1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
|
// Special functions -*- C++ -*-
// Copyright (C) 2006-2015 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/hypergeometric.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/cmath}
*/
//
// ISO C++ 14882 TR1: 5.2 Special functions
//
// Written by Edward Smith-Rowland based:
// (1) Handbook of Mathematical Functions,
// ed. Milton Abramowitz and Irene A. Stegun,
// Dover Publications,
// Section 6, pp. 555-566
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
#ifndef _GLIBCXX_TR1_HYPERGEOMETRIC_TCC
#define _GLIBCXX_TR1_HYPERGEOMETRIC_TCC 1
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// [5.2] Special functions
// Implementation-space details.
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* @brief This routine returns the confluent hypergeometric function
* by series expansion.
*
* @f[
* _1F_1(a;c;x) = \frac{\Gamma(c)}{\Gamma(a)}
* \sum_{n=0}^{\infty}
* \frac{\Gamma(a+n)}{\Gamma(c+n)}
* \frac{x^n}{n!}
* @f]
*
* If a and b are integers and a < 0 and either b > 0 or b < a
* then the series is a polynomial with a finite number of
* terms. If b is an integer and b <= 0 the confluent
* hypergeometric function is undefined.
*
* @param __a The "numerator" parameter.
* @param __c The "denominator" parameter.
* @param __x The argument of the confluent hypergeometric function.
* @return The confluent hypergeometric function.
*/
template<typename _Tp>
_Tp
__conf_hyperg_series(_Tp __a, _Tp __c, _Tp __x)
{
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
_Tp __term = _Tp(1);
_Tp __Fac = _Tp(1);
const unsigned int __max_iter = 100000;
unsigned int __i;
for (__i = 0; __i < __max_iter; ++__i)
{
__term *= (__a + _Tp(__i)) * __x
/ ((__c + _Tp(__i)) * _Tp(1 + __i));
if (std::abs(__term) < __eps)
{
break;
}
__Fac += __term;
}
if (__i == __max_iter)
std::__throw_runtime_error(__N("Series failed to converge "
"in __conf_hyperg_series."));
return __Fac;
}
/**
* @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
* by an iterative procedure described in
* Luke, Algorithms for the Computation of Mathematical Functions.
*
* Like the case of the 2F1 rational approximations, these are
* probably guaranteed to converge for x < 0, barring gross
* numerical instability in the pre-asymptotic regime.
*/
template<typename _Tp>
_Tp
__conf_hyperg_luke(_Tp __a, _Tp __c, _Tp __xin)
{
const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L));
const int __nmax = 20000;
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
const _Tp __x = -__xin;
const _Tp __x3 = __x * __x * __x;
const _Tp __t0 = __a / __c;
const _Tp __t1 = (__a + _Tp(1)) / (_Tp(2) * __c);
const _Tp __t2 = (__a + _Tp(2)) / (_Tp(2) * (__c + _Tp(1)));
_Tp __F = _Tp(1);
_Tp __prec;
_Tp __Bnm3 = _Tp(1);
_Tp __Bnm2 = _Tp(1) + __t1 * __x;
_Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x);
_Tp __Anm3 = _Tp(1);
_Tp __Anm2 = __Bnm2 - __t0 * __x;
_Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x
+ __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x;
int __n = 3;
while(1)
{
_Tp __npam1 = _Tp(__n - 1) + __a;
_Tp __npcm1 = _Tp(__n - 1) + __c;
_Tp __npam2 = _Tp(__n - 2) + __a;
_Tp __npcm2 = _Tp(__n - 2) + __c;
_Tp __tnm1 = _Tp(2 * __n - 1);
_Tp __tnm3 = _Tp(2 * __n - 3);
_Tp __tnm5 = _Tp(2 * __n - 5);
_Tp __F1 = (_Tp(__n - 2) - __a) / (_Tp(2) * __tnm3 * __npcm1);
_Tp __F2 = (_Tp(__n) + __a) * __npam1
/ (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1);
