1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
|
// Internal policy header for unordered_set and unordered_map -*- C++ -*-
// Copyright (C) 2010-2015 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file bits/hashtable_policy.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly.
* @headername{unordered_map,unordered_set}
*/
#ifndef _HASHTABLE_POLICY_H
#define _HASHTABLE_POLICY_H 1
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
template<typename _Key, typename _Value, typename _Alloc,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash,
typename _RehashPolicy, typename _Traits>
class _Hashtable;
_GLIBCXX_END_NAMESPACE_VERSION
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* @defgroup hashtable-detail Base and Implementation Classes
* @ingroup unordered_associative_containers
* @{
*/
template<typename _Key, typename _Value,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _Traits>
struct _Hashtable_base;
// Helper function: return distance(first, last) for forward
// iterators, or 0 for input iterators.
template<class _Iterator>
inline typename std::iterator_traits<_Iterator>::difference_type
__distance_fw(_Iterator __first, _Iterator __last,
std::input_iterator_tag)
{ return 0; }
template<class _Iterator>
inline typename std::iterator_traits<_Iterator>::difference_type
__distance_fw(_Iterator __first, _Iterator __last,
std::forward_iterator_tag)
{ return std::distance(__first, __last); }
template<class _Iterator>
inline typename std::iterator_traits<_Iterator>::difference_type
__distance_fw(_Iterator __first, _Iterator __last)
{
typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag;
return __distance_fw(__first, __last, _Tag());
}
// Helper type used to detect whether the hash functor is noexcept.
template <typename _Key, typename _Hash>
struct __is_noexcept_hash : std::__bool_constant<
noexcept(declval<const _Hash&>()(declval<const _Key&>()))>
{ };
struct _Identity
{
template<typename _Tp>
_Tp&&
operator()(_Tp&& __x) const
{ return std::forward<_Tp>(__x); }
};
struct _Select1st
{
template<typename _Tp>
auto
operator()(_Tp&& __x) const
-> decltype(std::get<0>(std::forward<_Tp>(__x)))
{ return std::get<0>(std::forward<_Tp>(__x)); }
};
template<typename _NodeAlloc>
struct _Hashtable_alloc;
// Functor recycling a pool of nodes and using allocation once the pool is
// empty.
template<typename _NodeAlloc>
struct _ReuseOrAllocNode
{
private:
using __node_alloc_type = _NodeAlloc;
using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>;
using __value_alloc_type = typename __hashtable_alloc::__value_alloc_type;
using __value_alloc_traits =
typename __hashtable_alloc::__value_alloc_traits;
using __node_alloc_traits =
typename __hashtable_alloc::__node_alloc_traits;
using __node_type = typename __hashtable_alloc::__node_type;
public:
_ReuseOrAllocNode(__node_type* __nodes, __hashtable_alloc& __h)
: _M_nodes(__nodes), _M_h(__h) { }
_ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete;
~_ReuseOrAllocNode()
{ _M_h._M_deallocate_nodes(_M_nodes); }
template<typename _Arg>
__node_type*
operator()(_Arg&& __arg) const
{
if (_M_nodes)
{
__node_type* __node = _M_nodes;
_M_nodes = _M_nodes->_M_next();
__node->_M_nxt = nullptr;
__value_alloc_type __a(_M_h._M_node_allocator());
__value_alloc_traits::destroy(__a, __node->_M_valptr());
__try
{
__value_alloc_traits::construct(__a, __node->_M_valptr(),
std::forward<_Arg>(__arg));
}
__catch(...)
{
__node->~__node_type();
__node_alloc_traits::deallocate(_M_h._M_node_allocator(),
__node, 1);
__throw_exception_again;
}
return __node;
}
return _M_h._M_allocate_node(std::forward<_Arg>(__arg));
}
private:
mutable __node_type* _M_nodes;
__hashtable_alloc& _M_h;
};
// Functor similar to the previous one but without any pool of nodes to
// recycle.
template<typename _NodeAlloc>
struct _AllocNode
{
private:
using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>;
using __node_type = typename __hashtable_alloc::__node_type;
public:
_AllocNode(__hashtable_alloc& __h)
: _M_h(__h) { }
template<typename _Arg>
__node_type*
operator()(_Arg&& __arg) const
{ return _M_h._M_allocate_node(std::forward<_Arg>(__arg)); }
private:
__hashtable_alloc& _M_h;
};
// Auxiliary types used for all instantiations of _Hashtable nodes
// and iterators.
/**
* struct _Hashtable_traits
*
* Important traits for hash tables.
*
* @tparam _Cache_hash_code Boolean value. True if the value of
* the hash function is stored along with the value. This is a
* time-space tradeoff. Storing it may improve lookup speed by
* reducing the number of times we need to call the _Equal
* function.
*
* @tparam _Constant_iterators Boolean value. True if iterator and
* const_iterator are both constant iterator types. This is true
* for unordered_set and unordered_multiset, false for
* unordered_map and unordered_multimap.
*
* @tparam _Unique_keys Boolean value. True if the return value
* of _Hashtable::count(k) is always at most one, false if it may
* be an arbitrary number. This is true for unordered_set and
* unordered_map, false for unordered_multiset and
* unordered_multimap.
*/
template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys>
struct _Hashtable_traits
{
using __hash_cached = __bool_constant<_Cache_hash_code>;
using __constant_iterators = __bool_constant<_Constant_iterators>;
using __unique_keys = __bool_constant<_Unique_keys>;
};
/**
* struct _Hash_node_base
*
* Nodes, used to wrap elements stored in the hash table. A policy
* template parameter of class template _Hashtable controls whether
* nodes also store a hash code. In some cases (e.g. strings) this
* may be a performance win.
*/
struct _Hash_node_base
{
_Hash_node_base* _M_nxt;
_Hash_node_base() noexcept : _M_nxt() { }
_Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { }
};
/**
* struct _Hash_node_value_base
*
* Node type with the value to store.
*/
template<typename _Value>
struct _Hash_node_value_base : _Hash_node_base
{
typedef _Value value_type;
__gnu_cxx::__aligned_buffer<_Value> _M_storage;
_Value*
_M_valptr() noexcept
{ return _M_storage._M_ptr(); }
const _Value*
_M_valptr() const noexcept
{ return _M_storage._M_ptr(); }
_Value&
_M_v() noexcept
{ return *_M_valptr(); }
const _Value&
_M_v() const noexcept
{ return *_M_valptr(); }
};
/**
* Primary template struct _Hash_node.
*/
template<typename _Value, bool _Cache_hash_code>
struct _Hash_node;
/**
* Specialization for nodes with caches, struct _Hash_node.
*
* Base class is __detail::_Hash_node_value_base.
*/
template<typename _Value>
struct _Hash_node<_Value, true> : _Hash_node_value_base<_Value>
{
std::size_t _M_hash_code;
_Hash_node*
_M_next() const noexcept
{ return static_cast<_Hash_node*>(this->_M_nxt); }
};
/**
* Specialization for nodes without caches, struct _Hash_node.
