1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
|
// TR1 cmath -*- C++ -*-
// Copyright (C) 2006-2015 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/cmath
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_CMATH
#define _GLIBCXX_TR1_CMATH 1
#pragma GCC system_header
#include <cmath>
#ifdef _GLIBCXX_USE_C99_MATH_TR1
#undef acosh
#undef acoshf
#undef acoshl
#undef asinh
#undef asinhf
#undef asinhl
#undef atanh
#undef atanhf
#undef atanhl
#undef cbrt
#undef cbrtf
#undef cbrtl
#undef copysign
#undef copysignf
#undef copysignl
#undef erf
#undef erff
#undef erfl
#undef erfc
#undef erfcf
#undef erfcl
#undef exp2
#undef exp2f
#undef exp2l
#undef expm1
#undef expm1f
#undef expm1l
#undef fdim
#undef fdimf
#undef fdiml
#undef fma
#undef fmaf
#undef fmal
#undef fmax
#undef fmaxf
#undef fmaxl
#undef fmin
#undef fminf
#undef fminl
#undef hypot
#undef hypotf
#undef hypotl
#undef ilogb
#undef ilogbf
#undef ilogbl
#undef lgamma
#undef lgammaf
#undef lgammal
#undef llrint
#undef llrintf
#undef llrintl
#undef llround
#undef llroundf
#undef llroundl
#undef log1p
#undef log1pf
#undef log1pl
#undef log2
#undef log2f
#undef log2l
#undef logb
#undef logbf
#undef logbl
#undef lrint
#undef lrintf
#undef lrintl
#undef lround
#undef lroundf
#undef lroundl
#undef nan
#undef nanf
#undef nanl
#undef nearbyint
#undef nearbyintf
#undef nearbyintl
#undef nextafter
#undef nextafterf
#undef nextafterl
#undef nexttoward
#undef nexttowardf
#undef nexttowardl
#undef remainder
#undef remainderf
#undef remainderl
#undef remquo
#undef remquof
#undef remquol
#undef rint
#undef rintf
#undef rintl
#undef round
#undef roundf
#undef roundl
#undef scalbln
#undef scalblnf
#undef scalblnl
#undef scalbn
#undef scalbnf
#undef scalbnl
#undef tgamma
#undef tgammaf
#undef tgammal
#undef trunc
#undef truncf
#undef truncl
#endif
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
#if _GLIBCXX_USE_C99_MATH_TR1
// types
using ::double_t;
using ::float_t;
// functions
using ::acosh;
using ::acoshf;
using ::acoshl;
using ::asinh;
using ::asinhf;
using ::asinhl;
using ::atanh;
using ::atanhf;
using ::atanhl;
using ::cbrt;
using ::cbrtf;
using ::cbrtl;
using ::copysign;
using ::copysignf;
using ::copysignl;
using ::erf;
using ::erff;
using ::erfl;
using ::erfc;
using ::erfcf;
using ::erfcl;
using ::exp2;
using ::exp2f;
using ::exp2l;
using ::expm1;
using ::expm1f;
using ::expm1l;
using ::fdim;
using ::fdimf;
using ::fdiml;
using ::fma;
using ::fmaf;
using ::fmal;
using ::fmax;
using ::fmaxf;
using ::fmaxl;
using ::fmin;
using ::fminf;
using ::fminl;
using ::hypot;
using ::hypotf;
using ::hypotl;
using ::ilogb;
using ::ilogbf;
using ::ilogbl;
using ::lgamma;
using ::lgammaf;
using ::lgammal;
using ::llrint;
using ::llrintf;
using ::llrintl;
using ::llround;
using ::llroundf;
using ::llroundl;
using ::log1p;
using ::log1pf;
using ::log1pl;
using ::log2;
using ::log2f;
using ::log2l;
using ::logb;
using ::logbf;
using ::logbl;
using ::lrint;
using ::lrintf;
using ::lrintl;
using ::lround;
using ::lroundf;
using ::lroundl;
using ::nan;
using ::nanf;
using ::nanl;
using ::nearbyint;
using ::nearbyintf;
using ::nearbyintl;
using ::nextafter;
using ::nextafterf;
using ::nextafterl;
using ::nexttoward;
using ::nexttowardf;
using ::nexttowardl;
using ::remainder;
using ::remainderf;
using ::remainderl;
using ::remquo;
using ::remquof;
using ::remquol;
using ::rint;
using ::rintf;
using ::rintl;
using ::round;
using ::roundf;
using ::roundl;
using ::scalbln;
using ::scalblnf;
using ::scalblnl;
using ::scalbn;
using ::scalbnf;
using ::scalbnl;
using ::tgamma;
using ::tgammaf;
using ::tgammal;
using ::trunc;
using ::truncf;
using ::truncl;
#endif
#if _GLIBCXX_USE_C99_MATH
#if !_GLIBCXX_USE_C99_FP_MACROS_DYNAMIC
/// Function template definitions [8.16.3].
