1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
|
/* Try to unroll loops, and split induction variables.
Copyright (C) 1992, 93, 94, 95, 97, 1998 Free Software Foundation, Inc.
Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* Try to unroll a loop, and split induction variables.
Loops for which the number of iterations can be calculated exactly are
handled specially. If the number of iterations times the insn_count is
less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
Otherwise, we try to unroll the loop a number of times modulo the number
of iterations, so that only one exit test will be needed. It is unrolled
a number of times approximately equal to MAX_UNROLLED_INSNS divided by
the insn count.
Otherwise, if the number of iterations can be calculated exactly at
run time, and the loop is always entered at the top, then we try to
precondition the loop. That is, at run time, calculate how many times
the loop will execute, and then execute the loop body a few times so
that the remaining iterations will be some multiple of 4 (or 2 if the
loop is large). Then fall through to a loop unrolled 4 (or 2) times,
with only one exit test needed at the end of the loop.
Otherwise, if the number of iterations can not be calculated exactly,
not even at run time, then we still unroll the loop a number of times
approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
but there must be an exit test after each copy of the loop body.
For each induction variable, which is dead outside the loop (replaceable)
or for which we can easily calculate the final value, if we can easily
calculate its value at each place where it is set as a function of the
current loop unroll count and the variable's value at loop entry, then
the induction variable is split into `N' different variables, one for
each copy of the loop body. One variable is live across the backward
branch, and the others are all calculated as a function of this variable.
This helps eliminate data dependencies, and leads to further opportunities
for cse. */
/* Possible improvements follow: */
/* ??? Add an extra pass somewhere to determine whether unrolling will
give any benefit. E.g. after generating all unrolled insns, compute the
cost of all insns and compare against cost of insns in rolled loop.
- On traditional architectures, unrolling a non-constant bound loop
is a win if there is a giv whose only use is in memory addresses, the
memory addresses can be split, and hence giv increments can be
eliminated.
- It is also a win if the loop is executed many times, and preconditioning
can be performed for the loop.
Add code to check for these and similar cases. */
/* ??? Improve control of which loops get unrolled. Could use profiling
info to only unroll the most commonly executed loops. Perhaps have
a user specifyable option to control the amount of code expansion,
or the percent of loops to consider for unrolling. Etc. */
/* ??? Look at the register copies inside the loop to see if they form a
simple permutation. If so, iterate the permutation until it gets back to
the start state. This is how many times we should unroll the loop, for
best results, because then all register copies can be eliminated.
For example, the lisp nreverse function should be unrolled 3 times
while (this)
{
next = this->cdr;
this->cdr = prev;
prev = this;
this = next;
}
??? The number of times to unroll the loop may also be based on data
references in the loop. For example, if we have a loop that references
x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
/* ??? Add some simple linear equation solving capability so that we can
determine the number of loop iterations for more complex loops.
For example, consider this loop from gdb
#define SWAP_TARGET_AND_HOST(buffer,len)
{
char tmp;
char *p = (char *) buffer;
char *q = ((char *) buffer) + len - 1;
int iterations = (len + 1) >> 1;
int i;
for (p; p < q; p++, q--;)
{
tmp = *q;
*q = *p;
*p = tmp;
}
}
Note that:
start value = p = &buffer + current_iteration
end value = q = &buffer + len - 1 - current_iteration
Given the loop exit test of "p < q", then there must be "q - p" iterations,
set equal to zero and solve for number of iterations:
q - p = len - 1 - 2*current_iteration = 0
current_iteration = (len - 1) / 2
Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
iterations of this loop. */
/* ??? Currently, no labels are marked as loop invariant when doing loop
unrolling. This is because an insn inside the loop, that loads the address
of a label inside the loop into a register, could be moved outside the loop
by the invariant code motion pass if labels were invariant. If the loop
is subsequently unrolled, the code will be wrong because each unrolled
body of the loop will use the same address, whereas each actually needs a
different address. A case where this happens is when a loop containing
a switch statement is unrolled.
It would be better to let labels be considered invariant. When we
unroll loops here, check to see if any insns using a label local to the
loop were moved before the loop. If so, then correct the problem, by
moving the insn back into the loop, or perhaps replicate the insn before
the loop, one copy for each time the loop is unrolled. */
/* The prime factors looked for when trying to unroll a loop by some
number which is modulo the total number of iterations. Just checking
for these 4 prime factors will find at least one factor for 75% of
all numbers theoretically. Practically speaking, this will succeed
almost all of the time since loops are generally a multiple of 2
and/or 5. */
#define NUM_FACTORS 4
struct _factor { int factor, count; } factors[NUM_FACTORS]
= { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
/* Describes the different types of loop unrolling performed. */
enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
#include "config.h"
#include <stdio.h>
#include "rtl.h"
#include "insn-config.h"
#include "integrate.h"
#include "regs.h"
#include "recog.h"
#include "flags.h"
#include "expr.h"
#include "loop.h"
/* This controls which loops are unrolled, and by how much we unroll
them. */
#ifndef MAX_UNROLLED_INSNS
#define MAX_UNROLLED_INSNS 100
#endif
/* Indexed by register number, if non-zero, then it contains a pointer
to a struct induction for a DEST_REG giv which has been combined with
one of more address givs. This is needed because whenever such a DEST_REG
giv is modified, we must modify the value of all split address givs
that were combined with this DEST_REG giv. */
static struct induction **addr_combined_regs;
/* Indexed by register number, if this is a splittable induction variable,
then this will hold the current value of the register, which depends on the
iteration number. */
static rtx *splittable_regs;
/* Indexed by register number, if this is a splittable induction variable,
then this will hold the number of instructions in the loop that modify
the induction variable. Used to ensure that only the last insn modifying
a split iv will update the original iv of the dest. */
static int *splittable_regs_updates;
/* Values describing the current loop's iteration variable. These are set up
by loop_iterations, and used by precondition_loop_p. */
static rtx loop_iteration_var;
static rtx loop_initial_value;
static rtx loop_increment;
static rtx loop_final_value;
static enum rtx_code loop_comparison_code;
/* Forward declarations. */
static void init_reg_map PROTO((struct inline_remap *, int));
static int precondition_loop_p PROTO((rtx *, rtx *, rtx *, rtx, rtx));
static rtx calculate_giv_inc PROTO((rtx, rtx, int));
static rtx initial_reg_note_copy PROTO((rtx, struct inline_remap *));
static void final_reg_note_copy PROTO((rtx, struct inline_remap *));
static void copy_loop_body PROTO((rtx, rtx, struct inline_remap *, rtx, int,
enum unroll_types, rtx, rtx, rtx, rtx));
static void iteration_info PROTO((rtx, rtx *, rtx *, rtx, rtx));
static rtx approx_final_value PROTO((enum rtx_code, rtx, int *, int *));
static int find_splittable_regs PROTO((enum unroll_types, rtx, rtx, rtx, int));
static int find_splittable_givs PROTO((struct iv_class *,enum unroll_types,
rtx, rtx, rtx, int));
static int reg_dead_after_loop PROTO((rtx, rtx, rtx));
static rtx fold_rtx_mult_add PROTO((rtx, rtx, rtx, enum machine_mode));
static rtx remap_split_bivs PROTO((rtx));
/* Try to unroll one loop and split induction variables in the loop.
The loop is described by the arguments LOOP_END, INSN_COUNT, and
LOOP_START. END_INSERT_BEFORE indicates where insns should be added
which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
indicates whether information generated in the strength reduction pass
is available.
This function is intended to be called from within `strength_reduce'
in loop.c. */
void
unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
strength_reduce_p)
rtx loop_end;
int insn_count;
rtx loop_start;
rtx end_insert_before;
int strength_reduce_p;
{
int i, j, temp;
int unroll_number = 1;
rtx copy_start, copy_end;
rtx insn, copy, sequence, pattern, tem;
int max_labelno, max_insnno;
rtx insert_before;
struct inline_remap *map;
char *local_label;
char *local_regno;
int maxregnum;
int new_maxregnum;
rtx exit_label = 0;
rtx start_label;
struct iv_class *bl;
int splitting_not_safe = 0;
enum unroll_types unroll_type;
int loop_preconditioned = 0;
rtx safety_label;
/* This points to the last real insn in the loop, which should be either
a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
jumps). */
rtx last_loop_insn;
/* Don't bother unrolling huge loops. Since the minimum factor is
two, loops greater than one half of MAX_UNROLLED_INSNS will never
be unrolled. */
if (insn_count > MAX_UNROLLED_INSNS / 2)
{
if (loop_dump_stream)
fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
return;
}
/* When emitting debugger info, we can't unroll loops with unequal numbers
of block_beg and block_end notes, because that would unbalance the block
structure of the function. This can happen as a result of the
"if (foo) bar; else break;" optimization in jump.c. */
/* ??? Gcc has a general policy that -g is never supposed to change the code
that the compiler emits, so we must disable this optimization always,
even if debug info is not being output. This is rare, so this should
not be a significant performance problem. */
if (1 /* write_symbols != NO_DEBUG */)
{
int block_begins = 0;
int block_ends = 0;
for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
{
if (GET_CODE (insn) == NOTE)
{
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
block_begins++;
else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
block_ends++;
}
}
if (block_begins != block_ends)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Unrolling failure: Unbalanced block notes.\n");
return;
}
}
/* Determine type of unroll to perform. Depends on the number of iterations
and the size of the loop. */
/* If there is no strength reduce info, then set loop_n_iterations to zero.
This can happen if strength_reduce can't find any bivs in the loop.
A value of zero indicates that the number of iterations could not be
calculated. */
if (! strength_reduce_p)
loop_n_iterations = 0;
if (loop_dump_stream && loop_n_iterations > 0)
fprintf (loop_dump_stream,
"Loop unrolling: %d iterations.\n", loop_n_iterations);
/* Find and save a pointer to the last nonnote insn in the loop. */
last_loop_insn = prev_nonnote_insn (loop_end);
/* Calculate how many times to unroll the loop. Indicate whether or
not the loop is being completely unrolled. */
if (loop_n_iterations == 1)
{
/* If number of iterations is exactly 1, then eliminate the compare and
branch at the end of the loop since they will never be taken.
