1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
//===-- tsan_mman.cc ------------------------------------------------------===//
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_allocator_interface.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_placement_new.h"
#include "tsan_mman.h"
#include "tsan_rtl.h"
#include "tsan_report.h"
#include "tsan_flags.h"
// May be overriden by front-end.
extern "C" void WEAK __sanitizer_malloc_hook(void *ptr, uptr size) {
(void)ptr;
(void)size;
}
extern "C" void WEAK __sanitizer_free_hook(void *ptr) {
(void)ptr;
}
namespace __tsan {
struct MapUnmapCallback {
void OnMap(uptr p, uptr size) const { }
void OnUnmap(uptr p, uptr size) const {
// We are about to unmap a chunk of user memory.
// Mark the corresponding shadow memory as not needed.
DontNeedShadowFor(p, size);
}
};
static char allocator_placeholder[sizeof(Allocator)] ALIGNED(64);
Allocator *allocator() {
return reinterpret_cast<Allocator*>(&allocator_placeholder);
}
void InitializeAllocator() {
allocator()->Init();
}
void AllocatorThreadStart(ThreadState *thr) {
allocator()->InitCache(&thr->alloc_cache);
internal_allocator()->InitCache(&thr->internal_alloc_cache);
}
void AllocatorThreadFinish(ThreadState *thr) {
allocator()->DestroyCache(&thr->alloc_cache);
internal_allocator()->DestroyCache(&thr->internal_alloc_cache);
}
void AllocatorPrintStats() {
allocator()->PrintStats();
}
static void SignalUnsafeCall(ThreadState *thr, uptr pc) {
if (atomic_load(&thr->in_signal_handler, memory_order_relaxed) == 0 ||
!flags()->report_signal_unsafe)
return;
VarSizeStackTrace stack;
ObtainCurrentStack(thr, pc, &stack);
ThreadRegistryLock l(ctx->thread_registry);
ScopedReport rep(ReportTypeSignalUnsafe);
if (!IsFiredSuppression(ctx, rep, stack)) {
rep.AddStack(stack, true);
OutputReport(thr, rep);
}
}
void *user_alloc(ThreadState *thr, uptr pc, uptr sz, uptr align, bool signal) {
if ((sz >= (1ull << 40)) || (align >= (1ull << 40)))
return AllocatorReturnNull();
void *p = allocator()->Allocate(&thr->alloc_cache, sz, align);
if (p == 0)
return 0;
if (ctx && ctx->initialized)
OnUserAlloc(thr, pc, (uptr)p, sz, true);
if (signal)
SignalUnsafeCall(thr, pc);
return p;
}
void user_free(ThreadState *thr, uptr pc, void *p, bool signal) {
if (ctx && ctx->initialized)
OnUserFree(thr, pc, (uptr)p, true);
allocator()->Deallocate(&thr->alloc_cache, p);
if (signal)
SignalUnsafeCall(thr, pc);
}
void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write) {
DPrintf("#%d: alloc(%zu) = %p\n", thr->tid, sz, p);
ctx->metamap.AllocBlock(thr, pc, p, sz);
if (write && thr->ignore_reads_and_writes == 0)
MemoryRangeImitateWrite(thr, pc, (uptr)p, sz);
else
MemoryResetRange(thr, pc, (uptr)p, sz);
}
void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write) {
CHECK_NE(p, (void*)0);
uptr sz = ctx->metamap.FreeBlock(thr, pc, p);
DPrintf("#%d: free(%p, %zu)\n", thr->tid, p, sz);
if (write && thr->ignore_reads_and_writes == 0)
MemoryRangeFreed(thr, pc, (uptr)p, sz);
}
void *user_realloc(ThreadState *thr, uptr pc, void *p, uptr sz) {
void *p2 = 0;
// FIXME: Handle "shrinking" more efficiently,
// it seems that some software actually does this.
if (sz) {
p2 = user_alloc(thr, pc, sz);
if (p2 == 0)
return 0;
if (p) {
uptr oldsz = user_alloc_usable_size(p);
internal_memcpy(p2, p, min(oldsz, sz));
}
}
if (p)
user_free(thr, pc, p);
return p2;
}
uptr user_alloc_usable_size(const void *p) {
if (p == 0)
return 0;
MBlock *b = ctx->metamap.GetBlock((uptr)p);
return b ? b->siz : 0;
}
void invoke_malloc_hook(void *ptr, uptr size) {
ThreadState *thr = cur_thread();
if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
return;
__sanitizer_malloc_hook(ptr, size);
}
void invoke_free_hook(void *ptr) {
ThreadState *thr = cur_thread();
if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
return;
__sanitizer_free_hook(ptr);
}
void *internal_alloc(MBlockType typ, uptr sz) {
ThreadState *thr = cur_thread();
if (thr->nomalloc) {
thr->nomalloc = 0; // CHECK calls internal_malloc().
CHECK(0);
}
return InternalAlloc(sz, &thr->internal_alloc_cache);
}
void internal_free(void *p) {
ThreadState *thr = cur_thread();
if (thr->nomalloc) {
thr->nomalloc = 0; // CHECK calls internal_malloc().
CHECK(0);
}
InternalFree(p, &thr->internal_alloc_cache);
}
} // namespace __tsan
using namespace __tsan;
extern "C" {
uptr __sanitizer_get_current_allocated_bytes() {
uptr stats[AllocatorStatCount];
allocator()->GetStats(stats);
return stats[AllocatorStatAllocated];
}
uptr __sanitizer_get_heap_size() {
uptr stats[AllocatorStatCount];
allocator()->GetStats(stats);
return stats[AllocatorStatMapped];
}
uptr __sanitizer_get_free_bytes() {
return 1;
}
uptr __sanitizer_get_unmapped_bytes() {
return 1;
}
uptr __sanitizer_get_estimated_allocated_size(uptr size) {
return size;
}
int __sanitizer_get_ownership(const void *p) {
return allocator()->GetBlockBegin(p) != 0;
}
uptr __sanitizer_get_allocated_size(const void *p) {
return user_alloc_usable_size(p);
}
void __tsan_on_thread_idle() {
ThreadState *thr = cur_thread();
allocator()->SwallowCache(&thr->alloc_cache);
internal_allocator()->SwallowCache(&thr->internal_alloc_cache);
ctx->metamap.OnThreadIdle(thr);
}
} // extern "C"
|