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
fpclassify(_Tp __f)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_fpclassify(FP_NAN, FP_INFINITE, FP_NORMAL,
FP_SUBNORMAL, FP_ZERO, __type(__f));
}
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
isfinite(_Tp __f)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_isfinite(__type(__f));
}
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
isinf(_Tp __f)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_isinf(__type(__f));
}
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
isnan(_Tp __f)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_isnan(__type(__f));
}
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
isnormal(_Tp __f)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_isnormal(__type(__f));
}
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
signbit(_Tp __f)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_signbit(__type(__f));
}
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
isgreater(_Tp __f1, _Tp __f2)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_isgreater(__type(__f1), __type(__f2));
}
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
isgreaterequal(_Tp __f1, _Tp __f2)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_isgreaterequal(__type(__f1), __type(__f2));
}
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
isless(_Tp __f1, _Tp __f2)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_isless(__type(__f1), __type(__f2));
}
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
islessequal(_Tp __f1, _Tp __f2)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_islessequal(__type(__f1), __type(__f2));
}
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
islessgreater(_Tp __f1, _Tp __f2)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_islessgreater(__type(__f1), __type(__f2));
}
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
isunordered(_Tp __f1, _Tp __f2)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_isunordered(__type(__f1), __type(__f2));
}
#endif
#endif
#if _GLIBCXX_USE_C99_MATH_TR1
/// Additional overloads [8.16.4].
using std::acos;
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
acosh(float __x)
{ return __builtin_acoshf(__x); }
inline long double
acosh(long double __x)
{ return __builtin_acoshl(__x); }
#endif
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
acosh(_Tp __x)
{ return __builtin_acosh(__x); }
using std::asin;
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
asinh(float __x)
{ return __builtin_asinhf(__x); }
inline long double
asinh(long double __x)
{ return __builtin_asinhl(__x); }
#endif
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
asinh(_Tp __x)
{ return __builtin_asinh(__x); }
using std::atan;
using std::atan2;
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
atanh(float __x)
{ return __builtin_atanhf(__x); }
inline long double
atanh(long double __x)
{ return __builtin_atanhl(__x); }
#endif
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
atanh(_Tp __x)
{ return __builtin_atanh(__x); }
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
cbrt(float __x)
{ return __builtin_cbrtf(__x); }
inline long double
cbrt(long double __x)
{ return __builtin_cbrtl(__x); }
#endif
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
cbrt(_Tp __x)
{ return __builtin_cbrt(__x); }
using std::ceil;
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
copysign(float __x, float __y)
{ return __builtin_copysignf(__x, __y); }
inline long double
copysign(long double __x, long double __y)
{ return __builtin_copysignl(__x, __y); }
#endif
template<typename _Tp, typename _Up>
inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
copysign(_Tp __x, _Up __y)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return copysign(__type(__x), __type(__y));
}
using std::cos;
using std::cosh;
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
erf(float __x)
{ return __builtin_erff(__x); }
inline long double
erf(long double __x)
{ return __builtin_erfl(__x); }
#endif
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
erf(_Tp __x)
{ return __builtin_erf(__x); }
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
erfc(float __x)
{ return __builtin_erfcf(__x); }
inline long double
erfc(long double __x)
{ return __builtin_erfcl(__x); }
#endif
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
erfc(_Tp __x)
{ return __builtin_erfc(__x); }
using std::exp;
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
exp2(float __x)
{ return __builtin_exp2f(__x); }
inline long double
exp2(long double __x)
{ return __builtin_exp2l(__x); }
#endif
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
exp2(_Tp __x)
{ return __builtin_exp2(__x); }
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
expm1(float __x)
{ return __builtin_expm1f(__x); }
inline long double
expm1(long double __x)
{ return __builtin_expm1l(__x); }
#endif
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
expm1(_Tp __x)
{ return __builtin_expm1(__x); }
// Note: we deal with fabs in a special way, because an using std::fabs
// would bring in also the overloads for complex types, which in C++0x
// mode have a different return type.