Then return, since no other action is needed here. */
/* If the last instruction is not a BARRIER or a JUMP_INSN, then
don't do anything. */
if (GET_CODE (last_loop_insn) == BARRIER)
{
/* Delete the jump insn. This will delete the barrier also. */
delete_insn (PREV_INSN (last_loop_insn));
}
else if (GET_CODE (last_loop_insn) == JUMP_INSN)
{
#ifdef HAVE_cc0
/* The immediately preceding insn is a compare which must be
deleted. */
delete_insn (last_loop_insn);
delete_insn (PREV_INSN (last_loop_insn));
#else
/* The immediately preceding insn may not be the compare, so don't
delete it. */
delete_insn (last_loop_insn);
#endif
}
return;
}
else if (loop_n_iterations > 0
&& loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
{
unroll_number = loop_n_iterations;
unroll_type = UNROLL_COMPLETELY;
}
else if (loop_n_iterations > 0)
{
/* Try to factor the number of iterations. Don't bother with the
general case, only using 2, 3, 5, and 7 will get 75% of all
numbers theoretically, and almost all in practice. */
for (i = 0; i < NUM_FACTORS; i++)
factors[i].count = 0;
temp = loop_n_iterations;
for (i = NUM_FACTORS - 1; i >= 0; i--)
while (temp % factors[i].factor == 0)
{
factors[i].count++;
temp = temp / factors[i].factor;
}
/* Start with the larger factors first so that we generally
get lots of unrolling. */
unroll_number = 1;
temp = insn_count;
for (i = 3; i >= 0; i--)
while (factors[i].count--)
{
if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
{
unroll_number *= factors[i].factor;
temp *= factors[i].factor;
}
else
break;
}
/* If we couldn't find any factors, then unroll as in the normal
case. */
if (unroll_number == 1)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Loop unrolling: No factors found.\n");
}
else
unroll_type = UNROLL_MODULO;
}
/* Default case, calculate number of times to unroll loop based on its
size. */
if (unroll_number == 1)
{
if (8 * insn_count < MAX_UNROLLED_INSNS)
unroll_number = 8;
else if (4 * insn_count < MAX_UNROLLED_INSNS)
unroll_number = 4;
else
unroll_number = 2;
unroll_type = UNROLL_NAIVE;
}
/* Now we know how many times to unroll the loop. */
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Unrolling loop %d times.\n", unroll_number);
if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
{
/* Loops of these types should never start with a jump down to
the exit condition test. For now, check for this case just to
be sure. UNROLL_NAIVE loops can be of this form, this case is
handled below. */
insn = loop_start;
while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
insn = NEXT_INSN (insn);
if (GET_CODE (insn) == JUMP_INSN)
abort ();
}
if (unroll_type == UNROLL_COMPLETELY)
{
/* Completely unrolling the loop: Delete the compare and branch at
the end (the last two instructions). This delete must done at the
very end of loop unrolling, to avoid problems with calls to
back_branch_in_range_p, which is called by find_splittable_regs.
All increments of splittable bivs/givs are changed to load constant
instructions. */
copy_start = loop_start;
/* Set insert_before to the instruction immediately after the JUMP_INSN
(or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
the loop will be correctly handled by copy_loop_body. */
insert_before = NEXT_INSN (last_loop_insn);
/* Set copy_end to the insn before the jump at the end of the loop. */
if (GET_CODE (last_loop_insn) == BARRIER)
copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
else if (GET_CODE (last_loop_insn) == JUMP_INSN)
{
#ifdef HAVE_cc0
/* The instruction immediately before the JUMP_INSN is a compare
instruction which we do not want to copy. */
copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
#else
/* The instruction immediately before the JUMP_INSN may not be the
compare, so we must copy it. */
copy_end = PREV_INSN (last_loop_insn);
#endif
}
else
{
/* We currently can't unroll a loop if it doesn't end with a
JUMP_INSN. There would need to be a mechanism that recognizes
this case, and then inserts a jump after each loop body, which
jumps to after the last loop body. */
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Unrolling failure: loop does not end with a JUMP_INSN.\n");
return;
}
}
else if (unroll_type == UNROLL_MODULO)
{
/* Partially unrolling the loop: The compare and branch at the end
(the last two instructions) must remain. Don't copy the compare
and branch instructions at the end of the loop. Insert the unrolled
code immediately before the compare/branch at the end so that the
code will fall through to them as before. */
copy_start = loop_start;
/* Set insert_before to the jump insn at the end of the loop.
Set copy_end to before the jump insn at the end of the loop. */
if (GET_CODE (last_loop_insn) == BARRIER)
{
insert_before = PREV_INSN (last_loop_insn);
copy_end = PREV_INSN (insert_before);
}
else if (GET_CODE (last_loop_insn) == JUMP_INSN)
{
#ifdef HAVE_cc0
/* The instruction immediately before the JUMP_INSN is a compare
instruction which we do not want to copy or delete. */
insert_before = PREV_INSN (last_loop_insn);
copy_end = PREV_INSN (insert_before);
#else
/* The instruction immediately before the JUMP_INSN may not be the
compare, so we must copy it. */
insert_before = last_loop_insn;
copy_end = PREV_INSN (last_loop_insn);
#endif
}
else
{
/* We currently can't unroll a loop if it doesn't end with a
JUMP_INSN. There would need to be a mechanism that recognizes
this case, and then inserts a jump after each loop body, which
jumps to after the last loop body. */
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Unrolling failure: loop does not end with a JUMP_INSN.\n");
return;
}
}
else
{
/* Normal case: Must copy the compare and branch instructions at the
end of the loop. */
if (GET_CODE (last_loop_insn) == BARRIER)
{
/* Loop ends with an unconditional jump and a barrier.
Handle this like above, don't copy jump and barrier.
This is not strictly necessary, but doing so prevents generating
unconditional jumps to an immediately following label.
This will be corrected below if the target of this jump is
not the start_label. */
insert_before = PREV_INSN (last_loop_insn);
copy_end = PREV_INSN (insert_before);
}
else if (GET_CODE (last_loop_insn) == JUMP_INSN)
{
/* Set insert_before to immediately after the JUMP_INSN, so that
NOTEs at the end of the loop will be correctly handled by
copy_loop_body. */
insert_before = NEXT_INSN (last_loop_insn);
copy_end = last_loop_insn;
}
else
{
/* We currently can't unroll a loop if it doesn't end with a
JUMP_INSN. There would need to be a mechanism that recognizes
this case, and then inserts a jump after each loop body, which
jumps to after the last loop body. */
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Unrolling failure: loop does not end with a JUMP_INSN.\n");
return;
}
/* If copying exit test branches because they can not be eliminated,
then must convert the fall through case of the branch to a jump past
the end of the loop. Create a label to emit after the loop and save
it for later use. Do not use the label after the loop, if any, since
it might be used by insns outside the loop, or there might be insns
added before it later by final_[bg]iv_value which must be after
the real exit label. */
exit_label = gen_label_rtx ();
insn = loop_start;
while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
insn = NEXT_INSN (insn);
if (GET_CODE (insn) == JUMP_INSN)
{
/* The loop starts with a jump down to the exit condition test.
Start copying the loop after the barrier following this
jump insn. */
copy_start = NEXT_INSN (insn);
/* Splitting induction variables doesn't work when the loop is
entered via a jump to the bottom, because then we end up doing
a comparison against a new register for a split variable, but
we did not execute the set insn for the new register because
it was skipped over. */
splitting_not_safe = 1;
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Splitting not safe, because loop not entered at top.\n");
}
else
copy_start = loop_start;
}
/* This should always be the first label in the loop. */
start_label = NEXT_INSN (copy_start);
/* There may be a line number note and/or a loop continue note here. */
while (GET_CODE (start_label) == NOTE)
start_label = NEXT_INSN (start_label);
if (GET_CODE (start_label) != CODE_LABEL)
{
/* This can happen as a result of jump threading. If the first insns in
the loop test the same condition as the loop's backward jump, or the
opposite condition, then the backward jump will be modified to point
to elsewhere, and the loop's start label is deleted.
This case currently can not be handled by the loop unrolling code. */
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Unrolling failure: unknown insns between BEG note and loop label.\n");
return;
}
if (LABEL_NAME (start_label))
{
/* The jump optimization pass must have combined the original start label
with a named label for a goto. We can't unroll this case because
jumps which go to the named label must be handled differently than
jumps to the loop start, and it is impossible to differentiate them
in this case. */
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Unrolling failure: loop start label is gone\n");
return;
}
if (unroll_type == UNROLL_NAIVE
&& GET_CODE (last_loop_insn) == BARRIER
&& start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
{
/* In this case, we must copy the jump and barrier, because they will
not be converted to jumps to an immediately following label. */
insert_before = NEXT_INSN (last_loop_insn);
copy_end = last_loop_insn;
}
if (unroll_type == UNROLL_NAIVE
&& GET_CODE (last_loop_insn) == JUMP_INSN
&& start_label != JUMP_LABEL (last_loop_insn))
{
/* ??? The loop ends with a conditional branch that does not branch back
to the loop start label. In this case, we must emit an unconditional
branch to the loop exit after emitting the final branch.
copy_loop_body does not have support for this currently, so we
give up. It doesn't seem worthwhile to unroll anyways since
unrolling would increase the number of branch instructions
executed. */
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Unrolling failure: final conditional branch not to loop start\n");
return;
}
/* Allocate a translation table for the labels and insn numbers.
They will be filled in as we copy the insns in the loop. */
max_labelno = max_label_num ();
max_insnno = get_max_uid ();
map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
map->integrating = 0;
/* Allocate the label map. */
if (max_labelno > 0)
{
map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
local_label = (char *) alloca (max_labelno);
bzero (local_label, max_labelno);
}
else
map->label_map = 0;
/* Search the loop and mark all local labels, i.e. the ones which have to
be distinct labels when copied. For all labels which might be
non-local, set their label_map entries to point to themselves.
If they happen to be local their label_map entries will be overwritten
before the loop body is copied. The label_map entries for local labels
will be set to a different value each time the loop body is copied. */
for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
{
if (GET_CODE (insn) == CODE_LABEL)
local_label[CODE_LABEL_NUMBER (insn)] = 1;
else if (GET_CODE (insn) == JUMP_INSN)
{
if (JUMP_LABEL (insn))
set_label_in_map (map,
CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
JUMP_LABEL (insn));
else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
|| GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
{
rtx pat = PATTERN (insn);
int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
int len = XVECLEN (pat, diff_vec_p);
rtx label;
for (i = 0; i < len; i++)
{
label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
set_label_in_map (map,
CODE_LABEL_NUMBER (label),
label);
}
}
}
}
/* Allocate space for the insn map. */
map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
/* Set this to zero, to indicate that we are doing loop unrolling,
not function inlining. */
map->inline_target = 0;
/* The register and constant maps depend on the number of registers
present, so the final maps can't be created until after
find_splittable_regs is called. However, they are needed for
preconditioning, so we create temporary maps when preconditioning
is performed. */
/* The preconditioning code may allocate two new pseudo registers. */
maxregnum = max_reg_num ();
/* Allocate and zero out the splittable_regs and addr_combined_regs
arrays. These must be zeroed here because they will be used if
loop preconditioning is performed, and must be zero for that case.
