1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package reflect implements run-time reflection, allowing a program to
// manipulate objects with arbitrary types. The typical use is to take a value
// with static type interface{} and extract its dynamic type information by
// calling TypeOf, which returns a Type.
//
// A call to ValueOf returns a Value representing the run-time data.
// Zero takes a Type and returns a Value representing a zero value
// for that type.
//
// See "The Laws of Reflection" for an introduction to reflection in Go:
// http://golang.org/doc/articles/laws_of_reflection.html
package reflect
import (
"runtime"
"strconv"
"sync"
"unsafe"
)
// Type is the representation of a Go type.
//
// Not all methods apply to all kinds of types. Restrictions,
// if any, are noted in the documentation for each method.
// Use the Kind method to find out the kind of type before
// calling kind-specific methods. Calling a method
// inappropriate to the kind of type causes a run-time panic.
type Type interface {
// Methods applicable to all types.
// Align returns the alignment in bytes of a value of
// this type when allocated in memory.
Align() int
// FieldAlign returns the alignment in bytes of a value of
// this type when used as a field in a struct.
FieldAlign() int
// Method returns the i'th method in the type's method set.
// It panics if i is not in the range [0, NumMethod()).
//
// For a non-interface type T or *T, the returned Method's Type and Func
// fields describe a function whose first argument is the receiver.
//
// For an interface type, the returned Method's Type field gives the
// method signature, without a receiver, and the Func field is nil.
Method(int) Method
// MethodByName returns the method with that name in the type's
// method set and a boolean indicating if the method was found.
//
// For a non-interface type T or *T, the returned Method's Type and Func
// fields describe a function whose first argument is the receiver.
//
// For an interface type, the returned Method's Type field gives the
// method signature, without a receiver, and the Func field is nil.
MethodByName(string) (Method, bool)
// NumMethod returns the number of methods in the type's method set.
NumMethod() int
// Name returns the type's name within its package.
// It returns an empty string for unnamed types.
Name() string
// PkgPath returns a named type's package path, that is, the import path
// that uniquely identifies the package, such as "encoding/base64".
// If the type was predeclared (string, error) or unnamed (*T, struct{}, []int),
// the package path will be the empty string.
PkgPath() string
// Size returns the number of bytes needed to store
// a value of the given type; it is analogous to unsafe.Sizeof.
Size() uintptr
// String returns a string representation of the type.
// The string representation may use shortened package names
// (e.g., base64 instead of "encoding/base64") and is not
// guaranteed to be unique among types. To test for equality,
// compare the Types directly.
String() string
// Used internally by gccgo--the string retaining quoting.
rawString() string
// Kind returns the specific kind of this type.
Kind() Kind
// Implements returns true if the type implements the interface type u.
Implements(u Type) bool
// AssignableTo returns true if a value of the type is assignable to type u.
AssignableTo(u Type) bool
// ConvertibleTo returns true if a value of the type is convertible to type u.
ConvertibleTo(u Type) bool
// Comparable returns true if values of this type are comparable.
Comparable() bool
// Methods applicable only to some types, depending on Kind.
// The methods allowed for each kind are:
//
// Int*, Uint*, Float*, Complex*: Bits
// Array: Elem, Len
// Chan: ChanDir, Elem
// Func: In, NumIn, Out, NumOut, IsVariadic.
// Map: Key, Elem
// Ptr: Elem
// Slice: Elem
// Struct: Field, FieldByIndex, FieldByName, FieldByNameFunc, NumField
// Bits returns the size of the type in bits.
// It panics if the type's Kind is not one of the
// sized or unsized Int, Uint, Float, or Complex kinds.
Bits() int
// ChanDir returns a channel type's direction.
// It panics if the type's Kind is not Chan.
ChanDir() ChanDir
// IsVariadic returns true if a function type's final input parameter
// is a "..." parameter. If so, t.In(t.NumIn() - 1) returns the parameter's
// implicit actual type []T.
//
// For concreteness, if t represents func(x int, y ... float64), then
//
// t.NumIn() == 2
// t.In(0) is the reflect.Type for "int"
// t.In(1) is the reflect.Type for "[]float64"
// t.IsVariadic() == true
//
// IsVariadic panics if the type's Kind is not Func.
IsVariadic() bool
// Elem returns a type's element type.
// It panics if the type's Kind is not Array, Chan, Map, Ptr, or Slice.
Elem() Type
// Field returns a struct type's i'th field.
// It panics if the type's Kind is not Struct.
// It panics if i is not in the range [0, NumField()).
Field(i int) StructField
// FieldByIndex returns the nested field corresponding
// to the index sequence. It is equivalent to calling Field
// successively for each index i.
// It panics if the type's Kind is not Struct.
FieldByIndex(index []int) StructField
// FieldByName returns the struct field with the given name
// and a boolean indicating if the field was found.
FieldByName(name string) (StructField, bool)
// FieldByNameFunc returns the first struct field with a name
// that satisfies the match function and a boolean indicating if
// the field was found.
FieldByNameFunc(match func(string) bool) (StructField, bool)
// In returns the type of a function type's i'th input parameter.
// It panics if the type's Kind is not Func.
// It panics if i is not in the range [0, NumIn()).
In(i int) Type
// Key returns a map type's key type.
// It panics if the type's Kind is not Map.
Key() Type
// Len returns an array type's length.
// It panics if the type's Kind is not Array.
Len() int
// NumField returns a struct type's field count.
// It panics if the type's Kind is not Struct.
NumField() int
// NumIn returns a function type's input parameter count.
// It panics if the type's Kind is not Func.
NumIn() int
// NumOut returns a function type's output parameter count.
// It panics if the type's Kind is not Func.
NumOut() int
// Out returns the type of a function type's i'th output parameter.
// It panics if the type's Kind is not Func.
// It panics if i is not in the range [0, NumOut()).
Out(i int) Type
common() *rtype
uncommon() *uncommonType
}
// BUG(rsc): FieldByName and related functions consider struct field names to be equal
// if the names are equal, even if they are unexported names originating
// in different packages. The practical effect of this is that the result of
// t.FieldByName("x") is not well defined if the struct type t contains
// multiple fields named x (embedded from different packages).
// FieldByName may return one of the fields named x or may report that there are none.
// See golang.org/issue/4876 for more details.
/*
* These data structures are known to the compiler (../../cmd/gc/reflect.c).
* A few are known to ../runtime/type.go to convey to debuggers.
* They are also known to ../runtime/type.h.
*/
// A Kind represents the specific kind of type that a Type represents.
// The zero Kind is not a valid kind.
type Kind uint
const (
Invalid Kind = iota
Bool
Int
Int8
Int16
Int32
Int64
Uint
Uint8
Uint16
Uint32
Uint64
Uintptr
Float32
Float64
Complex64
Complex128
Array
Chan
Func
Interface
Map
Ptr
Slice
String
Struct
UnsafePointer
)
// rtype is the common implementation of most values.
