1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
|
// TR1 functional header -*- C++ -*-
// Copyright (C) 2004-2015 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/functional
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_FUNCTIONAL
#define _GLIBCXX_TR1_FUNCTIONAL 1
#pragma GCC system_header
#include <bits/c++config.h>
#include <bits/stl_function.h>
#include <typeinfo>
#include <new>
#include <tr1/tuple>
#include <tr1/type_traits>
#include <bits/stringfwd.h>
#include <tr1/functional_hash.h>
#include <ext/type_traits.h>
#include <bits/move.h> // for std::__addressof
#if __cplusplus >= 201103L
# include <type_traits> // for integral_constant, true_type, false_type
#endif
namespace std _GLIBCXX_VISIBILITY(default)
{
#if __cplusplus >= 201103L
_GLIBCXX_BEGIN_NAMESPACE_VERSION
template<int> struct _Placeholder;
template<typename> class _Bind;
template<typename, typename> class _Bind_result;
_GLIBCXX_END_NAMESPACE_VERSION
#endif
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
template<typename _MemberPointer>
class _Mem_fn;
template<typename _Tp, typename _Class>
_Mem_fn<_Tp _Class::*>
mem_fn(_Tp _Class::*);
/**
* Actual implementation of _Has_result_type, which uses SFINAE to
* determine if the type _Tp has a publicly-accessible member type
* result_type.
*/
template<typename _Tp>
class _Has_result_type_helper : __sfinae_types
{
template<typename _Up>
struct _Wrap_type
{ };
template<typename _Up>
static __one __test(_Wrap_type<typename _Up::result_type>*);
template<typename _Up>
static __two __test(...);
public:
static const bool value = sizeof(__test<_Tp>(0)) == 1;
};
template<typename _Tp>
struct _Has_result_type
: integral_constant<bool,
_Has_result_type_helper<typename remove_cv<_Tp>::type>::value>
{ };
/**
*
*/
/// If we have found a result_type, extract it.
template<bool _Has_result_type, typename _Functor>
struct _Maybe_get_result_type
{ };
template<typename _Functor>
struct _Maybe_get_result_type<true, _Functor>
{
typedef typename _Functor::result_type result_type;
};
/**
* Base class for any function object that has a weak result type, as
* defined in 3.3/3 of TR1.
*/
template<typename _Functor>
struct _Weak_result_type_impl
: _Maybe_get_result_type<_Has_result_type<_Functor>::value, _Functor>
{
};
/// Retrieve the result type for a function type.
template<typename _Res, typename... _ArgTypes>
struct _Weak_result_type_impl<_Res(_ArgTypes...)>
{
typedef _Res result_type;
};
/// Retrieve the result type for a function reference.
template<typename _Res, typename... _ArgTypes>
struct _Weak_result_type_impl<_Res(&)(_ArgTypes...)>
{
typedef _Res result_type;
};
/// Retrieve the result type for a function pointer.
template<typename _Res, typename... _ArgTypes>
struct _Weak_result_type_impl<_Res(*)(_ArgTypes...)>
{
typedef _Res result_type;
};
/// Retrieve result type for a member function pointer.
template<typename _Res, typename _Class, typename... _ArgTypes>
struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...)>
{
typedef _Res result_type;
};
/// Retrieve result type for a const member function pointer.
template<typename _Res, typename _Class, typename... _ArgTypes>
struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...) const>
{
typedef _Res result_type;
};
/// Retrieve result type for a volatile member function pointer.
template<typename _Res, typename _Class, typename... _ArgTypes>
struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...) volatile>
{
typedef _Res result_type;
};
/// Retrieve result type for a const volatile member function pointer.
template<typename _Res, typename _Class, typename... _ArgTypes>
struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...)const volatile>
{
typedef _Res result_type;
};
/**
* Strip top-level cv-qualifiers from the function object and let
* _Weak_result_type_impl perform the real work.
*/
template<typename _Functor>
struct _Weak_result_type
: _Weak_result_type_impl<typename remove_cv<_Functor>::type>
{
};
template<typename _Signature>
class result_of;
/**
* Actual implementation of result_of. When _Has_result_type is
* true, gets its result from _Weak_result_type. Otherwise, uses
* the function object's member template result to extract the
* result type.
*/
template<bool _Has_result_type, typename _Signature>
struct _Result_of_impl;
// Handle member data pointers using _Mem_fn's logic
template<typename _Res, typename _Class, typename _T1>
struct _Result_of_impl<false, _Res _Class::*(_T1)>
{
typedef typename _Mem_fn<_Res _Class::*>
::template _Result_type<_T1>::type type;
};
/**
* Determine whether we can determine a result type from @c Functor
* alone.
*/
template<typename _Functor, typename... _ArgTypes>
class result_of<_Functor(_ArgTypes...)>
: public _Result_of_impl<
_Has_result_type<_Weak_result_type<_Functor> >::value,
_Functor(_ArgTypes...)>
{
};
/// We already know the result type for @c Functor; use it.
template<typename _Functor, typename... _ArgTypes>
struct _Result_of_impl<true, _Functor(_ArgTypes...)>
{
typedef typename _Weak_result_type<_Functor>::result_type type;
};
/**
* We need to compute the result type for this invocation the hard
* way.
*/
template<typename _Functor, typename... _ArgTypes>
struct _Result_of_impl<false, _Functor(_ArgTypes...)>
{
typedef typename _Functor
::template result<_Functor(_ArgTypes...)>::type type;
};
/**
* It is unsafe to access ::result when there are zero arguments, so we
* return @c void instead.
*/
template<typename _Functor>
struct _Result_of_impl<false, _Functor()>
{
typedef void type;
};
/// Determines if the type _Tp derives from unary_function.
template<typename _Tp>
struct _Derives_from_unary_function : __sfinae_types
{
private:
template<typename _T1, typename _Res>
static __one __test(const volatile unary_function<_T1, _Res>*);
// It's tempting to change "..." to const volatile void*, but
// that fails when _Tp is a function type.
static __two __test(...);
public:
static const bool value = sizeof(__test((_Tp*)0)) == 1;
};
/// Determines if the type _Tp derives from binary_function.
template<typename _Tp>
struct _Derives_from_binary_function : __sfinae_types
{
private:
template<typename _T1, typename _T2, typename _Res>
static __one __test(const volatile binary_function<_T1, _T2, _Res>*);
// It's tempting to change "..." to const volatile void*, but
// that fails when _Tp is a function type.
static __two __test(...);
public:
static const bool value = sizeof(__test((_Tp*)0)) == 1;
};
/// Turns a function type into a function pointer type
template<typename _Tp, bool _IsFunctionType = is_function<_Tp>::value>
struct _Function_to_function_pointer
{
typedef _Tp type;
};
template<typename _Tp>
struct _Function_to_function_pointer<_Tp, true>
{
typedef _Tp* type;
};
/**
* Invoke a function object, which may be either a member pointer or a
* function object. The first parameter will tell which.
*/
template<typename _Functor, typename... _Args>
inline
typename __gnu_cxx::__enable_if<
(!is_member_pointer<_Functor>::value
&& !is_function<_Functor>::value
&& !is_function<typename remove_pointer<_Functor>::type>::value),
typename result_of<_Functor(_Args...)>::type
>::__type
__invoke(_Functor& __f, _Args&... __args)
{
return __f(__args...);
}
template<typename _Functor, typename... _Args>
inline
typename __gnu_cxx::__enable_if<
(is_member_pointer<_Functor>::value
&& !is_function<_Functor>::value
&& !is_function<typename remove_pointer<_Functor>::type>::value),
typename result_of<_Functor(_Args...)>::type
>::__type
__invoke(_Functor& __f, _Args&... __args)
{
return mem_fn(__f)(__args...);
}
// To pick up function references (that will become function pointers)
template<typename _Functor, typename... _Args>
inline
typename __gnu_cxx::__enable_if<
(is_pointer<_Functor>::value
&& is_function<typename remove_pointer<_Functor>::type>::value),
typename result_of<_Functor(_Args...)>::type
>::__type
__invoke(_Functor __f, _Args&... __args)
{
return __f(__args...);
}
/**
* Knowing which of unary_function and binary_function _Tp derives
* from, derives from the same and ensures that reference_wrapper
* will have a weak result type. See cases below.
