1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
|
// Bits and pieces used in algorithms -*- C++ -*-
// Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996-1998
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/** @file stl_algobase.h
* This is an internal header file, included by other library headers.
* You should not attempt to use it directly.
*/
#ifndef _ALGOBASE_H
#define _ALGOBASE_H 1
#include <bits/c++config.h>
#include <cstring>
#include <climits>
#include <cstdlib>
#include <cstddef>
#include <new>
#include <iosfwd>
#include <bits/stl_pair.h>
#include <bits/type_traits.h>
#include <bits/stl_iterator_base_types.h>
#include <bits/stl_iterator_base_funcs.h>
#include <bits/stl_iterator.h>
#include <bits/concept_check.h>
#include <debug/debug.h>
namespace std
{
/**
* @brief Swaps the contents of two iterators.
* @param a An iterator.
* @param b Another iterator.
* @return Nothing.
*
* This function swaps the values pointed to by two iterators, not the
* iterators themselves.
*/
template<typename _ForwardIterator1, typename _ForwardIterator2>
inline void
iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b)
{
typedef typename iterator_traits<_ForwardIterator1>::value_type
_ValueType1;
typedef typename iterator_traits<_ForwardIterator2>::value_type
_ValueType2;
// concept requirements
__glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
_ForwardIterator1>)
__glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
_ForwardIterator2>)
__glibcxx_function_requires(_ConvertibleConcept<_ValueType1,
_ValueType2>)
__glibcxx_function_requires(_ConvertibleConcept<_ValueType2,
_ValueType1>)
const _ValueType1 __tmp = *__a;
*__a = *__b;
*__b = __tmp;
}
/**
* @brief Swaps two values.
* @param a A thing of arbitrary type.
* @param b Another thing of arbitrary type.
* @return Nothing.
*
* This is the simple classic generic implementation. It will work on
* any type which has a copy constructor and an assignment operator.
*/
template<typename _Tp>
inline void
swap(_Tp& __a, _Tp& __b)
{
// concept requirements
__glibcxx_function_requires(_SGIAssignableConcept<_Tp>)
const _Tp __tmp = __a;
__a = __b;
__b = __tmp;
}
#undef min
#undef max
/**
* @brief This does what you think it does.
* @param a A thing of arbitrary type.
* @param b Another thing of arbitrary type.
* @return The lesser of the parameters.
*
* This is the simple classic generic implementation. It will work on
* temporary expressions, since they are only evaluated once, unlike a
* preprocessor macro.
*/
template<typename _Tp>
inline const _Tp&
min(const _Tp& __a, const _Tp& __b)
{
// concept requirements
__glibcxx_function_requires(_LessThanComparableConcept<_Tp>)
//return __b < __a ? __b : __a;
if (__b < __a)
return __b;
return __a;
}
/**
* @brief This does what you think it does.
* @param a A thing of arbitrary type.
* @param b Another thing of arbitrary type.
* @return The greater of the parameters.
*
* This is the simple classic generic implementation. It will work on
* temporary expressions, since they are only evaluated once, unlike a
* preprocessor macro.
*/
template<typename _Tp>
inline const _Tp&
max(const _Tp& __a, const _Tp& __b)
{
// concept requirements
__glibcxx_function_requires(_LessThanComparableConcept<_Tp>)
//return __a < __b ? __b : __a;
if (__a < __b)
return __b;
return __a;
}
/**
* @brief This does what you think it does.
* @param a A thing of arbitrary type.
* @param b Another thing of arbitrary type.
* @param comp A @link s20_3_3_comparisons comparison functor@endlink.
* @return The lesser of the parameters.
*
* This will work on temporary expressions, since they are only evaluated
* once, unlike a preprocessor macro.
*/
template<typename _Tp, typename _Compare>
inline const _Tp&
min(const _Tp& __a, const _Tp& __b, _Compare __comp)
{
//return __comp(__b, __a) ? __b : __a;
if (__comp(__b, __a))
return __b;
return __a;
}
/**
* @brief This does what you think it does.