*
* Base class is __detail::_Hash_node_value_base.
*/
template<typename _Value>
struct _Hash_node<_Value, false> : _Hash_node_value_base<_Value>
{
_Hash_node*
_M_next() const noexcept
{ return static_cast<_Hash_node*>(this->_M_nxt); }
};
/// Base class for node iterators.
template<typename _Value, bool _Cache_hash_code>
struct _Node_iterator_base
{
using __node_type = _Hash_node<_Value, _Cache_hash_code>;
__node_type* _M_cur;
_Node_iterator_base(__node_type* __p) noexcept
: _M_cur(__p) { }
void
_M_incr() noexcept
{ _M_cur = _M_cur->_M_next(); }
};
template<typename _Value, bool _Cache_hash_code>
inline bool
operator==(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
const _Node_iterator_base<_Value, _Cache_hash_code >& __y)
noexcept
{ return __x._M_cur == __y._M_cur; }
template<typename _Value, bool _Cache_hash_code>
inline bool
operator!=(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
const _Node_iterator_base<_Value, _Cache_hash_code>& __y)
noexcept
{ return __x._M_cur != __y._M_cur; }
/// Node iterators, used to iterate through all the hashtable.
template<typename _Value, bool __constant_iterators, bool __cache>
struct _Node_iterator
: public _Node_iterator_base<_Value, __cache>
{
private:
using __base_type = _Node_iterator_base<_Value, __cache>;
using __node_type = typename __base_type::__node_type;
public:
typedef _Value value_type;
typedef std::ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
using pointer = typename std::conditional<__constant_iterators,
const _Value*, _Value*>::type;
using reference = typename std::conditional<__constant_iterators,
const _Value&, _Value&>::type;
_Node_iterator() noexcept
: __base_type(0) { }
explicit
_Node_iterator(__node_type* __p) noexcept
: __base_type(__p) { }
reference
operator*() const noexcept
{ return this->_M_cur->_M_v(); }
pointer
operator->() const noexcept
{ return this->_M_cur->_M_valptr(); }
_Node_iterator&
operator++() noexcept
{
this->_M_incr();
return *this;
}
_Node_iterator
operator++(int) noexcept
{
_Node_iterator __tmp(*this);
this->_M_incr();
return __tmp;
}
};
/// Node const_iterators, used to iterate through all the hashtable.
template<typename _Value, bool __constant_iterators, bool __cache>
struct _Node_const_iterator
: public _Node_iterator_base<_Value, __cache>
{
private:
using __base_type = _Node_iterator_base<_Value, __cache>;
using __node_type = typename __base_type::__node_type;
public:
typedef _Value value_type;
typedef std::ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
typedef const _Value* pointer;
typedef const _Value& reference;
_Node_const_iterator() noexcept
: __base_type(0) { }
explicit
_Node_const_iterator(__node_type* __p) noexcept
: __base_type(__p) { }
_Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
__cache>& __x) noexcept
: __base_type(__x._M_cur) { }
reference
operator*() const noexcept
{ return this->_M_cur->_M_v(); }
pointer
operator->() const noexcept
{ return this->_M_cur->_M_valptr(); }
_Node_const_iterator&
operator++() noexcept
{
this->_M_incr();
return *this;
}
_Node_const_iterator
operator++(int) noexcept
{
_Node_const_iterator __tmp(*this);
this->_M_incr();
return __tmp;
}
};
// Many of class template _Hashtable's template parameters are policy
// classes. These are defaults for the policies.
/// Default range hashing function: use division to fold a large number
/// into the range [0, N).
struct _Mod_range_hashing
{
typedef std::size_t first_argument_type;
typedef std::size_t second_argument_type;
typedef std::size_t result_type;
result_type
operator()(first_argument_type __num,
second_argument_type __den) const noexcept
{ return __num % __den; }
};
/// Default ranged hash function H. In principle it should be a
/// function object composed from objects of type H1 and H2 such that
/// h(k, N) = h2(h1(k), N), but that would mean making extra copies of
/// h1 and h2. So instead we'll just use a tag to tell class template
/// hashtable to do that composition.
struct _Default_ranged_hash { };
/// Default value for rehash policy. Bucket size is (usually) the
/// smallest prime that keeps the load factor small enough.
struct _Prime_rehash_policy
{
_Prime_rehash_policy(float __z = 1.0) noexcept
: _M_max_load_factor(__z), _M_next_resize(0) { }
float
max_load_factor() const noexcept
{ return _M_max_load_factor; }
// Return a bucket size no smaller than n.
std::size_t
_M_next_bkt(std::size_t __n) const;
// Return a bucket count appropriate for n elements
std::size_t
_M_bkt_for_elements(std::size_t __n) const
{ return __builtin_ceil(__n / (long double)_M_max_load_factor); }
// __n_bkt is current bucket count, __n_elt is current element count,
// and __n_ins is number of elements to be inserted. Do we need to
// increase bucket count? If so, return make_pair(true, n), where n
// is the new bucket count. If not, return make_pair(false, 0).
std::pair<bool, std::size_t>
_M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
std::size_t __n_ins) const;
typedef std::size_t _State;
_State
_M_state() const
{ return _M_next_resize; }
void
_M_reset() noexcept
{ _M_next_resize = 0; }
void
_M_reset(_State __state)
{ _M_next_resize = __state; }
enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 };
static const std::size_t _S_growth_factor = 2;
float _M_max_load_factor;
mutable std::size_t _M_next_resize;
};
// Base classes for std::_Hashtable. We define these base classes
// because in some cases we want to do different things depending on
// the value of a policy class. In some cases the policy class
// affects which member functions and nested typedefs are defined;
// we handle that by specializing base class templates. Several of
// the base class templates need to access other members of class
// template _Hashtable, so we use a variant of the "Curiously
// Recurring Template Pattern" (CRTP) technique.
/**
* Primary class template _Map_base.
*
* If the hashtable has a value type of the form pair<T1, T2> and a
* key extraction policy (_ExtractKey) that returns the first part
* of the pair, the hashtable gets a mapped_type typedef. If it
* satisfies those criteria and also has unique keys, then it also
* gets an operator[].