*/
template<bool _Unary, bool _Binary, typename _Tp>
struct _Reference_wrapper_base_impl;
// Not a unary_function or binary_function, so try a weak result type.
template<typename _Tp>
struct _Reference_wrapper_base_impl<false, false, _Tp>
: _Weak_result_type<_Tp>
{ };
// unary_function but not binary_function
template<typename _Tp>
struct _Reference_wrapper_base_impl<true, false, _Tp>
: unary_function<typename _Tp::argument_type,
typename _Tp::result_type>
{ };
// binary_function but not unary_function
template<typename _Tp>
struct _Reference_wrapper_base_impl<false, true, _Tp>
: binary_function<typename _Tp::first_argument_type,
typename _Tp::second_argument_type,
typename _Tp::result_type>
{ };
// Both unary_function and binary_function. Import result_type to
// avoid conflicts.
template<typename _Tp>
struct _Reference_wrapper_base_impl<true, true, _Tp>
: unary_function<typename _Tp::argument_type,
typename _Tp::result_type>,
binary_function<typename _Tp::first_argument_type,
typename _Tp::second_argument_type,
typename _Tp::result_type>
{
typedef typename _Tp::result_type result_type;
};
/**
* Derives from unary_function or binary_function when it
* can. Specializations handle all of the easy cases. The primary
* template determines what to do with a class type, which may
* derive from both unary_function and binary_function.
*/
template<typename _Tp>
struct _Reference_wrapper_base
: _Reference_wrapper_base_impl<
_Derives_from_unary_function<_Tp>::value,
_Derives_from_binary_function<_Tp>::value,
_Tp>
{ };
// - a function type (unary)
template<typename _Res, typename _T1>
struct _Reference_wrapper_base<_Res(_T1)>
: unary_function<_T1, _Res>
{ };
// - a function type (binary)
template<typename _Res, typename _T1, typename _T2>
struct _Reference_wrapper_base<_Res(_T1, _T2)>
: binary_function<_T1, _T2, _Res>
{ };
// - a function pointer type (unary)
template<typename _Res, typename _T1>
struct _Reference_wrapper_base<_Res(*)(_T1)>
: unary_function<_T1, _Res>
{ };
// - a function pointer type (binary)
template<typename _Res, typename _T1, typename _T2>
struct _Reference_wrapper_base<_Res(*)(_T1, _T2)>
: binary_function<_T1, _T2, _Res>
{ };
// - a pointer to member function type (unary, no qualifiers)
template<typename _Res, typename _T1>
struct _Reference_wrapper_base<_Res (_T1::*)()>
: unary_function<_T1*, _Res>
{ };
// - a pointer to member function type (binary, no qualifiers)
template<typename _Res, typename _T1, typename _T2>
struct _Reference_wrapper_base<_Res (_T1::*)(_T2)>
: binary_function<_T1*, _T2, _Res>
{ };
// - a pointer to member function type (unary, const)
template<typename _Res, typename _T1>
struct _Reference_wrapper_base<_Res (_T1::*)() const>
: unary_function<const _T1*, _Res>
{ };
// - a pointer to member function type (binary, const)
template<typename _Res, typename _T1, typename _T2>
struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const>
: binary_function<const _T1*, _T2, _Res>
{ };
// - a pointer to member function type (unary, volatile)
template<typename _Res, typename _T1>
struct _Reference_wrapper_base<_Res (_T1::*)() volatile>
: unary_function<volatile _T1*, _Res>
{ };
// - a pointer to member function type (binary, volatile)
template<typename _Res, typename _T1, typename _T2>
struct _Reference_wrapper_base<_Res (_T1::*)(_T2) volatile>
: binary_function<volatile _T1*, _T2, _Res>
{ };
// - a pointer to member function type (unary, const volatile)
template<typename _Res, typename _T1>
struct _Reference_wrapper_base<_Res (_T1::*)() const volatile>
: unary_function<const volatile _T1*, _Res>
{ };
// - a pointer to member function type (binary, const volatile)
template<typename _Res, typename _T1, typename _T2>
struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const volatile>
: binary_function<const volatile _T1*, _T2, _Res>
{ };
/// reference_wrapper
template<typename _Tp>
class reference_wrapper
: public _Reference_wrapper_base<typename remove_cv<_Tp>::type>
{
// If _Tp is a function type, we can't form result_of<_Tp(...)>,
// so turn it into a function pointer type.
typedef typename _Function_to_function_pointer<_Tp>::type
_M_func_type;
_Tp* _M_data;
public:
typedef _Tp type;
explicit
reference_wrapper(_Tp& __indata)
: _M_data(std::__addressof(__indata))
{ }
reference_wrapper(const reference_wrapper<_Tp>& __inref):
_M_data(__inref._M_data)
{ }
reference_wrapper&
operator=(const reference_wrapper<_Tp>& __inref)
{
_M_data = __inref._M_data;
return *this;
}
operator _Tp&() const
{ return this->get(); }
_Tp&
get() const
{ return *_M_data; }
template<typename... _Args>
typename result_of<_M_func_type(_Args...)>::type
operator()(_Args&... __args) const
{
return __invoke(get(), __args...);
}
};
// Denotes a reference should be taken to a variable.
template<typename _Tp>
inline reference_wrapper<_Tp>
ref(_Tp& __t)
{ return reference_wrapper<_Tp>(__t); }
// Denotes a const reference should be taken to a variable.
template<typename _Tp>
inline reference_wrapper<const _Tp>
cref(const _Tp& __t)
{ return reference_wrapper<const _Tp>(__t); }
template<typename _Tp>
inline reference_wrapper<_Tp>
ref(reference_wrapper<_Tp> __t)
{ return ref(__t.get()); }
template<typename _Tp>
inline reference_wrapper<const _Tp>
cref(reference_wrapper<_Tp> __t)
{ return cref(__t.get()); }
template<typename _Tp, bool>
struct _Mem_fn_const_or_non
{
typedef const _Tp& type;
};
template<typename _Tp>
struct _Mem_fn_const_or_non<_Tp, false>
{
typedef _Tp& type;
};
/**
* Derives from @c unary_function or @c binary_function, or perhaps
* nothing, depending on the number of arguments provided. The
* primary template is the basis case, which derives nothing.
*/
template<typename _Res, typename... _ArgTypes>
struct _Maybe_unary_or_binary_function { };
/// Derives from @c unary_function, as appropriate.
template<typename _Res, typename _T1>
struct _Maybe_unary_or_binary_function<_Res, _T1>
: std::unary_function<_T1, _Res> { };
/// Derives from @c binary_function, as appropriate.
template<typename _Res, typename _T1, typename _T2>
struct _Maybe_unary_or_binary_function<_Res, _T1, _T2>
: std::binary_function<_T1, _T2, _Res> { };
/// Implementation of @c mem_fn for member function pointers.
template<typename _Res, typename _Class, typename... _ArgTypes>
class _Mem_fn<_Res (_Class::*)(_ArgTypes...)>
: public _Maybe_unary_or_binary_function<_Res, _Class*, _ArgTypes...>
{
typedef _Res (_Class::*_Functor)(_ArgTypes...);
template<typename _Tp>
_Res
_M_call(_Tp& __object, const volatile _Class *,
_ArgTypes... __args) const
{ return (__object.*__pmf)(__args...); }
template<typename _Tp>
_Res
_M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
{ return ((*__ptr).*__pmf)(__args...); }
public:
typedef _Res result_type;
explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
// Handle objects
_Res
operator()(_Class& __object, _ArgTypes... __args) const
{ return (__object.*__pmf)(__args...); }
// Handle pointers
_Res
operator()(_Class* __object, _ArgTypes... __args) const
{ return (__object->*__pmf)(__args...); }
// Handle smart pointers, references and pointers to derived
template<typename _Tp>
_Res
operator()(_Tp& __object, _ArgTypes... __args) const
{ return _M_call(__object, &__object, __args...); }
private:
_Functor __pmf;
};
/// Implementation of @c mem_fn for const member function pointers.