* @param a A thing of arbitrary type.
* @param b Another thing of arbitrary type.
* @param comp A @link s20_3_3_comparisons comparison functor@endlink.
* @return The greater of the parameters.
*
* This will work on temporary expressions, since they are only evaluated
* once, unlike a preprocessor macro.
*/
template<typename _Tp, typename _Compare>
inline const _Tp&
max(const _Tp& __a, const _Tp& __b, _Compare __comp)
{
//return __comp(__a, __b) ? __b : __a;
if (__comp(__a, __b))
return __b;
return __a;
}
// All of these auxiliary functions serve two purposes. (1) Replace
// calls to copy with memmove whenever possible. (Memmove, not memcpy,
// because the input and output ranges are permitted to overlap.)
// (2) If we're using random access iterators, then write the loop as
// a for loop with an explicit count.
template<typename _InputIterator, typename _OutputIterator>
inline _OutputIterator
__copy(_InputIterator __first, _InputIterator __last,
_OutputIterator __result, input_iterator_tag)
{
for (; __first != __last; ++__result, ++__first)
*__result = *__first;
return __result;
}
template<typename _RandomAccessIterator, typename _OutputIterator>
inline _OutputIterator
__copy(_RandomAccessIterator __first, _RandomAccessIterator __last,
_OutputIterator __result, random_access_iterator_tag)
{
typedef typename iterator_traits<_RandomAccessIterator>::difference_type
_Distance;
for (_Distance __n = __last - __first; __n > 0; --__n)
{
*__result = *__first;
++__first;
++__result;
}
return __result;
}
template<typename _Tp>
inline _Tp*
__copy_trivial(const _Tp* __first, const _Tp* __last, _Tp* __result)
{
std::memmove(__result, __first, sizeof(_Tp) * (__last - __first));
return __result + (__last - __first);
}
template<typename _InputIterator, typename _OutputIterator>
inline _OutputIterator
__copy_aux2(_InputIterator __first, _InputIterator __last,
_OutputIterator __result, __false_type)
{ return std::__copy(__first, __last, __result,
std::__iterator_category(__first)); }
template<typename _InputIterator, typename _OutputIterator>
inline _OutputIterator
__copy_aux2(_InputIterator __first, _InputIterator __last,
_OutputIterator __result, __true_type)
{ return std::__copy(__first, __last, __result,
std::__iterator_category(__first)); }
template<typename _Tp>
inline _Tp*
__copy_aux2(_Tp* __first, _Tp* __last, _Tp* __result, __true_type)
{ return std::__copy_trivial(__first, __last, __result); }
template<typename _Tp>
inline _Tp*
__copy_aux2(const _Tp* __first, const _Tp* __last, _Tp* __result,
__true_type)
{ return std::__copy_trivial(__first, __last, __result); }
template<typename _InputIterator, typename _OutputIterator>
inline _OutputIterator
__copy_ni2(_InputIterator __first, _InputIterator __last,
_OutputIterator __result, __true_type)
{
typedef typename iterator_traits<_InputIterator>::value_type
_ValueType;
typedef typename __type_traits<
_ValueType>::has_trivial_assignment_operator _Trivial;
return _OutputIterator(std::__copy_aux2(__first, __last, __result.base(),
_Trivial()));
}
template<typename _InputIterator, typename _OutputIterator>
inline _OutputIterator
__copy_ni2(_InputIterator __first, _InputIterator __last,
_OutputIterator __result, __false_type)
{
typedef typename iterator_traits<_InputIterator>::value_type _ValueType;
typedef typename __type_traits<
_ValueType>::has_trivial_assignment_operator _Trivial;
return std::__copy_aux2(__first, __last, __result, _Trivial());
}
template<typename _InputIterator, typename _OutputIterator>
inline _OutputIterator
__copy_ni1(_InputIterator __first, _InputIterator __last,
_OutputIterator __result, __true_type)
{
typedef typename _Is_normal_iterator<_OutputIterator>::_Normal __Normal;
return std::__copy_ni2(__first.base(), __last.base(),
__result, __Normal());
}
template<typename _InputIterator, typename _OutputIterator>
inline _OutputIterator
__copy_ni1(_InputIterator __first, _InputIterator __last,
_OutputIterator __result, __false_type)
{
typedef typename _Is_normal_iterator<_OutputIterator>::_Normal __Normal;
return std::__copy_ni2(__first, __last, __result, __Normal());
}
/**
* @brief Copies the range [first,last) into result.