// It is embedded in other, public struct types, but always
// with a unique tag like `reflect:"array"` or `reflect:"ptr"`
// so that code cannot convert from, say, *arrayType to *ptrType.
type rtype struct {
kind uint8 // enumeration for C
align int8 // alignment of variable with this type
fieldAlign uint8 // alignment of struct field with this type
_ uint8 // unused/padding
size uintptr
hash uint32 // hash of type; avoids computation in hash tables
hashfn uintptr // hash function code
equalfn uintptr // equality function code
gc unsafe.Pointer // garbage collection data
string *string // string form; unnecessary but undeniably useful
*uncommonType // (relatively) uncommon fields
ptrToThis *rtype // type for pointer to this type, if used in binary or has methods
zero unsafe.Pointer // pointer to zero value
}
// Method on non-interface type
type method struct {
name *string // name of method
pkgPath *string // nil for exported Names; otherwise import path
mtyp *rtype // method type (without receiver)
typ *rtype // .(*FuncType) underneath (with receiver)
tfn unsafe.Pointer // fn used for normal method call
}
// uncommonType is present only for types with names or methods
// (if T is a named type, the uncommonTypes for T and *T have methods).
// Using a pointer to this struct reduces the overall size required
// to describe an unnamed type with no methods.
type uncommonType struct {
name *string // name of type
pkgPath *string // import path; nil for built-in types like int, string
methods []method // methods associated with type
}
// ChanDir represents a channel type's direction.
type ChanDir int
const (
RecvDir ChanDir = 1 << iota // <-chan
SendDir // chan<-
BothDir = RecvDir | SendDir // chan
)
// arrayType represents a fixed array type.
type arrayType struct {
rtype `reflect:"array"`
elem *rtype // array element type
slice *rtype // slice type
len uintptr
}
// chanType represents a channel type.
type chanType struct {
rtype `reflect:"chan"`
elem *rtype // channel element type
dir uintptr // channel direction (ChanDir)
}
// funcType represents a function type.
type funcType struct {
rtype `reflect:"func"`
dotdotdot bool // last input parameter is ...
in []*rtype // input parameter types
out []*rtype // output parameter types
}
// imethod represents a method on an interface type
type imethod struct {
name *string // name of method
pkgPath *string // nil for exported Names; otherwise import path
typ *rtype // .(*FuncType) underneath
}
// interfaceType represents an interface type.
type interfaceType struct {
rtype `reflect:"interface"`
methods []imethod // sorted by hash
}
// mapType represents a map type.
type mapType struct {
rtype `reflect:"map"`
key *rtype // map key type
elem *rtype // map element (value) type
}
// ptrType represents a pointer type.
type ptrType struct {
rtype `reflect:"ptr"`
elem *rtype // pointer element (pointed at) type
}
// sliceType represents a slice type.
type sliceType struct {
rtype `reflect:"slice"`
elem *rtype // slice element type
}
// Struct field
type structField struct {
name *string // nil for embedded fields
pkgPath *string // nil for exported Names; otherwise import path
typ *rtype // type of field
tag *string // nil if no tag
offset uintptr // byte offset of field within struct
}
// structType represents a struct type.
type structType struct {
rtype `reflect:"struct"`
fields []structField // sorted by offset
}
// NOTE: These are copied from ../runtime/mgc0.h.
// They must be kept in sync.
const (
_GC_END = iota
_GC_PTR
_GC_APTR
_GC_ARRAY_START
_GC_ARRAY_NEXT
_GC_CALL
_GC_CHAN_PTR
_GC_STRING
_GC_EFACE
_GC_IFACE
_GC_SLICE
_GC_REGION
_GC_NUM_INSTR
)
/*
* The compiler knows the exact layout of all the data structures above.
* The compiler does not know about the data structures and methods below.
*/
// Method represents a single method.
type Method struct {
// Name is the method name.
// PkgPath is the package path that qualifies a lower case (unexported)
// method name. It is empty for upper case (exported) method names.
// The combination of PkgPath and Name uniquely identifies a method
// in a method set.
// See http://golang.org/ref/spec#Uniqueness_of_identifiers
Name string
PkgPath string
Type Type // method type
Func Value // func with receiver as first argument
Index int // index for Type.Method
}
const (
kindDirectIface = 1 << 5
kindGCProg = 1 << 6 // Type.gc points to GC program
kindNoPointers = 1 << 7
kindMask = (1 << 5) - 1
)
func (k Kind) String() string {
if int(k) < len(kindNames) {
return kindNames[k]
}
return "kind" + strconv.Itoa(int(k))
}
var kindNames = []string{
Invalid: "invalid",
Bool: "bool",
Int: "int",
Int8: "int8",
Int16: "int16",
Int32: "int32",
Int64: "int64",
Uint: "uint",
Uint8: "uint8",
Uint16: "uint16",
Uint32: "uint32",
Uint64: "uint64",
Uintptr: "uintptr",
Float32: "float32",
Float64: "float64",
Complex64: "complex64",
Complex128: "complex128",
Array: "array",
Chan: "chan",
Func: "func",
Interface: "interface",
Map: "map",
Ptr: "ptr",
Slice: "slice",
String: "string",
Struct: "struct",
UnsafePointer: "unsafe.Pointer",
}
func (t *uncommonType) uncommon() *uncommonType {
return t
}
func (t *uncommonType) PkgPath() string {
if t == nil || t.pkgPath == nil {
return ""
}
return *t.pkgPath
}
func (t *uncommonType) Name() string {
if t == nil || t.name == nil {
return ""
}
return *t.name
}
func (t *rtype) rawString() string { return *t.string }
func (t *rtype) String() string {
// For gccgo, strip out quoted strings.
s := *t.string
var q bool
r := make([]byte, len(s))
j := 0
for i := 0; i < len(s); i++ {
if s[i] == '\t' {
q = !q
} else if !q {
r[j] = s[i]
j++
}
}
return string(r[:j])
}
func (t *rtype) Size() uintptr { return t.size }
func (t *rtype) Bits() int {
if t == nil {
panic("reflect: Bits of nil Type")
}
k := t.Kind()
if k < Int || k > Complex128 {
panic("reflect: Bits of non-arithmetic Type " + t.String())
}
return int(t.size) * 8
}
func (t *rtype) Align() int { return int(t.align) }
func (t *rtype) FieldAlign() int { return int(t.fieldAlign) }
func (t *rtype) Kind() Kind { return Kind(t.kind & kindMask) }
func (t *rtype) pointers() bool { return t.kind&kindNoPointers == 0 }
func (t *rtype) common() *rtype { return t }
func (t *uncommonType) Method(i int) (m Method) {
if t == nil || i < 0 || i >= len(t.methods) {
panic("reflect: Method index out of range")
}
p := &t.methods[i]
if p.name != nil {
m.Name = *p.name
}
fl := flag(Func)
if p.pkgPath != nil {
m.PkgPath = *p.pkgPath
fl |= flagStickyRO
}
mt := p.typ
m.Type = toType(mt)
x := new(unsafe.Pointer)
*x = unsafe.Pointer(&p.tfn)
m.Func = Value{mt, unsafe.Pointer(x), fl | flagIndir | flagMethodFn}
m.Index = i
return
}
func (t *uncommonType) NumMethod() int {
if t == nil {
return 0
}
return len(t.methods)
}
func (t *uncommonType) MethodByName(name string) (m Method, ok bool) {
if t == nil {
return
}
var p *method
for i := range t.methods {
p = &t.methods[i]
if p.name != nil && *p.name == name {
return t.Method(i), true
}
}
return
}
// TODO(rsc): 6g supplies these, but they are not
// as efficient as they could be: they have commonType
// as the receiver instead of *rtype.