template<typename _Res, typename _Class, typename... _ArgTypes>
class _Mem_fn<_Res (_Class::*)(_ArgTypes...) const>
: public _Maybe_unary_or_binary_function<_Res, const _Class*,
_ArgTypes...>
{
typedef _Res (_Class::*_Functor)(_ArgTypes...) const;
template<typename _Tp>
_Res
_M_call(_Tp& __object, const volatile _Class *,
_ArgTypes... __args) const
{ return (__object.*__pmf)(__args...); }
template<typename _Tp>
_Res
_M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
{ return ((*__ptr).*__pmf)(__args...); }
public:
typedef _Res result_type;
explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
// Handle objects
_Res
operator()(const _Class& __object, _ArgTypes... __args) const
{ return (__object.*__pmf)(__args...); }
// Handle pointers
_Res
operator()(const _Class* __object, _ArgTypes... __args) const
{ return (__object->*__pmf)(__args...); }
// Handle smart pointers, references and pointers to derived
template<typename _Tp>
_Res operator()(_Tp& __object, _ArgTypes... __args) const
{ return _M_call(__object, &__object, __args...); }
private:
_Functor __pmf;
};
/// Implementation of @c mem_fn for volatile member function pointers.
template<typename _Res, typename _Class, typename... _ArgTypes>
class _Mem_fn<_Res (_Class::*)(_ArgTypes...) volatile>
: public _Maybe_unary_or_binary_function<_Res, volatile _Class*,
_ArgTypes...>
{
typedef _Res (_Class::*_Functor)(_ArgTypes...) volatile;
template<typename _Tp>
_Res
_M_call(_Tp& __object, const volatile _Class *,
_ArgTypes... __args) const
{ return (__object.*__pmf)(__args...); }
template<typename _Tp>
_Res
_M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
{ return ((*__ptr).*__pmf)(__args...); }
public:
typedef _Res result_type;
explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
// Handle objects
_Res
operator()(volatile _Class& __object, _ArgTypes... __args) const
{ return (__object.*__pmf)(__args...); }
// Handle pointers
_Res
operator()(volatile _Class* __object, _ArgTypes... __args) const
{ return (__object->*__pmf)(__args...); }
// Handle smart pointers, references and pointers to derived
template<typename _Tp>
_Res
operator()(_Tp& __object, _ArgTypes... __args) const
{ return _M_call(__object, &__object, __args...); }
private:
_Functor __pmf;
};
/// Implementation of @c mem_fn for const volatile member function pointers.
template<typename _Res, typename _Class, typename... _ArgTypes>
class _Mem_fn<_Res (_Class::*)(_ArgTypes...) const volatile>
: public _Maybe_unary_or_binary_function<_Res, const volatile _Class*,
_ArgTypes...>
{
typedef _Res (_Class::*_Functor)(_ArgTypes...) const volatile;
template<typename _Tp>
_Res
_M_call(_Tp& __object, const volatile _Class *,
_ArgTypes... __args) const
{ return (__object.*__pmf)(__args...); }
template<typename _Tp>
_Res
_M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
{ return ((*__ptr).*__pmf)(__args...); }
public:
typedef _Res result_type;
explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
// Handle objects
_Res
operator()(const volatile _Class& __object, _ArgTypes... __args) const
{ return (__object.*__pmf)(__args...); }
// Handle pointers
_Res
operator()(const volatile _Class* __object, _ArgTypes... __args) const
{ return (__object->*__pmf)(__args...); }
// Handle smart pointers, references and pointers to derived
template<typename _Tp>
_Res operator()(_Tp& __object, _ArgTypes... __args) const
{ return _M_call(__object, &__object, __args...); }
private:
_Functor __pmf;
};
template<typename _Res, typename _Class>
class _Mem_fn<_Res _Class::*>
{
// This bit of genius is due to Peter Dimov, improved slightly by
// Douglas Gregor.
template<typename _Tp>
_Res&
_M_call(_Tp& __object, _Class *) const
{ return __object.*__pm; }
template<typename _Tp, typename _Up>
_Res&
_M_call(_Tp& __object, _Up * const *) const
{ return (*__object).*__pm; }
template<typename _Tp, typename _Up>
const _Res&
_M_call(_Tp& __object, const _Up * const *) const
{ return (*__object).*__pm; }
template<typename _Tp>
const _Res&
_M_call(_Tp& __object, const _Class *) const
{ return __object.*__pm; }
template<typename _Tp>
const _Res&
_M_call(_Tp& __ptr, const volatile void*) const
{ return (*__ptr).*__pm; }
template<typename _Tp> static _Tp& __get_ref();
template<typename _Tp>
static __sfinae_types::__one __check_const(_Tp&, _Class*);
template<typename _Tp, typename _Up>
static __sfinae_types::__one __check_const(_Tp&, _Up * const *);
template<typename _Tp, typename _Up>
static __sfinae_types::__two __check_const(_Tp&, const _Up * const *);
template<typename _Tp>
static __sfinae_types::__two __check_const(_Tp&, const _Class*);
template<typename _Tp>
static __sfinae_types::__two __check_const(_Tp&, const volatile void*);
public:
template<typename _Tp>
struct _Result_type
: _Mem_fn_const_or_non<_Res,
(sizeof(__sfinae_types::__two)
== sizeof(__check_const<_Tp>(__get_ref<_Tp>(), (_Tp*)0)))>
{ };
template<typename _Signature>
struct result;
template<typename _CVMem, typename _Tp>
struct result<_CVMem(_Tp)>
: public _Result_type<_Tp> { };
template<typename _CVMem, typename _Tp>
struct result<_CVMem(_Tp&)>
: public _Result_type<_Tp> { };
explicit
_Mem_fn(_Res _Class::*__pm) : __pm(__pm) { }
// Handle objects
_Res&
operator()(_Class& __object) const
{ return __object.*__pm; }
const _Res&
operator()(const _Class& __object) const
{ return __object.*__pm; }
// Handle pointers
_Res&
operator()(_Class* __object) const
{ return __object->*__pm; }
const _Res&
operator()(const _Class* __object) const
{ return __object->*__pm; }
// Handle smart pointers and derived
template<typename _Tp>
typename _Result_type<_Tp>::type
operator()(_Tp& __unknown) const
{ return _M_call(__unknown, &__unknown); }
private:
_Res _Class::*__pm;
};
/**
* @brief Returns a function object that forwards to the member
* pointer @a pm.
*/
template<typename _Tp, typename _Class>
inline _Mem_fn<_Tp _Class::*>
mem_fn(_Tp _Class::* __pm)
{
return _Mem_fn<_Tp _Class::*>(__pm);
}
/**
* @brief Determines if the given type _Tp is a function object
* should be treated as a subexpression when evaluating calls to
* function objects returned by bind(). [TR1 3.6.1]
*/
template<typename _Tp>
struct is_bind_expression
{ static const bool value = false; };
template<typename _Tp>
const bool is_bind_expression<_Tp>::value;
/**
* @brief Determines if the given type _Tp is a placeholder in a
* bind() expression and, if so, which placeholder it is. [TR1 3.6.2]
*/
template<typename _Tp>
struct is_placeholder
{ static const int value = 0; };
template<typename _Tp>
const int is_placeholder<_Tp>::value;
/// The type of placeholder objects defined by libstdc++.
template<int _Num> struct _Placeholder { };
_GLIBCXX_END_NAMESPACE_VERSION
/** @namespace std::tr1::placeholders
* @brief Sub-namespace for tr1/functional.
*/
namespace placeholders
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/* Define a large number of placeholders. There is no way to
* simplify this with variadic templates, because we're introducing
* unique names for each.