*/
template<typename _Key, typename _Value, typename _Alloc,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash,
typename _RehashPolicy, typename _Traits,
bool _Unique_keys = _Traits::__unique_keys::value>
struct _Map_base { };
/// Partial specialization, __unique_keys set to false.
template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
typename _H1, typename _H2, typename _Hash,
typename _RehashPolicy, typename _Traits>
struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
_H1, _H2, _Hash, _RehashPolicy, _Traits, false>
{
using mapped_type = typename std::tuple_element<1, _Pair>::type;
};
/// Partial specialization, __unique_keys set to true.
template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
typename _H1, typename _H2, typename _Hash,
typename _RehashPolicy, typename _Traits>
struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
_H1, _H2, _Hash, _RehashPolicy, _Traits, true>
{
private:
using __hashtable_base = __detail::_Hashtable_base<_Key, _Pair,
_Select1st,
_Equal, _H1, _H2, _Hash,
_Traits>;
using __hashtable = _Hashtable<_Key, _Pair, _Alloc,
_Select1st, _Equal,
_H1, _H2, _Hash, _RehashPolicy, _Traits>;
using __hash_code = typename __hashtable_base::__hash_code;
using __node_type = typename __hashtable_base::__node_type;
public:
using key_type = typename __hashtable_base::key_type;
using iterator = typename __hashtable_base::iterator;
using mapped_type = typename std::tuple_element<1, _Pair>::type;
mapped_type&
operator[](const key_type& __k);
mapped_type&
operator[](key_type&& __k);
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// DR 761. unordered_map needs an at() member function.
mapped_type&
at(const key_type& __k);
const mapped_type&
at(const key_type& __k) const;
};
template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
typename _H1, typename _H2, typename _Hash,
typename _RehashPolicy, typename _Traits>
auto
_Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
_H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
operator[](const key_type& __k)
-> mapped_type&
{
__hashtable* __h = static_cast<__hashtable*>(this);
__hash_code __code = __h->_M_hash_code(__k);
std::size_t __n = __h->_M_bucket_index(__k, __code);
__node_type* __p = __h->_M_find_node(__n, __k, __code);
if (!__p)
{
__p = __h->_M_allocate_node(std::piecewise_construct,
std::tuple<const key_type&>(__k),
std::tuple<>());
return __h->_M_insert_unique_node(__n, __code, __p)->second;
}
return __p->_M_v().second;
}
template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
typename _H1, typename _H2, typename _Hash,
typename _RehashPolicy, typename _Traits>
auto
_Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
_H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
operator[](key_type&& __k)
-> mapped_type&
{
__hashtable* __h = static_cast<__hashtable*>(this);
__hash_code __code = __h->_M_hash_code(__k);
std::size_t __n = __h->_M_bucket_index(__k, __code);
__node_type* __p = __h->_M_find_node(__n, __k, __code);
if (!__p)
{
__p = __h->_M_allocate_node(std::piecewise_construct,
std::forward_as_tuple(std::move(__k)),
std::tuple<>());
return __h->_M_insert_unique_node(__n, __code, __p)->second;
}
return __p->_M_v().second;
}
template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
typename _H1, typename _H2, typename _Hash,
typename _RehashPolicy, typename _Traits>
auto
_Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
_H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
at(const key_type& __k)
-> mapped_type&
{
__hashtable* __h = static_cast<__hashtable*>(this);
__hash_code __code = __h->_M_hash_code(__k);
std::size_t __n = __h->_M_bucket_index(__k, __code);
__node_type* __p = __h->_M_find_node(__n, __k, __code);
if (!__p)
__throw_out_of_range(__N("_Map_base::at"));
return __p->_M_v().second;
}
template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
typename _H1, typename _H2, typename _Hash,
typename _RehashPolicy, typename _Traits>
auto
_Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
_H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
at(const key_type& __k) const
-> const mapped_type&
{
const __hashtable* __h = static_cast<const __hashtable*>(this);
__hash_code __code = __h->_M_hash_code(__k);
std::size_t __n = __h->_M_bucket_index(__k, __code);
__node_type* __p = __h->_M_find_node(__n, __k, __code);
if (!__p)
__throw_out_of_range(__N("_Map_base::at"));
return __p->_M_v().second;
}
/**
* Primary class template _Insert_base.
*
* insert member functions appropriate to all _Hashtables.
*/
template<typename _Key, typename _Value, typename _Alloc,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash,
typename _RehashPolicy, typename _Traits>
struct _Insert_base
{
protected:
using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
_Equal, _H1, _H2, _Hash,
_RehashPolicy, _Traits>;
using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
_Equal, _H1, _H2, _Hash,
_Traits>;
using value_type = typename __hashtable_base::value_type;
using iterator = typename __hashtable_base::iterator;
using const_iterator = typename __hashtable_base::const_iterator;
using size_type = typename __hashtable_base::size_type;
using __unique_keys = typename __hashtable_base::__unique_keys;
using __ireturn_type = typename __hashtable_base::__ireturn_type;
using __node_type = _Hash_node<_Value, _Traits::__hash_cached::value>;
using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
using __node_gen_type = _AllocNode<__node_alloc_type>;
__hashtable&
_M_conjure_hashtable()
{ return *(static_cast<__hashtable*>(this)); }
template<typename _InputIterator, typename _NodeGetter>
void
_M_insert_range(_InputIterator __first, _InputIterator __last,
const _NodeGetter&);
public:
__ireturn_type
insert(const value_type& __v)
{
__hashtable& __h = _M_conjure_hashtable();
__node_gen_type __node_gen(__h);
return __h._M_insert(__v, __node_gen, __unique_keys());
}
iterator
insert(const_iterator __hint, const value_type& __v)
{
__hashtable& __h = _M_conjure_hashtable();
__node_gen_type __node_gen(__h);
return __h._M_insert(__hint, __v, __node_gen, __unique_keys());
}
void
insert(initializer_list<value_type> __l)
{ this->insert(__l.begin(), __l.end()); }
template<typename _InputIterator>
void
insert(_InputIterator __first, _InputIterator __last)
{
__hashtable& __h = _M_conjure_hashtable();
__node_gen_type __node_gen(__h);
return _M_insert_range(__first, __last, __node_gen);
}
};
template<typename _Key, typename _Value, typename _Alloc,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash,
typename _RehashPolicy, typename _Traits>
template<typename _InputIterator, typename _NodeGetter>
void
_Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
_RehashPolicy, _Traits>::
_M_insert_range(_InputIterator __first, _InputIterator __last,
const _NodeGetter& __node_gen)
{
using __rehash_type = typename __hashtable::__rehash_type;
using __rehash_state = typename __hashtable::__rehash_state;
using pair_type = std::pair<bool, std::size_t>;
size_type __n_elt = __detail::__distance_fw(__first, __last);
__hashtable& __h = _M_conjure_hashtable();
__rehash_type& __rehash = __h._M_rehash_policy;
const __rehash_state& __saved_state = __rehash._M_state();
pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count,
__h._M_element_count,
__n_elt);
if (__do_rehash.first)
__h._M_rehash(__do_rehash.second, __saved_state);
for (; __first != __last; ++__first)
__h._M_insert(*__first, __node_gen, __unique_keys());
}
/**
* Primary class template _Insert.
*
* Select insert member functions appropriate to _Hashtable policy choices.