// With __CORRECT_ISO_CPP_MATH_H_PROTO, math.h imports std::fabs in the
// global namespace after the declarations of the float / double / long
// double overloads but before the std::complex overloads.
using ::fabs;
#ifndef __CORRECT_ISO_CPP_MATH_H_PROTO
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
fabs(float __x)
{ return __builtin_fabsf(__x); }
inline long double
fabs(long double __x)
{ return __builtin_fabsl(__x); }
#endif
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
fabs(_Tp __x)
{ return __builtin_fabs(__x); }
#endif
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
fdim(float __x, float __y)
{ return __builtin_fdimf(__x, __y); }
inline long double
fdim(long double __x, long double __y)
{ return __builtin_fdiml(__x, __y); }
#endif
template<typename _Tp, typename _Up>
inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
fdim(_Tp __x, _Up __y)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return fdim(__type(__x), __type(__y));
}
using std::floor;
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
fma(float __x, float __y, float __z)
{ return __builtin_fmaf(__x, __y, __z); }
inline long double
fma(long double __x, long double __y, long double __z)
{ return __builtin_fmal(__x, __y, __z); }
#endif
template<typename _Tp, typename _Up, typename _Vp>
inline typename __gnu_cxx::__promote_3<_Tp, _Up, _Vp>::__type
fma(_Tp __x, _Up __y, _Vp __z)
{
typedef typename __gnu_cxx::__promote_3<_Tp, _Up, _Vp>::__type __type;
return fma(__type(__x), __type(__y), __type(__z));
}
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
fmax(float __x, float __y)
{ return __builtin_fmaxf(__x, __y); }
inline long double
fmax(long double __x, long double __y)
{ return __builtin_fmaxl(__x, __y); }
#endif
template<typename _Tp, typename _Up>
inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
fmax(_Tp __x, _Up __y)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return fmax(__type(__x), __type(__y));
}
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
fmin(float __x, float __y)
{ return __builtin_fminf(__x, __y); }
inline long double
fmin(long double __x, long double __y)
{ return __builtin_fminl(__x, __y); }
#endif
template<typename _Tp, typename _Up>
inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
fmin(_Tp __x, _Up __y)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return fmin(__type(__x), __type(__y));
}
using std::fmod;
using std::frexp;
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
hypot(float __x, float __y)
{ return __builtin_hypotf(__x, __y); }
inline long double
hypot(long double __x, long double __y)
{ return __builtin_hypotl(__x, __y); }
#endif
template<typename _Tp, typename _Up>
inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
hypot(_Tp __y, _Up __x)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return hypot(__type(__y), __type(__x));
}
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline int
ilogb(float __x)
{ return __builtin_ilogbf(__x); }
inline int
ilogb(long double __x)
{ return __builtin_ilogbl(__x); }
#endif
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
int>::__type
ilogb(_Tp __x)
{ return __builtin_ilogb(__x); }
using std::ldexp;
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
lgamma(float __x)
{ return __builtin_lgammaf(__x); }
inline long double
lgamma(long double __x)
{ return __builtin_lgammal(__x); }
#endif
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
lgamma(_Tp __x)
{ return __builtin_lgamma(__x); }
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline long long
llrint(float __x)
{ return __builtin_llrintf(__x); }
inline long long
llrint(long double __x)
{ return __builtin_llrintl(__x); }
#endif
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
long long>::__type
llrint(_Tp __x)
{ return __builtin_llrint(__x); }
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline long long
llround(float __x)
{ return __builtin_llroundf(__x); }
inline long long
llround(long double __x)
{ return __builtin_llroundl(__x); }
#endif
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
long long>::__type
llround(_Tp __x)
{ return __builtin_llround(__x); }
using std::log;
using std::log10;
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
log1p(float __x)
{ return __builtin_log1pf(__x); }
inline long double
log1p(long double __x)
{ return __builtin_log1pl(__x); }
#endif
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
log1p(_Tp __x)
{ return __builtin_log1p(__x); }
// DR 568.