*/
namespace
{
_Placeholder<1> _1;
_Placeholder<2> _2;
_Placeholder<3> _3;
_Placeholder<4> _4;
_Placeholder<5> _5;
_Placeholder<6> _6;
_Placeholder<7> _7;
_Placeholder<8> _8;
_Placeholder<9> _9;
_Placeholder<10> _10;
_Placeholder<11> _11;
_Placeholder<12> _12;
_Placeholder<13> _13;
_Placeholder<14> _14;
_Placeholder<15> _15;
_Placeholder<16> _16;
_Placeholder<17> _17;
_Placeholder<18> _18;
_Placeholder<19> _19;
_Placeholder<20> _20;
_Placeholder<21> _21;
_Placeholder<22> _22;
_Placeholder<23> _23;
_Placeholder<24> _24;
_Placeholder<25> _25;
_Placeholder<26> _26;
_Placeholder<27> _27;
_Placeholder<28> _28;
_Placeholder<29> _29;
}
_GLIBCXX_END_NAMESPACE_VERSION
}
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* Partial specialization of is_placeholder that provides the placeholder
* number for the placeholder objects defined by libstdc++.
*/
template<int _Num>
struct is_placeholder<_Placeholder<_Num> >
{ static const int value = _Num; };
template<int _Num>
const int is_placeholder<_Placeholder<_Num> >::value;
#if __cplusplus >= 201103L
template<int _Num>
struct is_placeholder<std::_Placeholder<_Num>>
: std::integral_constant<int, _Num>
{ };
template<int _Num>
struct is_placeholder<const std::_Placeholder<_Num>>
: std::integral_constant<int, _Num>
{ };
#endif
/**
* Stores a tuple of indices. Used by bind() to extract the elements
* in a tuple.
*/
template<int... _Indexes>
struct _Index_tuple { };
/// Builds an _Index_tuple<0, 1, 2, ..., _Num-1>.
template<std::size_t _Num, typename _Tuple = _Index_tuple<> >
struct _Build_index_tuple;
template<std::size_t _Num, int... _Indexes>
struct _Build_index_tuple<_Num, _Index_tuple<_Indexes...> >
: _Build_index_tuple<_Num - 1,
_Index_tuple<_Indexes..., sizeof...(_Indexes)> >
{
};
template<int... _Indexes>
struct _Build_index_tuple<0, _Index_tuple<_Indexes...> >
{
typedef _Index_tuple<_Indexes...> __type;
};
/**
* Used by _Safe_tuple_element to indicate that there is no tuple
* element at this position.
*/
struct _No_tuple_element;
/**
* Implementation helper for _Safe_tuple_element. This primary
* template handles the case where it is safe to use @c
* tuple_element.
*/
template<int __i, typename _Tuple, bool _IsSafe>
struct _Safe_tuple_element_impl
: tuple_element<__i, _Tuple> { };
/**
* Implementation helper for _Safe_tuple_element. This partial
* specialization handles the case where it is not safe to use @c
* tuple_element. We just return @c _No_tuple_element.
*/
template<int __i, typename _Tuple>
struct _Safe_tuple_element_impl<__i, _Tuple, false>
{
typedef _No_tuple_element type;
};
/**
* Like tuple_element, but returns @c _No_tuple_element when
* tuple_element would return an error.
*/
template<int __i, typename _Tuple>
struct _Safe_tuple_element
: _Safe_tuple_element_impl<__i, _Tuple,
(__i >= 0 && __i < tuple_size<_Tuple>::value)>
{
};
/**
* Maps an argument to bind() into an actual argument to the bound
* function object [TR1 3.6.3/5]. Only the first parameter should
* be specified: the rest are used to determine among the various
* implementations. Note that, although this class is a function
* object, it isn't entirely normal because it takes only two
* parameters regardless of the number of parameters passed to the
* bind expression. The first parameter is the bound argument and
* the second parameter is a tuple containing references to the
* rest of the arguments.
*/
template<typename _Arg,
bool _IsBindExp = is_bind_expression<_Arg>::value,
bool _IsPlaceholder = (is_placeholder<_Arg>::value > 0)>
class _Mu;
/**
* If the argument is reference_wrapper<_Tp>, returns the
* underlying reference. [TR1 3.6.3/5 bullet 1]
*/
template<typename _Tp>
class _Mu<reference_wrapper<_Tp>, false, false>
{
public:
typedef _Tp& result_type;
/* Note: This won't actually work for const volatile
* reference_wrappers, because reference_wrapper::get() is const
* but not volatile-qualified. This might be a defect in the TR.
*/
template<typename _CVRef, typename _Tuple>
result_type
operator()(_CVRef& __arg, const _Tuple&) const volatile
{ return __arg.get(); }
};
/**
* If the argument is a bind expression, we invoke the underlying
* function object with the same cv-qualifiers as we are given and
* pass along all of our arguments (unwrapped). [TR1 3.6.3/5 bullet 2]
*/
template<typename _Arg>
class _Mu<_Arg, true, false>
{
public:
template<typename _Signature> class result;
// Determine the result type when we pass the arguments along. This
// involves passing along the cv-qualifiers placed on _Mu and
// unwrapping the argument bundle.
template<typename _CVMu, typename _CVArg, typename... _Args>
class result<_CVMu(_CVArg, tuple<_Args...>)>
: public result_of<_CVArg(_Args...)> { };
template<typename _CVArg, typename... _Args>
typename result_of<_CVArg(_Args...)>::type
operator()(_CVArg& __arg,
const tuple<_Args...>& __tuple) const volatile
{
// Construct an index tuple and forward to __call
typedef typename _Build_index_tuple<sizeof...(_Args)>::__type
_Indexes;
return this->__call(__arg, __tuple, _Indexes());
}
private:
// Invokes the underlying function object __arg by unpacking all
// of the arguments in the tuple.
template<typename _CVArg, typename... _Args, int... _Indexes>
typename result_of<_CVArg(_Args...)>::type
__call(_CVArg& __arg, const tuple<_Args...>& __tuple,
const _Index_tuple<_Indexes...>&) const volatile
{
return __arg(tr1::get<_Indexes>(__tuple)...);
}
};
/**
* If the argument is a placeholder for the Nth argument, returns
* a reference to the Nth argument to the bind function object.
* [TR1 3.6.3/5 bullet 3]
*/
template<typename _Arg>
class _Mu<_Arg, false, true>
{
public:
template<typename _Signature> class result;
template<typename _CVMu, typename _CVArg, typename _Tuple>
class result<_CVMu(_CVArg, _Tuple)>
{
// Add a reference, if it hasn't already been done for us.
// This allows us to be a little bit sloppy in constructing
// the tuple that we pass to result_of<...>.
typedef typename _Safe_tuple_element<(is_placeholder<_Arg>::value
- 1), _Tuple>::type
__base_type;
public:
typedef typename add_reference<__base_type>::type type;
};
template<typename _Tuple>
typename result<_Mu(_Arg, _Tuple)>::type
operator()(const volatile _Arg&, const _Tuple& __tuple) const volatile
{
return ::std::tr1::get<(is_placeholder<_Arg>::value - 1)>(__tuple);
}
};
/**
* If the argument is just a value, returns a reference to that
* value. The cv-qualifiers on the reference are the same as the
* cv-qualifiers on the _Mu object. [TR1 3.6.3/5 bullet 4]
*/
template<typename _Arg>
class _Mu<_Arg, false, false>
{
public:
template<typename _Signature> struct result;
template<typename _CVMu, typename _CVArg, typename _Tuple>
struct result<_CVMu(_CVArg, _Tuple)>
{
typedef typename add_reference<_CVArg>::type type;
};
// Pick up the cv-qualifiers of the argument
template<typename _CVArg, typename _Tuple>
_CVArg&
operator()(_CVArg& __arg, const _Tuple&) const volatile
{ return __arg; }
};
/**
* Maps member pointers into instances of _Mem_fn but leaves all
* other function objects untouched. Used by tr1::bind(). The
* primary template handles the non--member-pointer case.
*/
template<typename _Tp>
struct _Maybe_wrap_member_pointer
{
typedef _Tp type;
static const _Tp&
__do_wrap(const _Tp& __x)
{ return __x; }
};
/**
* Maps member pointers into instances of _Mem_fn but leaves all
* other function objects untouched. Used by tr1::bind(). This
* partial specialization handles the member pointer case.