*/
template<typename _Key, typename _Value, typename _Alloc,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash,
typename _RehashPolicy, typename _Traits,
bool _Constant_iterators = _Traits::__constant_iterators::value,
bool _Unique_keys = _Traits::__unique_keys::value>
struct _Insert;
/// Specialization.
template<typename _Key, typename _Value, typename _Alloc,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash,
typename _RehashPolicy, typename _Traits>
struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
_RehashPolicy, _Traits, true, true>
: public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, _Traits>
{
using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
_Equal, _H1, _H2, _Hash,
_RehashPolicy, _Traits>;
using value_type = typename __base_type::value_type;
using iterator = typename __base_type::iterator;
using const_iterator = typename __base_type::const_iterator;
using __unique_keys = typename __base_type::__unique_keys;
using __hashtable = typename __base_type::__hashtable;
using __node_gen_type = typename __base_type::__node_gen_type;
using __base_type::insert;
std::pair<iterator, bool>
insert(value_type&& __v)
{
__hashtable& __h = this->_M_conjure_hashtable();
__node_gen_type __node_gen(__h);
return __h._M_insert(std::move(__v), __node_gen, __unique_keys());
}
iterator
insert(const_iterator __hint, value_type&& __v)
{
__hashtable& __h = this->_M_conjure_hashtable();
__node_gen_type __node_gen(__h);
return __h._M_insert(__hint, std::move(__v), __node_gen,
__unique_keys());
}
};
/// Specialization.
template<typename _Key, typename _Value, typename _Alloc,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash,
typename _RehashPolicy, typename _Traits>
struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
_RehashPolicy, _Traits, true, false>
: public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, _Traits>
{
using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
_Equal, _H1, _H2, _Hash,
_RehashPolicy, _Traits>;
using value_type = typename __base_type::value_type;
using iterator = typename __base_type::iterator;
using const_iterator = typename __base_type::const_iterator;
using __unique_keys = typename __base_type::__unique_keys;
using __hashtable = typename __base_type::__hashtable;
using __node_gen_type = typename __base_type::__node_gen_type;
using __base_type::insert;
iterator
insert(value_type&& __v)
{
__hashtable& __h = this->_M_conjure_hashtable();
__node_gen_type __node_gen(__h);
return __h._M_insert(std::move(__v), __node_gen, __unique_keys());
}
iterator
insert(const_iterator __hint, value_type&& __v)
{
__hashtable& __h = this->_M_conjure_hashtable();
__node_gen_type __node_gen(__h);
return __h._M_insert(__hint, std::move(__v), __node_gen,
__unique_keys());
}
};
/// Specialization.
template<typename _Key, typename _Value, typename _Alloc,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash,
typename _RehashPolicy, typename _Traits, bool _Unique_keys>
struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
_RehashPolicy, _Traits, false, _Unique_keys>
: public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, _Traits>
{
using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
_Equal, _H1, _H2, _Hash,
_RehashPolicy, _Traits>;
using value_type = typename __base_type::value_type;
using iterator = typename __base_type::iterator;
using const_iterator = typename __base_type::const_iterator;
using __unique_keys = typename __base_type::__unique_keys;
using __hashtable = typename __base_type::__hashtable;
using __ireturn_type = typename __base_type::__ireturn_type;
using __base_type::insert;
template<typename _Pair>
using __is_cons = std::is_constructible<value_type, _Pair&&>;
template<typename _Pair>
using _IFcons = std::enable_if<__is_cons<_Pair>::value>;
template<typename _Pair>
using _IFconsp = typename _IFcons<_Pair>::type;
template<typename _Pair, typename = _IFconsp<_Pair>>
__ireturn_type
insert(_Pair&& __v)
{
__hashtable& __h = this->_M_conjure_hashtable();
return __h._M_emplace(__unique_keys(), std::forward<_Pair>(__v));
}
template<typename _Pair, typename = _IFconsp<_Pair>>
iterator
insert(const_iterator __hint, _Pair&& __v)
{
__hashtable& __h = this->_M_conjure_hashtable();
return __h._M_emplace(__hint, __unique_keys(),
std::forward<_Pair>(__v));
}
};
/**
* Primary class template _Rehash_base.
*
* Give hashtable the max_load_factor functions and reserve iff the
* rehash policy is _Prime_rehash_policy.
*/
template<typename _Key, typename _Value, typename _Alloc,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash,
typename _RehashPolicy, typename _Traits>
struct _Rehash_base;
/// Specialization.
template<typename _Key, typename _Value, typename _Alloc,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _Traits>
struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
_H1, _H2, _Hash, _Prime_rehash_policy, _Traits>
{
using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
_Equal, _H1, _H2, _Hash,
_Prime_rehash_policy, _Traits>;
float
max_load_factor() const noexcept
{
const __hashtable* __this = static_cast<const __hashtable*>(this);
return __this->__rehash_policy().max_load_factor();
}
void
max_load_factor(float __z)
{
__hashtable* __this = static_cast<__hashtable*>(this);
__this->__rehash_policy(_Prime_rehash_policy(__z));
}
void
reserve(std::size_t __n)
{
__hashtable* __this = static_cast<__hashtable*>(this);
__this->rehash(__builtin_ceil(__n / max_load_factor()));
}
};
/**
* Primary class template _Hashtable_ebo_helper.
*
* Helper class using EBO when it is not forbidden (the type is not
* final) and when it is worth it (the type is empty.)
*/
template<int _Nm, typename _Tp,
bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)>
struct _Hashtable_ebo_helper;
/// Specialization using EBO.
template<int _Nm, typename _Tp>
struct _Hashtable_ebo_helper<_Nm, _Tp, true>
: private _Tp
{
_Hashtable_ebo_helper() = default;
template<typename _OtherTp>
_Hashtable_ebo_helper(_OtherTp&& __tp)
: _Tp(std::forward<_OtherTp>(__tp))
{ }
static const _Tp&
_S_cget(const _Hashtable_ebo_helper& __eboh)
{ return static_cast<const _Tp&>(__eboh); }
static _Tp&
_S_get(_Hashtable_ebo_helper& __eboh)
{ return static_cast<_Tp&>(__eboh); }
};
/// Specialization not using EBO.
template<int _Nm, typename _Tp>
struct _Hashtable_ebo_helper<_Nm, _Tp, false>
{
_Hashtable_ebo_helper() = default;
template<typename _OtherTp>
_Hashtable_ebo_helper(_OtherTp&& __tp)
: _M_tp(std::forward<_OtherTp>(__tp))
{ }
static const _Tp&
_S_cget(const _Hashtable_ebo_helper& __eboh)
{ return __eboh._M_tp; }
static _Tp&
_S_get(_Hashtable_ebo_helper& __eboh)
{ return __eboh._M_tp; }
private:
_Tp _M_tp;
};
/**
* Primary class template _Local_iterator_base.
*
* Base class for local iterators, used to iterate within a bucket
* but not between buckets.
*/
template<typename _Key, typename _Value, typename _ExtractKey,
typename _H1, typename _H2, typename _Hash,
bool __cache_hash_code>
struct _Local_iterator_base;
/**
* Primary class template _Hash_code_base.
*
* Encapsulates two policy issues that aren't quite orthogonal.
* (1) the difference between using a ranged hash function and using
* the combination of a hash function and a range-hashing function.