func (t *rtype) NumMethod() int {
if t.Kind() == Interface {
tt := (*interfaceType)(unsafe.Pointer(t))
return tt.NumMethod()
}
return t.uncommonType.NumMethod()
}
func (t *rtype) Method(i int) (m Method) {
if t.Kind() == Interface {
tt := (*interfaceType)(unsafe.Pointer(t))
return tt.Method(i)
}
return t.uncommonType.Method(i)
}
func (t *rtype) MethodByName(name string) (m Method, ok bool) {
if t.Kind() == Interface {
tt := (*interfaceType)(unsafe.Pointer(t))
return tt.MethodByName(name)
}
return t.uncommonType.MethodByName(name)
}
func (t *rtype) PkgPath() string {
return t.uncommonType.PkgPath()
}
func (t *rtype) Name() string {
return t.uncommonType.Name()
}
func (t *rtype) ChanDir() ChanDir {
if t.Kind() != Chan {
panic("reflect: ChanDir of non-chan type")
}
tt := (*chanType)(unsafe.Pointer(t))
return ChanDir(tt.dir)
}
func (t *rtype) IsVariadic() bool {
if t.Kind() != Func {
panic("reflect: IsVariadic of non-func type")
}
tt := (*funcType)(unsafe.Pointer(t))
return tt.dotdotdot
}
func (t *rtype) Elem() Type {
switch t.Kind() {
case Array:
tt := (*arrayType)(unsafe.Pointer(t))
return toType(tt.elem)
case Chan:
tt := (*chanType)(unsafe.Pointer(t))
return toType(tt.elem)
case Map:
tt := (*mapType)(unsafe.Pointer(t))
return toType(tt.elem)
case Ptr:
tt := (*ptrType)(unsafe.Pointer(t))
return toType(tt.elem)
case Slice:
tt := (*sliceType)(unsafe.Pointer(t))
return toType(tt.elem)
}
panic("reflect: Elem of invalid type")
}
func (t *rtype) Field(i int) StructField {
if t.Kind() != Struct {
panic("reflect: Field of non-struct type")
}
tt := (*structType)(unsafe.Pointer(t))
return tt.Field(i)
}
func (t *rtype) FieldByIndex(index []int) StructField {
if t.Kind() != Struct {
panic("reflect: FieldByIndex of non-struct type")
}
tt := (*structType)(unsafe.Pointer(t))
return tt.FieldByIndex(index)
}
func (t *rtype) FieldByName(name string) (StructField, bool) {
if t.Kind() != Struct {
panic("reflect: FieldByName of non-struct type")
}
tt := (*structType)(unsafe.Pointer(t))
return tt.FieldByName(name)
}
func (t *rtype) FieldByNameFunc(match func(string) bool) (StructField, bool) {
if t.Kind() != Struct {
panic("reflect: FieldByNameFunc of non-struct type")
}
tt := (*structType)(unsafe.Pointer(t))
return tt.FieldByNameFunc(match)
}
func (t *rtype) In(i int) Type {
if t.Kind() != Func {
panic("reflect: In of non-func type")
}
tt := (*funcType)(unsafe.Pointer(t))
return toType(tt.in[i])
}
func (t *rtype) Key() Type {
if t.Kind() != Map {
panic("reflect: Key of non-map type")
}
tt := (*mapType)(unsafe.Pointer(t))
return toType(tt.key)
}
func (t *rtype) Len() int {
if t.Kind() != Array {
panic("reflect: Len of non-array type")
}
tt := (*arrayType)(unsafe.Pointer(t))
return int(tt.len)
}
func (t *rtype) NumField() int {
if t.Kind() != Struct {
panic("reflect: NumField of non-struct type")
}
tt := (*structType)(unsafe.Pointer(t))
return len(tt.fields)
}
func (t *rtype) NumIn() int {
if t.Kind() != Func {
panic("reflect: NumIn of non-func type")
}
tt := (*funcType)(unsafe.Pointer(t))
return len(tt.in)
}
func (t *rtype) NumOut() int {
if t.Kind() != Func {
panic("reflect: NumOut of non-func type")
}
tt := (*funcType)(unsafe.Pointer(t))
return len(tt.out)
}
func (t *rtype) Out(i int) Type {
if t.Kind() != Func {
panic("reflect: Out of non-func type")
}
tt := (*funcType)(unsafe.Pointer(t))
return toType(tt.out[i])
}
func (d ChanDir) String() string {
switch d {
case SendDir:
return "chan<-"
case RecvDir:
return "<-chan"
case BothDir:
return "chan"
}
return "ChanDir" + strconv.Itoa(int(d))
}
// Method returns the i'th method in the type's method set.
func (t *interfaceType) Method(i int) (m Method) {
if i < 0 || i >= len(t.methods) {
return
}
p := &t.methods[i]
m.Name = *p.name
if p.pkgPath != nil {
m.PkgPath = *p.pkgPath
}
m.Type = toType(p.typ)
m.Index = i
return
}
// NumMethod returns the number of interface methods in the type's method set.
func (t *interfaceType) NumMethod() int { return len(t.methods) }
// MethodByName method with the given name in the type's method set.
func (t *interfaceType) MethodByName(name string) (m Method, ok bool) {
if t == nil {
return
}
var p *imethod
for i := range t.methods {
p = &t.methods[i]
if *p.name == name {
return t.Method(i), true
}
}
return
}
// A StructField describes a single field in a struct.
type StructField struct {
// Name is the field name.
// PkgPath is the package path that qualifies a lower case (unexported)
// field name. It is empty for upper case (exported) field names.
// See http://golang.org/ref/spec#Uniqueness_of_identifiers
Name string
PkgPath string
Type Type // field type
Tag StructTag // field tag string
Offset uintptr // offset within struct, in bytes
Index []int // index sequence for Type.FieldByIndex
Anonymous bool // is an embedded field
}
// A StructTag is the tag string in a struct field.
//
// By convention, tag strings are a concatenation of
// optionally space-separated key:"value" pairs.
// Each key is a non-empty string consisting of non-control
// characters other than space (U+0020 ' '), quote (U+0022 '"'),
// and colon (U+003A ':'). Each value is quoted using U+0022 '"'
// characters and Go string literal syntax.
type StructTag string
// Get returns the value associated with key in the tag string.
// If there is no such key in the tag, Get returns the empty string.
// If the tag does not have the conventional format, the value
// returned by Get is unspecified.
func (tag StructTag) Get(key string) string {
for tag != "" {
// skip leading space
i := 0
for i < len(tag) && tag[i] == ' ' {
i++
}
tag = tag[i:]
if tag == "" {
break
}
// scan to colon.