It is safe to do this here, since the extra registers created by the
preconditioning code and find_splittable_regs will never be used
to access the splittable_regs[] and addr_combined_regs[] arrays. */
splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
bzero ((char *) splittable_regs, maxregnum * sizeof (rtx));
splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
bzero ((char *) splittable_regs_updates, maxregnum * sizeof (int));
addr_combined_regs
= (struct induction **) alloca (maxregnum * sizeof (struct induction *));
bzero ((char *) addr_combined_regs, maxregnum * sizeof (struct induction *));
/* We must limit it to max_reg_before_loop, because only these pseudo
registers have valid regno_first_uid info. Any register created after
that is unlikely to be local to the loop anyways. */
local_regno = (char *) alloca (max_reg_before_loop);
bzero (local_regno, max_reg_before_loop);
/* Mark all local registers, i.e. the ones which are referenced only
inside the loop. */
if (INSN_UID (copy_end) < max_uid_for_loop)
{
int copy_start_luid = INSN_LUID (copy_start);
int copy_end_luid = INSN_LUID (copy_end);
/* If a register is used in the jump insn, we must not duplicate it
since it will also be used outside the loop. */
if (GET_CODE (copy_end) == JUMP_INSN)
copy_end_luid--;
/* If copy_start points to the NOTE that starts the loop, then we must
use the next luid, because invariant pseudo-regs moved out of the loop
have their lifetimes modified to start here, but they are not safe
to duplicate. */
if (copy_start == loop_start)
copy_start_luid++;
/* If a pseudo's lifetime is entirely contained within this loop, then we
can use a different pseudo in each unrolled copy of the loop. This
results in better code. */
for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; ++j)
if (REGNO_FIRST_UID (j) > 0 && REGNO_FIRST_UID (j) <= max_uid_for_loop
&& uid_luid[REGNO_FIRST_UID (j)] >= copy_start_luid
&& REGNO_LAST_UID (j) > 0 && REGNO_LAST_UID (j) <= max_uid_for_loop
&& uid_luid[REGNO_LAST_UID (j)] <= copy_end_luid)
{
/* However, we must also check for loop-carried dependencies.
If the value the pseudo has at the end of iteration X is
used by iteration X+1, then we can not use a different pseudo
for each unrolled copy of the loop. */
/* A pseudo is safe if regno_first_uid is a set, and this
set dominates all instructions from regno_first_uid to
regno_last_uid. */
/* ??? This check is simplistic. We would get better code if
this check was more sophisticated. */
if (set_dominates_use (j, REGNO_FIRST_UID (j), REGNO_LAST_UID (j),
copy_start, copy_end))
local_regno[j] = 1;
if (loop_dump_stream)
{
if (local_regno[j])
fprintf (loop_dump_stream, "Marked reg %d as local\n", j);
else
fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
j);
}
}
}
/* If this loop requires exit tests when unrolled, check to see if we
can precondition the loop so as to make the exit tests unnecessary.
Just like variable splitting, this is not safe if the loop is entered
via a jump to the bottom. Also, can not do this if no strength
reduce info, because precondition_loop_p uses this info. */
/* Must copy the loop body for preconditioning before the following
find_splittable_regs call since that will emit insns which need to
be after the preconditioned loop copies, but immediately before the
unrolled loop copies. */
/* Also, it is not safe to split induction variables for the preconditioned
copies of the loop body. If we split induction variables, then the code
assumes that each induction variable can be represented as a function
of its initial value and the loop iteration number. This is not true
in this case, because the last preconditioned copy of the loop body
could be any iteration from the first up to the `unroll_number-1'th,
depending on the initial value of the iteration variable. Therefore
we can not split induction variables here, because we can not calculate
their value. Hence, this code must occur before find_splittable_regs
is called. */
if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
{
rtx initial_value, final_value, increment;
if (precondition_loop_p (&initial_value, &final_value, &increment,
loop_start, loop_end))
{
register rtx diff, temp;
enum machine_mode mode;
rtx *labels;
int abs_inc, neg_inc;
map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
map->const_age_map = (unsigned *) alloca (maxregnum
* sizeof (unsigned));
map->const_equiv_map_size = maxregnum;
global_const_equiv_map = map->const_equiv_map;
global_const_equiv_map_size = maxregnum;
init_reg_map (map, maxregnum);
/* Limit loop unrolling to 4, since this will make 7 copies of
the loop body. */
if (unroll_number > 4)
unroll_number = 4;
/* Save the absolute value of the increment, and also whether or
not it is negative. */
neg_inc = 0;
abs_inc = INTVAL (increment);
if (abs_inc < 0)
{
abs_inc = - abs_inc;
neg_inc = 1;
}
start_sequence ();
/* Decide what mode to do these calculations in. Choose the larger
of final_value's mode and initial_value's mode, or a full-word if
both are constants. */
mode = GET_MODE (final_value);
if (mode == VOIDmode)
{
mode = GET_MODE (initial_value);
if (mode == VOIDmode)
mode = word_mode;
}
else if (mode != GET_MODE (initial_value)
&& (GET_MODE_SIZE (mode)
< GET_MODE_SIZE (GET_MODE (initial_value))))
mode = GET_MODE (initial_value);
/* Calculate the difference between the final and initial values.
Final value may be a (plus (reg x) (const_int 1)) rtx.
Let the following cse pass simplify this if initial value is
a constant.
We must copy the final and initial values here to avoid
improperly shared rtl. */
diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
copy_rtx (initial_value), NULL_RTX, 0,
OPTAB_LIB_WIDEN);
/* Now calculate (diff % (unroll * abs (increment))) by using an
and instruction. */
diff = expand_binop (GET_MODE (diff), and_optab, diff,
GEN_INT (unroll_number * abs_inc - 1),
NULL_RTX, 0, OPTAB_LIB_WIDEN);
/* Now emit a sequence of branches to jump to the proper precond
loop entry point. */
labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
for (i = 0; i < unroll_number; i++)
labels[i] = gen_label_rtx ();
/* Check for the case where the initial value is greater than or
equal to the final value. In that case, we want to execute
exactly one loop iteration. The code below will fail for this
case. This check does not apply if the loop has a NE
comparison at the end. */
if (loop_comparison_code != NE)
{
emit_cmp_insn (initial_value, final_value, neg_inc ? LE : GE,
NULL_RTX, mode, 0, 0);
if (neg_inc)
emit_jump_insn (gen_ble (labels[1]));
else
emit_jump_insn (gen_bge (labels[1]));
JUMP_LABEL (get_last_insn ()) = labels[1];
LABEL_NUSES (labels[1])++;
}
/* Assuming the unroll_number is 4, and the increment is 2, then
for a negative increment: for a positive increment:
diff = 0,1 precond 0 diff = 0,7 precond 0
diff = 2,3 precond 3 diff = 1,2 precond 1
diff = 4,5 precond 2 diff = 3,4 precond 2
diff = 6,7 precond 1 diff = 5,6 precond 3 */
/* We only need to emit (unroll_number - 1) branches here, the
last case just falls through to the following code. */
/* ??? This would give better code if we emitted a tree of branches
instead of the current linear list of branches. */
for (i = 0; i < unroll_number - 1; i++)
{
int cmp_const;
enum rtx_code cmp_code;
/* For negative increments, must invert the constant compared
against, except when comparing against zero. */
if (i == 0)
{
cmp_const = 0;
cmp_code = EQ;
}
else if (neg_inc)
{
cmp_const = unroll_number - i;
cmp_code = GE;
}
else
{
cmp_const = i;
cmp_code = LE;
}
emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
cmp_code, NULL_RTX, mode, 0, 0);
if (i == 0)
emit_jump_insn (gen_beq (labels[i]));
else if (neg_inc)
emit_jump_insn (gen_bge (labels[i]));
else
emit_jump_insn (gen_ble (labels[i]));
JUMP_LABEL (get_last_insn ()) = labels[i];
LABEL_NUSES (labels[i])++;
}
/* If the increment is greater than one, then we need another branch,
to handle other cases equivalent to 0. */
/* ??? This should be merged into the code above somehow to help
simplify the code here, and reduce the number of branches emitted.
For the negative increment case, the branch here could easily
be merged with the `0' case branch above. For the positive
increment case, it is not clear how this can be simplified. */
if (abs_inc != 1)
{
int cmp_const;
enum rtx_code cmp_code;
if (neg_inc)
{
cmp_const = abs_inc - 1;
cmp_code = LE;
}
else
{
cmp_const = abs_inc * (unroll_number - 1) + 1;
cmp_code = GE;
}
emit_cmp_insn (diff, GEN_INT (cmp_const), cmp_code, NULL_RTX,
mode, 0, 0);
if (neg_inc)
emit_jump_insn (gen_ble (labels[0]));
else
emit_jump_insn (gen_bge (labels[0]));
JUMP_LABEL (get_last_insn ()) = labels[0];
LABEL_NUSES (labels[0])++;
}
sequence = gen_sequence ();
end_sequence ();
emit_insn_before (sequence, loop_start);
/* Only the last copy of the loop body here needs the exit
test, so set copy_end to exclude the compare/branch here,
and then reset it inside the loop when get to the last
copy. */
if (GET_CODE (last_loop_insn) == BARRIER)
copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
else if (GET_CODE (last_loop_insn) == JUMP_INSN)
{
#ifdef HAVE_cc0
/* The immediately preceding insn is a compare which we do not
want to copy. */
copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
#else
/* The immediately preceding insn may not be a compare, so we
must copy it. */
copy_end = PREV_INSN (last_loop_insn);
#endif
}
else
abort ();
for (i = 1; i < unroll_number; i++)
{
emit_label_after (labels[unroll_number - i],
PREV_INSN (loop_start));
bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
bzero ((char *) map->const_equiv_map, maxregnum * sizeof (rtx));
bzero ((char *) map->const_age_map,
maxregnum * sizeof (unsigned));
map->const_age = 0;
for (j = 0; j < max_labelno; j++)
if (local_label[j])
set_label_in_map (map, j, gen_label_rtx ());
for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
if (local_regno[j])
map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
/* The last copy needs the compare/branch insns at the end,
so reset copy_end here if the loop ends with a conditional
branch. */
if (i == unroll_number - 1)
{
if (GET_CODE (last_loop_insn) == BARRIER)
copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
else
copy_end = last_loop_insn;
}
/* None of the copies are the `last_iteration', so just
pass zero for that parameter. */
copy_loop_body (copy_start, copy_end, map, exit_label, 0,
unroll_type, start_label, loop_end,
loop_start, copy_end);
}
emit_label_after (labels[0], PREV_INSN (loop_start));
if (GET_CODE (last_loop_insn) == BARRIER)
{
insert_before = PREV_INSN (last_loop_insn);
copy_end = PREV_INSN (insert_before);
}
else
{
#ifdef HAVE_cc0
/* The immediately preceding insn is a compare which we do not
want to copy. */
insert_before = PREV_INSN (last_loop_insn);
copy_end = PREV_INSN (insert_before);
#else
/* The immediately preceding insn may not be a compare, so we
must copy it. */
insert_before = last_loop_insn;
copy_end = PREV_INSN (last_loop_insn);
#endif
}
/* Set unroll type to MODULO now. */
unroll_type = UNROLL_MODULO;
loop_preconditioned = 1;
}
}
/* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
the loop unless all loops are being unrolled. */
if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
{
if (loop_dump_stream)
fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
return;
}
/* At this point, we are guaranteed to unroll the loop. */
/* For each biv and giv, determine whether it can be safely split into
a different variable for each unrolled copy of the loop body.