* @param first An input iterator.
* @param last An input iterator.
* @param result An output iterator.
* @return result + (first - last)
*
* This inline function will boil down to a call to @c memmove whenever
* possible. Failing that, if random access iterators are passed, then the
* loop count will be known (and therefore a candidate for compiler
* optimizations such as unrolling). Result may not be contained within
* [first,last); the copy_backward function should be used instead.
*
* Note that the end of the output range is permitted to be contained
* within [first,last).
*/
template<typename _InputIterator, typename _OutputIterator>
inline _OutputIterator
copy(_InputIterator __first, _InputIterator __last,
_OutputIterator __result)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
typename iterator_traits<_InputIterator>::value_type>)
__glibcxx_requires_valid_range(__first, __last);
typedef typename _Is_normal_iterator<_InputIterator>::_Normal __Normal;
return std::__copy_ni1(__first, __last, __result, __Normal());
}
template<typename _BidirectionalIterator1, typename _BidirectionalIterator2>
inline _BidirectionalIterator2
__copy_backward(_BidirectionalIterator1 __first,
_BidirectionalIterator1 __last,
_BidirectionalIterator2 __result,
bidirectional_iterator_tag)
{
while (__first != __last)
*--__result = *--__last;
return __result;
}
template<typename _RandomAccessIterator, typename _BidirectionalIterator>
inline _BidirectionalIterator
__copy_backward(_RandomAccessIterator __first, _RandomAccessIterator __last,
_BidirectionalIterator __result, random_access_iterator_tag)
{
typename iterator_traits<_RandomAccessIterator>::difference_type __n;
for (__n = __last - __first; __n > 0; --__n)
*--__result = *--__last;
return __result;
}
// This dispatch class is a workaround for compilers that do not
// have partial ordering of function templates. All we're doing is
// creating a specialization so that we can turn a call to copy_backward
// into a memmove whenever possible.
template<typename _BidirectionalIterator1, typename _BidirectionalIterator2,
typename _BoolType>
struct __copy_backward_dispatch
{
static _BidirectionalIterator2
copy(_BidirectionalIterator1 __first, _BidirectionalIterator1 __last,
_BidirectionalIterator2 __result)
{ return std::__copy_backward(__first, __last, __result,
std::__iterator_category(__first)); }
};
template<typename _Tp>
struct __copy_backward_dispatch<_Tp*, _Tp*, __true_type>
{
static _Tp*
copy(const _Tp* __first, const _Tp* __last, _Tp* __result)
{
const ptrdiff_t _Num = __last - __first;
std::memmove(__result - _Num, __first, sizeof(_Tp) * _Num);
return __result - _Num;
}
};
template<typename _Tp>
struct __copy_backward_dispatch<const _Tp*, _Tp*, __true_type>
{
static _Tp*
copy(const _Tp* __first, const _Tp* __last, _Tp* __result)
{
return std::__copy_backward_dispatch<_Tp*, _Tp*, __true_type>
::copy(__first, __last, __result);
}
};
template<typename _BI1, typename _BI2>
inline _BI2
__copy_backward_aux(_BI1 __first, _BI1 __last, _BI2 __result)
{
typedef typename __type_traits<typename iterator_traits<_BI2>::value_type>
::has_trivial_assignment_operator _Trivial;
return
std::__copy_backward_dispatch<_BI1, _BI2, _Trivial>::copy(__first,
__last,
__result);
}
template <typename _BI1, typename _BI2>
inline _BI2
__copy_backward_output_normal_iterator(_BI1 __first, _BI1 __last,
_BI2 __result, __true_type)
{ return _BI2(std::__copy_backward_aux(__first, __last, __result.base())); }
template <typename _BI1, typename _BI2>
inline _BI2
__copy_backward_output_normal_iterator(_BI1 __first, _BI1 __last,
_BI2 __result, __false_type)
{ return std::__copy_backward_aux(__first, __last, __result); }
template <typename _BI1, typename _BI2>
inline _BI2
__copy_backward_input_normal_iterator(_BI1 __first, _BI1 __last,
_BI2 __result, __true_type)
{
typedef typename _Is_normal_iterator<_BI2>::_Normal __Normal;
return std::__copy_backward_output_normal_iterator(__first.base(),
__last.base(),
__result, __Normal());
}
template <typename _BI1, typename _BI2>
inline _BI2
__copy_backward_input_normal_iterator(_BI1 __first, _BI1 __last,
_BI2 __result, __false_type)
{
typedef typename _Is_normal_iterator<_BI2>::_Normal __Normal;
return std::__copy_backward_output_normal_iterator(__first, __last,
__result, __Normal());
}
/**
* @brief Copies the range [first,last) into result.