_Tp __F3 = -__npam2 * __npam1 * (_Tp(__n - 2) - __a)
/ (_Tp(8) * __tnm3 * __tnm3 * __tnm5
* (_Tp(__n - 3) + __c) * __npcm2 * __npcm1);
_Tp __E = -__npam1 * (_Tp(__n - 1) - __c)
/ (_Tp(2) * __tnm3 * __npcm2 * __npcm1);
_Tp __An = (_Tp(1) + __F1 * __x) * __Anm1
+ (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3;
_Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1
+ (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3;
_Tp __r = __An / __Bn;
__prec = std::abs((__F - __r) / __F);
__F = __r;
if (__prec < __eps || __n > __nmax)
break;
if (std::abs(__An) > __big || std::abs(__Bn) > __big)
{
__An /= __big;
__Bn /= __big;
__Anm1 /= __big;
__Bnm1 /= __big;
__Anm2 /= __big;
__Bnm2 /= __big;
__Anm3 /= __big;
__Bnm3 /= __big;
}
else if (std::abs(__An) < _Tp(1) / __big
|| std::abs(__Bn) < _Tp(1) / __big)
{
__An *= __big;
__Bn *= __big;
__Anm1 *= __big;
__Bnm1 *= __big;
__Anm2 *= __big;
__Bnm2 *= __big;
__Anm3 *= __big;
__Bnm3 *= __big;
}
++__n;
__Bnm3 = __Bnm2;
__Bnm2 = __Bnm1;
__Bnm1 = __Bn;
__Anm3 = __Anm2;
__Anm2 = __Anm1;
__Anm1 = __An;
}
if (__n >= __nmax)
std::__throw_runtime_error(__N("Iteration failed to converge "
"in __conf_hyperg_luke."));
return __F;
}
/**
* @brief Return the confluent hypogeometric function
* @f$ _1F_1(a;c;x) @f$.
*
* @todo Handle b == nonpositive integer blowup - return NaN.
*
* @param __a The @a numerator parameter.
* @param __c The @a denominator parameter.
* @param __x The argument of the confluent hypergeometric function.
* @return The confluent hypergeometric function.
*/
template<typename _Tp>
_Tp
__conf_hyperg(_Tp __a, _Tp __c, _Tp __x)
{
#if _GLIBCXX_USE_C99_MATH_TR1
const _Tp __c_nint = std::tr1::nearbyint(__c);
#else
const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L));
#endif
if (__isnan(__a) || __isnan(__c) || __isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__c_nint == __c && __c_nint <= 0)
return std::numeric_limits<_Tp>::infinity();
else if (__a == _Tp(0))
return _Tp(1);
else if (__c == __a)
return std::exp(__x);
else if (__x < _Tp(0))
return __conf_hyperg_luke(__a, __c, __x);
else
return __conf_hyperg_series(__a, __c, __x);
}
/**
* @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
* by series expansion.
*
* The hypogeometric function is defined by
* @f[
* _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
* \sum_{n=0}^{\infty}
* \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
* \frac{x^n}{n!}
* @f]
*
* This works and it's pretty fast.
*
* @param __a The first @a numerator parameter.
* @param __a The second @a numerator parameter.
* @param __c The @a denominator parameter.
* @param __x The argument of the confluent hypergeometric function.
* @return The confluent hypergeometric function.
*/
template<typename _Tp>
_Tp
__hyperg_series(_Tp __a, _Tp __b, _Tp __c, _Tp __x)
{
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
_Tp __term = _Tp(1);
_Tp __Fabc = _Tp(1);
const unsigned int __max_iter = 100000;
unsigned int __i;
for (__i = 0; __i < __max_iter; ++__i)
{
__term *= (__a + _Tp(__i)) * (__b + _Tp(__i)) * __x
/ ((__c + _Tp(__i)) * _Tp(1 + __i));
if (std::abs(__term) < __eps)
{
break;
}
__Fabc += __term;
}
if (__i == __max_iter)
std::__throw_runtime_error(__N("Series failed to converge "
"in __hyperg_series."));
return __Fabc;
}
/**
* @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
* by an iterative procedure described in
* Luke, Algorithms for the Computation of Mathematical Functions.