We precalculate and save this info here, since computing it is
expensive.
Do this before deleting any instructions from the loop, so that
back_branch_in_range_p will work correctly. */
if (splitting_not_safe)
temp = 0;
else
temp = find_splittable_regs (unroll_type, loop_start, loop_end,
end_insert_before, unroll_number);
/* find_splittable_regs may have created some new registers, so must
reallocate the reg_map with the new larger size, and must realloc
the constant maps also. */
maxregnum = max_reg_num ();
map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
init_reg_map (map, maxregnum);
/* Space is needed in some of the map for new registers, so new_maxregnum
is an (over)estimate of how many registers will exist at the end. */
new_maxregnum = maxregnum + (temp * unroll_number * 2);
/* Must realloc space for the constant maps, because the number of registers
may have changed. */
map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
map->const_equiv_map_size = new_maxregnum;
global_const_equiv_map = map->const_equiv_map;
global_const_equiv_map_size = new_maxregnum;
/* Search the list of bivs and givs to find ones which need to be remapped
when split, and set their reg_map entry appropriately. */
for (bl = loop_iv_list; bl; bl = bl->next)
{
if (REGNO (bl->biv->src_reg) != bl->regno)
map->reg_map[bl->regno] = bl->biv->src_reg;
#if 0
/* Currently, non-reduced/final-value givs are never split. */
for (v = bl->giv; v; v = v->next_iv)
if (REGNO (v->src_reg) != bl->regno)
map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
#endif
}
/* Use our current register alignment and pointer flags. */
map->regno_pointer_flag = regno_pointer_flag;
map->regno_pointer_align = regno_pointer_align;
/* If the loop is being partially unrolled, and the iteration variables
are being split, and are being renamed for the split, then must fix up
the compare/jump instruction at the end of the loop to refer to the new
registers. This compare isn't copied, so the registers used in it
will never be replaced if it isn't done here. */
if (unroll_type == UNROLL_MODULO)
{
insn = NEXT_INSN (copy_end);
if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
PATTERN (insn) = remap_split_bivs (PATTERN (insn));
}
/* For unroll_number - 1 times, make a copy of each instruction
between copy_start and copy_end, and insert these new instructions
before the end of the loop. */
for (i = 0; i < unroll_number; i++)
{
bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
bzero ((char *) map->const_equiv_map, new_maxregnum * sizeof (rtx));
bzero ((char *) map->const_age_map, new_maxregnum * sizeof (unsigned));
map->const_age = 0;
for (j = 0; j < max_labelno; j++)
if (local_label[j])
set_label_in_map (map, j, gen_label_rtx ());
for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
if (local_regno[j])
map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
/* If loop starts with a branch to the test, then fix it so that
it points to the test of the first unrolled copy of the loop. */
if (i == 0 && loop_start != copy_start)
{
insn = PREV_INSN (copy_start);
pattern = PATTERN (insn);
tem = get_label_from_map (map,
CODE_LABEL_NUMBER
(XEXP (SET_SRC (pattern), 0)));
SET_SRC (pattern) = gen_rtx (LABEL_REF, VOIDmode, tem);
/* Set the jump label so that it can be used by later loop unrolling
passes. */
JUMP_LABEL (insn) = tem;
LABEL_NUSES (tem)++;
}
copy_loop_body (copy_start, copy_end, map, exit_label,
i == unroll_number - 1, unroll_type, start_label,
loop_end, insert_before, insert_before);
}
/* Before deleting any insns, emit a CODE_LABEL immediately after the last
insn to be deleted. This prevents any runaway delete_insn call from
more insns that it should, as it always stops at a CODE_LABEL. */
/* Delete the compare and branch at the end of the loop if completely
unrolling the loop. Deleting the backward branch at the end also
deletes the code label at the start of the loop. This is done at
the very end to avoid problems with back_branch_in_range_p. */
if (unroll_type == UNROLL_COMPLETELY)
safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
else
safety_label = emit_label_after (gen_label_rtx (), copy_end);
/* Delete all of the original loop instructions. Don't delete the
LOOP_BEG note, or the first code label in the loop. */
insn = NEXT_INSN (copy_start);
while (insn != safety_label)
{
if (insn != start_label)
insn = delete_insn (insn);
else
insn = NEXT_INSN (insn);
}
/* Can now delete the 'safety' label emitted to protect us from runaway
delete_insn calls. */
if (INSN_DELETED_P (safety_label))
abort ();
delete_insn (safety_label);
/* If exit_label exists, emit it after the loop. Doing the emit here
forces it to have a higher INSN_UID than any insn in the unrolled loop.
This is needed so that mostly_true_jump in reorg.c will treat jumps
to this loop end label correctly, i.e. predict that they are usually
not taken. */
if (exit_label)
emit_label_after (exit_label, loop_end);
}
/* Return true if the loop can be safely, and profitably, preconditioned
so that the unrolled copies of the loop body don't need exit tests.
This only works if final_value, initial_value and increment can be
determined, and if increment is a constant power of 2.
If increment is not a power of 2, then the preconditioning modulo
operation would require a real modulo instead of a boolean AND, and this
is not considered `profitable'. */
/* ??? If the loop is known to be executed very many times, or the machine
has a very cheap divide instruction, then preconditioning is a win even
when the increment is not a power of 2. Use RTX_COST to compute
whether divide is cheap. */
static int
precondition_loop_p (initial_value, final_value, increment, loop_start,
loop_end)
rtx *initial_value, *final_value, *increment;
rtx loop_start, loop_end;
{
if (loop_n_iterations > 0)
{
*initial_value = const0_rtx;
*increment = const1_rtx;
*final_value = GEN_INT (loop_n_iterations);
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Preconditioning: Success, number of iterations known, %d.\n",
loop_n_iterations);
return 1;
}
if (loop_initial_value == 0)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Preconditioning: Could not find initial value.\n");
return 0;
}
else if (loop_increment == 0)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Preconditioning: Could not find increment value.\n");
return 0;
}
else if (GET_CODE (loop_increment) != CONST_INT)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Preconditioning: Increment not a constant.\n");
return 0;
}
else if ((exact_log2 (INTVAL (loop_increment)) < 0)
&& (exact_log2 (- INTVAL (loop_increment)) < 0))
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Preconditioning: Increment not a constant power of 2.\n");
return 0;
}
/* Unsigned_compare and compare_dir can be ignored here, since they do
not matter for preconditioning. */
if (loop_final_value == 0)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Preconditioning: EQ comparison loop.\n");
return 0;
}
/* Must ensure that final_value is invariant, so call invariant_p to
check. Before doing so, must check regno against max_reg_before_loop
to make sure that the register is in the range covered by invariant_p.
If it isn't, then it is most likely a biv/giv which by definition are
not invariant. */
if ((GET_CODE (loop_final_value) == REG
&& REGNO (loop_final_value) >= max_reg_before_loop)
|| (GET_CODE (loop_final_value) == PLUS
&& REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
|| ! invariant_p (loop_final_value))
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Preconditioning: Final value not invariant.\n");
return 0;
}
/* Fail for floating point values, since the caller of this function
does not have code to deal with them. */
if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
|| GET_MODE_CLASS (GET_MODE (loop_initial_value)) == MODE_FLOAT)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Preconditioning: Floating point final or initial value.\n");
return 0;
}
/* Now set initial_value to be the iteration_var, since that may be a
simpler expression, and is guaranteed to be correct if all of the
above tests succeed.
We can not use the initial_value as calculated, because it will be
one too small for loops of the form "while (i-- > 0)". We can not
emit code before the loop_skip_over insns to fix this problem as this
will then give a number one too large for loops of the form
"while (--i > 0)".
Note that all loops that reach here are entered at the top, because
this function is not called if the loop starts with a jump. */
/* Fail if loop_iteration_var is not live before loop_start, since we need
to test its value in the preconditioning code. */
if (uid_luid[REGNO_FIRST_UID (REGNO (loop_iteration_var))]
> INSN_LUID (loop_start))
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Preconditioning: Iteration var not live before loop start.\n");
return 0;
}
*initial_value = loop_iteration_var;
*increment = loop_increment;
*final_value = loop_final_value;
/* Success! */
if (loop_dump_stream)
fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
return 1;
}
/* All pseudo-registers must be mapped to themselves. Two hard registers
must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
REGNUM, to avoid function-inlining specific conversions of these
registers. All other hard regs can not be mapped because they may be
used with different
modes. */
static void
init_reg_map (map, maxregnum)
struct inline_remap *map;
int maxregnum;
{
int i;
for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
map->reg_map[i] = regno_reg_rtx[i];
/* Just clear the rest of the entries. */
for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
map->reg_map[i] = 0;
map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
= regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
= regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
}
/* Strength-reduction will often emit code for optimized biv/givs which
calculates their value in a temporary register, and then copies the result
to the iv. This procedure reconstructs the pattern computing the iv;
verifying that all operands are of the proper form.
PATTERN must be the result of single_set.
The return value is the amount that the giv is incremented by. */
static rtx
calculate_giv_inc (pattern, src_insn, regno)
rtx pattern, src_insn;
int regno;
{
rtx increment;
rtx increment_total = 0;
int tries = 0;
retry:
/* Verify that we have an increment insn here. First check for a plus
as the set source. */
if (GET_CODE (SET_SRC (pattern)) != PLUS)
{
/* SR sometimes computes the new giv value in a temp, then copies it
to the new_reg. */
src_insn = PREV_INSN (src_insn);
pattern = PATTERN (src_insn);
if (GET_CODE (SET_SRC (pattern)) != PLUS)
abort ();
/* The last insn emitted is not needed, so delete it to avoid confusing
the second cse pass. This insn sets the giv unnecessarily. */
delete_insn (get_last_insn ());
}
/* Verify that we have a constant as the second operand of the plus. */
increment = XEXP (SET_SRC (pattern), 1);
if (GET_CODE (increment) != CONST_INT)
{
/* SR sometimes puts the constant in a register, especially if it is
too big to be an add immed operand. */
src_insn = PREV_INSN (src_insn);
increment = SET_SRC (PATTERN (src_insn));
/* SR may have used LO_SUM to compute the constant if it is too large
for a load immed operand. In this case, the constant is in operand
one of the LO_SUM rtx. */
if (GET_CODE (increment) == LO_SUM)
increment = XEXP (increment, 1);
else if (GET_CODE (increment) == IOR
|| GET_CODE (increment) == ASHIFT
|| GET_CODE (increment) == PLUS)
{
/* The rs6000 port loads some constants with IOR.
