1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
|
/*
** libgcc support for software floating point.
** Copyright (C) 1991 by Pipeline Associates, Inc. All rights reserved.
** Permission is granted to do *anything* you want with this file,
** commercial or otherwise, provided this message remains intact. So there!
** I would appreciate receiving any updates/patches/changes that anyone
** makes, and am willing to be the repository for said changes (am I
** making a big mistake?).
Warning! Only single-precision is actually implemented. This file
won't really be much use until double-precision is supported.
However, once that is done, this file might eventually become a
replacement for libgcc1.c. It might also make possible
cross-compilation for an IEEE target machine from a non-IEEE
host such as a VAX.
If you'd like to work on completing this, please talk to rms@gnu.ai.mit.edu.
**
** Pat Wood
** Pipeline Associates, Inc.
** pipeline!phw@motown.com or
** sun!pipeline!phw or
** uunet!motown!pipeline!phw
**
** 05/01/91 -- V1.0 -- first release to gcc mailing lists
** 05/04/91 -- V1.1 -- added float and double prototypes and return values
** -- fixed problems with adding and subtracting zero
** -- fixed rounding in truncdfsf2
** -- fixed SWAP define and tested on 386
*/
/*
** The following are routines that replace the libgcc soft floating point
** routines that are called automatically when -msoft-float is selected.
** The support single and double precision IEEE format, with provisions
** for byte-swapped machines (tested on 386). Some of the double-precision
** routines work at full precision, but most of the hard ones simply punt
** and call the single precision routines, producing a loss of accuracy.
** long long support is not assumed or included.
** Overall accuracy is close to IEEE (actually 68882) for single-precision
** arithmetic. I think there may still be a 1 in 1000 chance of a bit
** being rounded the wrong way during a multiply. I'm not fussy enough to
** bother with it, but if anyone is, knock yourself out.
**
** Efficiency has only been addressed where it was obvious that something
** would make a big difference. Anyone who wants to do this right for
** best speed should go in and rewrite in assembler.
**
** I have tested this only on a 68030 workstation and 386/ix integrated
** in with -msoft-float.
*/
/* the following deal with IEEE single-precision numbers */
#define EXCESS 126
#define SIGNBIT 0x80000000
#define HIDDEN (1 << 23)
#define SIGN(fp) ((fp) & SIGNBIT)
#define EXP(fp) (((fp) >> 23) & 0xFF)
#define MANT(fp) (((fp) & 0x7FFFFF) | HIDDEN)
#define PACK(s,e,m) ((s) | ((e) << 23) | (m))
/* the following deal with IEEE double-precision numbers */
#define EXCESSD 1022
#define HIDDEND (1 << 20)
#define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF)
#define SIGND(fp) ((fp.l.upper) & SIGNBIT)
#define MANTD(fp) (((((fp.l.upper) & 0xFFFFF) | HIDDEND) << 10) | \
(fp.l.lower >> 22))
/* define SWAP for 386/960 reverse-byte-order brain-damaged CPUs */
union double_long
{
double d;
#ifdef SWAP
struct {
unsigned long lower;
long upper;
} l;
#else
struct {
long upper;
unsigned long lower;
} l;
#endif
};
union float_long
{
float f;
long l;
};
/* add two floats */
float
__addsf3 (float a1, float a2)
{
register long mant1, mant2;
register union float_long fl1, fl2;
register int exp1, exp2;
int sign = 0;
fl1.f = a1;
fl2.f = a2;
/* check for zero args */
if (!fl1.l)