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
log2(float __x)
{ return __builtin_log2f(__x); }
inline long double
log2(long double __x)
{ return __builtin_log2l(__x); }
#endif
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
log2(_Tp __x)
{ return __builtin_log2(__x); }
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
logb(float __x)
{ return __builtin_logbf(__x); }
inline long double
logb(long double __x)
{ return __builtin_logbl(__x); }
#endif
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
logb(_Tp __x)
{
return __builtin_logb(__x);
}
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline long
lrint(float __x)
{ return __builtin_lrintf(__x); }
inline long
lrint(long double __x)
{ return __builtin_lrintl(__x); }
#endif
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
long>::__type
lrint(_Tp __x)
{ return __builtin_lrint(__x); }
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline long
lround(float __x)
{ return __builtin_lroundf(__x); }
inline long
lround(long double __x)
{ return __builtin_lroundl(__x); }
#endif
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
long>::__type
lround(_Tp __x)
{ return __builtin_lround(__x); }
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
nearbyint(float __x)
{ return __builtin_nearbyintf(__x); }
inline long double
nearbyint(long double __x)
{ return __builtin_nearbyintl(__x); }
#endif
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
nearbyint(_Tp __x)
{ return __builtin_nearbyint(__x); }
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
nextafter(float __x, float __y)
{ return __builtin_nextafterf(__x, __y); }
inline long double
nextafter(long double __x, long double __y)
{ return __builtin_nextafterl(__x, __y); }
#endif
template<typename _Tp, typename _Up>
inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
nextafter(_Tp __x, _Up __y)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return nextafter(__type(__x), __type(__y));
}
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
nexttoward(float __x, long double __y)
{ return __builtin_nexttowardf(__x, __y); }
inline long double
nexttoward(long double __x, long double __y)
{ return __builtin_nexttowardl(__x, __y); }
#endif
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
nexttoward(_Tp __x, long double __y)
{ return __builtin_nexttoward(__x, __y); }
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
remainder(float __x, float __y)
{ return __builtin_remainderf(__x, __y); }
inline long double
remainder(long double __x, long double __y)
{ return __builtin_remainderl(__x, __y); }
#endif
template<typename _Tp, typename _Up>
inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
remainder(_Tp __x, _Up __y)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return remainder(__type(__x), __type(__y));
}
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
remquo(float __x, float __y, int* __pquo)
{ return __builtin_remquof(__x, __y, __pquo); }
inline long double
remquo(long double __x, long double __y, int* __pquo)
{ return __builtin_remquol(__x, __y, __pquo); }
#endif
template<typename _Tp, typename _Up>
inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
remquo(_Tp __x, _Up __y, int* __pquo)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return remquo(__type(__x), __type(__y), __pquo);
}
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
rint(float __x)
{ return __builtin_rintf(__x); }
inline long double
rint(long double __x)
{ return __builtin_rintl(__x); }
#endif
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
rint(_Tp __x)
{ return __builtin_rint(__x); }
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
round(float __x)
{ return __builtin_roundf(__x); }
inline long double
round(long double __x)
{ return __builtin_roundl(__x); }
#endif
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
round(_Tp __x)
{ return __builtin_round(__x); }
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
scalbln(float __x, long __ex)
{ return __builtin_scalblnf(__x, __ex); }
inline long double
scalbln(long double __x, long __ex)
{ return __builtin_scalblnl(__x, __ex); }
#endif
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
scalbln(_Tp __x, long __ex)
{ return __builtin_scalbln(__x, __ex); }
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
scalbn(float __x, int __ex)
{ return __builtin_scalbnf(__x, __ex); }
inline long double
scalbn(long double __x, int __ex)
{ return __builtin_scalbnl(__x, __ex); }
#endif
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
scalbn(_Tp __x, int __ex)
{ return __builtin_scalbn(__x, __ex); }
using std::sin;
using std::sinh;
using std::sqrt;
using std::tan;
using std::tanh;
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
tgamma(float __x)
{ return __builtin_tgammaf(__x); }
inline long double
tgamma(long double __x)
{ return __builtin_tgammal(__x); }
#endif
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
tgamma(_Tp __x)
{ return __builtin_tgamma(__x); }
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
trunc(float __x)
{ return __builtin_truncf(__x); }
inline long double
trunc(long double __x)
{ return __builtin_truncl(__x); }
#endif
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
trunc(_Tp __x)
{ return __builtin_trunc(__x); }
#endif
_GLIBCXX_END_NAMESPACE_VERSION
}
}
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
// DR 550. What should the return type of pow(float,int) be?
// NB: C++0x and TR1 != C++03.