The alpha port loads some constants with ASHIFT and PLUS. */
rtx second_part = XEXP (increment, 1);
enum rtx_code code = GET_CODE (increment);
src_insn = PREV_INSN (src_insn);
increment = SET_SRC (PATTERN (src_insn));
/* Don't need the last insn anymore. */
delete_insn (get_last_insn ());
if (GET_CODE (second_part) != CONST_INT
|| GET_CODE (increment) != CONST_INT)
abort ();
if (code == IOR)
increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
else if (code == PLUS)
increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
else
increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
}
if (GET_CODE (increment) != CONST_INT)
abort ();
/* The insn loading the constant into a register is no longer needed,
so delete it. */
delete_insn (get_last_insn ());
}
if (increment_total)
increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
else
increment_total = increment;
/* Check that the source register is the same as the register we expected
to see as the source. If not, something is seriously wrong. */
if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
|| REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
{
/* Some machines (e.g. the romp), may emit two add instructions for
certain constants, so lets try looking for another add immediately
before this one if we have only seen one add insn so far. */
if (tries == 0)
{
tries++;
src_insn = PREV_INSN (src_insn);
pattern = PATTERN (src_insn);
delete_insn (get_last_insn ());
goto retry;
}
abort ();
}
return increment_total;
}
/* Copy REG_NOTES, except for insn references, because not all insn_map
entries are valid yet. We do need to copy registers now though, because
the reg_map entries can change during copying. */
static rtx
initial_reg_note_copy (notes, map)
rtx notes;
struct inline_remap *map;
{
rtx copy;
if (notes == 0)
return 0;
copy = rtx_alloc (GET_CODE (notes));
PUT_MODE (copy, GET_MODE (notes));
if (GET_CODE (notes) == EXPR_LIST)
XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map);
else if (GET_CODE (notes) == INSN_LIST)
/* Don't substitute for these yet. */
XEXP (copy, 0) = XEXP (notes, 0);
else
abort ();
XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
return copy;
}
/* Fixup insn references in copied REG_NOTES. */
static void
final_reg_note_copy (notes, map)
rtx notes;
struct inline_remap *map;
{
rtx note;
for (note = notes; note; note = XEXP (note, 1))
if (GET_CODE (note) == INSN_LIST)
XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
}
/* Copy each instruction in the loop, substituting from map as appropriate.
This is very similar to a loop in expand_inline_function. */
static void
copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
unroll_type, start_label, loop_end, insert_before,
copy_notes_from)
rtx copy_start, copy_end;
struct inline_remap *map;
rtx exit_label;
int last_iteration;
enum unroll_types unroll_type;
rtx start_label, loop_end, insert_before, copy_notes_from;
{
rtx insn, pattern;
rtx set, tem, copy;
int dest_reg_was_split, i;
rtx cc0_insn = 0;
rtx final_label = 0;
rtx giv_inc, giv_dest_reg, giv_src_reg;
/* If this isn't the last iteration, then map any references to the
start_label to final_label. Final label will then be emitted immediately
after the end of this loop body if it was ever used.
If this is the last iteration, then map references to the start_label
to itself. */
if (! last_iteration)
{
final_label = gen_label_rtx ();
set_label_in_map (map, CODE_LABEL_NUMBER (start_label),
final_label);
}
else
set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
start_sequence ();
insn = copy_start;
do
{
insn = NEXT_INSN (insn);
map->orig_asm_operands_vector = 0;
switch (GET_CODE (insn))
{
case INSN:
pattern = PATTERN (insn);
copy = 0;
giv_inc = 0;
/* Check to see if this is a giv that has been combined with
some split address givs. (Combined in the sense that
`combine_givs' in loop.c has put two givs in the same register.)
In this case, we must search all givs based on the same biv to
find the address givs. Then split the address givs.
Do this before splitting the giv, since that may map the
SET_DEST to a new register. */
if ((set = single_set (insn))
&& GET_CODE (SET_DEST (set)) == REG
&& addr_combined_regs[REGNO (SET_DEST (set))])
{
struct iv_class *bl;
struct induction *v, *tv;
int regno = REGNO (SET_DEST (set));
v = addr_combined_regs[REGNO (SET_DEST (set))];
bl = reg_biv_class[REGNO (v->src_reg)];
/* Although the giv_inc amount is not needed here, we must call
calculate_giv_inc here since it might try to delete the
last insn emitted. If we wait until later to call it,
we might accidentally delete insns generated immediately
below by emit_unrolled_add. */
giv_inc = calculate_giv_inc (set, insn, regno);
/* Now find all address giv's that were combined with this
giv 'v'. */
for (tv = bl->giv; tv; tv = tv->next_iv)
if (tv->giv_type == DEST_ADDR && tv->same == v)
{
int this_giv_inc;
/* If this DEST_ADDR giv was not split, then ignore it. */
if (*tv->location != tv->dest_reg)
continue;
/* Scale this_giv_inc if the multiplicative factors of
the two givs are different. */
this_giv_inc = INTVAL (giv_inc);
if (tv->mult_val != v->mult_val)
this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
* INTVAL (tv->mult_val));
tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
*tv->location = tv->dest_reg;
if (last_iteration && unroll_type != UNROLL_COMPLETELY)
{
/* Must emit an insn to increment the split address
giv. Add in the const_adjust field in case there
was a constant eliminated from the address. */
rtx value, dest_reg;
/* tv->dest_reg will be either a bare register,
or else a register plus a constant. */
if (GET_CODE (tv->dest_reg) == REG)
dest_reg = tv->dest_reg;
else
dest_reg = XEXP (tv->dest_reg, 0);
/* Check for shared address givs, and avoid
incrementing the shared pseudo reg more than
once. */
if (! tv->same_insn)
{
/* tv->dest_reg may actually be a (PLUS (REG)
(CONST)) here, so we must call plus_constant
to add the const_adjust amount before calling
emit_unrolled_add below. */
value = plus_constant (tv->dest_reg,
tv->const_adjust);
/* The constant could be too large for an add
immediate, so can't directly emit an insn
here. */
emit_unrolled_add (dest_reg, XEXP (value, 0),
XEXP (value, 1));
}
/* Reset the giv to be just the register again, in case
it is used after the set we have just emitted.
We must subtract the const_adjust factor added in
above. */
tv->dest_reg = plus_constant (dest_reg,
- tv->const_adjust);
*tv->location = tv->dest_reg;
}
}
}
/* If this is a setting of a splittable variable, then determine
how to split the variable, create a new set based on this split,
and set up the reg_map so that later uses of the variable will
use the new split variable. */
dest_reg_was_split = 0;
if ((set = single_set (insn))
&& GET_CODE (SET_DEST (set)) == REG
&& splittable_regs[REGNO (SET_DEST (set))])
{
int regno = REGNO (SET_DEST (set));
dest_reg_was_split = 1;
/* Compute the increment value for the giv, if it wasn't
already computed above. */
if (giv_inc == 0)
giv_inc = calculate_giv_inc (set, insn, regno);
giv_dest_reg = SET_DEST (set);
giv_src_reg = SET_DEST (set);
if (unroll_type == UNROLL_COMPLETELY)
{
/* Completely unrolling the loop. Set the induction
variable to a known constant value. */
/* The value in splittable_regs may be an invariant
value, so we must use plus_constant here. */
splittable_regs[regno]
= plus_constant (splittable_regs[regno], INTVAL (giv_inc));
if (GET_CODE (splittable_regs[regno]) == PLUS)
{
giv_src_reg = XEXP (splittable_regs[regno], 0);
giv_inc = XEXP (splittable_regs[regno], 1);
}
else
{
/* The splittable_regs value must be a REG or a
CONST_INT, so put the entire value in the giv_src_reg
variable. */
giv_src_reg = splittable_regs[regno];
giv_inc = const0_rtx;
}
}
else
{
/* Partially unrolling loop. Create a new pseudo
register for the iteration variable, and set it to
be a constant plus the original register. Except
on the last iteration, when the result has to
go back into the original iteration var register. */
/* Handle bivs which must be mapped to a new register
when split. This happens for bivs which need their
final value set before loop entry. The new register
for the biv was stored in the biv's first struct
induction entry by find_splittable_regs. */
if (regno < max_reg_before_loop
&& reg_iv_type[regno] == BASIC_INDUCT)
{
giv_src_reg = reg_biv_class[regno]->biv->src_reg;
giv_dest_reg = giv_src_reg;
}
#if 0
/* If non-reduced/final-value givs were split, then
this would have to remap those givs also. See
find_splittable_regs. */
#endif
splittable_regs[regno]
= GEN_INT (INTVAL (giv_inc)
+ INTVAL (splittable_regs[regno]));
giv_inc = splittable_regs[regno];
/* Now split the induction variable by changing the dest
of this insn to a new register, and setting its
reg_map entry to point to this new register.
If this is the last iteration, and this is the last insn
that will update the iv, then reuse the original dest,
to ensure that the iv will have the proper value when
the loop exits or repeats.
Using splittable_regs_updates here like this is safe,
because it can only be greater than one if all
instructions modifying the iv are always executed in
order. */
if (! last_iteration
|| (splittable_regs_updates[regno]-- != 1))
{
tem = gen_reg_rtx (GET_MODE (giv_src_reg));
giv_dest_reg = tem;
map->reg_map[regno] = tem;
}
else
map->reg_map[regno] = giv_src_reg;
}
/* The constant being added could be too large for an add
immediate, so can't directly emit an insn here. */
emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
copy = get_last_insn ();
pattern = PATTERN (copy);
}
else
{
pattern = copy_rtx_and_substitute (pattern, map);
copy = emit_insn (pattern);
}
REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
#ifdef HAVE_cc0
/* If this insn is setting CC0, it may need to look at
the insn that uses CC0 to see what type of insn it is.
In that case, the call to recog via validate_change will
fail. So don't substitute constants here. Instead,
do it when we emit the following insn.
For example, see the pyr.md file. That machine has signed and
unsigned compares. The compare patterns must check the
following branch insn to see which what kind of compare to
emit.
If the previous insn set CC0, substitute constants on it as
well. */
if (sets_cc0_p (PATTERN (copy)) != 0)
cc0_insn = copy;
else
{
if (cc0_insn)
try_constants (cc0_insn, map);
cc0_insn = 0;
try_constants (copy, map);
}
#else
try_constants (copy, map);
#endif
/* Make split induction variable constants `permanent' since we
know there are no backward branches across iteration variable
settings which would invalidate this. */
if (dest_reg_was_split)
{
int regno = REGNO (SET_DEST (pattern));
if (regno < map->const_equiv_map_size
&& map->const_age_map[regno] == map->const_age)
map->const_age_map[regno] = -1;
}
break;
case JUMP_INSN:
pattern = copy_rtx_and_substitute (PATTERN (insn), map);
copy = emit_jump_insn (pattern);
REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
if (JUMP_LABEL (insn) == start_label && insn == copy_end
&& ! last_iteration)
{
/* This is a branch to the beginning of the loop; this is the
last insn being copied; and this is not the last iteration.