// a space or a quote is a syntax error
i = 0
for i < len(tag) && tag[i] != ' ' && tag[i] != ':' && tag[i] != '"' {
i++
}
if i+1 >= len(tag) || tag[i] != ':' || tag[i+1] != '"' {
break
}
name := string(tag[:i])
tag = tag[i+1:]
// scan quoted string to find value
i = 1
for i < len(tag) && tag[i] != '"' {
if tag[i] == '\\' {
i++
}
i++
}
if i >= len(tag) {
break
}
qvalue := string(tag[:i+1])
tag = tag[i+1:]
if key == name {
value, _ := strconv.Unquote(qvalue)
return value
}
}
return ""
}
// Field returns the i'th struct field.
func (t *structType) Field(i int) (f StructField) {
if i < 0 || i >= len(t.fields) {
return
}
p := &t.fields[i]
f.Type = toType(p.typ)
if p.name != nil {
f.Name = *p.name
} else {
t := f.Type
if t.Kind() == Ptr {
t = t.Elem()
}
f.Name = t.Name()
f.Anonymous = true
}
if p.pkgPath != nil {
f.PkgPath = *p.pkgPath
}
if p.tag != nil {
f.Tag = StructTag(*p.tag)
}
f.Offset = p.offset
// NOTE(rsc): This is the only allocation in the interface
// presented by a reflect.Type. It would be nice to avoid,
// at least in the common cases, but we need to make sure
// that misbehaving clients of reflect cannot affect other
// uses of reflect. One possibility is CL 5371098, but we
// postponed that ugliness until there is a demonstrated
// need for the performance. This is issue 2320.
f.Index = []int{i}
return
}
// TODO(gri): Should there be an error/bool indicator if the index
// is wrong for FieldByIndex?
// FieldByIndex returns the nested field corresponding to index.
func (t *structType) FieldByIndex(index []int) (f StructField) {
f.Type = toType(&t.rtype)
for i, x := range index {
if i > 0 {
ft := f.Type
if ft.Kind() == Ptr && ft.Elem().Kind() == Struct {
ft = ft.Elem()
}
f.Type = ft
}
f = f.Type.Field(x)
}
return
}
// A fieldScan represents an item on the fieldByNameFunc scan work list.
type fieldScan struct {
typ *structType
index []int
}
// FieldByNameFunc returns the struct field with a name that satisfies the
// match function and a boolean to indicate if the field was found.
func (t *structType) FieldByNameFunc(match func(string) bool) (result StructField, ok bool) {
// This uses the same condition that the Go language does: there must be a unique instance
// of the match at a given depth level. If there are multiple instances of a match at the
// same depth, they annihilate each other and inhibit any possible match at a lower level.
// The algorithm is breadth first search, one depth level at a time.
// The current and next slices are work queues:
// current lists the fields to visit on this depth level,
// and next lists the fields on the next lower level.
current := []fieldScan{}
next := []fieldScan{{typ: t}}
// nextCount records the number of times an embedded type has been
// encountered and considered for queueing in the 'next' slice.
// We only queue the first one, but we increment the count on each.
// If a struct type T can be reached more than once at a given depth level,
// then it annihilates itself and need not be considered at all when we
// process that next depth level.
var nextCount map[*structType]int
// visited records the structs that have been considered already.
// Embedded pointer fields can create cycles in the graph of
// reachable embedded types; visited avoids following those cycles.
// It also avoids duplicated effort: if we didn't find the field in an
// embedded type T at level 2, we won't find it in one at level 4 either.
visited := map[*structType]bool{}
for len(next) > 0 {
current, next = next, current[:0]
count := nextCount
nextCount = nil
// Process all the fields at this depth, now listed in 'current'.
// The loop queues embedded fields found in 'next', for processing during the next
// iteration. The multiplicity of the 'current' field counts is recorded
// in 'count'; the multiplicity of the 'next' field counts is recorded in 'nextCount'.
for _, scan := range current {
t := scan.typ
if visited[t] {
// We've looked through this type before, at a higher level.
// That higher level would shadow the lower level we're now at,
// so this one can't be useful to us. Ignore it.
continue
}
visited[t] = true
for i := range t.fields {
f := &t.fields[i]
// Find name and type for field f.
var fname string
var ntyp *rtype
if f.name != nil {
fname = *f.name
} else {
// Anonymous field of type T or *T.
// Name taken from type.
ntyp = f.typ
if ntyp.Kind() == Ptr {
ntyp = ntyp.Elem().common()
}
fname = ntyp.Name()
}
// Does it match?
if match(fname) {
// Potential match
if count[t] > 1 || ok {
// Name appeared multiple times at this level: annihilate.
return StructField{}, false
}
result = t.Field(i)
result.Index = nil
result.Index = append(result.Index, scan.index...)
result.Index = append(result.Index, i)
ok = true
continue
}
// Queue embedded struct fields for processing with next level,
// but only if we haven't seen a match yet at this level and only
// if the embedded types haven't already been queued.
if ok || ntyp == nil || ntyp.Kind() != Struct {
continue
}
ntyp = toType(ntyp).common()
styp := (*structType)(unsafe.Pointer(ntyp))
if nextCount[styp] > 0 {
nextCount[styp] = 2 // exact multiple doesn't matter
continue
}
if nextCount == nil {
nextCount = map[*structType]int{}
}
nextCount[styp] = 1
if count[t] > 1 {
nextCount[styp] = 2 // exact multiple doesn't matter
}
var index []int
index = append(index, scan.index...)
index = append(index, i)
next = append(next, fieldScan{styp, index})
}
}
if ok {
break
}
}
return
}
// FieldByName returns the struct field with the given name
// and a boolean to indicate if the field was found.
func (t *structType) FieldByName(name string) (f StructField, present bool) {
// Quick check for top-level name, or struct without anonymous fields.
hasAnon := false
if name != "" {
for i := range t.fields {
tf := &t.fields[i]
if tf.name == nil {
hasAnon = true
continue
}
if *tf.name == name {
return t.Field(i), true
}
}
}
if !hasAnon {
return
}
return t.FieldByNameFunc(func(s string) bool { return s == name })
}
// TypeOf returns the reflection Type of the value in the interface{}.
// TypeOf(nil) returns nil.
func TypeOf(i interface{}) Type {
eface := *(*emptyInterface)(unsafe.Pointer(&i))
return toType(eface.typ)
}
// ptrMap is the cache for PtrTo.
var ptrMap struct {
sync.RWMutex
m map[*rtype]*ptrType
}
// garbage collection bytecode program for pointer to memory without pointers.
// See ../../cmd/gc/reflect.c:/^dgcsym1 and :/^dgcsym.
type ptrDataGC struct {
width uintptr // sizeof(ptr)
op uintptr // _GC_APTR
off uintptr // 0
end uintptr // _GC_END
}
var ptrDataGCProg = ptrDataGC{
width: unsafe.Sizeof((*byte)(nil)),
op: _GC_APTR,
off: 0,
end: _GC_END,
}
// garbage collection bytecode program for pointer to memory with pointers.
// See ../../cmd/gc/reflect.c:/^dgcsym1 and :/^dgcsym.
type ptrGC struct {
width uintptr // sizeof(ptr)
op uintptr // _GC_PTR
off uintptr // 0
elemgc unsafe.Pointer // element gc type
end uintptr // _GC_END
}
// PtrTo returns the pointer type with element t.