// The std::tr1::pow(double, double) overload cannot be provided
// here, because it would clash with ::pow(double,double) declared
// in <math.h>, if <tr1/math.h> is included at the same time (raised
// by the fix of PR c++/54537). It is not possible either to use the
// using-declaration 'using ::pow;' here, because if the user code
// has a 'using std::pow;', it would bring the pow(*,int) averloads
// in the tr1 namespace, which is undesirable. Consequently, the
// solution is to forward std::tr1::pow(double,double) to
// std::pow(double,double) via the templatized version below. See
// the discussion about this issue here:
// http://gcc.gnu.org/ml/gcc-patches/2012-09/msg01278.html
#ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
inline float
pow(float __x, float __y)
{ return std::pow(__x, __y); }
inline long double
pow(long double __x, long double __y)
{ return std::pow(__x, __y); }
#endif
template<typename _Tp, typename _Up>
inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
pow(_Tp __x, _Up __y)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return std::pow(__type(__x), __type(__y));
}
_GLIBCXX_END_NAMESPACE_VERSION
}
}
#include <bits/stl_algobase.h>
#include <limits>
#include <tr1/type_traits>
#include <tr1/gamma.tcc>
#include <tr1/bessel_function.tcc>
#include <tr1/beta_function.tcc>
#include <tr1/ell_integral.tcc>
#include <tr1/exp_integral.tcc>
#include <tr1/hypergeometric.tcc>
#include <tr1/legendre_function.tcc>
#include <tr1/modified_bessel_func.tcc>
#include <tr1/poly_hermite.tcc>
#include <tr1/poly_laguerre.tcc>
#include <tr1/riemann_zeta.tcc>
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* @defgroup tr1_math_spec_func Mathematical Special Functions
* @ingroup numerics
*
* A collection of advanced mathematical special functions.
* @{
*/
inline float
assoc_laguerref(unsigned int __n, unsigned int __m, float __x)
{ return __detail::__assoc_laguerre<float>(__n, __m, __x); }
inline long double
assoc_laguerrel(unsigned int __n, unsigned int __m, long double __x)
{
return __detail::__assoc_laguerre<long double>(__n, __m, __x);
}
/// 5.2.1.1 Associated Laguerre polynomials.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__assoc_laguerre<__type>(__n, __m, __x);
}
inline float
assoc_legendref(unsigned int __l, unsigned int __m, float __x)
{ return __detail::__assoc_legendre_p<float>(__l, __m, __x); }
inline long double
assoc_legendrel(unsigned int __l, unsigned int __m, long double __x)
{ return __detail::__assoc_legendre_p<long double>(__l, __m, __x); }
/// 5.2.1.2 Associated Legendre functions.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
assoc_legendre(unsigned int __l, unsigned int __m, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__assoc_legendre_p<__type>(__l, __m, __x);
}
inline float
betaf(float __x, float __y)
{ return __detail::__beta<float>(__x, __y); }
inline long double
betal(long double __x, long double __y)
{ return __detail::__beta<long double>(__x, __y); }
/// 5.2.1.3 Beta functions.
template<typename _Tpx, typename _Tpy>
inline typename __gnu_cxx::__promote_2<_Tpx, _Tpy>::__type
beta(_Tpx __x, _Tpy __y)
{
typedef typename __gnu_cxx::__promote_2<_Tpx, _Tpy>::__type __type;
return __detail::__beta<__type>(__x, __y);
}
inline float
comp_ellint_1f(float __k)
{ return __detail::__comp_ellint_1<float>(__k); }
inline long double
comp_ellint_1l(long double __k)
{ return __detail::__comp_ellint_1<long double>(__k); }
/// 5.2.1.4 Complete elliptic integrals of the first kind.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
comp_ellint_1(_Tp __k)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__comp_ellint_1<__type>(__k);
}
inline float
comp_ellint_2f(float __k)
{ return __detail::__comp_ellint_2<float>(__k); }
inline long double
comp_ellint_2l(long double __k)
{ return __detail::__comp_ellint_2<long double>(__k); }
/// 5.2.1.5 Complete elliptic integrals of the second kind.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
comp_ellint_2(_Tp __k)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__comp_ellint_2<__type>(__k);
}
inline float
comp_ellint_3f(float __k, float __nu)
{ return __detail::__comp_ellint_3<float>(__k, __nu); }
inline long double
comp_ellint_3l(long double __k, long double __nu)
{ return __detail::__comp_ellint_3<long double>(__k, __nu); }
/// 5.2.1.6 Complete elliptic integrals of the third kind.