In this case, we want to change the original fall through
case to be a branch past the end of the loop, and the
original jump label case to fall_through. */
if (invert_exp (pattern, copy))
{
if (! redirect_exp (&pattern,
get_label_from_map (map,
CODE_LABEL_NUMBER
(JUMP_LABEL (insn))),
exit_label, copy))
abort ();
}
else
{
rtx jmp;
rtx lab = gen_label_rtx ();
/* Can't do it by reversing the jump (probably because we
couldn't reverse the conditions), so emit a new
jump_insn after COPY, and redirect the jump around
that. */
jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
jmp = emit_barrier_after (jmp);
emit_label_after (lab, jmp);
LABEL_NUSES (lab) = 0;
if (! redirect_exp (&pattern,
get_label_from_map (map,
CODE_LABEL_NUMBER
(JUMP_LABEL (insn))),
lab, copy))
abort ();
}
}
#ifdef HAVE_cc0
if (cc0_insn)
try_constants (cc0_insn, map);
cc0_insn = 0;
#endif
try_constants (copy, map);
/* Set the jump label of COPY correctly to avoid problems with
later passes of unroll_loop, if INSN had jump label set. */
if (JUMP_LABEL (insn))
{
rtx label = 0;
/* Can't use the label_map for every insn, since this may be
the backward branch, and hence the label was not mapped. */
if ((set = single_set (copy)))
{
tem = SET_SRC (set);
if (GET_CODE (tem) == LABEL_REF)
label = XEXP (tem, 0);
else if (GET_CODE (tem) == IF_THEN_ELSE)
{
if (XEXP (tem, 1) != pc_rtx)
label = XEXP (XEXP (tem, 1), 0);
else
label = XEXP (XEXP (tem, 2), 0);
}
}
if (label && GET_CODE (label) == CODE_LABEL)
JUMP_LABEL (copy) = label;
else
{
/* An unrecognizable jump insn, probably the entry jump
for a switch statement. This label must have been mapped,
so just use the label_map to get the new jump label. */
JUMP_LABEL (copy)
= get_label_from_map (map,
CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
}
/* If this is a non-local jump, then must increase the label
use count so that the label will not be deleted when the
original jump is deleted. */
LABEL_NUSES (JUMP_LABEL (copy))++;
}
else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
|| GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
{
rtx pat = PATTERN (copy);
int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
int len = XVECLEN (pat, diff_vec_p);
int i;
for (i = 0; i < len; i++)
LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
}
/* If this used to be a conditional jump insn but whose branch
direction is now known, we must do something special. */
if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
{
#ifdef HAVE_cc0
/* The previous insn set cc0 for us. So delete it. */
delete_insn (PREV_INSN (copy));
#endif
/* If this is now a no-op, delete it. */
if (map->last_pc_value == pc_rtx)
{
/* Don't let delete_insn delete the label referenced here,
because we might possibly need it later for some other
instruction in the loop. */
if (JUMP_LABEL (copy))
LABEL_NUSES (JUMP_LABEL (copy))++;
delete_insn (copy);
if (JUMP_LABEL (copy))
LABEL_NUSES (JUMP_LABEL (copy))--;
copy = 0;
}
else
/* Otherwise, this is unconditional jump so we must put a
BARRIER after it. We could do some dead code elimination
here, but jump.c will do it just as well. */
emit_barrier ();
}
break;
case CALL_INSN:
pattern = copy_rtx_and_substitute (PATTERN (insn), map);
copy = emit_call_insn (pattern);
REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
/* Because the USAGE information potentially contains objects other
than hard registers, we need to copy it. */
CALL_INSN_FUNCTION_USAGE (copy)
= copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn), map);
#ifdef HAVE_cc0
if (cc0_insn)
try_constants (cc0_insn, map);
cc0_insn = 0;
#endif
try_constants (copy, map);
/* Be lazy and assume CALL_INSNs clobber all hard registers. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
map->const_equiv_map[i] = 0;
break;
case CODE_LABEL:
/* If this is the loop start label, then we don't need to emit a
copy of this label since no one will use it. */
if (insn != start_label)
{
copy = emit_label (get_label_from_map (map,
CODE_LABEL_NUMBER (insn)));
map->const_age++;
}
break;
case BARRIER:
copy = emit_barrier ();
break;
case NOTE:
/* VTOP notes are valid only before the loop exit test. If placed
anywhere else, loop may generate bad code. */
if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
&& (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
|| (last_iteration && unroll_type != UNROLL_COMPLETELY)))
copy = emit_note (NOTE_SOURCE_FILE (insn),
NOTE_LINE_NUMBER (insn));
else
copy = 0;
break;
default:
abort ();
break;
}
map->insn_map[INSN_UID (insn)] = copy;
}
while (insn != copy_end);
/* Now finish coping the REG_NOTES. */
insn = copy_start;
do
{
insn = NEXT_INSN (insn);
if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
|| GET_CODE (insn) == CALL_INSN)
&& map->insn_map[INSN_UID (insn)])
final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
}
while (insn != copy_end);
/* There may be notes between copy_notes_from and loop_end. Emit a copy of
each of these notes here, since there may be some important ones, such as
NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
iteration, because the original notes won't be deleted.
We can't use insert_before here, because when from preconditioning,
insert_before points before the loop. We can't use copy_end, because
there may be insns already inserted after it (which we don't want to
copy) when not from preconditioning code. */
if (! last_iteration)
{
for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
{
if (GET_CODE (insn) == NOTE
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
}
}
if (final_label && LABEL_NUSES (final_label) > 0)
emit_label (final_label);
tem = gen_sequence ();
end_sequence ();
emit_insn_before (tem, insert_before);
}
/* Emit an insn, using the expand_binop to ensure that a valid insn is
emitted. This will correctly handle the case where the increment value
won't fit in the immediate field of a PLUS insns. */
void
emit_unrolled_add (dest_reg, src_reg, increment)
rtx dest_reg, src_reg, increment;
{
rtx result;
result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
dest_reg, 0, OPTAB_LIB_WIDEN);
if (dest_reg != result)
emit_move_insn (dest_reg, result);
}
/* Searches the insns between INSN and LOOP_END. Returns 1 if there
is a backward branch in that range that branches to somewhere between
LOOP_START and INSN. Returns 0 otherwise. */
/* ??? This is quadratic algorithm. Could be rewritten to be linear.
In practice, this is not a problem, because this function is seldom called,
and uses a negligible amount of CPU time on average. */
int
back_branch_in_range_p (insn, loop_start, loop_end)
rtx insn;
rtx loop_start, loop_end;
{
rtx p, q, target_insn;
rtx orig_loop_end = loop_end;
/* Stop before we get to the backward branch at the end of the loop. */
loop_end = prev_nonnote_insn (loop_end);
if (GET_CODE (loop_end) == BARRIER)
loop_end = PREV_INSN (loop_end);
/* Check in case insn has been deleted, search forward for first non
deleted insn following it. */
while (INSN_DELETED_P (insn))
insn = NEXT_INSN (insn);
/* Check for the case where insn is the last insn in the loop. Deal
with the case where INSN was a deleted loop test insn, in which case
it will now be the NOTE_LOOP_END. */
if (insn == loop_end || insn == orig_loop_end)
return 0;
for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
{
if (GET_CODE (p) == JUMP_INSN)
{
target_insn = JUMP_LABEL (p);
/* Search from loop_start to insn, to see if one of them is
the target_insn. We can't use INSN_LUID comparisons here,
since insn may not have an LUID entry. */
for (q = loop_start; q != insn; q = NEXT_INSN (q))
if (q == target_insn)
return 1;
}
}
return 0;
}
/* Try to generate the simplest rtx for the expression
(PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
value of giv's. */
static rtx
fold_rtx_mult_add (mult1, mult2, add1, mode)
rtx mult1, mult2, add1;
enum machine_mode mode;
{
rtx temp, mult_res;
rtx result;
/* The modes must all be the same. This should always be true. For now,
check to make sure. */
if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
|| (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
|| (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
abort ();
/* Ensure that if at least one of mult1/mult2 are constant, then mult2
will be a constant. */
if (GET_CODE (mult1) == CONST_INT)
{
temp = mult2;
mult2 = mult1;
mult1 = temp;
}
mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
if (! mult_res)
mult_res = gen_rtx (MULT, mode, mult1, mult2);
/* Again, put the constant second. */
if (GET_CODE (add1) == CONST_INT)
{
temp = add1;
add1 = mult_res;
mult_res = temp;
}
result = simplify_binary_operation (PLUS, mode, add1, mult_res);
if (! result)
result = gen_rtx (PLUS, mode, add1, mult_res);
return result;
}
/* Searches the list of induction struct's for the biv BL, to try to calculate
the total increment value for one iteration of the loop as a constant.
Returns the increment value as an rtx, simplified as much as possible,
if it can be calculated. Otherwise, returns 0. */
rtx
biv_total_increment (bl, loop_start, loop_end)
struct iv_class *bl;
rtx loop_start, loop_end;
{
struct induction *v;
rtx result;
/* For increment, must check every instruction that sets it. Each
instruction must be executed only once each time through the loop.
To verify this, we check that the the insn is always executed, and that
there are no backward branches after the insn that branch to before it.
Also, the insn must have a mult_val of one (to make sure it really is
an increment). */
result = const0_rtx;
for (v = bl->biv; v; v = v->next_iv)
{
if (v->always_computable && v->mult_val == const1_rtx
&& ! back_branch_in_range_p (v->insn, loop_start, loop_end))
result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
else
return 0;
}
return result;
}
/* Determine the initial value of the iteration variable, and the amount
that it is incremented each loop. Use the tables constructed by
the strength reduction pass to calculate these values.
Initial_value and/or increment are set to zero if their values could not
be calculated. */
static void
iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
rtx iteration_var, *initial_value, *increment;
rtx loop_start, loop_end;
{
struct iv_class *bl;
struct induction *v, *b;
/* Clear the result values, in case no answer can be found. */
*initial_value = 0;
*increment = 0;
/* The iteration variable can be either a giv or a biv. Check to see
which it is, and compute the variable's initial value, and increment
value if possible. */
/* If this is a new register, can't handle it since we don't have any
reg_iv_type entry for it. */
if (REGNO (iteration_var) >= max_reg_before_loop)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Loop unrolling: No reg_iv_type entry for iteration var.\n");
return;
}
/* Reject iteration variables larger than the host wide int size, since they
could result in a number of iterations greater than the range of our
`unsigned HOST_WIDE_INT' variable loop_n_iterations. */
else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
> HOST_BITS_PER_WIDE_INT))
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Loop unrolling: Iteration var rejected because mode too large.\n");
return;
}
else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Loop unrolling: Iteration var not an integer.\n");
return;
}
else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
{
/* Grab initial value, only useful if it is a constant. */
bl = reg_biv_class[REGNO (iteration_var)];
*initial_value = bl->initial_value;
*increment = biv_total_increment (bl, loop_start, loop_end);
}
else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
{
#if 1
/* ??? The code below does not work because the incorrect number of
iterations is calculated when the biv is incremented after the giv
is set (which is the usual case). This can probably be accounted
for by biasing the initial_value by subtracting the amount of the
increment that occurs between the giv set and the giv test. However,
a giv as an iterator is very rare, so it does not seem worthwhile
to handle this. */
/* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Loop unrolling: Giv iterators are not handled.\n");
return;
#else
/* Initial value is mult_val times the biv's initial value plus
add_val. Only useful if it is a constant. */
v = reg_iv_info[REGNO (iteration_var)];
bl = reg_biv_class[REGNO (v->src_reg)];
*initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
v->add_val, v->mode);
/* Increment value is mult_val times the increment value of the biv. */
*increment = biv_total_increment (bl, loop_start, loop_end);
if (*increment)
*increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
v->mode);
#endif
}
else
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Loop unrolling: Not basic or general induction var.\n");
return;
}
}
/* Calculate the approximate final value of the iteration variable
which has an loop exit test with code COMPARISON_CODE and comparison value
of COMPARISON_VALUE. Also returns an indication of whether the comparison
was signed or unsigned, and the direction of the comparison. This info is
needed to calculate the number of loop iterations. */
static rtx
approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
enum rtx_code comparison_code;
rtx comparison_value;
int *unsigned_p;
int *compare_dir;
{
/* Calculate the final value of the induction variable.