* In the former case we don't have such things as hash codes, so
* we have a dummy type as placeholder.
* (2) Whether or not we cache hash codes. Caching hash codes is
* meaningless if we have a ranged hash function.
*
* We also put the key extraction objects here, for convenience.
* Each specialization derives from one or more of the template
* parameters to benefit from Ebo. This is important as this type
* is inherited in some cases by the _Local_iterator_base type used
* to implement local_iterator and const_local_iterator. As with
* any iterator type we prefer to make it as small as possible.
*
* Primary template is unused except as a hook for specializations.
*/
template<typename _Key, typename _Value, typename _ExtractKey,
typename _H1, typename _H2, typename _Hash,
bool __cache_hash_code>
struct _Hash_code_base;
/// Specialization: ranged hash function, no caching hash codes. H1
/// and H2 are provided but ignored. We define a dummy hash code type.
template<typename _Key, typename _Value, typename _ExtractKey,
typename _H1, typename _H2, typename _Hash>
struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false>
: private _Hashtable_ebo_helper<0, _ExtractKey>,
private _Hashtable_ebo_helper<1, _Hash>
{
private:
using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
using __ebo_hash = _Hashtable_ebo_helper<1, _Hash>;
protected:
typedef void* __hash_code;
typedef _Hash_node<_Value, false> __node_type;
// We need the default constructor for the local iterators and _Hashtable
// default constructor.
_Hash_code_base() = default;
_Hash_code_base(const _ExtractKey& __ex, const _H1&, const _H2&,
const _Hash& __h)
: __ebo_extract_key(__ex), __ebo_hash(__h) { }
__hash_code
_M_hash_code(const _Key& __key) const
{ return 0; }
std::size_t
_M_bucket_index(const _Key& __k, __hash_code, std::size_t __n) const
{ return _M_ranged_hash()(__k, __n); }
std::size_t
_M_bucket_index(const __node_type* __p, std::size_t __n) const
noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>(),
(std::size_t)0)) )
{ return _M_ranged_hash()(_M_extract()(__p->_M_v()), __n); }
void
_M_store_code(__node_type*, __hash_code) const
{ }
void
_M_copy_code(__node_type*, const __node_type*) const
{ }
void
_M_swap(_Hash_code_base& __x)
{
std::swap(_M_extract(), __x._M_extract());
std::swap(_M_ranged_hash(), __x._M_ranged_hash());
}
const _ExtractKey&
_M_extract() const { return __ebo_extract_key::_S_cget(*this); }
_ExtractKey&
_M_extract() { return __ebo_extract_key::_S_get(*this); }
const _Hash&
_M_ranged_hash() const { return __ebo_hash::_S_cget(*this); }
_Hash&
_M_ranged_hash() { return __ebo_hash::_S_get(*this); }
};
// No specialization for ranged hash function while caching hash codes.
// That combination is meaningless, and trying to do it is an error.
/// Specialization: ranged hash function, cache hash codes. This
/// combination is meaningless, so we provide only a declaration
/// and no definition.
template<typename _Key, typename _Value, typename _ExtractKey,
typename _H1, typename _H2, typename _Hash>
struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, true>;
/// Specialization: hash function and range-hashing function, no
/// caching of hash codes.
/// Provides typedef and accessor required by C++ 11.
template<typename _Key, typename _Value, typename _ExtractKey,
typename _H1, typename _H2>
struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
_Default_ranged_hash, false>
: private _Hashtable_ebo_helper<0, _ExtractKey>,
private _Hashtable_ebo_helper<1, _H1>,
private _Hashtable_ebo_helper<2, _H2>
{
private:
using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>;
using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>;
// Gives the local iterator implementation access to _M_bucket_index().
friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2,
_Default_ranged_hash, false>;
public:
typedef _H1 hasher;
hasher
hash_function() const
{ return _M_h1(); }
protected:
typedef std::size_t __hash_code;
typedef _Hash_node<_Value, false> __node_type;
// We need the default constructor for the local iterators and _Hashtable
// default constructor.
_Hash_code_base() = default;
_Hash_code_base(const _ExtractKey& __ex,
const _H1& __h1, const _H2& __h2,
const _Default_ranged_hash&)
: __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }
__hash_code
_M_hash_code(const _Key& __k) const
{ return _M_h1()(__k); }
std::size_t
_M_bucket_index(const _Key&, __hash_code __c, std::size_t __n) const
{ return _M_h2()(__c, __n); }
std::size_t
_M_bucket_index(const __node_type* __p, std::size_t __n) const
noexcept( noexcept(declval<const _H1&>()(declval<const _Key&>()))
&& noexcept(declval<const _H2&>()((__hash_code)0,
(std::size_t)0)) )
{ return _M_h2()(_M_h1()(_M_extract()(__p->_M_v())), __n); }
void
_M_store_code(__node_type*, __hash_code) const
{ }
void
_M_copy_code(__node_type*, const __node_type*) const
{ }
void
_M_swap(_Hash_code_base& __x)
{
std::swap(_M_extract(), __x._M_extract());
std::swap(_M_h1(), __x._M_h1());
std::swap(_M_h2(), __x._M_h2());
}
const _ExtractKey&
_M_extract() const { return __ebo_extract_key::_S_cget(*this); }
_ExtractKey&
_M_extract() { return __ebo_extract_key::_S_get(*this); }
const _H1&
_M_h1() const { return __ebo_h1::_S_cget(*this); }
_H1&
_M_h1() { return __ebo_h1::_S_get(*this); }
const _H2&
_M_h2() const { return __ebo_h2::_S_cget(*this); }
_H2&
_M_h2() { return __ebo_h2::_S_get(*this); }
};
/// Specialization: hash function and range-hashing function,
/// caching hash codes. H is provided but ignored. Provides
/// typedef and accessor required by C++ 11.
template<typename _Key, typename _Value, typename _ExtractKey,
typename _H1, typename _H2>
struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
_Default_ranged_hash, true>
: private _Hashtable_ebo_helper<0, _ExtractKey>,
private _Hashtable_ebo_helper<1, _H1>,
private _Hashtable_ebo_helper<2, _H2>
{
private:
// Gives the local iterator implementation access to _M_h2().
friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2,
_Default_ranged_hash, true>;
using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>;
using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>;
public:
typedef _H1 hasher;
hasher
hash_function() const
{ return _M_h1(); }
protected:
typedef std::size_t __hash_code;
typedef _Hash_node<_Value, true> __node_type;
// We need the default constructor for _Hashtable default constructor.