// For example, if t represents type Foo, PtrTo(t) represents *Foo.
func PtrTo(t Type) Type {
return t.(*rtype).ptrTo()
}
func (t *rtype) ptrTo() *rtype {
if p := t.ptrToThis; p != nil {
return p
}
// Otherwise, synthesize one.
// This only happens for pointers with no methods.
// We keep the mapping in a map on the side, because
// this operation is rare and a separate map lets us keep
// the type structures in read-only memory.
ptrMap.RLock()
if m := ptrMap.m; m != nil {
if p := m[t]; p != nil {
ptrMap.RUnlock()
return &p.rtype
}
}
ptrMap.RUnlock()
ptrMap.Lock()
if ptrMap.m == nil {
ptrMap.m = make(map[*rtype]*ptrType)
}
p := ptrMap.m[t]
if p != nil {
// some other goroutine won the race and created it
ptrMap.Unlock()
return &p.rtype
}
s := "*" + *t.string
canonicalTypeLock.RLock()
r, ok := canonicalType[s]
canonicalTypeLock.RUnlock()
if ok {
ptrMap.m[t] = (*ptrType)(unsafe.Pointer(r.(*rtype)))
ptrMap.Unlock()
return r.(*rtype)
}
// initialize p using *byte's ptrType as a prototype.
p = new(ptrType)
var iptr interface{} = (*unsafe.Pointer)(nil)
prototype := *(**ptrType)(unsafe.Pointer(&iptr))
*p = *prototype
p.string = &s
// For the type structures linked into the binary, the
// compiler provides a good hash of the string.
// Create a good hash for the new string by using
// the FNV-1 hash's mixing function to combine the
// old hash and the new "*".
// p.hash = fnv1(t.hash, '*')
// This is the gccgo version.
p.hash = (t.hash << 4) + 9
p.uncommonType = nil
p.ptrToThis = nil
p.zero = unsafe.Pointer(&make([]byte, p.size)[0])
p.elem = t
if t.kind&kindNoPointers != 0 {
p.gc = unsafe.Pointer(&ptrDataGCProg)
} else {
p.gc = unsafe.Pointer(&ptrGC{
width: p.size,
op: _GC_PTR,
off: 0,
elemgc: t.gc,
end: _GC_END,
})
}
q := canonicalize(&p.rtype)
p = (*ptrType)(unsafe.Pointer(q.(*rtype)))
ptrMap.Unlock()
return &p.rtype
}
// fnv1 incorporates the list of bytes into the hash x using the FNV-1 hash function.
func fnv1(x uint32, list ...byte) uint32 {
for _, b := range list {
x = x*16777619 ^ uint32(b)
}
return x
}
func (t *rtype) Implements(u Type) bool {
if u == nil {
panic("reflect: nil type passed to Type.Implements")
}
if u.Kind() != Interface {
panic("reflect: non-interface type passed to Type.Implements")
}
return implements(u.(*rtype), t)
}
func (t *rtype) AssignableTo(u Type) bool {
if u == nil {
panic("reflect: nil type passed to Type.AssignableTo")
}
uu := u.(*rtype)
return directlyAssignable(uu, t) || implements(uu, t)
}
func (t *rtype) ConvertibleTo(u Type) bool {
if u == nil {
panic("reflect: nil type passed to Type.ConvertibleTo")
}
uu := u.(*rtype)
return convertOp(uu, t) != nil
}
func (t *rtype) Comparable() bool {
switch t.Kind() {
case Bool, Int, Int8, Int16, Int32, Int64,
Uint, Uint8, Uint16, Uint32, Uint64, Uintptr,
Float32, Float64, Complex64, Complex128,
Chan, Interface, Ptr, String, UnsafePointer:
return true
case Func, Map, Slice:
return false
case Array:
return (*arrayType)(unsafe.Pointer(t)).elem.Comparable()
case Struct:
tt := (*structType)(unsafe.Pointer(t))
for i := range tt.fields {
if !tt.fields[i].typ.Comparable() {
return false
}
}
return true
default:
panic("reflect: impossible")
}
}
// implements returns true if the type V implements the interface type T.
func implements(T, V *rtype) bool {
if T.Kind() != Interface {
return false
}
t := (*interfaceType)(unsafe.Pointer(T))
if len(t.methods) == 0 {
return true
}
// The same algorithm applies in both cases, but the
// method tables for an interface type and a concrete type
// are different, so the code is duplicated.
// In both cases the algorithm is a linear scan over the two
// lists - T's methods and V's methods - simultaneously.
// Since method tables are stored in a unique sorted order
// (alphabetical, with no duplicate method names), the scan
// through V's methods must hit a match for each of T's
// methods along the way, or else V does not implement T.
// This lets us run the scan in overall linear time instead of
// the quadratic time a naive search would require.
// See also ../runtime/iface.c.
if V.Kind() == Interface {
v := (*interfaceType)(unsafe.Pointer(V))
i := 0
for j := 0; j < len(v.methods); j++ {
tm := &t.methods[i]
vm := &v.methods[j]
if *vm.name == *tm.name && (vm.pkgPath == tm.pkgPath || (vm.pkgPath != nil && tm.pkgPath != nil && *vm.pkgPath == *tm.pkgPath)) && toType(vm.typ).common() == toType(tm.typ).common() {
if i++; i >= len(t.methods) {
return true
}
}
}
return false
}
v := V.uncommon()
if v == nil {
return false
}
i := 0
for j := 0; j < len(v.methods); j++ {
tm := &t.methods[i]
vm := &v.methods[j]
if *vm.name == *tm.name && (vm.pkgPath == tm.pkgPath || (vm.pkgPath != nil && tm.pkgPath != nil && *vm.pkgPath == *tm.pkgPath)) && toType(vm.mtyp).common() == toType(tm.typ).common() {
if i++; i >= len(t.methods) {
return true
}
}
}
return false
}
// directlyAssignable returns true if a value x of type V can be directly
// assigned (using memmove) to a value of type T.
// http://golang.org/doc/go_spec.html#Assignability
// Ignoring the interface rules (implemented elsewhere)
// and the ideal constant rules (no ideal constants at run time).
func directlyAssignable(T, V *rtype) bool {
// x's type V is identical to T?
if T == V {
return true
}
// Otherwise at least one of T and V must be unnamed
// and they must have the same kind.
if T.Name() != "" && V.Name() != "" || T.Kind() != V.Kind() {
return false
}
// x's type T and V must have identical underlying types.
return haveIdenticalUnderlyingType(T, V)
}
func haveIdenticalUnderlyingType(T, V *rtype) bool {
if T == V {
return true
}
kind := T.Kind()
if kind != V.Kind() {
return false
}
// Non-composite types of equal kind have same underlying type
// (the predefined instance of the type).
if Bool <= kind && kind <= Complex128 || kind == String || kind == UnsafePointer {
return true
}
// Composite types.
switch kind {
case Array:
return T.Elem() == V.Elem() && T.Len() == V.Len()
case Chan:
// Special case:
// x is a bidirectional channel value, T is a channel type,
// and x's type V and T have identical element types.
if V.ChanDir() == BothDir && T.Elem() == V.Elem() {
return true
}
// Otherwise continue test for identical underlying type.