*/
template<typename _Tp>
_Tp
__hyperg_luke(_Tp __a, _Tp __b, _Tp __c, _Tp __xin)
{
const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L));
const int __nmax = 20000;
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
const _Tp __x = -__xin;
const _Tp __x3 = __x * __x * __x;
const _Tp __t0 = __a * __b / __c;
const _Tp __t1 = (__a + _Tp(1)) * (__b + _Tp(1)) / (_Tp(2) * __c);
const _Tp __t2 = (__a + _Tp(2)) * (__b + _Tp(2))
/ (_Tp(2) * (__c + _Tp(1)));
_Tp __F = _Tp(1);
_Tp __Bnm3 = _Tp(1);
_Tp __Bnm2 = _Tp(1) + __t1 * __x;
_Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x);
_Tp __Anm3 = _Tp(1);
_Tp __Anm2 = __Bnm2 - __t0 * __x;
_Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x
+ __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x;
int __n = 3;
while (1)
{
const _Tp __npam1 = _Tp(__n - 1) + __a;
const _Tp __npbm1 = _Tp(__n - 1) + __b;
const _Tp __npcm1 = _Tp(__n - 1) + __c;
const _Tp __npam2 = _Tp(__n - 2) + __a;
const _Tp __npbm2 = _Tp(__n - 2) + __b;
const _Tp __npcm2 = _Tp(__n - 2) + __c;
const _Tp __tnm1 = _Tp(2 * __n - 1);
const _Tp __tnm3 = _Tp(2 * __n - 3);
const _Tp __tnm5 = _Tp(2 * __n - 5);
const _Tp __n2 = __n * __n;
const _Tp __F1 = (_Tp(3) * __n2 + (__a + __b - _Tp(6)) * __n
+ _Tp(2) - __a * __b - _Tp(2) * (__a + __b))
/ (_Tp(2) * __tnm3 * __npcm1);
const _Tp __F2 = -(_Tp(3) * __n2 - (__a + __b + _Tp(6)) * __n
+ _Tp(2) - __a * __b) * __npam1 * __npbm1
/ (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1);
const _Tp __F3 = (__npam2 * __npam1 * __npbm2 * __npbm1
* (_Tp(__n - 2) - __a) * (_Tp(__n - 2) - __b))
/ (_Tp(8) * __tnm3 * __tnm3 * __tnm5
* (_Tp(__n - 3) + __c) * __npcm2 * __npcm1);
const _Tp __E = -__npam1 * __npbm1 * (_Tp(__n - 1) - __c)
/ (_Tp(2) * __tnm3 * __npcm2 * __npcm1);
_Tp __An = (_Tp(1) + __F1 * __x) * __Anm1
+ (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3;
_Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1
+ (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3;
const _Tp __r = __An / __Bn;
const _Tp __prec = std::abs((__F - __r) / __F);
__F = __r;
if (__prec < __eps || __n > __nmax)
break;
if (std::abs(__An) > __big || std::abs(__Bn) > __big)
{
__An /= __big;
__Bn /= __big;
__Anm1 /= __big;
__Bnm1 /= __big;
__Anm2 /= __big;
__Bnm2 /= __big;
__Anm3 /= __big;
__Bnm3 /= __big;
}
else if (std::abs(__An) < _Tp(1) / __big
|| std::abs(__Bn) < _Tp(1) / __big)
{
__An *= __big;
__Bn *= __big;
__Anm1 *= __big;
__Bnm1 *= __big;
__Anm2 *= __big;
__Bnm2 *= __big;
__Anm3 *= __big;
__Bnm3 *= __big;
}
++__n;
__Bnm3 = __Bnm2;
__Bnm2 = __Bnm1;
__Bnm1 = __Bn;
__Anm3 = __Anm2;
__Anm2 = __Anm1;
__Anm1 = __An;
}
if (__n >= __nmax)
std::__throw_runtime_error(__N("Iteration failed to converge "
"in __hyperg_luke."));
return __F;
}
/**
* @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
* by the reflection formulae in Abramowitz & Stegun formula
* 15.3.6 for d = c - a - b not integral and formula 15.3.11 for
* d = c - a - b integral. This assumes a, b, c != negative
* integer.