_Hash_code_base() = default;
_Hash_code_base(const _ExtractKey& __ex,
const _H1& __h1, const _H2& __h2,
const _Default_ranged_hash&)
: __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }
__hash_code
_M_hash_code(const _Key& __k) const
{ return _M_h1()(__k); }
std::size_t
_M_bucket_index(const _Key&, __hash_code __c,
std::size_t __n) const
{ return _M_h2()(__c, __n); }
std::size_t
_M_bucket_index(const __node_type* __p, std::size_t __n) const
noexcept( noexcept(declval<const _H2&>()((__hash_code)0,
(std::size_t)0)) )
{ return _M_h2()(__p->_M_hash_code, __n); }
void
_M_store_code(__node_type* __n, __hash_code __c) const
{ __n->_M_hash_code = __c; }
void
_M_copy_code(__node_type* __to, const __node_type* __from) const
{ __to->_M_hash_code = __from->_M_hash_code; }
void
_M_swap(_Hash_code_base& __x)
{
std::swap(_M_extract(), __x._M_extract());
std::swap(_M_h1(), __x._M_h1());
std::swap(_M_h2(), __x._M_h2());
}
const _ExtractKey&
_M_extract() const { return __ebo_extract_key::_S_cget(*this); }
_ExtractKey&
_M_extract() { return __ebo_extract_key::_S_get(*this); }
const _H1&
_M_h1() const { return __ebo_h1::_S_cget(*this); }
_H1&
_M_h1() { return __ebo_h1::_S_get(*this); }
const _H2&
_M_h2() const { return __ebo_h2::_S_cget(*this); }
_H2&
_M_h2() { return __ebo_h2::_S_get(*this); }
};
/**
* Primary class template _Equal_helper.
*
*/
template <typename _Key, typename _Value, typename _ExtractKey,
typename _Equal, typename _HashCodeType,
bool __cache_hash_code>
struct _Equal_helper;
/// Specialization.
template<typename _Key, typename _Value, typename _ExtractKey,
typename _Equal, typename _HashCodeType>
struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, true>
{
static bool
_S_equals(const _Equal& __eq, const _ExtractKey& __extract,
const _Key& __k, _HashCodeType __c, _Hash_node<_Value, true>* __n)
{ return __c == __n->_M_hash_code && __eq(__k, __extract(__n->_M_v())); }
};
/// Specialization.
template<typename _Key, typename _Value, typename _ExtractKey,
typename _Equal, typename _HashCodeType>
struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, false>
{
static bool
_S_equals(const _Equal& __eq, const _ExtractKey& __extract,
const _Key& __k, _HashCodeType, _Hash_node<_Value, false>* __n)
{ return __eq(__k, __extract(__n->_M_v())); }
};
/// Partial specialization used when nodes contain a cached hash code.
template<typename _Key, typename _Value, typename _ExtractKey,
typename _H1, typename _H2, typename _Hash>
struct _Local_iterator_base<_Key, _Value, _ExtractKey,
_H1, _H2, _Hash, true>
: private _Hashtable_ebo_helper<0, _H2>
{
protected:
using __base_type = _Hashtable_ebo_helper<0, _H2>;
using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
_H1, _H2, _Hash, true>;
_Local_iterator_base() = default;
_Local_iterator_base(const __hash_code_base& __base,
_Hash_node<_Value, true>* __p,
std::size_t __bkt, std::size_t __bkt_count)
: __base_type(__base._M_h2()),
_M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { }
void
_M_incr()
{
_M_cur = _M_cur->_M_next();
if (_M_cur)
{
std::size_t __bkt
= __base_type::_S_get(*this)(_M_cur->_M_hash_code,
_M_bucket_count);
if (__bkt != _M_bucket)
_M_cur = nullptr;
}
}
_Hash_node<_Value, true>* _M_cur;
std::size_t _M_bucket;
std::size_t _M_bucket_count;
public:
const void*
_M_curr() const { return _M_cur; } // for equality ops
std::size_t
_M_get_bucket() const { return _M_bucket; } // for debug mode
};
// Uninitialized storage for a _Hash_code_base.
// This type is DefaultConstructible and Assignable even if the
// _Hash_code_base type isn't, so that _Local_iterator_base<..., false>
// can be DefaultConstructible and Assignable.
template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value>
struct _Hash_code_storage
{
__gnu_cxx::__aligned_buffer<_Tp> _M_storage;
_Tp*
_M_h() { return _M_storage._M_ptr(); }
const _Tp*
_M_h() const { return _M_storage._M_ptr(); }
};
// Empty partial specialization for empty _Hash_code_base types.
template<typename _Tp>
struct _Hash_code_storage<_Tp, true>
{
static_assert( std::is_empty<_Tp>::value, "Type must be empty" );
// As _Tp is an empty type there will be no bytes written/read through
// the cast pointer, so no strict-aliasing violation.
_Tp*
_M_h() { return reinterpret_cast<_Tp*>(this); }
const _Tp*
_M_h() const { return reinterpret_cast<const _Tp*>(this); }
};
template<typename _Key, typename _Value, typename _ExtractKey,
typename _H1, typename _H2, typename _Hash>
using __hash_code_for_local_iter
= _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey,
_H1, _H2, _Hash, false>>;
// Partial specialization used when hash codes are not cached
template<typename _Key, typename _Value, typename _ExtractKey,
typename _H1, typename _H2, typename _Hash>
struct _Local_iterator_base<_Key, _Value, _ExtractKey,
_H1, _H2, _Hash, false>
: __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _H1, _H2, _Hash>
{
protected:
using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
_H1, _H2, _Hash, false>;
_Local_iterator_base() : _M_bucket_count(-1) { }
_Local_iterator_base(const __hash_code_base& __base,
_Hash_node<_Value, false>* __p,
std::size_t __bkt, std::size_t __bkt_count)
: _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count)
{ _M_init(__base); }
~_Local_iterator_base()
{
if (_M_bucket_count != -1)
_M_destroy();
}
_Local_iterator_base(const _Local_iterator_base& __iter)
: _M_cur(__iter._M_cur), _M_bucket(__iter._M_bucket),
_M_bucket_count(__iter._M_bucket_count)
{
if (_M_bucket_count != -1)
_M_init(*__iter._M_h());
}
_Local_iterator_base&
operator=(const _Local_iterator_base& __iter)
{
if (_M_bucket_count != -1)
_M_destroy();
_M_cur = __iter._M_cur;
_M_bucket = __iter._M_bucket;
_M_bucket_count = __iter._M_bucket_count;
if (_M_bucket_count != -1)
_M_init(*__iter._M_h());
return *this;
}
void
_M_incr()
{
_M_cur = _M_cur->_M_next();
if (_M_cur)
{
std::size_t __bkt = this->_M_h()->_M_bucket_index(_M_cur,
_M_bucket_count);
if (__bkt != _M_bucket)
_M_cur = nullptr;
}
}
_Hash_node<_Value, false>* _M_cur;
std::size_t _M_bucket;
std::size_t _M_bucket_count;
void
_M_init(const __hash_code_base& __base)