* @param first A bidirectional iterator.
* @param last A bidirectional iterator.
* @param result A bidirectional iterator.
* @return result - (first - last)
*
* The function has the same effect as copy, but starts at the end of the
* range and works its way to the start, returning the start of the result.
* This inline function will boil down to a call to @c memmove whenever
* possible. Failing that, if random access iterators are passed, then the
* loop count will be known (and therefore a candidate for compiler
* optimizations such as unrolling).
*
* Result may not be in the range [first,last). Use copy instead. Note
* that the start of the output range may overlap [first,last).
*/
template <typename _BI1, typename _BI2>
inline _BI2
copy_backward(_BI1 __first, _BI1 __last, _BI2 __result)
{
// concept requirements
__glibcxx_function_requires(_BidirectionalIteratorConcept<_BI1>)
__glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<_BI2>)
__glibcxx_function_requires(_ConvertibleConcept<
typename iterator_traits<_BI1>::value_type,
typename iterator_traits<_BI2>::value_type>)
__glibcxx_requires_valid_range(__first, __last);
typedef typename _Is_normal_iterator<_BI1>::_Normal __Normal;
return std::__copy_backward_input_normal_iterator(__first, __last,
__result, __Normal());
}
/**
* @brief Fills the range [first,last) with copies of value.
* @param first A forward iterator.
* @param last A forward iterator.
* @param value A reference-to-const of arbitrary type.
* @return Nothing.
*
* This function fills a range with copies of the same value. For one-byte
* types filling contiguous areas of memory, this becomes an inline call to
* @c memset.
*/
template<typename _ForwardIterator, typename _Tp>
void
fill(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value)
{
// concept requirements
__glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
_ForwardIterator>)
__glibcxx_requires_valid_range(__first, __last);
for ( ; __first != __last; ++__first)
*__first = __value;
}
/**
* @brief Fills the range [first,first+n) with copies of value.
* @param first An output iterator.
* @param n The count of copies to perform.
* @param value A reference-to-const of arbitrary type.
* @return The iterator at first+n.
*
* This function fills a range with copies of the same value. For one-byte
* types filling contiguous areas of memory, this becomes an inline call to
* @c memset.
*/
template<typename _OutputIterator, typename _Size, typename _Tp>
_OutputIterator
fill_n(_OutputIterator __first, _Size __n, const _Tp& __value)
{
// concept requirements
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,_Tp>)
for ( ; __n > 0; --__n, ++__first)
*__first = __value;
return __first;
}
// Specialization: for one-byte types we can use memset.