template<typename _Tp, typename _Tpn>
inline typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type
comp_ellint_3(_Tp __k, _Tpn __nu)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type __type;
return __detail::__comp_ellint_3<__type>(__k, __nu);
}
inline float
conf_hypergf(float __a, float __c, float __x)
{ return __detail::__conf_hyperg<float>(__a, __c, __x); }
inline long double
conf_hypergl(long double __a, long double __c, long double __x)
{ return __detail::__conf_hyperg<long double>(__a, __c, __x); }
/// 5.2.1.7 Confluent hypergeometric functions.
template<typename _Tpa, typename _Tpc, typename _Tp>
inline typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type
conf_hyperg(_Tpa __a, _Tpc __c, _Tp __x)
{
typedef typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type __type;
return __detail::__conf_hyperg<__type>(__a, __c, __x);
}
inline float
cyl_bessel_if(float __nu, float __x)
{ return __detail::__cyl_bessel_i<float>(__nu, __x); }
inline long double
cyl_bessel_il(long double __nu, long double __x)
{ return __detail::__cyl_bessel_i<long double>(__nu, __x); }
/// 5.2.1.8 Regular modified cylindrical Bessel functions.
template<typename _Tpnu, typename _Tp>
inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
cyl_bessel_i(_Tpnu __nu, _Tp __x)
{
typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
return __detail::__cyl_bessel_i<__type>(__nu, __x);
}
inline float
cyl_bessel_jf(float __nu, float __x)
{ return __detail::__cyl_bessel_j<float>(__nu, __x); }
inline long double
cyl_bessel_jl(long double __nu, long double __x)
{ return __detail::__cyl_bessel_j<long double>(__nu, __x); }
/// 5.2.1.9 Cylindrical Bessel functions (of the first kind).
template<typename _Tpnu, typename _Tp>
inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
cyl_bessel_j(_Tpnu __nu, _Tp __x)
{
typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
return __detail::__cyl_bessel_j<__type>(__nu, __x);
}
inline float
cyl_bessel_kf(float __nu, float __x)
{ return __detail::__cyl_bessel_k<float>(__nu, __x); }
inline long double
cyl_bessel_kl(long double __nu, long double __x)
{ return __detail::__cyl_bessel_k<long double>(__nu, __x); }
/// 5.2.1.10 Irregular modified cylindrical Bessel functions.
template<typename _Tpnu, typename _Tp>
inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
cyl_bessel_k(_Tpnu __nu, _Tp __x)
{
typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
return __detail::__cyl_bessel_k<__type>(__nu, __x);
}
inline float
cyl_neumannf(float __nu, float __x)
{ return __detail::__cyl_neumann_n<float>(__nu, __x); }
inline long double
cyl_neumannl(long double __nu, long double __x)
{ return __detail::__cyl_neumann_n<long double>(__nu, __x); }
/// 5.2.1.11 Cylindrical Neumann functions.
template<typename _Tpnu, typename _Tp>
inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
cyl_neumann(_Tpnu __nu, _Tp __x)
{
typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
return __detail::__cyl_neumann_n<__type>(__nu, __x);
}
inline float
ellint_1f(float __k, float __phi)
{ return __detail::__ellint_1<float>(__k, __phi); }
inline long double
ellint_1l(long double __k, long double __phi)
{ return __detail::__ellint_1<long double>(__k, __phi); }
/// 5.2.1.12 Incomplete elliptic integrals of the first kind.
template<typename _Tp, typename _Tpp>
inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type
ellint_1(_Tp __k, _Tpp __phi)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type;
return __detail::__ellint_1<__type>(__k, __phi);
}
inline float
ellint_2f(float __k, float __phi)
{ return __detail::__ellint_2<float>(__k, __phi); }
inline long double
ellint_2l(long double __k, long double __phi)
{ return __detail::__ellint_2<long double>(__k, __phi); }
/// 5.2.1.13 Incomplete elliptic integrals of the second kind.
template<typename _Tp, typename _Tpp>
inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type
ellint_2(_Tp __k, _Tpp __phi)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type;
return __detail::__ellint_2<__type>(__k, __phi);
}
inline float
ellint_3f(float __k, float __nu, float __phi)
{ return __detail::__ellint_3<float>(__k, __nu, __phi); }
inline long double
ellint_3l(long double __k, long double __nu, long double __phi)
{ return __detail::__ellint_3<long double>(__k, __nu, __phi); }
/// 5.2.1.14 Incomplete elliptic integrals of the third kind.