*/
template<typename _Tp, typename _Class>
struct _Maybe_wrap_member_pointer<_Tp _Class::*>
{
typedef _Mem_fn<_Tp _Class::*> type;
static type
__do_wrap(_Tp _Class::* __pm)
{ return type(__pm); }
};
/// Type of the function object returned from bind().
template<typename _Signature>
struct _Bind;
template<typename _Functor, typename... _Bound_args>
class _Bind<_Functor(_Bound_args...)>
: public _Weak_result_type<_Functor>
{
typedef _Bind __self_type;
typedef typename _Build_index_tuple<sizeof...(_Bound_args)>::__type
_Bound_indexes;
_Functor _M_f;
tuple<_Bound_args...> _M_bound_args;
// Call unqualified
template<typename... _Args, int... _Indexes>
typename result_of<
_Functor(typename result_of<_Mu<_Bound_args>
(_Bound_args, tuple<_Args...>)>::type...)
>::type
__call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>)
{
return _M_f(_Mu<_Bound_args>()
(tr1::get<_Indexes>(_M_bound_args), __args)...);
}
// Call as const
template<typename... _Args, int... _Indexes>
typename result_of<
const _Functor(typename result_of<_Mu<_Bound_args>
(const _Bound_args, tuple<_Args...>)
>::type...)>::type
__call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>) const
{
return _M_f(_Mu<_Bound_args>()
(tr1::get<_Indexes>(_M_bound_args), __args)...);
}
// Call as volatile
template<typename... _Args, int... _Indexes>
typename result_of<
volatile _Functor(typename result_of<_Mu<_Bound_args>
(volatile _Bound_args, tuple<_Args...>)
>::type...)>::type
__call(const tuple<_Args...>& __args,
_Index_tuple<_Indexes...>) volatile
{
return _M_f(_Mu<_Bound_args>()
(tr1::get<_Indexes>(_M_bound_args), __args)...);
}
// Call as const volatile
template<typename... _Args, int... _Indexes>
typename result_of<
const volatile _Functor(typename result_of<_Mu<_Bound_args>
(const volatile _Bound_args,
tuple<_Args...>)
>::type...)>::type
__call(const tuple<_Args...>& __args,
_Index_tuple<_Indexes...>) const volatile
{
return _M_f(_Mu<_Bound_args>()
(tr1::get<_Indexes>(_M_bound_args), __args)...);
}
public:
explicit _Bind(_Functor __f, _Bound_args... __bound_args)
: _M_f(__f), _M_bound_args(__bound_args...) { }
// Call unqualified
template<typename... _Args>
typename result_of<
_Functor(typename result_of<_Mu<_Bound_args>
(_Bound_args, tuple<_Args...>)>::type...)
>::type
operator()(_Args&... __args)
{
return this->__call(tr1::tie(__args...), _Bound_indexes());
}
// Call as const
template<typename... _Args>
typename result_of<
const _Functor(typename result_of<_Mu<_Bound_args>
(const _Bound_args, tuple<_Args...>)>::type...)
>::type
operator()(_Args&... __args) const
{
return this->__call(tr1::tie(__args...), _Bound_indexes());
}
// Call as volatile
template<typename... _Args>
typename result_of<
volatile _Functor(typename result_of<_Mu<_Bound_args>
(volatile _Bound_args, tuple<_Args...>)>::type...)
>::type
operator()(_Args&... __args) volatile
{
return this->__call(tr1::tie(__args...), _Bound_indexes());
}
// Call as const volatile
template<typename... _Args>
typename result_of<
const volatile _Functor(typename result_of<_Mu<_Bound_args>
(const volatile _Bound_args,
tuple<_Args...>)>::type...)
>::type
operator()(_Args&... __args) const volatile
{
return this->__call(tr1::tie(__args...), _Bound_indexes());
}
};
/// Type of the function object returned from bind<R>().
template<typename _Result, typename _Signature>
struct _Bind_result;
template<typename _Result, typename _Functor, typename... _Bound_args>
class _Bind_result<_Result, _Functor(_Bound_args...)>
{
typedef _Bind_result __self_type;
typedef typename _Build_index_tuple<sizeof...(_Bound_args)>::__type
_Bound_indexes;
_Functor _M_f;
tuple<_Bound_args...> _M_bound_args;
// Call unqualified
template<typename... _Args, int... _Indexes>
_Result
__call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>)
{
return _M_f(_Mu<_Bound_args>()
(tr1::get<_Indexes>(_M_bound_args), __args)...);
}
// Call as const
template<typename... _Args, int... _Indexes>
_Result
__call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>) const
{
return _M_f(_Mu<_Bound_args>()
(tr1::get<_Indexes>(_M_bound_args), __args)...);
}
// Call as volatile
template<typename... _Args, int... _Indexes>
_Result
__call(const tuple<_Args...>& __args,
_Index_tuple<_Indexes...>) volatile
{
return _M_f(_Mu<_Bound_args>()
(tr1::get<_Indexes>(_M_bound_args), __args)...);
}
// Call as const volatile
template<typename... _Args, int... _Indexes>
_Result
__call(const tuple<_Args...>& __args,
_Index_tuple<_Indexes...>) const volatile
{
return _M_f(_Mu<_Bound_args>()
(tr1::get<_Indexes>(_M_bound_args), __args)...);
}
public:
typedef _Result result_type;
explicit
_Bind_result(_Functor __f, _Bound_args... __bound_args)
: _M_f(__f), _M_bound_args(__bound_args...) { }
// Call unqualified
template<typename... _Args>
result_type
operator()(_Args&... __args)
{
return this->__call(tr1::tie(__args...), _Bound_indexes());
}
// Call as const
template<typename... _Args>
result_type
operator()(_Args&... __args) const
{
return this->__call(tr1::tie(__args...), _Bound_indexes());
}
// Call as volatile
template<typename... _Args>
result_type
operator()(_Args&... __args) volatile
{
return this->__call(tr1::tie(__args...), _Bound_indexes());
}
// Call as const volatile
template<typename... _Args>
result_type
operator()(_Args&... __args) const volatile
{
return this->__call(tr1::tie(__args...), _Bound_indexes());
}
};
/// Class template _Bind is always a bind expression.
template<typename _Signature>
struct is_bind_expression<_Bind<_Signature> >
{ static const bool value = true; };
template<typename _Signature>
const bool is_bind_expression<_Bind<_Signature> >::value;
/// Class template _Bind is always a bind expression.
template<typename _Signature>
struct is_bind_expression<const _Bind<_Signature> >
{ static const bool value = true; };
template<typename _Signature>
const bool is_bind_expression<const _Bind<_Signature> >::value;
/// Class template _Bind is always a bind expression.
template<typename _Signature>
struct is_bind_expression<volatile _Bind<_Signature> >
{ static const bool value = true; };
template<typename _Signature>
const bool is_bind_expression<volatile _Bind<_Signature> >::value;
/// Class template _Bind is always a bind expression.
template<typename _Signature>
struct is_bind_expression<const volatile _Bind<_Signature> >
{ static const bool value = true; };
template<typename _Signature>
const bool is_bind_expression<const volatile _Bind<_Signature> >::value;
/// Class template _Bind_result is always a bind expression.
template<typename _Result, typename _Signature>
struct is_bind_expression<_Bind_result<_Result, _Signature> >
{ static const bool value = true; };
template<typename _Result, typename _Signature>
const bool is_bind_expression<_Bind_result<_Result, _Signature> >::value;
/// Class template _Bind_result is always a bind expression.
template<typename _Result, typename _Signature>
struct is_bind_expression<const _Bind_result<_Result, _Signature> >
{ static const bool value = true; };
template<typename _Result, typename _Signature>
const bool
is_bind_expression<const _Bind_result<_Result, _Signature> >::value;
/// Class template _Bind_result is always a bind expression.