{ ::new(this->_M_h()) __hash_code_base(__base); }
void
_M_destroy() { this->_M_h()->~__hash_code_base(); }
public:
const void*
_M_curr() const { return _M_cur; } // for equality ops and debug mode
std::size_t
_M_get_bucket() const { return _M_bucket; } // for debug mode
};
template<typename _Key, typename _Value, typename _ExtractKey,
typename _H1, typename _H2, typename _Hash, bool __cache>
inline bool
operator==(const _Local_iterator_base<_Key, _Value, _ExtractKey,
_H1, _H2, _Hash, __cache>& __x,
const _Local_iterator_base<_Key, _Value, _ExtractKey,
_H1, _H2, _Hash, __cache>& __y)
{ return __x._M_curr() == __y._M_curr(); }
template<typename _Key, typename _Value, typename _ExtractKey,
typename _H1, typename _H2, typename _Hash, bool __cache>
inline bool
operator!=(const _Local_iterator_base<_Key, _Value, _ExtractKey,
_H1, _H2, _Hash, __cache>& __x,
const _Local_iterator_base<_Key, _Value, _ExtractKey,
_H1, _H2, _Hash, __cache>& __y)
{ return __x._M_curr() != __y._M_curr(); }
/// local iterators
template<typename _Key, typename _Value, typename _ExtractKey,
typename _H1, typename _H2, typename _Hash,
bool __constant_iterators, bool __cache>
struct _Local_iterator
: public _Local_iterator_base<_Key, _Value, _ExtractKey,
_H1, _H2, _Hash, __cache>
{
private:
using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
_H1, _H2, _Hash, __cache>;
using __hash_code_base = typename __base_type::__hash_code_base;
public:
typedef _Value value_type;
typedef typename std::conditional<__constant_iterators,
const _Value*, _Value*>::type
pointer;
typedef typename std::conditional<__constant_iterators,
const _Value&, _Value&>::type
reference;
typedef std::ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
_Local_iterator() = default;
_Local_iterator(const __hash_code_base& __base,
_Hash_node<_Value, __cache>* __p,
std::size_t __bkt, std::size_t __bkt_count)
: __base_type(__base, __p, __bkt, __bkt_count)
{ }
reference
operator*() const
{ return this->_M_cur->_M_v(); }
pointer
operator->() const
{ return this->_M_cur->_M_valptr(); }
_Local_iterator&
operator++()
{
this->_M_incr();
return *this;
}
_Local_iterator
operator++(int)
{
_Local_iterator __tmp(*this);
this->_M_incr();
return __tmp;
}
};
/// local const_iterators
template<typename _Key, typename _Value, typename _ExtractKey,
typename _H1, typename _H2, typename _Hash,
bool __constant_iterators, bool __cache>
struct _Local_const_iterator
: public _Local_iterator_base<_Key, _Value, _ExtractKey,
_H1, _H2, _Hash, __cache>
{
private:
using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
_H1, _H2, _Hash, __cache>;
using __hash_code_base = typename __base_type::__hash_code_base;
public:
typedef _Value value_type;
typedef const _Value* pointer;
typedef const _Value& reference;
typedef std::ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
_Local_const_iterator() = default;
_Local_const_iterator(const __hash_code_base& __base,
_Hash_node<_Value, __cache>* __p,
std::size_t __bkt, std::size_t __bkt_count)
: __base_type(__base, __p, __bkt, __bkt_count)
{ }
_Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey,
_H1, _H2, _Hash,
__constant_iterators,
__cache>& __x)
: __base_type(__x)
{ }
reference
operator*() const
{ return this->_M_cur->_M_v(); }
pointer
operator->() const
{ return this->_M_cur->_M_valptr(); }
_Local_const_iterator&
operator++()
{
this->_M_incr();
return *this;
}
_Local_const_iterator
operator++(int)
{
_Local_const_iterator __tmp(*this);
this->_M_incr();
return __tmp;
}
};
/**
* Primary class template _Hashtable_base.
*
* Helper class adding management of _Equal functor to
* _Hash_code_base type.
*
* Base class templates are:
* - __detail::_Hash_code_base
* - __detail::_Hashtable_ebo_helper
*/
template<typename _Key, typename _Value,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _Traits>
struct _Hashtable_base
: public _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
_Traits::__hash_cached::value>,
private _Hashtable_ebo_helper<0, _Equal>
{
public:
typedef _Key key_type;
typedef _Value value_type;
typedef _Equal key_equal;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
using __traits_type = _Traits;
using __hash_cached = typename __traits_type::__hash_cached;
using __constant_iterators = typename __traits_type::__constant_iterators;
using __unique_keys = typename __traits_type::__unique_keys;
using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
_H1, _H2, _Hash,
__hash_cached::value>;
using __hash_code = typename __hash_code_base::__hash_code;
using __node_type = typename __hash_code_base::__node_type;
using iterator = __detail::_Node_iterator<value_type,
__constant_iterators::value,
__hash_cached::value>;
using const_iterator = __detail::_Node_const_iterator<value_type,
__constant_iterators::value,
__hash_cached::value>;
using local_iterator = __detail::_Local_iterator<key_type, value_type,
_ExtractKey, _H1, _H2, _Hash,
__constant_iterators::value,
__hash_cached::value>;
using const_local_iterator = __detail::_Local_const_iterator<key_type,
value_type,
_ExtractKey, _H1, _H2, _Hash,
__constant_iterators::value,
__hash_cached::value>;
using __ireturn_type = typename std::conditional<__unique_keys::value,
std::pair<iterator, bool>,
iterator>::type;
private:
using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>;
using _EqualHelper = _Equal_helper<_Key, _Value, _ExtractKey, _Equal,
__hash_code, __hash_cached::value>;
protected:
_Hashtable_base() = default;
_Hashtable_base(const _ExtractKey& __ex, const _H1& __h1, const _H2& __h2,
const _Hash& __hash, const _Equal& __eq)
: __hash_code_base(__ex, __h1, __h2, __hash), _EqualEBO(__eq)
{ }
bool
_M_equals(const _Key& __k, __hash_code __c, __node_type* __n) const
{
return _EqualHelper::_S_equals(_M_eq(), this->_M_extract(),
__k, __c, __n);
}
void
_M_swap(_Hashtable_base& __x)
{
__hash_code_base::_M_swap(__x);
std::swap(_M_eq(), __x._M_eq());
}
const _Equal&
_M_eq() const { return _EqualEBO::_S_cget(*this); }
_Equal&
_M_eq() { return _EqualEBO::_S_get(*this); }
};
/**
* struct _Equality_base.
*
* Common types and functions for class _Equality.