template<typename _Tp, typename _Tpn, typename _Tpp>
inline typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type
ellint_3(_Tp __k, _Tpn __nu, _Tpp __phi)
{
typedef typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type __type;
return __detail::__ellint_3<__type>(__k, __nu, __phi);
}
inline float
expintf(float __x)
{ return __detail::__expint<float>(__x); }
inline long double
expintl(long double __x)
{ return __detail::__expint<long double>(__x); }
/// 5.2.1.15 Exponential integrals.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
expint(_Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__expint<__type>(__x);
}
inline float
hermitef(unsigned int __n, float __x)
{ return __detail::__poly_hermite<float>(__n, __x); }
inline long double
hermitel(unsigned int __n, long double __x)
{ return __detail::__poly_hermite<long double>(__n, __x); }
/// 5.2.1.16 Hermite polynomials.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
hermite(unsigned int __n, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__poly_hermite<__type>(__n, __x);
}
inline float
hypergf(float __a, float __b, float __c, float __x)
{ return __detail::__hyperg<float>(__a, __b, __c, __x); }
inline long double
hypergl(long double __a, long double __b, long double __c, long double __x)
{ return __detail::__hyperg<long double>(__a, __b, __c, __x); }
/// 5.2.1.17 Hypergeometric functions.
template<typename _Tpa, typename _Tpb, typename _Tpc, typename _Tp>
inline typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp>::__type
hyperg(_Tpa __a, _Tpb __b, _Tpc __c, _Tp __x)
{
typedef typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp>::__type __type;
return __detail::__hyperg<__type>(__a, __b, __c, __x);
}
inline float
laguerref(unsigned int __n, float __x)
{ return __detail::__laguerre<float>(__n, __x); }
inline long double
laguerrel(unsigned int __n, long double __x)
{ return __detail::__laguerre<long double>(__n, __x); }
/// 5.2.1.18 Laguerre polynomials.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
laguerre(unsigned int __n, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__laguerre<__type>(__n, __x);
}
inline float
legendref(unsigned int __n, float __x)
{ return __detail::__poly_legendre_p<float>(__n, __x); }
inline long double
legendrel(unsigned int __n, long double __x)
{ return __detail::__poly_legendre_p<long double>(__n, __x); }
/// 5.2.1.19 Legendre polynomials.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
legendre(unsigned int __n, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__poly_legendre_p<__type>(__n, __x);
}
inline float
riemann_zetaf(float __x)
{ return __detail::__riemann_zeta<float>(__x); }
inline long double
riemann_zetal(long double __x)
{ return __detail::__riemann_zeta<long double>(__x); }
/// 5.2.1.20 Riemann zeta function.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
riemann_zeta(_Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__riemann_zeta<__type>(__x);
}
inline float
sph_besself(unsigned int __n, float __x)
{ return __detail::__sph_bessel<float>(__n, __x); }
inline long double
sph_bessell(unsigned int __n, long double __x)
{ return __detail::__sph_bessel<long double>(__n, __x); }
/// 5.2.1.21 Spherical Bessel functions.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
sph_bessel(unsigned int __n, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__sph_bessel<__type>(__n, __x);
}
inline float
sph_legendref(unsigned int __l, unsigned int __m, float __theta)
{ return __detail::__sph_legendre<float>(__l, __m, __theta); }
inline long double
sph_legendrel(unsigned int __l, unsigned int __m, long double __theta)
{ return __detail::__sph_legendre<long double>(__l, __m, __theta); }
/// 5.2.1.22 Spherical associated Legendre functions.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__sph_legendre<__type>(__l, __m, __theta);
}
inline float
sph_neumannf(unsigned int __n, float __x)
{ return __detail::__sph_neumann<float>(__n, __x); }
inline long double
sph_neumannl(unsigned int __n, long double __x)
{ return __detail::__sph_neumann<long double>(__n, __x); }
/// 5.2.1.23 Spherical Neumann functions.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
sph_neumann(unsigned int __n, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__sph_neumann<__type>(__n, __x);
}
/* @} */ // tr1_math_spec_func
_GLIBCXX_END_NAMESPACE_VERSION
}
}
#endif // _GLIBCXX_TR1_CMATH
|