template<typename _Result, typename _Signature>
struct is_bind_expression<volatile _Bind_result<_Result, _Signature> >
{ static const bool value = true; };
template<typename _Result, typename _Signature>
const bool
is_bind_expression<volatile _Bind_result<_Result, _Signature> >::value;
/// Class template _Bind_result is always a bind expression.
template<typename _Result, typename _Signature>
struct
is_bind_expression<const volatile _Bind_result<_Result, _Signature> >
{ static const bool value = true; };
template<typename _Result, typename _Signature>
const bool
is_bind_expression<const volatile _Bind_result<_Result,
_Signature> >::value;
#if __cplusplus >= 201103L
template<typename _Signature>
struct is_bind_expression<std::_Bind<_Signature>>
: true_type { };
template<typename _Signature>
struct is_bind_expression<const std::_Bind<_Signature>>
: true_type { };
template<typename _Signature>
struct is_bind_expression<volatile std::_Bind<_Signature>>
: true_type { };
template<typename _Signature>
struct is_bind_expression<const volatile std::_Bind<_Signature>>
: true_type { };
template<typename _Result, typename _Signature>
struct is_bind_expression<std::_Bind_result<_Result, _Signature>>
: true_type { };
template<typename _Result, typename _Signature>
struct is_bind_expression<const std::_Bind_result<_Result, _Signature>>
: true_type { };
template<typename _Result, typename _Signature>
struct is_bind_expression<volatile std::_Bind_result<_Result, _Signature>>
: true_type { };
template<typename _Result, typename _Signature>
struct is_bind_expression<const volatile std::_Bind_result<_Result,
_Signature>>
: true_type { };
#endif
/// bind
template<typename _Functor, typename... _ArgTypes>
inline
_Bind<typename _Maybe_wrap_member_pointer<_Functor>::type(_ArgTypes...)>
bind(_Functor __f, _ArgTypes... __args)
{
typedef _Maybe_wrap_member_pointer<_Functor> __maybe_type;
typedef typename __maybe_type::type __functor_type;
typedef _Bind<__functor_type(_ArgTypes...)> __result_type;
return __result_type(__maybe_type::__do_wrap(__f), __args...);
}
template<typename _Result, typename _Functor, typename... _ArgTypes>
inline
_Bind_result<_Result,
typename _Maybe_wrap_member_pointer<_Functor>::type
(_ArgTypes...)>
bind(_Functor __f, _ArgTypes... __args)
{
typedef _Maybe_wrap_member_pointer<_Functor> __maybe_type;
typedef typename __maybe_type::type __functor_type;
typedef _Bind_result<_Result, __functor_type(_ArgTypes...)>
__result_type;
return __result_type(__maybe_type::__do_wrap(__f), __args...);
}
/**
* @brief Exception class thrown when class template function's
* operator() is called with an empty target.
* @ingroup exceptions
*/
class bad_function_call : public std::exception { };
/**
* The integral constant expression 0 can be converted into a
* pointer to this type. It is used by the function template to
* accept NULL pointers.
*/
struct _M_clear_type;
/**
* Trait identifying @a location-invariant types, meaning that the
* address of the object (or any of its members) will not escape.
* Also implies a trivial copy constructor and assignment operator.
*/
template<typename _Tp>
struct __is_location_invariant
: integral_constant<bool,
(is_pointer<_Tp>::value
|| is_member_pointer<_Tp>::value)>
{
};
class _Undefined_class;
union _Nocopy_types
{
void* _M_object;
const void* _M_const_object;
void (*_M_function_pointer)();
void (_Undefined_class::*_M_member_pointer)();
};
union _Any_data
{
void* _M_access() { return &_M_pod_data[0]; }
const void* _M_access() const { return &_M_pod_data[0]; }
template<typename _Tp>
_Tp&
_M_access()
{ return *static_cast<_Tp*>(_M_access()); }
template<typename _Tp>
const _Tp&
_M_access() const
{ return *static_cast<const _Tp*>(_M_access()); }
_Nocopy_types _M_unused;
char _M_pod_data[sizeof(_Nocopy_types)];
};
enum _Manager_operation
{
__get_type_info,
__get_functor_ptr,
__clone_functor,
__destroy_functor
};
// Simple type wrapper that helps avoid annoying const problems
// when casting between void pointers and pointers-to-pointers.
template<typename _Tp>
struct _Simple_type_wrapper
{
_Simple_type_wrapper(_Tp __value) : __value(__value) { }
_Tp __value;
};
template<typename _Tp>
struct __is_location_invariant<_Simple_type_wrapper<_Tp> >
: __is_location_invariant<_Tp>
{
};
// Converts a reference to a function object into a callable
// function object.
template<typename _Functor>
inline _Functor&
__callable_functor(_Functor& __f)
{ return __f; }
template<typename _Member, typename _Class>
inline _Mem_fn<_Member _Class::*>
__callable_functor(_Member _Class::* &__p)
{ return mem_fn(__p); }
template<typename _Member, typename _Class>
inline _Mem_fn<_Member _Class::*>
__callable_functor(_Member _Class::* const &__p)
{ return mem_fn(__p); }
template<typename _Signature>
class function;
/// Base class of all polymorphic function object wrappers.
class _Function_base
{
public:
static const std::size_t _M_max_size = sizeof(_Nocopy_types);
static const std::size_t _M_max_align = __alignof__(_Nocopy_types);
template<typename _Functor>
class _Base_manager
{
protected:
static const bool __stored_locally =
(__is_location_invariant<_Functor>::value
&& sizeof(_Functor) <= _M_max_size
&& __alignof__(_Functor) <= _M_max_align
&& (_M_max_align % __alignof__(_Functor) == 0));
typedef integral_constant<bool, __stored_locally> _Local_storage;
// Retrieve a pointer to the function object
static _Functor*
_M_get_pointer(const _Any_data& __source)
{
const _Functor* __ptr =
__stored_locally? std::__addressof(__source._M_access<_Functor>())
/* have stored a pointer */ : __source._M_access<_Functor*>();
return const_cast<_Functor*>(__ptr);
}
// Clone a location-invariant function object that fits within
// an _Any_data structure.
static void
_M_clone(_Any_data& __dest, const _Any_data& __source, true_type)
{
new (__dest._M_access()) _Functor(__source._M_access<_Functor>());
}
// Clone a function object that is not location-invariant or
// that cannot fit into an _Any_data structure.
static void
_M_clone(_Any_data& __dest, const _Any_data& __source, false_type)
{
__dest._M_access<_Functor*>() =
new _Functor(*__source._M_access<_Functor*>());
}
// Destroying a location-invariant object may still require
// destruction.
static void
_M_destroy(_Any_data& __victim, true_type)
{
__victim._M_access<_Functor>().~_Functor();
}
// Destroying an object located on the heap.