inline void
fill(unsigned char* __first, unsigned char* __last, const unsigned char& __c)
{
__glibcxx_requires_valid_range(__first, __last);
const unsigned char __tmp = __c;
std::memset(__first, __tmp, __last - __first);
}
inline void
fill(signed char* __first, signed char* __last, const signed char& __c)
{
__glibcxx_requires_valid_range(__first, __last);
const signed char __tmp = __c;
std::memset(__first, static_cast<unsigned char>(__tmp), __last - __first);
}
inline void
fill(char* __first, char* __last, const char& __c)
{
__glibcxx_requires_valid_range(__first, __last);
const char __tmp = __c;
std::memset(__first, static_cast<unsigned char>(__tmp), __last - __first);
}
template<typename _Size>
inline unsigned char*
fill_n(unsigned char* __first, _Size __n, const unsigned char& __c)
{
std::fill(__first, __first + __n, __c);
return __first + __n;
}
template<typename _Size>
inline signed char*
fill_n(char* __first, _Size __n, const signed char& __c)
{
std::fill(__first, __first + __n, __c);
return __first + __n;
}
template<typename _Size>
inline char*
fill_n(char* __first, _Size __n, const char& __c)
{
std::fill(__first, __first + __n, __c);
return __first + __n;
}
/**
* @brief Finds the places in ranges which don't match.
* @param first1 An input iterator.
* @param last1 An input iterator.
* @param first2 An input iterator.
* @return A pair of iterators pointing to the first mismatch.
*
* This compares the elements of two ranges using @c == and returns a pair
* of iterators. The first iterator points into the first range, the
* second iterator points into the second range, and the elements pointed
* to by the iterators are not equal.
*/
template<typename _InputIterator1, typename _InputIterator2>
pair<_InputIterator1, _InputIterator2>
mismatch(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
__glibcxx_function_requires(_EqualOpConcept<
typename iterator_traits<_InputIterator1>::value_type,
typename iterator_traits<_InputIterator2>::value_type>)
__glibcxx_requires_valid_range(__first1, __last1);
while (__first1 != __last1 && *__first1 == *__first2)
{
++__first1;
++__first2;
}
return pair<_InputIterator1, _InputIterator2>(__first1, __first2);
}
/**
* @brief Finds the places in ranges which don't match.
* @param first1 An input iterator.
* @param last1 An input iterator.
* @param first2 An input iterator.
* @param binary_pred A binary predicate @link s20_3_1_base functor@endlink.
* @return A pair of iterators pointing to the first mismatch.
*
* This compares the elements of two ranges using the binary_pred
* parameter, and returns a pair
* of iterators. The first iterator points into the first range, the
* second iterator points into the second range, and the elements pointed
* to by the iterators are not equal.
*/
template<typename _InputIterator1, typename _InputIterator2,
typename _BinaryPredicate>
pair<_InputIterator1, _InputIterator2>
mismatch(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2, _BinaryPredicate __binary_pred)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
__glibcxx_requires_valid_range(__first1, __last1);
while (__first1 != __last1 && __binary_pred(*__first1, *__first2))
{
++__first1;
++__first2;
}
return pair<_InputIterator1, _InputIterator2>(__first1, __first2);
}
/**
* @brief Tests a range for element-wise equality.
* @param first1 An input iterator.
* @param last1 An input iterator.
* @param first2 An input iterator.
* @return A boolean true or false.
*
* This compares the elements of two ranges using @c == and returns true or
* false depending on whether all of the corresponding elements of the
* ranges are equal.
*/
template<typename _InputIterator1, typename _InputIterator2>
inline bool
equal(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
__glibcxx_function_requires(_EqualOpConcept<
typename iterator_traits<_InputIterator1>::value_type,
typename iterator_traits<_InputIterator2>::value_type>)
__glibcxx_requires_valid_range(__first1, __last1);
for ( ; __first1 != __last1; ++__first1, ++__first2)
if (!(*__first1 == *__first2))
return false;
return true;
}
/**
* @brief Tests a range for element-wise equality.
* @param first1 An input iterator.
* @param last1 An input iterator.
* @param first2 An input iterator.
* @param binary_pred A binary predicate @link s20_3_1_base functor@endlink.
* @return A boolean true or false.
*
* This compares the elements of two ranges using the binary_pred
* parameter, and returns true or
* false depending on whether all of the corresponding elements of the
* ranges are equal.