The exact final value depends on the branch operator, and increment sign.
This is only an approximate value. It will be wrong if the iteration
variable is not incremented by one each time through the loop, and
approx final value - start value % increment != 0. */
*unsigned_p = 0;
switch (comparison_code)
{
case LEU:
*unsigned_p = 1;
case LE:
*compare_dir = 1;
return plus_constant (comparison_value, 1);
case GEU:
*unsigned_p = 1;
case GE:
*compare_dir = -1;
return plus_constant (comparison_value, -1);
case EQ:
/* Can not calculate a final value for this case. */
*compare_dir = 0;
return 0;
case LTU:
*unsigned_p = 1;
case LT:
*compare_dir = 1;
return comparison_value;
break;
case GTU:
*unsigned_p = 1;
case GT:
*compare_dir = -1;
return comparison_value;
case NE:
*compare_dir = 0;
return comparison_value;
default:
abort ();
}
}
/* For each biv and giv, determine whether it can be safely split into
a different variable for each unrolled copy of the loop body. If it
is safe to split, then indicate that by saving some useful info
in the splittable_regs array.
If the loop is being completely unrolled, then splittable_regs will hold
the current value of the induction variable while the loop is unrolled.
It must be set to the initial value of the induction variable here.
Otherwise, splittable_regs will hold the difference between the current
value of the induction variable and the value the induction variable had
at the top of the loop. It must be set to the value 0 here.
Returns the total number of instructions that set registers that are
splittable. */
/* ?? If the loop is only unrolled twice, then most of the restrictions to
constant values are unnecessary, since we can easily calculate increment
values in this case even if nothing is constant. The increment value
should not involve a multiply however. */
/* ?? Even if the biv/giv increment values aren't constant, it may still
be beneficial to split the variable if the loop is only unrolled a few
times, since multiplies by small integers (1,2,3,4) are very cheap. */
static int
find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
unroll_number)
enum unroll_types unroll_type;
rtx loop_start, loop_end;
rtx end_insert_before;
int unroll_number;
{
struct iv_class *bl;
struct induction *v;
rtx increment, tem;
rtx biv_final_value;
int biv_splittable;
int result = 0;
for (bl = loop_iv_list; bl; bl = bl->next)
{
/* Biv_total_increment must return a constant value,
otherwise we can not calculate the split values. */
increment = biv_total_increment (bl, loop_start, loop_end);
if (! increment || GET_CODE (increment) != CONST_INT)
continue;
/* The loop must be unrolled completely, or else have a known number
of iterations and only one exit, or else the biv must be dead
outside the loop, or else the final value must be known. Otherwise,
it is unsafe to split the biv since it may not have the proper
value on loop exit. */
/* loop_number_exit_count is non-zero if the loop has an exit other than
a fall through at the end. */
biv_splittable = 1;
biv_final_value = 0;
if (unroll_type != UNROLL_COMPLETELY
&& (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
|| unroll_type == UNROLL_NAIVE)
&& (uid_luid[REGNO_LAST_UID (bl->regno)] >= INSN_LUID (loop_end)
|| ! bl->init_insn
|| INSN_UID (bl->init_insn) >= max_uid_for_loop
|| (uid_luid[REGNO_FIRST_UID (bl->regno)]
< INSN_LUID (bl->init_insn))
|| reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
&& ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
biv_splittable = 0;
/* If any of the insns setting the BIV don't do so with a simple
PLUS, we don't know how to split it. */
for (v = bl->biv; biv_splittable && v; v = v->next_iv)
if ((tem = single_set (v->insn)) == 0
|| GET_CODE (SET_DEST (tem)) != REG
|| REGNO (SET_DEST (tem)) != bl->regno
|| GET_CODE (SET_SRC (tem)) != PLUS)
biv_splittable = 0;
/* If final value is non-zero, then must emit an instruction which sets
the value of the biv to the proper value. This is done after
handling all of the givs, since some of them may need to use the
biv's value in their initialization code. */
/* This biv is splittable. If completely unrolling the loop, save
the biv's initial value. Otherwise, save the constant zero. */
if (biv_splittable == 1)
{
if (unroll_type == UNROLL_COMPLETELY)
{
/* If the initial value of the biv is itself (i.e. it is too
complicated for strength_reduce to compute), or is a hard
register, or it isn't invariant, then we must create a new
pseudo reg to hold the initial value of the biv. */
if (GET_CODE (bl->initial_value) == REG
&& (REGNO (bl->initial_value) == bl->regno
|| REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
|| ! invariant_p (bl->initial_value)))
{
rtx tem = gen_reg_rtx (bl->biv->mode);
emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
loop_start);
if (loop_dump_stream)
fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
bl->regno, REGNO (tem));
splittable_regs[bl->regno] = tem;
}
else
splittable_regs[bl->regno] = bl->initial_value;
}
else
splittable_regs[bl->regno] = const0_rtx;
/* Save the number of instructions that modify the biv, so that
we can treat the last one specially. */
splittable_regs_updates[bl->regno] = bl->biv_count;
result += bl->biv_count;
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Biv %d safe to split.\n", bl->regno);
}
/* Check every giv that depends on this biv to see whether it is
splittable also. Even if the biv isn't splittable, givs which
depend on it may be splittable if the biv is live outside the
loop, and the givs aren't. */
result += find_splittable_givs (bl, unroll_type, loop_start, loop_end,
increment, unroll_number);
/* If final value is non-zero, then must emit an instruction which sets
the value of the biv to the proper value. This is done after
handling all of the givs, since some of them may need to use the
biv's value in their initialization code. */
if (biv_final_value)
{
/* If the loop has multiple exits, emit the insns before the
loop to ensure that it will always be executed no matter
how the loop exits. Otherwise emit the insn after the loop,
since this is slightly more efficient. */
if (! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
emit_insn_before (gen_move_insn (bl->biv->src_reg,
biv_final_value),
end_insert_before);
else
{
/* Create a new register to hold the value of the biv, and then
set the biv to its final value before the loop start. The biv
is set to its final value before loop start to ensure that
this insn will always be executed, no matter how the loop
exits. */
rtx tem = gen_reg_rtx (bl->biv->mode);
emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
loop_start);
emit_insn_before (gen_move_insn (bl->biv->src_reg,
biv_final_value),
loop_start);
if (loop_dump_stream)
fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
REGNO (bl->biv->src_reg), REGNO (tem));
/* Set up the mapping from the original biv register to the new
register. */
bl->biv->src_reg = tem;
}
}
}
return result;
}
/* Return 1 if the first and last unrolled copy of the address giv V is valid
for the instruction that is using it. Do not make any changes to that
instruction. */
static int
verify_addresses (v, giv_inc, unroll_number)
struct induction *v;
rtx giv_inc;
int unroll_number;
{
int ret = 1;
rtx orig_addr = *v->location;
rtx last_addr = plus_constant (v->dest_reg,
INTVAL (giv_inc) * (unroll_number - 1));
/* First check to see if either address would fail. */
if (! validate_change (v->insn, v->location, v->dest_reg, 0)
|| ! validate_change (v->insn, v->location, last_addr, 0))
ret = 0;
/* Now put things back the way they were before. This will always
succeed. */
validate_change (v->insn, v->location, orig_addr, 0);
return ret;
}
/* For every giv based on the biv BL, check to determine whether it is
splittable. This is a subroutine to find_splittable_regs ().
Return the number of instructions that set splittable registers. */
static int
find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
unroll_number)
struct iv_class *bl;
enum unroll_types unroll_type;
rtx loop_start, loop_end;
rtx increment;
int unroll_number;
{
struct induction *v, *v2;
rtx final_value;
rtx tem;
int result = 0;
/* Scan the list of givs, and set the same_insn field when there are
multiple identical givs in the same insn. */
for (v = bl->giv; v; v = v->next_iv)
for (v2 = v->next_iv; v2; v2 = v2->next_iv)
if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
&& ! v2->same_insn)
v2->same_insn = v;
for (v = bl->giv; v; v = v->next_iv)
{
rtx giv_inc, value;
/* Only split the giv if it has already been reduced, or if the loop is
being completely unrolled. */
if (unroll_type != UNROLL_COMPLETELY && v->ignore)
continue;
/* The giv can be split if the insn that sets the giv is executed once
and only once on every iteration of the loop. */
/* An address giv can always be split. v->insn is just a use not a set,
and hence it does not matter whether it is always executed. All that
matters is that all the biv increments are always executed, and we
won't reach here if they aren't. */
if (v->giv_type != DEST_ADDR
&& (! v->always_computable
|| back_branch_in_range_p (v->insn, loop_start, loop_end)))
continue;
/* The giv increment value must be a constant. */
giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
v->mode);
if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
continue;
/* The loop must be unrolled completely, or else have a known number of
iterations and only one exit, or else the giv must be dead outside
the loop, or else the final value of the giv must be known.
Otherwise, it is not safe to split the giv since it may not have the
proper value on loop exit. */
/* The used outside loop test will fail for DEST_ADDR givs. They are
never used outside the loop anyways, so it is always safe to split a
DEST_ADDR giv. */
final_value = 0;
if (unroll_type != UNROLL_COMPLETELY
&& (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
|| unroll_type == UNROLL_NAIVE)
&& v->giv_type != DEST_ADDR
/* The next part is true if the pseudo is used outside the loop.
