1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
/* Implementation of the SYSTEM_CLOCK intrinsic.
Copyright (C) 2004-2015 Free Software Foundation, Inc.
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libgfortran.h"
#include <limits.h>
#include "time_1.h"
#if !defined(__MINGW32__) && !defined(__CYGWIN__)
/* POSIX states that CLOCK_REALTIME must be present if clock_gettime
is available, others are optional. */
#if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_CLOCK_GETTIME_LIBRT)
#if defined(CLOCK_MONOTONIC) && defined(_POSIX_MONOTONIC_CLOCK) \
&& _POSIX_MONOTONIC_CLOCK >= 0
#define GF_CLOCK_MONOTONIC CLOCK_MONOTONIC
#else
#define GF_CLOCK_MONOTONIC CLOCK_REALTIME
#endif
#endif
/* Weakref trickery for clock_gettime(). On Glibc <= 2.16,
clock_gettime() requires us to link in librt, which also pulls in
libpthread. In order to avoid this by default, only call
clock_gettime() through a weak reference.
Some targets don't support weak undefined references; on these
GTHREAD_USE_WEAK is 0. So we need to define it to 1 on other
targets. */
#ifndef GTHREAD_USE_WEAK
#define GTHREAD_USE_WEAK 1
#endif
#if SUPPORTS_WEAK && GTHREAD_USE_WEAK && defined(HAVE_CLOCK_GETTIME_LIBRT)
static int weak_gettime (clockid_t, struct timespec *)
__attribute__((__weakref__("clock_gettime")));
#endif
/* High resolution monotonic clock, falling back to the realtime clock
if the target does not support such a clock.
Arguments:
secs - OUTPUT, seconds
fracsecs - OUTPUT, fractional seconds, units given by tk argument
tk - OUTPUT, clock resolution [counts/sec]
If the target supports a monotonic clock, the OUTPUT arguments
represent a monotonically incrementing clock starting from some
unspecified time in the past.
If a monotonic clock is not available, falls back to the realtime
clock which is not monotonic.
Return value: 0 for success, -1 for error. In case of error, errno
is set.
*/
static int
gf_gettime_mono (time_t * secs, long * fracsecs, long * tck)
{
int err;
#ifdef HAVE_CLOCK_GETTIME
struct timespec ts;
*tck = 1000000000;
err = clock_gettime (GF_CLOCK_MONOTONIC, &ts);
*secs = ts.tv_sec;
*fracsecs = ts.tv_nsec;
return err;
#else
#if defined(HAVE_CLOCK_GETTIME_LIBRT) && SUPPORTS_WEAK && GTHREAD_USE_WEAK
if (weak_gettime)
{
struct timespec ts;
*tck = 1000000000;
err = weak_gettime (GF_CLOCK_MONOTONIC, &ts);
*secs = ts.tv_sec;
*fracsecs = ts.tv_nsec;
return err;
}
#endif
*tck = 1000000;
err = gf_gettime (secs, fracsecs);
return err;
#endif
}
#endif /* !__MINGW32 && !__CYGWIN__ */
extern void
system_clock_4 (GFC_INTEGER_4 *count, GFC_INTEGER_4 *count_rate,
GFC_INTEGER_4 *count_max);
export_proto(system_clock_4);
extern void
system_clock_8 (GFC_INTEGER_8 *count, GFC_INTEGER_8 *count_rate,
GFC_INTEGER_8 *count_max);
export_proto(system_clock_8);
/* prefix(system_clock_4) is the INTEGER(4) version of the SYSTEM_CLOCK
intrinsic subroutine. It returns the number of clock ticks for the current
system time, the number of ticks per second, and the maximum possible value
for COUNT. */
void
system_clock_4 (GFC_INTEGER_4 *count, GFC_INTEGER_4 *count_rate,
GFC_INTEGER_4 *count_max)
{
#if defined(__MINGW32__) || defined(__CYGWIN__)
if (count)
{
/* Use GetTickCount here as the resolution and range is
sufficient for the INTEGER(kind=4) version, and
QueryPerformanceCounter has potential issues. */
uint32_t cnt = GetTickCount ();
if (cnt > GFC_INTEGER_4_HUGE)
cnt = cnt - GFC_INTEGER_4_HUGE - 1;
*count = cnt;
}
if (count_rate)
*count_rate = 1000;
if (count_max)
*count_max = GFC_INTEGER_4_HUGE;
#else
time_t secs;
long fracsecs, tck;
if (gf_gettime_mono (&secs, &fracsecs, &tck) == 0)
{
long tck_out = tck > 1000 ? 1000 : tck;
long tck_r = tck / tck_out;
GFC_UINTEGER_4 ucnt = (GFC_UINTEGER_4) secs * tck_out;
ucnt += fracsecs / tck_r;
if (ucnt > GFC_INTEGER_4_HUGE)
ucnt = ucnt - GFC_INTEGER_4_HUGE - 1;
if (count)
*count = ucnt;
if (count_rate)
*count_rate = tck_out;
if (count_max)
*count_max = GFC_INTEGER_4_HUGE;
}
else
{
if (count)
*count = - GFC_INTEGER_4_HUGE;
if (count_rate)
*count_rate = 0;
if (count_max)
*count_max = 0;
}
#endif
}
/* INTEGER(8) version of the above routine. */
void
system_clock_8 (GFC_INTEGER_8 *count, GFC_INTEGER_8 *count_rate,
GFC_INTEGER_8 *count_max)
{
#if defined(__MINGW32__) || defined(__CYGWIN__)
LARGE_INTEGER cnt;
LARGE_INTEGER freq;
bool fail = false;
if (count && !QueryPerformanceCounter (&cnt))
fail = true;
if (count_rate && !QueryPerformanceFrequency (&freq))
fail = true;
if (fail)
{
if (count)
*count = - GFC_INTEGER_8_HUGE;
if (count_rate)
*count_rate = 0;
if (count_max)
*count_max = 0;
}
else
{
if (count)
*count = cnt.QuadPart;
if (count_rate)
*count_rate = freq.QuadPart;
if (count_max)
*count_max = GFC_INTEGER_8_HUGE;
}
#else
time_t secs;
long fracsecs, tck;
if (gf_gettime_mono (&secs, &fracsecs, &tck) == 0)
{
GFC_UINTEGER_8 ucnt = (GFC_UINTEGER_8) secs * tck;
ucnt += fracsecs;
if (ucnt > GFC_INTEGER_8_HUGE)
ucnt = ucnt - GFC_INTEGER_8_HUGE - 1;
if (count)
*count = ucnt;
if (count_rate)
*count_rate = tck;
if (count_max)
*count_max = GFC_INTEGER_8_HUGE;
}
else
{
if (count)
*count = - GFC_INTEGER_8_HUGE;
if (count_rate)
*count_rate = 0;
if (count_max)
*count_max = 0;
}
#endif
}
|