return (fl2.f);
if (!fl2.l)
return (fl1.f);
exp1 = EXP (fl1.l);
exp2 = EXP (fl2.l);
if (exp1 > exp2 + 25)
return (fl1.l);
if (exp2 > exp1 + 25)
return (fl2.l);
/* do everything in excess precision so's we can round later */
mant1 = MANT (fl1.l) << 6;
mant2 = MANT (fl2.l) << 6;
if (SIGN (fl1.l))
mant1 = -mant1;
if (SIGN (fl2.l))
mant2 = -mant2;
if (exp1 > exp2)
{
mant2 >>= exp1 - exp2;
}
else
{
mant1 >>= exp2 - exp1;
exp1 = exp2;
}
mant1 += mant2;
if (mant1 < 0)
{
mant1 = -mant1;
sign = SIGNBIT;
}
else if (!mant1)
return (0);
/* normalize up */
while (!(mant1 & 0xE0000000))
{
mant1 <<= 1;
exp1--;
}
/* normalize down? */
if (mant1 & (1 << 30))
{
mant1 >>= 1;
exp1++;
}
/* round to even */
mant1 += (mant1 & 0x40) ? 0x20 : 0x1F;
/* normalize down? */
if (mant1 & (1 << 30))
{
mant1 >>= 1;
exp1++;
}
/* lose extra precision */
mant1 >>= 6;
/* turn off hidden bit */
mant1 &= ~HIDDEN;
/* pack up and go home */
fl1.l = PACK (sign, exp1, mant1);
return (fl1.f);
}
/* subtract two floats */
float
__subsf3 (float a1, float a2)
{
register union float_long fl1, fl2;
fl1.f = a1;
fl2.f = a2;
/* check for zero args */
if (!fl2.l)
return (fl1.f);
if (!fl1.l)
return (-fl2.f);
/* twiddle sign bit and add */
fl2.l ^= SIGNBIT;
return __addsf3 (a1, fl2.f);
}
/* compare two floats */
long
__cmpsf2 (float a1, float a2)
{
register union float_long fl1, fl2;
fl1.f = a1;
fl2.f = a2;
if (SIGN (fl1.l) && SIGN (fl2.l))
{
fl1.l ^= SIGNBIT;
fl2.l ^= SIGNBIT;
}
if (fl1.l < fl2.l)
return (-1);
if (fl1.l > fl2.l)
return (1);
return (0);
}
/* multiply two floats */
float
__mulsf3 (float a1, float a2)
{
register union float_long fl1, fl2;
register unsigned long result;
register int exp;
int sign;
fl1.f = a1;
fl2.f = a2;
if (!fl1.l || !fl2.l)
return (0);
/* compute sign and exponent */
sign = SIGN (fl1.l) ^ SIGN (fl2.l);
exp = EXP (fl1.l) - EXCESS;
exp += EXP (fl2.l);
fl1.l = MANT (fl1.l);
fl2.l = MANT (fl2.l);
/* the multiply is done as one 16x16 multiply and two 16x8 multiples */
result = (fl1.l >> 8) * (fl2.l >> 8);
result += ((fl1.l & 0xFF) * (fl2.l >> 8)) >> 8;
result += ((fl2.l & 0xFF) * (fl1.l >> 8)) >> 8;
if (result & 0x80000000)
{
/* round */
result += 0x80;
result >>= 8;
}
else
{
/* round */
result += 0x40;
result >>= 7;
exp--;
}
result &= ~HIDDEN;
/* pack up and go home */
fl1.l = PACK (sign, exp, result);
return (fl1.f);
}
/* divide two floats */
float
__divsf3 (float a1, float a2)
{
register union float_long fl1, fl2;
register int result;
register int mask;
register int exp, sign;
fl1.f = a1;
fl2.f = a2;
/* subtract exponents */
exp = EXP (fl1.l) - EXP (fl2.l) + EXCESS;
/* compute sign */
sign = SIGN (fl1.l) ^ SIGN (fl2.l);
/* divide by zero??? */
if (!fl2.l)
/* return NaN or -NaN */
return (sign ? 0xFFFFFFFF : 0x7FFFFFFF);
/* numerator zero??? */
if (!fl1.l)
return (0);
/* now get mantissas */
fl1.l = MANT (fl1.l);
fl2.l = MANT (fl2.l);
/* this assures we have 25 bits of precision in the end */
if (fl1.l < fl2.l)
{
fl1.l <<= 1;
exp--;
}
/* now we perform repeated subtraction of fl2.l from fl1.l */
mask = 0x1000000;
result = 0;
while (mask)
{
if (fl1.l >= fl2.l)
{
result |= mask;
fl1.l -= fl2.l;
}
fl1.l <<= 1;
mask >>= 1;
}
/* round */
result += 1;
/* normalize down */
exp++;
result >>= 1;
result &= ~HIDDEN;
/* pack up and go home */
fl1.l = PACK (sign, exp, result);
return (fl1.f);
}
/* convert int to double */
double
__floatsidf (register long a1)
{
register int sign = 0, exp = 31 + EXCESSD;
union double_long dl;
if (!a1)