*/
template<typename _InputIterator1, typename _InputIterator2,
typename _BinaryPredicate>
inline bool
equal(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2,
_BinaryPredicate __binary_pred)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
__glibcxx_requires_valid_range(__first1, __last1);
for ( ; __first1 != __last1; ++__first1, ++__first2)
if (!__binary_pred(*__first1, *__first2))
return false;
return true;
}
/**
* @brief Performs "dictionary" comparison on ranges.
* @param first1 An input iterator.
* @param last1 An input iterator.
* @param first2 An input iterator.
* @param last2 An input iterator.
* @return A boolean true or false.
*
* "Returns true if the sequence of elements defined by the range
* [first1,last1) is lexicographically less than the sequence of elements
* defined by the range [first2,last2). Returns false otherwise."
* (Quoted from [25.3.8]/1.) If the iterators are all character pointers,
* then this is an inline call to @c memcmp.
*/
template<typename _InputIterator1, typename _InputIterator2>
bool
lexicographical_compare(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2, _InputIterator2 __last2)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
__glibcxx_function_requires(_LessThanOpConcept<
typename iterator_traits<_InputIterator1>::value_type,
typename iterator_traits<_InputIterator2>::value_type>)
__glibcxx_function_requires(_LessThanOpConcept<
typename iterator_traits<_InputIterator2>::value_type,
typename iterator_traits<_InputIterator1>::value_type>)
__glibcxx_requires_valid_range(__first1, __last1);
__glibcxx_requires_valid_range(__first2, __last2);
for (;__first1 != __last1 && __first2 != __last2; ++__first1, ++__first2)
{
if (*__first1 < *__first2)
return true;
if (*__first2 < *__first1)
return false;
}
return __first1 == __last1 && __first2 != __last2;
}
/**
* @brief Performs "dictionary" comparison on ranges.
* @param first1 An input iterator.
* @param last1 An input iterator.
* @param first2 An input iterator.
* @param last2 An input iterator.
* @param comp A @link s20_3_3_comparisons comparison functor@endlink.
* @return A boolean true or false.
*
* The same as the four-parameter @c lexigraphical_compare, but uses the
* comp parameter instead of @c <.
*/
template<typename _InputIterator1, typename _InputIterator2,
typename _Compare>
bool
lexicographical_compare(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2, _InputIterator2 __last2,
_Compare __comp)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
__glibcxx_requires_valid_range(__first1, __last1);
__glibcxx_requires_valid_range(__first2, __last2);
for ( ; __first1 != __last1 && __first2 != __last2
; ++__first1, ++__first2)
{
if (__comp(*__first1, *__first2))
return true;
if (__comp(*__first2, *__first1))
return false;
}
return __first1 == __last1 && __first2 != __last2;
}
inline bool
lexicographical_compare(const unsigned char* __first1,
const unsigned char* __last1,
const unsigned char* __first2,
const unsigned char* __last2)
{
__glibcxx_requires_valid_range(__first1, __last1);
__glibcxx_requires_valid_range(__first2, __last2);
const size_t __len1 = __last1 - __first1;
const size_t __len2 = __last2 - __first2;
const int __result = std::memcmp(__first1, __first2,
std::min(__len1, __len2));
return __result != 0 ? __result < 0 : __len1 < __len2;
}
inline bool
lexicographical_compare(const char* __first1, const char* __last1,
const char* __first2, const char* __last2)
{
__glibcxx_requires_valid_range(__first1, __last1);
__glibcxx_requires_valid_range(__first2, __last2);
#if CHAR_MAX == SCHAR_MAX
return std::lexicographical_compare((const signed char*) __first1,
(const signed char*) __last1,
(const signed char*) __first2,
(const signed char*) __last2);
#else /* CHAR_MAX == SCHAR_MAX */
return std::lexicographical_compare((const unsigned char*) __first1,
(const unsigned char*) __last1,
(const unsigned char*) __first2,
(const unsigned char*) __last2);
#endif /* CHAR_MAX == SCHAR_MAX */
}
} // namespace std
#endif
|