*
* The hypogeometric function is defined by
* @f[
* _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
* \sum_{n=0}^{\infty}
* \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
* \frac{x^n}{n!}
* @f]
*
* The reflection formula for nonintegral @f$ d = c - a - b @f$ is:
* @f[
* _2F_1(a,b;c;x) = \frac{\Gamma(c)\Gamma(d)}{\Gamma(c-a)\Gamma(c-b)}
* _2F_1(a,b;1-d;1-x)
* + \frac{\Gamma(c)\Gamma(-d)}{\Gamma(a)\Gamma(b)}
* _2F_1(c-a,c-b;1+d;1-x)
* @f]
*
* The reflection formula for integral @f$ m = c - a - b @f$ is:
* @f[
* _2F_1(a,b;a+b+m;x) = \frac{\Gamma(m)\Gamma(a+b+m)}{\Gamma(a+m)\Gamma(b+m)}
* \sum_{k=0}^{m-1} \frac{(m+a)_k(m+b)_k}{k!(1-m)_k}
* -
* @f]
*/
template<typename _Tp>
_Tp
__hyperg_reflect(_Tp __a, _Tp __b, _Tp __c, _Tp __x)
{
const _Tp __d = __c - __a - __b;
const int __intd = std::floor(__d + _Tp(0.5L));
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
const _Tp __toler = _Tp(1000) * __eps;
const _Tp __log_max = std::log(std::numeric_limits<_Tp>::max());
const bool __d_integer = (std::abs(__d - __intd) < __toler);
if (__d_integer)
{
const _Tp __ln_omx = std::log(_Tp(1) - __x);
const _Tp __ad = std::abs(__d);
_Tp __F1, __F2;
_Tp __d1, __d2;
if (__d >= _Tp(0))
{
__d1 = __d;
__d2 = _Tp(0);
}
else
{
__d1 = _Tp(0);
__d2 = __d;
}
const _Tp __lng_c = __log_gamma(__c);
// Evaluate F1.
if (__ad < __eps)
{
// d = c - a - b = 0.
__F1 = _Tp(0);
}
else
{
bool __ok_d1 = true;
_Tp __lng_ad, __lng_ad1, __lng_bd1;
__try
{
__lng_ad = __log_gamma(__ad);
__lng_ad1 = __log_gamma(__a + __d1);
__lng_bd1 = __log_gamma(__b + __d1);
}
__catch(...)
{
__ok_d1 = false;
}
if (__ok_d1)
{
/* Gamma functions in the denominator are ok.
* Proceed with evaluation.
*/
_Tp __sum1 = _Tp(1);
_Tp __term = _Tp(1);
_Tp __ln_pre1 = __lng_ad + __lng_c + __d2 * __ln_omx
- __lng_ad1 - __lng_bd1;
/* Do F1 sum.
*/
for (int __i = 1; __i < __ad; ++__i)
{
const int __j = __i - 1;
__term *= (__a + __d2 + __j) * (__b + __d2 + __j)
/ (_Tp(1) + __d2 + __j) / __i * (_Tp(1) - __x);
__sum1 += __term;
}
if (__ln_pre1 > __log_max)
std::__throw_runtime_error(__N("Overflow of gamma functions"
" in __hyperg_luke."));
else
__F1 = std::exp(__ln_pre1) * __sum1;
}
else
{
// Gamma functions in the denominator were not ok.
// So the F1 term is zero.
__F1 = _Tp(0);
}
} // end F1 evaluation
// Evaluate F2.
bool __ok_d2 = true;
_Tp __lng_ad2, __lng_bd2;
__try
{
__lng_ad2 = __log_gamma(__a + __d2);
__lng_bd2 = __log_gamma(__b + __d2);
}
__catch(...)
{
__ok_d2 = false;
}
if (__ok_d2)
{
// Gamma functions in the denominator are ok.