return V.ChanDir() == T.ChanDir() && T.Elem() == V.Elem()
case Func:
t := (*funcType)(unsafe.Pointer(T))
v := (*funcType)(unsafe.Pointer(V))
if t.dotdotdot != v.dotdotdot || len(t.in) != len(v.in) || len(t.out) != len(v.out) {
return false
}
for i, typ := range t.in {
if typ != v.in[i] {
return false
}
}
for i, typ := range t.out {
if typ != v.out[i] {
return false
}
}
return true
case Interface:
t := (*interfaceType)(unsafe.Pointer(T))
v := (*interfaceType)(unsafe.Pointer(V))
if len(t.methods) == 0 && len(v.methods) == 0 {
return true
}
// Might have the same methods but still
// need a run time conversion.
return false
case Map:
return T.Key() == V.Key() && T.Elem() == V.Elem()
case Ptr, Slice:
return T.Elem() == V.Elem()
case Struct:
t := (*structType)(unsafe.Pointer(T))
v := (*structType)(unsafe.Pointer(V))
if len(t.fields) != len(v.fields) {
return false
}
for i := range t.fields {
tf := &t.fields[i]
vf := &v.fields[i]
if tf.name != vf.name && (tf.name == nil || vf.name == nil || *tf.name != *vf.name) {
return false
}
if tf.pkgPath != vf.pkgPath && (tf.pkgPath == nil || vf.pkgPath == nil || *tf.pkgPath != *vf.pkgPath) {
return false
}
if tf.typ != vf.typ {
return false
}
if tf.tag != vf.tag && (tf.tag == nil || vf.tag == nil || *tf.tag != *vf.tag) {
return false
}
if tf.offset != vf.offset {
return false
}
}
return true
}
return false
}
// The lookupCache caches ChanOf, MapOf, and SliceOf lookups.
var lookupCache struct {
sync.RWMutex
m map[cacheKey]*rtype
}
// A cacheKey is the key for use in the lookupCache.
// Four values describe any of the types we are looking for:
// type kind, one or two subtypes, and an extra integer.
type cacheKey struct {
kind Kind
t1 *rtype
t2 *rtype
extra uintptr
}
// cacheGet looks for a type under the key k in the lookupCache.
// If it finds one, it returns that type.
// If not, it returns nil with the cache locked.
// The caller is expected to use cachePut to unlock the cache.
func cacheGet(k cacheKey) Type {
lookupCache.RLock()
t := lookupCache.m[k]
lookupCache.RUnlock()
if t != nil {
return t
}
lookupCache.Lock()
t = lookupCache.m[k]
if t != nil {
lookupCache.Unlock()
return t
}
if lookupCache.m == nil {
lookupCache.m = make(map[cacheKey]*rtype)
}
return nil
}
// cachePut stores the given type in the cache, unlocks the cache,
// and returns the type. It is expected that the cache is locked
// because cacheGet returned nil.
func cachePut(k cacheKey, t *rtype) Type {
t = toType(t).common()
lookupCache.m[k] = t
lookupCache.Unlock()
return t
}
// garbage collection bytecode program for chan.
// See ../../cmd/gc/reflect.c:/^dgcsym1 and :/^dgcsym.
type chanGC struct {
width uintptr // sizeof(map)
op uintptr // _GC_CHAN_PTR
off uintptr // 0
typ *rtype // map type
end uintptr // _GC_END
}
// ChanOf returns the channel type with the given direction and element type.
// For example, if t represents int, ChanOf(RecvDir, t) represents <-chan int.
//
// The gc runtime imposes a limit of 64 kB on channel element types.
// If t's size is equal to or exceeds this limit, ChanOf panics.
func ChanOf(dir ChanDir, t Type) Type {
typ := t.(*rtype)
// Look in cache.
ckey := cacheKey{Chan, typ, nil, uintptr(dir)}
if ch := cacheGet(ckey); ch != nil {
return ch
}
// This restriction is imposed by the gc compiler and the runtime.
if typ.size >= 1<<16 {
lookupCache.Unlock()
panic("reflect.ChanOf: element size too large")
}
// Look in known types.
// TODO: Precedence when constructing string.
var s string
switch dir {
default:
lookupCache.Unlock()
panic("reflect.ChanOf: invalid dir")
case SendDir:
s = "chan<- " + *typ.string
case RecvDir:
s = "<-chan " + *typ.string
case BothDir:
s = "chan " + *typ.string
}
// Make a channel type.
var ichan interface{} = (chan unsafe.Pointer)(nil)
prototype := *(**chanType)(unsafe.Pointer(&ichan))
ch := new(chanType)
*ch = *prototype
ch.string = &s
// gccgo uses a different hash.
// ch.hash = fnv1(typ.hash, 'c', byte(dir))
ch.hash = 0
if dir&SendDir != 0 {
ch.hash += 1
}
if dir&RecvDir != 0 {
ch.hash += 2
}
ch.hash += typ.hash << 2
ch.hash <<= 3
ch.hash += 15
ch.elem = typ
ch.uncommonType = nil
ch.ptrToThis = nil
ch.zero = unsafe.Pointer(&make([]byte, ch.size)[0])
ch.gc = unsafe.Pointer(&chanGC{
width: ch.size,
op: _GC_CHAN_PTR,
off: 0,
typ: &ch.rtype,
end: _GC_END,
})
// INCORRECT. Uncomment to check that TestChanOfGC fails when ch.gc is wrong.
// ch.gc = unsafe.Pointer(&badGC{width: ch.size, end: _GC_END})
return cachePut(ckey, &ch.rtype)
}
func ismapkey(*rtype) bool // implemented in runtime
// MapOf returns the map type with the given key and element types.
// For example, if k represents int and e represents string,
// MapOf(k, e) represents map[int]string.
//
// If the key type is not a valid map key type (that is, if it does
// not implement Go's == operator), MapOf panics.
func MapOf(key, elem Type) Type {
ktyp := key.(*rtype)
etyp := elem.(*rtype)
if !ismapkey(ktyp) {
panic("reflect.MapOf: invalid key type " + ktyp.String())
}
// Look in cache.
ckey := cacheKey{Map, ktyp, etyp, 0}
if mt := cacheGet(ckey); mt != nil {
return mt
}
// Look in known types.
s := "map[" + *ktyp.string + "]" + *etyp.string
// Make a map type.
var imap interface{} = (map[unsafe.Pointer]unsafe.Pointer)(nil)
prototype := *(**mapType)(unsafe.Pointer(&imap))
mt := new(mapType)
*mt = *prototype
mt.string = &s
// gccgo uses a different hash
// mt.hash = fnv1(etyp.hash, 'm', byte(ktyp.hash>>24), byte(ktyp.hash>>16), byte(ktyp.hash>>8), byte(ktyp.hash))
mt.hash = ktyp.hash + etyp.hash + 2 + 14
mt.key = ktyp
mt.elem = etyp
mt.uncommonType = nil
mt.ptrToThis = nil
mt.zero = unsafe.Pointer(&make([]byte, mt.size)[0])
// mt.gc = unsafe.Pointer(&ptrGC{
// width: unsafe.Sizeof(uintptr(0)),
// op: _GC_PTR,
// off: 0,
// elemgc: nil,
// end: _GC_END,
// })
// TODO(cmang): Generate GC data for Map elements.
mt.gc = unsafe.Pointer(&ptrDataGCProg)
// INCORRECT. Uncomment to check that TestMapOfGC and TestMapOfGCValues
// fail when mt.gc is wrong.