static void
_M_destroy(_Any_data& __victim, false_type)
{
delete __victim._M_access<_Functor*>();
}
public:
static bool
_M_manager(_Any_data& __dest, const _Any_data& __source,
_Manager_operation __op)
{
switch (__op)
{
#if __cpp_rtti
case __get_type_info:
__dest._M_access<const type_info*>() = &typeid(_Functor);
break;
#endif
case __get_functor_ptr:
__dest._M_access<_Functor*>() = _M_get_pointer(__source);
break;
case __clone_functor:
_M_clone(__dest, __source, _Local_storage());
break;
case __destroy_functor:
_M_destroy(__dest, _Local_storage());
break;
}
return false;
}
static void
_M_init_functor(_Any_data& __functor, const _Functor& __f)
{ _M_init_functor(__functor, __f, _Local_storage()); }
template<typename _Signature>
static bool
_M_not_empty_function(const function<_Signature>& __f)
{ return static_cast<bool>(__f); }
template<typename _Tp>
static bool
_M_not_empty_function(const _Tp*& __fp)
{ return __fp; }
template<typename _Class, typename _Tp>
static bool
_M_not_empty_function(_Tp _Class::* const& __mp)
{ return __mp; }
template<typename _Tp>
static bool
_M_not_empty_function(const _Tp&)
{ return true; }
private:
static void
_M_init_functor(_Any_data& __functor, const _Functor& __f, true_type)
{ new (__functor._M_access()) _Functor(__f); }
static void
_M_init_functor(_Any_data& __functor, const _Functor& __f, false_type)
{ __functor._M_access<_Functor*>() = new _Functor(__f); }
};
template<typename _Functor>
class _Ref_manager : public _Base_manager<_Functor*>
{
typedef _Function_base::_Base_manager<_Functor*> _Base;
public:
static bool
_M_manager(_Any_data& __dest, const _Any_data& __source,
_Manager_operation __op)
{
switch (__op)
{
#if __cpp_rtti
case __get_type_info:
__dest._M_access<const type_info*>() = &typeid(_Functor);
break;
#endif
case __get_functor_ptr:
__dest._M_access<_Functor*>() = *_Base::_M_get_pointer(__source);
return is_const<_Functor>::value;
break;
default:
_Base::_M_manager(__dest, __source, __op);
}
return false;
}
static void
_M_init_functor(_Any_data& __functor, reference_wrapper<_Functor> __f)
{
_Base::_M_init_functor(__functor, std::__addressof(__f.get()));
}
};
_Function_base() : _M_manager(0) { }
~_Function_base()
{
if (_M_manager)
_M_manager(_M_functor, _M_functor, __destroy_functor);
}
bool _M_empty() const { return !_M_manager; }
typedef bool (*_Manager_type)(_Any_data&, const _Any_data&,
_Manager_operation);
_Any_data _M_functor;
_Manager_type _M_manager;
};
template<typename _Signature, typename _Functor>
class _Function_handler;
template<typename _Res, typename _Functor, typename... _ArgTypes>
class _Function_handler<_Res(_ArgTypes...), _Functor>
: public _Function_base::_Base_manager<_Functor>
{
typedef _Function_base::_Base_manager<_Functor> _Base;
public:
static _Res
_M_invoke(const _Any_data& __functor, _ArgTypes... __args)
{
return (*_Base::_M_get_pointer(__functor))(__args...);
}
};
template<typename _Functor, typename... _ArgTypes>
class _Function_handler<void(_ArgTypes...), _Functor>
: public _Function_base::_Base_manager<_Functor>
{
typedef _Function_base::_Base_manager<_Functor> _Base;
public:
static void
_M_invoke(const _Any_data& __functor, _ArgTypes... __args)
{
(*_Base::_M_get_pointer(__functor))(__args...);
}
};
template<typename _Res, typename _Functor, typename... _ArgTypes>
class _Function_handler<_Res(_ArgTypes...), reference_wrapper<_Functor> >
: public _Function_base::_Ref_manager<_Functor>
{
typedef _Function_base::_Ref_manager<_Functor> _Base;
public:
static _Res
_M_invoke(const _Any_data& __functor, _ArgTypes... __args)
{
return
__callable_functor(**_Base::_M_get_pointer(__functor))(__args...);
}
};
template<typename _Functor, typename... _ArgTypes>
class _Function_handler<void(_ArgTypes...), reference_wrapper<_Functor> >
: public _Function_base::_Ref_manager<_Functor>
{
typedef _Function_base::_Ref_manager<_Functor> _Base;
public:
static void
_M_invoke(const _Any_data& __functor, _ArgTypes... __args)
{
__callable_functor(**_Base::_M_get_pointer(__functor))(__args...);
}
};
template<typename _Class, typename _Member, typename _Res,
typename... _ArgTypes>
class _Function_handler<_Res(_ArgTypes...), _Member _Class::*>
: public _Function_handler<void(_ArgTypes...), _Member _Class::*>
{
typedef _Function_handler<void(_ArgTypes...), _Member _Class::*>
_Base;
public:
static _Res
_M_invoke(const _Any_data& __functor, _ArgTypes... __args)
{
return tr1::
mem_fn(_Base::_M_get_pointer(__functor)->__value)(__args...);
}
};
template<typename _Class, typename _Member, typename... _ArgTypes>
class _Function_handler<void(_ArgTypes...), _Member _Class::*>
: public _Function_base::_Base_manager<
_Simple_type_wrapper< _Member _Class::* > >
{
typedef _Member _Class::* _Functor;
typedef _Simple_type_wrapper<_Functor> _Wrapper;
typedef _Function_base::_Base_manager<_Wrapper> _Base;
public:
static bool
_M_manager(_Any_data& __dest, const _Any_data& __source,
_Manager_operation __op)
{
switch (__op)
{
#if __cpp_rtti
case __get_type_info:
__dest._M_access<const type_info*>() = &typeid(_Functor);
break;
#endif
case __get_functor_ptr:
__dest._M_access<_Functor*>() =
&_Base::_M_get_pointer(__source)->__value;
break;
default:
_Base::_M_manager(__dest, __source, __op);
}
return false;
}
static void
_M_invoke(const _Any_data& __functor, _ArgTypes... __args)
{
tr1::mem_fn(_Base::_M_get_pointer(__functor)->__value)(__args...);
}
};
/// class function
template<typename _Res, typename... _ArgTypes>
class function<_Res(_ArgTypes...)>
: public _Maybe_unary_or_binary_function<_Res, _ArgTypes...>,
private _Function_base
{
#if __cplusplus < 201103L
/// This class is used to implement the safe_bool idiom.
struct _Hidden_type
{
_Hidden_type* _M_bool;
};
/// This typedef is used to implement the safe_bool idiom.
typedef _Hidden_type* _Hidden_type::* _Safe_bool;
#endif
typedef _Res _Signature_type(_ArgTypes...);
struct _Useless { };
public:
typedef _Res result_type;
// [3.7.2.1] construct/copy/destroy
/**
* @brief Default construct creates an empty function call wrapper.
* @post @c !(bool)*this
*/
function() : _Function_base() { }
/**
* @brief Default construct creates an empty function call wrapper.
* @post @c !(bool)*this
*/
function(_M_clear_type*) : _Function_base() { }
/**
* @brief %Function copy constructor.
* @param x A %function object with identical call signature.
* @post @c (bool)*this == (bool)x
*
* The newly-created %function contains a copy of the target of @a
* x (if it has one).
*/
function(const function& __x);
/**
* @brief Builds a %function that targets a copy of the incoming
* function object.
* @param f A %function object that is callable with parameters of
* type @c T1, @c T2, ..., @c TN and returns a value convertible
* to @c Res.
*
* The newly-created %function object will target a copy of @a
* f. If @a f is @c reference_wrapper<F>, then this function
* object will contain a reference to the function object @c
* f.get(). If @a f is a NULL function pointer or NULL
* pointer-to-member, the newly-created object will be empty.
*
* If @a f is a non-NULL function pointer or an object of type @c
* reference_wrapper<F>, this function will not throw.
*/
template<typename _Functor>
function(_Functor __f,
typename __gnu_cxx::__enable_if<
!is_integral<_Functor>::value, _Useless>::__type
= _Useless());
/**
* @brief %Function assignment operator.
* @param x A %function with identical call signature.
* @post @c (bool)*this == (bool)x
* @returns @c *this
*
* The target of @a x is copied to @c *this. If @a x has no
* target, then @c *this will be empty.
*
* If @a x targets a function pointer or a reference to a function
* object, then this operation will not throw an %exception.
*/
function&
operator=(const function& __x)
{
function(__x).swap(*this);
return *this;
}
/**
* @brief %Function assignment to zero.
* @post @c !(bool)*this
* @returns @c *this
*
* The target of @c *this is deallocated, leaving it empty.
*/
function&
operator=(_M_clear_type*)
{
if (_M_manager)
{
_M_manager(_M_functor, _M_functor, __destroy_functor);
_M_manager = 0;
_M_invoker = 0;
}
return *this;
}
/**
* @brief %Function assignment to a new target.
* @param f A %function object that is callable with parameters of
* type @c T1, @c T2, ..., @c TN and returns a value convertible
* to @c Res.
* @return @c *this
*
* This %function object wrapper will target a copy of @a
* f. If @a f is @c reference_wrapper<F>, then this function
* object will contain a reference to the function object @c
* f.get(). If @a f is a NULL function pointer or NULL
* pointer-to-member, @c this object will be empty.