// Proceed with evaluation.
const int __maxiter = 2000;
const _Tp __psi_1 = -__numeric_constants<_Tp>::__gamma_e();
const _Tp __psi_1pd = __psi(_Tp(1) + __ad);
const _Tp __psi_apd1 = __psi(__a + __d1);
const _Tp __psi_bpd1 = __psi(__b + __d1);
_Tp __psi_term = __psi_1 + __psi_1pd - __psi_apd1
- __psi_bpd1 - __ln_omx;
_Tp __fact = _Tp(1);
_Tp __sum2 = __psi_term;
_Tp __ln_pre2 = __lng_c + __d1 * __ln_omx
- __lng_ad2 - __lng_bd2;
// Do F2 sum.
int __j;
for (__j = 1; __j < __maxiter; ++__j)
{
// Values for psi functions use recurrence;
// Abramowitz & Stegun 6.3.5
const _Tp __term1 = _Tp(1) / _Tp(__j)
+ _Tp(1) / (__ad + __j);
const _Tp __term2 = _Tp(1) / (__a + __d1 + _Tp(__j - 1))
+ _Tp(1) / (__b + __d1 + _Tp(__j - 1));
__psi_term += __term1 - __term2;
__fact *= (__a + __d1 + _Tp(__j - 1))
* (__b + __d1 + _Tp(__j - 1))
/ ((__ad + __j) * __j) * (_Tp(1) - __x);
const _Tp __delta = __fact * __psi_term;
__sum2 += __delta;
if (std::abs(__delta) < __eps * std::abs(__sum2))
break;
}
if (__j == __maxiter)
std::__throw_runtime_error(__N("Sum F2 failed to converge "
"in __hyperg_reflect"));
if (__sum2 == _Tp(0))
__F2 = _Tp(0);
else
__F2 = std::exp(__ln_pre2) * __sum2;
}
else
{
// Gamma functions in the denominator not ok.
// So the F2 term is zero.
__F2 = _Tp(0);
} // end F2 evaluation
const _Tp __sgn_2 = (__intd % 2 == 1 ? -_Tp(1) : _Tp(1));
const _Tp __F = __F1 + __sgn_2 * __F2;
return __F;
}
else
{
// d = c - a - b not an integer.
// These gamma functions appear in the denominator, so we
// catch their harmless domain errors and set the terms to zero.
bool __ok1 = true;
_Tp __sgn_g1ca = _Tp(0), __ln_g1ca = _Tp(0);
_Tp __sgn_g1cb = _Tp(0), __ln_g1cb = _Tp(0);
__try
{
__sgn_g1ca = __log_gamma_sign(__c - __a);
__ln_g1ca = __log_gamma(__c - __a);
__sgn_g1cb = __log_gamma_sign(__c - __b);
__ln_g1cb = __log_gamma(__c - __b);
}
__catch(...)
{
__ok1 = false;
}
bool __ok2 = true;
_Tp __sgn_g2a = _Tp(0), __ln_g2a = _Tp(0);
_Tp __sgn_g2b = _Tp(0), __ln_g2b = _Tp(0);
