
if (__builtin_expect (icls != QUADFP_SUBNORMAL, 1))
{
sincosq (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0Q;
}
if (fabsq (__real__ x) > t)
{
__float128 exp_t = expq (t);
__float128 rx = fabsq (__real__ x);
if (signbitq (__real__ x))
cosix = -cosix;
rx -= t;
sinix *= exp_t / 2.0Q;
cosix *= exp_t / 2.0Q;
if (rx > t)
{
rx -= t;
sinix *= exp_t;
cosix *= exp_t;
}
if (rx > t)
{
/* Overflow (original real part of x > 3t). */
__real__ retval = FLT128_MAX * cosix;
__imag__ retval = FLT128_MAX * sinix;
}
else
{
__float128 exp_val = expq (rx);
__real__ retval = exp_val * cosix;
__imag__ retval = exp_val * sinix;
}
}
else
{
__real__ retval = sinhq (__real__ x) * cosix;
__imag__ retval = coshq (__real__ x) * sinix;
}
if (negate)
__real__ retval = -__real__ retval;
}
else
{
if (rcls == QUADFP_ZERO)
{
/* Real part is 0.0. */
__real__ retval = copysignq (0.0Q, negate ? -1.0Q : 1.0Q);
__imag__ retval = nanq ("") + nanq ("");
#ifdef HAVE_FENV_H
if (icls == QUADFP_INFINITE)
feraiseexcept (FE_INVALID);
#endif
}
else
{
__real__ retval = nanq ("");
__imag__ retval = nanq ("");
#ifdef HAVE_FENV_H
feraiseexcept (FE_INVALID);
#endif
}
}
}
else if (rcls == QUADFP_INFINITE)
{
/* Real part is infinite. */
if (__builtin_expect (icls > QUADFP_ZERO, 1))
{
/* Imaginary part is finite. */
__float128 sinix, cosix;
if (__builtin_expect (icls != QUADFP_SUBNORMAL, 1))
{
sincosq (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0;
}
__real__ retval = copysignq (HUGE_VALQ, cosix);
__imag__ retval = copysignq (HUGE_VALQ, sinix);
if (negate)
__real__ retval = -__real__ retval;
}
else if (icls == QUADFP_ZERO)
{
/* Imaginary part is 0.0. */
__real__ retval = negate ? -HUGE_VALQ : HUGE_VALQ;
__imag__ retval = __imag__ x;
}
else
{
/* The addition raises the invalid exception. */
__real__ retval = HUGE_VALQ;
__imag__ retval = nanq ("") + nanq ("");
#ifdef HAVE_FENV_H
if (icls == QUADFP_INFINITE)
feraiseexcept (FE_INVALID);
#endif
}
}
else
{
__real__ retval = nanq ("");
__imag__ retval = __imag__ x == 0.0Q ? __imag__ x : nanq ("");
}
return retval;
}
|