//mt.gc = unsafe.Pointer(&badGC{width: mt.size, end: _GC_END})
return cachePut(ckey, &mt.rtype)
}
// gcProg is a helper type for generatation of GC pointer info.
type gcProg struct {
gc []byte
size uintptr // size of type in bytes
hasPtr bool
}
func (gc *gcProg) append(v byte) {
gc.align(unsafe.Sizeof(uintptr(0)))
gc.appendWord(v)
}
// Appends t's type info to the current program.
func (gc *gcProg) appendProg(t *rtype) {
gc.align(uintptr(t.align))
if !t.pointers() {
gc.size += t.size
return
}
switch t.Kind() {
default:
panic("reflect: non-pointer type marked as having pointers")
case Ptr, UnsafePointer, Chan, Func, Map:
gc.appendWord(bitsPointer)
case Slice:
gc.appendWord(bitsPointer)
gc.appendWord(bitsScalar)
gc.appendWord(bitsScalar)
case String:
gc.appendWord(bitsPointer)
gc.appendWord(bitsScalar)
case Array:
c := t.Len()
e := t.Elem().common()
for i := 0; i < c; i++ {
gc.appendProg(e)
}
case Interface:
gc.appendWord(bitsMultiWord)
if t.NumMethod() == 0 {
gc.appendWord(bitsEface)
} else {
gc.appendWord(bitsIface)
}
case Struct:
c := t.NumField()
for i := 0; i < c; i++ {
gc.appendProg(t.Field(i).Type.common())
}
gc.align(uintptr(t.align))
}
}
func (gc *gcProg) appendWord(v byte) {
ptrsize := unsafe.Sizeof(uintptr(0))
if gc.size%ptrsize != 0 {
panic("reflect: unaligned GC program")
}
nptr := gc.size / ptrsize
for uintptr(len(gc.gc)) < nptr/2+1 {
gc.gc = append(gc.gc, 0x44) // BitsScalar
}
gc.gc[nptr/2] &= ^(3 << ((nptr%2)*4 + 2))
gc.gc[nptr/2] |= v << ((nptr%2)*4 + 2)
gc.size += ptrsize
if v == bitsPointer {
gc.hasPtr = true
}
}
func (gc *gcProg) finalize() (unsafe.Pointer, bool) {
if gc.size == 0 {
return nil, false
}
ptrsize := unsafe.Sizeof(uintptr(0))
gc.align(ptrsize)
nptr := gc.size / ptrsize
for uintptr(len(gc.gc)) < nptr/2+1 {
gc.gc = append(gc.gc, 0x44) // BitsScalar
}
// If number of words is odd, repeat the mask twice.
// Compiler does the same.
if nptr%2 != 0 {
for i := uintptr(0); i < nptr; i++ {
gc.appendWord(extractGCWord(gc.gc, i))
}
}
return unsafe.Pointer(&gc.gc[0]), gc.hasPtr
}
func extractGCWord(gc []byte, i uintptr) byte {
return (gc[i/2] >> ((i%2)*4 + 2)) & 3
}
func (gc *gcProg) align(a uintptr) {
gc.size = align(gc.size, a)
}
// These constants must stay in sync with ../runtime/mgc0.h.
const (
bitsScalar = 1
bitsPointer = 2
bitsMultiWord = 3
bitsIface = 2
bitsEface = 3
)
// Make sure these routines stay in sync with ../../runtime/hashmap.go!
// These types exist only for GC, so we only fill out GC relevant info.
// Currently, that's just size and the GC program. We also fill in string
// for possible debugging use.
const (
bucketSize = 8
maxKeySize = 128
maxValSize = 128
)
func bucketOf(ktyp, etyp *rtype) *rtype {
if ktyp.size > maxKeySize {
ktyp = PtrTo(ktyp).(*rtype)
}
if etyp.size > maxValSize {
etyp = PtrTo(etyp).(*rtype)
}
ptrsize := unsafe.Sizeof(uintptr(0))
var gc gcProg
// topbits
for i := 0; i < int(bucketSize*unsafe.Sizeof(uint8(0))/ptrsize); i++ {
gc.append(bitsScalar)
}
// keys
for i := 0; i < bucketSize; i++ {
gc.appendProg(ktyp)
}
// values
for i := 0; i < bucketSize; i++ {
gc.appendProg(etyp)
}
// overflow
gc.append(bitsPointer)
if runtime.GOARCH == "amd64p32" {
gc.append(bitsScalar)
}
b := new(rtype)
b.size = gc.size
// b.gc[0], _ = gc.finalize()
b.kind |= kindGCProg
s := "bucket(" + *ktyp.string + "," + *etyp.string + ")"
b.string = &s
return b
}
// Take the GC program for "t" and append it to the GC program "gc".
func appendGCProgram(gc []uintptr, t *rtype) []uintptr {
p := t.gc
p = unsafe.Pointer(uintptr(p) + unsafe.Sizeof(uintptr(0))) // skip size
loop:
for {
var argcnt int
switch *(*uintptr)(p) {
case _GC_END:
// Note: _GC_END not included in append
break loop
case _GC_ARRAY_NEXT:
argcnt = 0
case _GC_APTR, _GC_STRING, _GC_EFACE, _GC_IFACE:
argcnt = 1
case _GC_PTR, _GC_CALL, _GC_CHAN_PTR, _GC_SLICE:
argcnt = 2
case _GC_ARRAY_START, _GC_REGION:
argcnt = 3
default:
panic("unknown GC program op for " + *t.string + ": " + strconv.FormatUint(*(*uint64)(p), 10))
}
for i := 0; i < argcnt+1; i++ {
gc = append(gc, *(*uintptr)(p))
p = unsafe.Pointer(uintptr(p) + unsafe.Sizeof(uintptr(0)))
}
}
return gc
}
func hMapOf(bucket *rtype) *rtype {
ptrsize := unsafe.Sizeof(uintptr(0))
// make gc program & compute hmap size
gc := make([]uintptr, 1) // first entry is size, filled in at the end
offset := unsafe.Sizeof(uint(0)) // count
offset += unsafe.Sizeof(uint32(0)) // flags
offset += unsafe.Sizeof(uint32(0)) // hash0
offset += unsafe.Sizeof(uint8(0)) // B
offset += unsafe.Sizeof(uint8(0)) // keysize
offset += unsafe.Sizeof(uint8(0)) // valuesize
offset = (offset + 1) / 2 * 2
offset += unsafe.Sizeof(uint16(0)) // bucketsize
offset = (offset + ptrsize - 1) / ptrsize * ptrsize
// gc = append(gc, _GC_PTR, offset, uintptr(bucket.gc)) // buckets
offset += ptrsize
// gc = append(gc, _GC_PTR, offset, uintptr(bucket.gc)) // oldbuckets
offset += ptrsize
offset += ptrsize // nevacuate
gc = append(gc, _GC_END)
gc[0] = offset
h := new(rtype)
h.size = offset
// h.gc = unsafe.Pointer(&gc[0])
s := "hmap(" + *bucket.string + ")"
h.string = &s
return h
}
// garbage collection bytecode program for slice of non-zero-length values.