*
* If @a f is a non-NULL function pointer or an object of type @c
* reference_wrapper<F>, this function will not throw.
*/
template<typename _Functor>
typename __gnu_cxx::__enable_if<!is_integral<_Functor>::value,
function&>::__type
operator=(_Functor __f)
{
function(__f).swap(*this);
return *this;
}
// [3.7.2.2] function modifiers
/**
* @brief Swap the targets of two %function objects.
* @param f A %function with identical call signature.
*
* Swap the targets of @c this function object and @a f. This
* function will not throw an %exception.
*/
void swap(function& __x)
{
std::swap(_M_functor, __x._M_functor);
std::swap(_M_manager, __x._M_manager);
std::swap(_M_invoker, __x._M_invoker);
}
// [3.7.2.3] function capacity
/**
* @brief Determine if the %function wrapper has a target.
*
* @return @c true when this %function object contains a target,
* or @c false when it is empty.
*
* This function will not throw an %exception.
*/
#if __cplusplus >= 201103L
explicit operator bool() const
{ return !_M_empty(); }
#else
operator _Safe_bool() const
{
if (_M_empty())
return 0;
else
return &_Hidden_type::_M_bool;
}
#endif
// [3.7.2.4] function invocation
/**
* @brief Invokes the function targeted by @c *this.
* @returns the result of the target.
* @throws bad_function_call when @c !(bool)*this
*
* The function call operator invokes the target function object
* stored by @c this.
*/
_Res operator()(_ArgTypes... __args) const;
#if __cpp_rtti
// [3.7.2.5] function target access
/**
* @brief Determine the type of the target of this function object
* wrapper.
*
* @returns the type identifier of the target function object, or
* @c typeid(void) if @c !(bool)*this.
*
* This function will not throw an %exception.
*/
const type_info& target_type() const;
/**
* @brief Access the stored target function object.
*
* @return Returns a pointer to the stored target function object,
* if @c typeid(Functor).equals(target_type()); otherwise, a NULL
* pointer.
*
* This function will not throw an %exception.
*/
template<typename _Functor> _Functor* target();
/// @overload
template<typename _Functor> const _Functor* target() const;
#endif
private:
// [3.7.2.6] undefined operators
template<typename _Function>
void operator==(const function<_Function>&) const;
template<typename _Function>
void operator!=(const function<_Function>&) const;
typedef _Res (*_Invoker_type)(const _Any_data&, _ArgTypes...);
_Invoker_type _M_invoker;
};
template<typename _Res, typename... _ArgTypes>
function<_Res(_ArgTypes...)>::
function(const function& __x)
: _Function_base()
{
if (static_cast<bool>(__x))
{
__x._M_manager(_M_functor, __x._M_functor, __clone_functor);
_M_invoker = __x._M_invoker;
_M_manager = __x._M_manager;
}
}
template<typename _Res, typename... _ArgTypes>
template<typename _Functor>
function<_Res(_ArgTypes...)>::
function(_Functor __f,
typename __gnu_cxx::__enable_if<
!is_integral<_Functor>::value, _Useless>::__type)
: _Function_base()
{
typedef _Function_handler<_Signature_type, _Functor> _My_handler;
if (_My_handler::_M_not_empty_function(__f))
{
_My_handler::_M_init_functor(_M_functor, __f);
_M_invoker = &_My_handler::_M_invoke;
_M_manager = &_My_handler::_M_manager;
}
}
template<typename _Res, typename... _ArgTypes>
_Res
function<_Res(_ArgTypes...)>::
operator()(_ArgTypes... __args) const
{
if (_M_empty())
_GLIBCXX_THROW_OR_ABORT(bad_function_call());
return _M_invoker(_M_functor, __args...);
}
#if __cpp_rtti
template<typename _Res, typename... _ArgTypes>
const type_info&
function<_Res(_ArgTypes...)>::
target_type() const
{
if (_M_manager)
{
_Any_data __typeinfo_result;
_M_manager(__typeinfo_result, _M_functor, __get_type_info);
return *__typeinfo_result._M_access<const type_info*>();
}
else
return typeid(void);
}
template<typename _Res, typename... _ArgTypes>
template<typename _Functor>
_Functor*
function<_Res(_ArgTypes...)>::
target()
{
if (typeid(_Functor) == target_type() && _M_manager)
{
_Any_data __ptr;
if (_M_manager(__ptr, _M_functor, __get_functor_ptr)
&& !is_const<_Functor>::value)
return 0;
else
return __ptr._M_access<_Functor*>();
}
else
return 0;
}
template<typename _Res, typename... _ArgTypes>
template<typename _Functor>
const _Functor*
function<_Res(_ArgTypes...)>::
target() const
{
if (typeid(_Functor) == target_type() && _M_manager)
{
_Any_data __ptr;
_M_manager(__ptr, _M_functor, __get_functor_ptr);
return __ptr._M_access<const _Functor*>();
}
else
return 0;
}
#endif
// [3.7.2.7] null pointer comparisons
/**
* @brief Compares a polymorphic function object wrapper against 0
* (the NULL pointer).
* @returns @c true if the wrapper has no target, @c false otherwise
*
* This function will not throw an %exception.
*/
template<typename _Signature>
inline bool
operator==(const function<_Signature>& __f, _M_clear_type*)
{ return !static_cast<bool>(__f); }
/// @overload
template<typename _Signature>
inline bool
operator==(_M_clear_type*, const function<_Signature>& __f)
{ return !static_cast<bool>(__f); }
/**
* @brief Compares a polymorphic function object wrapper against 0
* (the NULL pointer).
* @returns @c false if the wrapper has no target, @c true otherwise
*
* This function will not throw an %exception.
*/
template<typename _Signature>
inline bool
operator!=(const function<_Signature>& __f, _M_clear_type*)
{ return static_cast<bool>(__f); }
/// @overload
template<typename _Signature>
inline bool
operator!=(_M_clear_type*, const function<_Signature>& __f)
{ return static_cast<bool>(__f); }
// [3.7.2.8] specialized algorithms
/**
* @brief Swap the targets of two polymorphic function object wrappers.
*
* This function will not throw an %exception.
*/
template<typename _Signature>
inline void
swap(function<_Signature>& __x, function<_Signature>& __y)
{ __x.swap(__y); }
_GLIBCXX_END_NAMESPACE_VERSION
}
#if __cplusplus >= 201103L
_GLIBCXX_BEGIN_NAMESPACE_VERSION
template<typename> struct is_placeholder;
template<int _Num>
struct is_placeholder<tr1::_Placeholder<_Num>>
: integral_constant<int, _Num>
{ };
template<int _Num>
struct is_placeholder<const tr1::_Placeholder<_Num>>
: integral_constant<int, _Num>
{ };
template<typename> struct is_bind_expression;
template<typename _Signature>
struct is_bind_expression<tr1::_Bind<_Signature>>
: true_type { };
template<typename _Signature>
struct is_bind_expression<const tr1::_Bind<_Signature>>
: true_type { };
template<typename _Signature>
struct is_bind_expression<volatile tr1::_Bind<_Signature>>
: true_type { };
template<typename _Signature>
struct is_bind_expression<const volatile tr1::_Bind<_Signature>>
: true_type { };
template<typename _Result, typename _Signature>
struct is_bind_expression<tr1::_Bind_result<_Result, _Signature>>
: true_type { };
template<typename _Result, typename _Signature>
struct is_bind_expression<const tr1::_Bind_result<_Result, _Signature>>
: true_type { };
template<typename _Result, typename _Signature>
struct is_bind_expression<volatile tr1::_Bind_result<_Result, _Signature>>
: true_type { };
template<typename _Result, typename _Signature>
struct is_bind_expression<const volatile tr1::_Bind_result<_Result,
_Signature>>
: true_type { };
_GLIBCXX_END_NAMESPACE_VERSION
#endif
}
#endif // _GLIBCXX_TR1_FUNCTIONAL
|