{
dl.l.upper = dl.l.lower = 0;
return (dl.d);
}
if (a1 < 0)
{
sign = SIGNBIT;
a1 = -a1;
}
while (a1 < 0x1000000)
{
a1 <<= 4;
exp -= 4;
}
while (a1 < 0x40000000)
{
a1 <<= 1;
exp--;
}
/* pack up and go home */
dl.l.upper = sign;
dl.l.upper |= exp << 20;
dl.l.upper |= (a1 >> 10) & ~HIDDEND;
dl.l.lower = a1 << 22;
return (dl.d);
}
/* negate a float */
float
__negsf2 (float a1)
{
register union float_long fl1;
fl1.f = a1;
if (!fl1.l)
return (0);
fl1.l ^= SIGNBIT;
return (fl1.f);
}
/* negate a double */
double
__negdf2 (double a1)
{
register union double_long dl1;
dl1.d = a1;
if (!dl1.l.upper && !dl1.l.lower)
return (dl1.d);
dl1.l.upper ^= SIGNBIT;
return (dl1.d);
}
/* convert float to double */
double
__extendsfdf2 (float a1)
{
register union float_long fl1;
register union double_long dl;
register int exp;
fl1.f = a1;
if (!fl1.l)
{
dl.l.upper = dl.l.lower = 0;
return (dl.d);
}
dl.l.upper = SIGN (fl1.l);
exp = EXP (fl1.l) - EXCESS + EXCESSD;
dl.l.upper |= exp << 20;
dl.l.upper |= (MANT (fl1.l) & ~HIDDEN) >> 3;
dl.l.lower = MANT (fl1.l) << 29;
return (dl.d);
}
/* convert double to float */
float
__truncdfsf2 (double a1)
{
register int exp;
register long mant;
register union float_long fl;
register union double_long dl1;
dl1.d = a1;
if (!dl1.l.upper && !dl1.l.lower)
return (0);
exp = EXPD (dl1) - EXCESSD + EXCESS;
/* shift double mantissa 6 bits so we can round */
mant = MANTD (dl1) >> 6;
/* now round and shift down */
mant += 1;
mant >>= 1;
/* did the round overflow? */
if (mant & 0xFF000000)
{
mant >>= 1;
exp++;
}
mant &= ~HIDDEN;
/* pack up and go home */
fl.l = PACK (SIGND (dl1), exp, mant);
return (fl.f);
}
/* compare two doubles */
long
__cmpdf2 (double a1, double a2)
{
register union double_long dl1, dl2;
dl1.d = a1;
dl2.d = a2;
if (SIGND (dl1) && SIGND (dl2))
{
dl1.l.upper ^= SIGNBIT;
dl2.l.upper ^= SIGNBIT;
}
if (dl1.l.upper < dl2.l.upper)
return (-1);
if (dl1.l.upper > dl2.l.upper)
return (1);
if (dl1.l.lower < dl2.l.lower)
return (-1);
if (dl1.l.lower > dl2.l.lower)
return (1);
return (0);
}
/* convert double to int */
long
__fixdfsi (double a1)
{
register union double_long dl1;
register int exp;
register long l;
dl1.d = a1;
if (!dl1.l.upper && !dl1.l.lower)
return (0);
exp = EXPD (dl1) - EXCESSD - 31;
l = MANTD (dl1);
if (exp > 0)
return (0x7FFFFFFF | SIGND (dl1)); /* largest integer */
/* shift down until exp = 0 or l = 0 */
if (exp < 0 && exp > -32 && l)
l >>= -exp;
else
return (0);
return (SIGND (dl1) ? -l : l);
}
/* convert double to unsigned int */
unsigned
long __fixunsdfsi (double a1)
{
register union double_long dl1;
register int exp;
register unsigned long l;
dl1.d = a1;
if (!dl1.l.upper && !dl1.l.lower)
return (0);
exp = EXPD (dl1) - EXCESSD - 32;
l = (((((dl1.l.upper) & 0xFFFFF) | HIDDEND) << 11) | (dl1.l.lower >> 21));
if (exp > 0)
return (0xFFFFFFFF); /* largest integer */
/* shift down until exp = 0 or l = 0 */
if (exp < 0 && exp > -32 && l)
l >>= -exp;
else
return (0);
return (l);
}
/* For now, the hard double-precision routines simply
punt and do it in single */
/* addtwo doubles */
double
__adddf3 (double a1, double a2)
{
return ((float) a1 + (float) a2);
}
/* subtract two doubles */
double
__subdf3 (double a1, double a2)
{
return ((float) a1 - (float) a2);
}
/* multiply two doubles */
double
__muldf3 (double a1, double a2)
{
return ((float) a1 * (float) a2);
}
/* divide two doubles */
double
__divdf3 (double a1, double a2)
{
return ((float) a1 / (float) a2);
}
|