// See ../../cmd/gc/reflect.c:/^dgcsym1 and :/^dgcsym.
type sliceGC struct {
width uintptr // sizeof(slice)
op uintptr // _GC_SLICE
off uintptr // 0
elemgc unsafe.Pointer // element gc program
end uintptr // _GC_END
}
// garbage collection bytecode program for slice of zero-length values.
// See ../../cmd/gc/reflect.c:/^dgcsym1 and :/^dgcsym.
type sliceEmptyGC struct {
width uintptr // sizeof(slice)
op uintptr // _GC_APTR
off uintptr // 0
end uintptr // _GC_END
}
var sliceEmptyGCProg = sliceEmptyGC{
width: unsafe.Sizeof([]byte(nil)),
op: _GC_APTR,
off: 0,
end: _GC_END,
}
// SliceOf returns the slice type with element type t.
// For example, if t represents int, SliceOf(t) represents []int.
func SliceOf(t Type) Type {
typ := t.(*rtype)
// Look in cache.
ckey := cacheKey{Slice, typ, nil, 0}
if slice := cacheGet(ckey); slice != nil {
return slice
}
// Look in known types.
s := "[]" + *typ.string
// Make a slice type.
var islice interface{} = ([]unsafe.Pointer)(nil)
prototype := *(**sliceType)(unsafe.Pointer(&islice))
slice := new(sliceType)
*slice = *prototype
slice.string = &s
// gccgo uses a different hash.
// slice.hash = fnv1(typ.hash, '[')
slice.hash = typ.hash + 1 + 13
slice.elem = typ
slice.uncommonType = nil
slice.ptrToThis = nil
slice.zero = unsafe.Pointer(&make([]byte, slice.size)[0])
if typ.size == 0 {
slice.gc = unsafe.Pointer(&sliceEmptyGCProg)
} else {
slice.gc = unsafe.Pointer(&sliceGC{
width: slice.size,
op: _GC_SLICE,
off: 0,
elemgc: typ.gc,
end: _GC_END,
})
}
// INCORRECT. Uncomment to check that TestSliceOfOfGC fails when slice.gc is wrong.
// slice.gc = unsafe.Pointer(&badGC{width: slice.size, end: _GC_END})
return cachePut(ckey, &slice.rtype)
}
// ArrayOf returns the array type with the given count and element type.
// For example, if t represents int, ArrayOf(5, t) represents [5]int.
//
// If the resulting type would be larger than the available address space,
// ArrayOf panics.
//
// TODO(rsc): Unexported for now. Export once the alg field is set correctly
// for the type. This may require significant work.
//
// TODO(rsc): TestArrayOf is also disabled. Re-enable.
func arrayOf(count int, elem Type) Type {
typ := elem.(*rtype)
slice := SliceOf(elem)
// Look in cache.
ckey := cacheKey{Array, typ, nil, uintptr(count)}
if slice := cacheGet(ckey); slice != nil {
return slice
}
// Look in known types.
s := "[" + strconv.Itoa(count) + "]" + *typ.string
// Make an array type.
var iarray interface{} = [1]unsafe.Pointer{}
prototype := *(**arrayType)(unsafe.Pointer(&iarray))
array := new(arrayType)
*array = *prototype
// TODO: Set extra kind bits correctly.
array.string = &s
// gccgo uses a different hash.
// array.hash = fnv1(typ.hash, '[')
// for n := uint32(count); n > 0; n >>= 8 {
// array.hash = fnv1(array.hash, byte(n))
// }
// array.hash = fnv1(array.hash, ']')
array.hash = typ.hash + 1 + 13
array.elem = typ
max := ^uintptr(0) / typ.size
if uintptr(count) > max {
panic("reflect.ArrayOf: array size would exceed virtual address space")
}
array.size = typ.size * uintptr(count)
array.align = typ.align
array.fieldAlign = typ.fieldAlign
// TODO: array.alg
// TODO: array.gc
// TODO:
array.uncommonType = nil
array.ptrToThis = nil
array.zero = unsafe.Pointer(&make([]byte, array.size)[0])
array.len = uintptr(count)
array.slice = slice.(*rtype)
return cachePut(ckey, &array.rtype)
}
// toType converts from a *rtype to a Type that can be returned
// to the client of package reflect. In gc, the only concern is that
// a nil *rtype must be replaced by a nil Type, but in gccgo this
// function takes care of ensuring that multiple *rtype for the same
// type are coalesced into a single Type.
var canonicalType = make(map[string]Type)
var canonicalTypeLock sync.RWMutex
func canonicalize(t Type) Type {
if t == nil {
return nil
}
u := t.uncommon()
var s string
if u == nil || u.PkgPath() == "" {
s = t.rawString()
} else {
s = u.PkgPath() + "." + u.Name()
}
canonicalTypeLock.RLock()
if r, ok := canonicalType[s]; ok {
canonicalTypeLock.RUnlock()
return r
}
canonicalTypeLock.RUnlock()
canonicalTypeLock.Lock()
if r, ok := canonicalType[s]; ok {
canonicalTypeLock.Unlock()
return r
}
canonicalType[s] = t
canonicalTypeLock.Unlock()
return t
}
func toType(p *rtype) Type {
if p == nil {
return nil
}
return canonicalize(p)
}
// ifaceIndir reports whether t is stored indirectly in an interface value.
func ifaceIndir(t *rtype) bool {
return t.kind&kindDirectIface == 0
}
// Layout matches runtime.BitVector (well enough).
type bitVector struct {
n uint32 // number of bits
data []byte
}
// append a bit pair to the bitmap.
func (bv *bitVector) append2(bits uint8) {
// assume bv.n is a multiple of 2, since append2 is the only operation.
if bv.n%8 == 0 {
bv.data = append(bv.data, 0)
}
bv.data[bv.n/8] |= bits << (bv.n % 8)
bv.n += 2
}
func addTypeBits(bv *bitVector, offset *uintptr, t *rtype) {
*offset = align(*offset, uintptr(t.align))
if t.kind&kindNoPointers != 0 {
*offset += t.size
return
}
switch Kind(t.kind & kindMask) {
case Chan, Func, Map, Ptr, Slice, String, UnsafePointer:
// 1 pointer at start of representation
for bv.n < 2*uint32(*offset/uintptr(ptrSize)) {
bv.append2(bitsScalar)
}
bv.append2(bitsPointer)
case Interface:
// 2 pointers
for bv.n < 2*uint32(*offset/uintptr(ptrSize)) {
bv.append2(bitsScalar)
}
bv.append2(bitsPointer)
bv.append2(bitsPointer)
case Array:
// repeat inner type
tt := (*arrayType)(unsafe.Pointer(t))
for i := 0; i < int(tt.len); i++ {
addTypeBits(bv, offset, tt.elem)
}
case Struct:
// apply fields
tt := (*structType)(unsafe.Pointer(t))
start := *offset
for i := range tt.fields {
f := &tt.fields[i]
off := start + f.offset
addTypeBits(bv, &off, f.typ)
}
}
*offset += t.size
}
|