*/
struct _Equality_base
{
protected:
template<typename _Uiterator>
static bool
_S_is_permutation(_Uiterator, _Uiterator, _Uiterator);
};
// See std::is_permutation in N3068.
template<typename _Uiterator>
bool
_Equality_base::
_S_is_permutation(_Uiterator __first1, _Uiterator __last1,
_Uiterator __first2)
{
for (; __first1 != __last1; ++__first1, ++__first2)
if (!(*__first1 == *__first2))
break;
if (__first1 == __last1)
return true;
_Uiterator __last2 = __first2;
std::advance(__last2, std::distance(__first1, __last1));
for (_Uiterator __it1 = __first1; __it1 != __last1; ++__it1)
{
_Uiterator __tmp = __first1;
while (__tmp != __it1 && !bool(*__tmp == *__it1))
++__tmp;
// We've seen this one before.
if (__tmp != __it1)
continue;
std::ptrdiff_t __n2 = 0;
for (__tmp = __first2; __tmp != __last2; ++__tmp)
if (*__tmp == *__it1)
++__n2;
if (!__n2)
return false;
std::ptrdiff_t __n1 = 0;
for (__tmp = __it1; __tmp != __last1; ++__tmp)
if (*__tmp == *__it1)
++__n1;
if (__n1 != __n2)
return false;
}
return true;
}
/**
* Primary class template _Equality.
*
* This is for implementing equality comparison for unordered
* containers, per N3068, by John Lakos and Pablo Halpern.
* Algorithmically, we follow closely the reference implementations
* therein.
*/
template<typename _Key, typename _Value, typename _Alloc,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash,
typename _RehashPolicy, typename _Traits,
bool _Unique_keys = _Traits::__unique_keys::value>
struct _Equality;
/// Specialization.
template<typename _Key, typename _Value, typename _Alloc,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash,
typename _RehashPolicy, typename _Traits>
struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, _Traits, true>
{
using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, _Traits>;
bool
_M_equal(const __hashtable&) const;
};
template<typename _Key, typename _Value, typename _Alloc,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash,
typename _RehashPolicy, typename _Traits>
bool
_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
_M_equal(const __hashtable& __other) const
{
const __hashtable* __this = static_cast<const __hashtable*>(this);
if (__this->size() != __other.size())
return false;
for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx)
{
const auto __ity = __other.find(_ExtractKey()(*__itx));
if (__ity == __other.end() || !bool(*__ity == *__itx))
return false;
}
return true;
}
/// Specialization.
template<typename _Key, typename _Value, typename _Alloc,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash,
typename _RehashPolicy, typename _Traits>
struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, _Traits, false>
: public _Equality_base
{
using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, _Traits>;
bool
_M_equal(const __hashtable&) const;
};
template<typename _Key, typename _Value, typename _Alloc,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash,
typename _RehashPolicy, typename _Traits>
bool
_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, _Traits, false>::
_M_equal(const __hashtable& __other) const
{
const __hashtable* __this = static_cast<const __hashtable*>(this);
if (__this->size() != __other.size())
return false;
for (auto __itx = __this->begin(); __itx != __this->end();)
{
const auto __xrange = __this->equal_range(_ExtractKey()(*__itx));
const auto __yrange = __other.equal_range(_ExtractKey()(*__itx));
if (std::distance(__xrange.first, __xrange.second)
!= std::distance(__yrange.first, __yrange.second))
return false;
if (!_S_is_permutation(__xrange.first, __xrange.second,
__yrange.first))
return false;
__itx = __xrange.second;
}
return true;
}
/**
* This type deals with all allocation and keeps an allocator instance through
* inheritance to benefit from EBO when possible.
*/
template<typename _NodeAlloc>
struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc>
{
private:
using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>;
public:
using __node_type = typename _NodeAlloc::value_type;
using __node_alloc_type = _NodeAlloc;
// Use __gnu_cxx to benefit from _S_always_equal and al.
using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>;
using __value_type = typename __node_type::value_type;
using __value_alloc_type =
__alloc_rebind<__node_alloc_type, __value_type>;
using __value_alloc_traits = std::allocator_traits<__value_alloc_type>;
using __node_base = __detail::_Hash_node_base;
using __bucket_type = __node_base*;
using __bucket_alloc_type =
__alloc_rebind<__node_alloc_type, __bucket_type>;
using __bucket_alloc_traits = std::allocator_traits<__bucket_alloc_type>;
_Hashtable_alloc() = default;
_Hashtable_alloc(const _Hashtable_alloc&) = default;
_Hashtable_alloc(_Hashtable_alloc&&) = default;
template<typename _Alloc>
_Hashtable_alloc(_Alloc&& __a)
: __ebo_node_alloc(std::forward<_Alloc>(__a))
{ }
__node_alloc_type&
_M_node_allocator()
{ return __ebo_node_alloc::_S_get(*this); }
const __node_alloc_type&
_M_node_allocator() const
{ return __ebo_node_alloc::_S_cget(*this); }
template<typename... _Args>
__node_type*
_M_allocate_node(_Args&&... __args);
void
_M_deallocate_node(__node_type* __n);
// Deallocate the linked list of nodes pointed to by __n
void
_M_deallocate_nodes(__node_type* __n);
__bucket_type*
_M_allocate_buckets(std::size_t __n);
void
_M_deallocate_buckets(__bucket_type*, std::size_t __n);
};
// Definitions of class template _Hashtable_alloc's out-of-line member
// functions.
template<typename _NodeAlloc>
template<typename... _Args>
typename _Hashtable_alloc<_NodeAlloc>::__node_type*
_Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args)
{
auto __nptr = __node_alloc_traits::allocate(_M_node_allocator(), 1);
__node_type* __n = std::__addressof(*__nptr);
__try
{
__value_alloc_type __a(_M_node_allocator());
::new ((void*)__n) __node_type;
__value_alloc_traits::construct(__a, __n->_M_valptr(),
std::forward<_Args>(__args)...);
return __n;
}
__catch(...)
{
__node_alloc_traits::deallocate(_M_node_allocator(), __nptr, 1);
__throw_exception_again;
}
}
template<typename _NodeAlloc>
void
_Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_type* __n)
{
typedef typename __node_alloc_traits::pointer _Ptr;
auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n);
__value_alloc_type __a(_M_node_allocator());
__value_alloc_traits::destroy(__a, __n->_M_valptr());
__n->~__node_type();
__node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1);
}
template<typename _NodeAlloc>
void
_Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_type* __n)
{
while (__n)
{
__node_type* __tmp = __n;
__n = __n->_M_next();
_M_deallocate_node(__tmp);
}
}
template<typename _NodeAlloc>
typename _Hashtable_alloc<_NodeAlloc>::__bucket_type*
_Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(std::size_t __n)
{
__bucket_alloc_type __alloc(_M_node_allocator());
auto __ptr = __bucket_alloc_traits::allocate(__alloc, __n);
__bucket_type* __p = std::__addressof(*__ptr);
__builtin_memset(__p, 0, __n * sizeof(__bucket_type));
return __p;
}
template<typename _NodeAlloc>
void
_Hashtable_alloc<_NodeAlloc>::_M_deallocate_buckets(__bucket_type* __bkts,
std::size_t __n)
{
typedef typename __bucket_alloc_traits::pointer _Ptr;
auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts);
__bucket_alloc_type __alloc(_M_node_allocator());
__bucket_alloc_traits::deallocate(__alloc, __ptr, __n);
}
//@} hashtable-detail
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace __detail
} // namespace std
#endif // _HASHTABLE_POLICY_H
|