__try
{
__sgn_g2a = __log_gamma_sign(__a);
__ln_g2a = __log_gamma(__a);
__sgn_g2b = __log_gamma_sign(__b);
__ln_g2b = __log_gamma(__b);
}
__catch(...)
{
__ok2 = false;
}
const _Tp __sgn_gc = __log_gamma_sign(__c);
const _Tp __ln_gc = __log_gamma(__c);
const _Tp __sgn_gd = __log_gamma_sign(__d);
const _Tp __ln_gd = __log_gamma(__d);
const _Tp __sgn_gmd = __log_gamma_sign(-__d);
const _Tp __ln_gmd = __log_gamma(-__d);
const _Tp __sgn1 = __sgn_gc * __sgn_gd * __sgn_g1ca * __sgn_g1cb;
const _Tp __sgn2 = __sgn_gc * __sgn_gmd * __sgn_g2a * __sgn_g2b;
_Tp __pre1, __pre2;
if (__ok1 && __ok2)
{
_Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb;
_Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b
+ __d * std::log(_Tp(1) - __x);
if (__ln_pre1 < __log_max && __ln_pre2 < __log_max)
{
__pre1 = std::exp(__ln_pre1);
__pre2 = std::exp(__ln_pre2);
__pre1 *= __sgn1;
__pre2 *= __sgn2;
}
else
{
std::__throw_runtime_error(__N("Overflow of gamma functions "
"in __hyperg_reflect"));
}
}
else if (__ok1 && !__ok2)
{
_Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb;
if (__ln_pre1 < __log_max)
{
__pre1 = std::exp(__ln_pre1);
__pre1 *= __sgn1;
__pre2 = _Tp(0);
}
else
{
std::__throw_runtime_error(__N("Overflow of gamma functions "
"in __hyperg_reflect"));
}
}
else if (!__ok1 && __ok2)
{
_Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b
+ __d * std::log(_Tp(1) - __x);
if (__ln_pre2 < __log_max)
{
__pre1 = _Tp(0);
__pre2 = std::exp(__ln_pre2);
__pre2 *= __sgn2;
}
else
{
std::__throw_runtime_error(__N("Overflow of gamma functions "
"in __hyperg_reflect"));
}
}
else
{
__pre1 = _Tp(0);
__pre2 = _Tp(0);
std::__throw_runtime_error(__N("Underflow of gamma functions "
"in __hyperg_reflect"));
}
const _Tp __F1 = __hyperg_series(__a, __b, _Tp(1) - __d,
_Tp(1) - __x);
const _Tp __F2 = __hyperg_series(__c - __a, __c - __b, _Tp(1) + __d,
_Tp(1) - __x);
const _Tp __F = __pre1 * __F1 + __pre2 * __F2;
return __F;
}
}
/**
* @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$.
*
* The hypogeometric function is defined by
* @f[
* _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
* \sum_{n=0}^{\infty}
* \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
* \frac{x^n}{n!}
* @f]
*
* @param __a The first @a numerator parameter.
* @param __a The second @a numerator parameter.
* @param __c The @a denominator parameter.
* @param __x The argument of the confluent hypergeometric function.
* @return The confluent hypergeometric function.
*/
template<typename _Tp>
_Tp
__hyperg(_Tp __a, _Tp __b, _Tp __c, _Tp __x)
{
#if _GLIBCXX_USE_C99_MATH_TR1
const _Tp __a_nint = std::tr1::nearbyint(__a);
const _Tp __b_nint = std::tr1::nearbyint(__b);
const _Tp __c_nint = std::tr1::nearbyint(__c);
#else
const _Tp __a_nint = static_cast<int>(__a + _Tp(0.5L));
const _Tp __b_nint = static_cast<int>(__b + _Tp(0.5L));
const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L));
#endif
const _Tp __toler = _Tp(1000) * std::numeric_limits<_Tp>::epsilon();
if (std::abs(__x) >= _Tp(1))
std::__throw_domain_error(__N("Argument outside unit circle "
"in __hyperg."));
else if (__isnan(__a) || __isnan(__b)
|| __isnan(__c) || __isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__c_nint == __c && __c_nint <= _Tp(0))
return std::numeric_limits<_Tp>::infinity();
else if (std::abs(__c - __b) < __toler || std::abs(__c - __a) < __toler)
return std::pow(_Tp(1) - __x, __c - __a - __b);
else if (__a >= _Tp(0) && __b >= _Tp(0) && __c >= _Tp(0)
&& __x >= _Tp(0) && __x < _Tp(0.995L))
return __hyperg_series(__a, __b, __c, __x);
else if (std::abs(__a) < _Tp(10) && std::abs(__b) < _Tp(10))
{
// For integer a and b the hypergeometric function is a
// finite polynomial.
if (__a < _Tp(0) && std::abs(__a - __a_nint) < __toler)
return __hyperg_series(__a_nint, __b, __c, __x);
else if (__b < _Tp(0) && std::abs(__b - __b_nint) < __toler)
return __hyperg_series(__a, __b_nint, __c, __x);
else if (__x < -_Tp(0.25L))
return __hyperg_luke(__a, __b, __c, __x);
else if (__x < _Tp(0.5L))
return __hyperg_series(__a, __b, __c, __x);
else
if (std::abs(__c) > _Tp(10))
return __hyperg_series(__a, __b, __c, __x);
else
return __hyperg_reflect(__a, __b, __c, __x);
}
else
return __hyperg_luke(__a, __b, __c, __x);
}
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std::tr1::__detail
}
}
#endif // _GLIBCXX_TR1_HYPERGEOMETRIC_TCC
|