We assume that this is true for any pseudo created after loop
starts, because we don't have a reg_n_info entry for them. */
&& (REGNO (v->dest_reg) >= max_reg_before_loop
|| (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
/* Check for the case where the pseudo is set by a shift/add
sequence, in which case the first insn setting the pseudo
is the first insn of the shift/add sequence. */
&& (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
|| (REGNO_FIRST_UID (REGNO (v->dest_reg))
!= INSN_UID (XEXP (tem, 0)))))
/* Line above always fails if INSN was moved by loop opt. */
|| (uid_luid[REGNO_LAST_UID (REGNO (v->dest_reg))]
>= INSN_LUID (loop_end)))
&& ! (final_value = v->final_value))
continue;
#if 0
/* Currently, non-reduced/final-value givs are never split. */
/* Should emit insns after the loop if possible, as the biv final value
code below does. */
/* If the final value is non-zero, and the giv has not been reduced,
then must emit an instruction to set the final value. */
if (final_value && !v->new_reg)
{
/* Create a new register to hold the value of the giv, and then set
the giv to its final value before the loop start. The giv is set
to its final value before loop start to ensure that this insn
will always be executed, no matter how we exit. */
tem = gen_reg_rtx (v->mode);
emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
emit_insn_before (gen_move_insn (v->dest_reg, final_value),
loop_start);
if (loop_dump_stream)
fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
REGNO (v->dest_reg), REGNO (tem));
v->src_reg = tem;
}
#endif
/* This giv is splittable. If completely unrolling the loop, save the
giv's initial value. Otherwise, save the constant zero for it. */
if (unroll_type == UNROLL_COMPLETELY)
{
/* It is not safe to use bl->initial_value here, because it may not
be invariant. It is safe to use the initial value stored in
the splittable_regs array if it is set. In rare cases, it won't
be set, so then we do exactly the same thing as
find_splittable_regs does to get a safe value. */
rtx biv_initial_value;
if (splittable_regs[bl->regno])
biv_initial_value = splittable_regs[bl->regno];
else if (GET_CODE (bl->initial_value) != REG
|| (REGNO (bl->initial_value) != bl->regno
&& REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
biv_initial_value = bl->initial_value;
else
{
rtx tem = gen_reg_rtx (bl->biv->mode);
emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
loop_start);
biv_initial_value = tem;
}
value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
v->add_val, v->mode);
}
else
value = const0_rtx;
if (v->new_reg)
{
/* If a giv was combined with another giv, then we can only split
this giv if the giv it was combined with was reduced. This
is because the value of v->new_reg is meaningless in this
case. */
if (v->same && ! v->same->new_reg)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"giv combined with unreduced giv not split.\n");
continue;
}
/* If the giv is an address destination, it could be something other
than a simple register, these have to be treated differently. */
else if (v->giv_type == DEST_REG)
{
/* If value is not a constant, register, or register plus
constant, then compute its value into a register before
loop start. This prevents invalid rtx sharing, and should
generate better code. We can use bl->initial_value here
instead of splittable_regs[bl->regno] because this code
is going before the loop start. */
if (unroll_type == UNROLL_COMPLETELY
&& GET_CODE (value) != CONST_INT
&& GET_CODE (value) != REG
&& (GET_CODE (value) != PLUS
|| GET_CODE (XEXP (value, 0)) != REG
|| GET_CODE (XEXP (value, 1)) != CONST_INT))
{
rtx tem = gen_reg_rtx (v->mode);
emit_iv_add_mult (bl->initial_value, v->mult_val,
v->add_val, tem, loop_start);
value = tem;
}
splittable_regs[REGNO (v->new_reg)] = value;
}
else
{
/* Splitting address givs is useful since it will often allow us
to eliminate some increment insns for the base giv as
unnecessary. */
/* If the addr giv is combined with a dest_reg giv, then all
references to that dest reg will be remapped, which is NOT
what we want for split addr regs. We always create a new
register for the split addr giv, just to be safe. */
/* ??? If there are multiple address givs which have been
combined with the same dest_reg giv, then we may only need
one new register for them. Pulling out constants below will
catch some of the common cases of this. Currently, I leave
the work of simplifying multiple address givs to the
following cse pass. */
/* As a special case, if we have multiple identical address givs
within a single instruction, then we do use a single pseudo
reg for both. This is necessary in case one is a match_dup
of the other. */
v->const_adjust = 0;
if (v->same_insn)
{
v->dest_reg = v->same_insn->dest_reg;
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Sharing address givs in insn %d\n",
INSN_UID (v->insn));
}
else if (unroll_type != UNROLL_COMPLETELY)
{
/* If not completely unrolling the loop, then create a new
register to hold the split value of the DEST_ADDR giv.
Emit insn to initialize its value before loop start. */
tem = gen_reg_rtx (v->mode);
/* If the address giv has a constant in its new_reg value,
then this constant can be pulled out and put in value,
instead of being part of the initialization code. */
if (GET_CODE (v->new_reg) == PLUS
&& GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
{
v->dest_reg
= plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
/* Only succeed if this will give valid addresses.
Try to validate both the first and the last
address resulting from loop unrolling, if
one fails, then can't do const elim here. */
if (verify_addresses (v, giv_inc, unroll_number))
{
/* Save the negative of the eliminated const, so
that we can calculate the dest_reg's increment
value later. */
v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
v->new_reg = XEXP (v->new_reg, 0);
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Eliminating constant from giv %d\n",
REGNO (tem));
}
else
v->dest_reg = tem;
}
else
v->dest_reg = tem;
/* If the address hasn't been checked for validity yet, do so
now, and fail completely if either the first or the last
unrolled copy of the address is not a valid address
for the instruction that uses it. */
if (v->dest_reg == tem
&& ! verify_addresses (v, giv_inc, unroll_number))
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Invalid address for giv at insn %d\n",
INSN_UID (v->insn));
continue;
}
/* To initialize the new register, just move the value of
new_reg into it. This is not guaranteed to give a valid
instruction on machines with complex addressing modes.
If we can't recognize it, then delete it and emit insns
to calculate the value from scratch. */
emit_insn_before (gen_rtx (SET, VOIDmode, tem,
copy_rtx (v->new_reg)),
loop_start);
if (recog_memoized (PREV_INSN (loop_start)) < 0)
{
rtx sequence, ret;
/* We can't use bl->initial_value to compute the initial
value, because the loop may have been preconditioned.
We must calculate it from NEW_REG. Try using
force_operand instead of emit_iv_add_mult. */
delete_insn (PREV_INSN (loop_start));
start_sequence ();
ret = force_operand (v->new_reg, tem);
if (ret != tem)
emit_move_insn (tem, ret);
sequence = gen_sequence ();
end_sequence ();
emit_insn_before (sequence, loop_start);
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Invalid init insn, rewritten.\n");
}
}
else
{
v->dest_reg = value;
/* Check the resulting address for validity, and fail
if the resulting address would be invalid. */
if (! verify_addresses (v, giv_inc, unroll_number))
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Invalid address for giv at insn %d\n",
INSN_UID (v->insn));
continue;
}
}
/* Store the value of dest_reg into the insn. This sharing
will not be a problem as this insn will always be copied
later. */
*v->location = v->dest_reg;
/* If this address giv is combined with a dest reg giv, then
save the base giv's induction pointer so that we will be
able to handle this address giv properly. The base giv
itself does not have to be splittable. */
if (v->same && v->same->giv_type == DEST_REG)
addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
if (GET_CODE (v->new_reg) == REG)
{
/* This giv maybe hasn't been combined with any others.
Make sure that it's giv is marked as splittable here. */
splittable_regs[REGNO (v->new_reg)] = value;
/* Make it appear to depend upon itself, so that the
giv will be properly split in the main loop above. */
if (! v->same)
{
v->same = v;
addr_combined_regs[REGNO (v->new_reg)] = v;
}
}
if (loop_dump_stream)
fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
}
}
else
{
#if 0
/* Currently, unreduced giv's can't be split. This is not too much
of a problem since unreduced giv's are not live across loop
iterations anyways. When unrolling a loop completely though,
it makes sense to reduce&split givs when possible, as this will
result in simpler instructions, and will not require that a reg
be live across loop iterations. */
splittable_regs[REGNO (v->dest_reg)] = value;
fprintf (stderr, "Giv %d at insn %d not reduced\n",
REGNO (v->dest_reg), INSN_UID (v->insn));
#else
continue;
#endif
}
/* Unreduced givs are only updated once by definition. Reduced givs
are updated as many times as their biv is. Mark it so if this is
a splittable register. Don't need to do anything for address givs
where this may not be a register. */
if (GET_CODE (v->new_reg) == REG)
{
int count = 1;
if (! v->ignore)
count = reg_biv_class[REGNO (v->src_reg)]->biv_count;
splittable_regs_updates[REGNO (v->new_reg)] = count;
}
result++;
if (loop_dump_stream)
{
int regnum;
if (GET_CODE (v->dest_reg) == CONST_INT)
regnum = -1;
else if (GET_CODE (v->dest_reg) != REG)
regnum = REGNO (XEXP (v->dest_reg, 0));
else
regnum = REGNO (v->dest_reg);
fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
regnum, INSN_UID (v->insn));
}
}
return result;
}
/* Try to prove that the register is dead after the loop exits. Trace every
loop exit looking for an insn that will always be executed, which sets
the register to some value, and appears before the first use of the register
is found. If successful, then return 1, otherwise return 0. */
/* ?? Could be made more intelligent in the handling of jumps, so that
it can search past if statements and other similar structures. */
static int
reg_dead_after_loop (reg, loop_start, loop_end)
rtx reg, loop_start, loop_end;
{
rtx insn, label;
enum rtx_code code;
int jump_count = 0;
int label_count = 0;
int this_loop_num = uid_loop_num[INSN_UID (loop_start)];
/* In addition to checking all exits of this loop, we must also check
all exits of inner nested loops that would exit this loop. We don't
have any way to identify those, so we just give up if there are any
such inner loop exits. */
for (label = loop_number_exit_labels[this_loop_num]; label;
label = LABEL_NEXTREF (label))
label_count++;
if (label_count != loop_number_exit_count[this_loop_num])
return 0;
/* HACK: Must also search the loop fall through exit, create a label_ref
here which points to the loop_end, and append the loop_number_exit_labels
list to it. */
label = gen_rtx (LABEL_REF, VOIDmode, loop_end);
LABEL_NEXTREF (label) = loop_number_exit_labels[this_loop_num];
for ( ; label; label = LABEL_NEXTREF (label))
{
/* Succeed if find an insn which sets the biv or if reach end of
function. Fail if find an insn that uses the biv, or if come to
a conditional jump. */
insn = NEXT_INSN (XEXP (label, 0));
while (insn)
{
code = GET_CODE (insn);
if (GET_RTX_CLASS (code) == 'i')
{
rtx set;
if (reg_referenced_p (reg, PATTERN (insn)))
return 0;
set = single_set (insn);
if (set && rtx_equal_p (SET_DEST (set), reg))
break;
}
if (code == JUMP_INSN)
{
if (GET_CODE (PATTERN (insn)) == RETURN)
break;
else if (! simplejump_p (insn)
/* Prevent infinite loop following infinite loops. */
|| jump_count++ > 20)
return 0;
else
insn = JUMP_LABEL (insn);
}
insn = NEXT_INSN (insn);
}
}
/* Success, the register is dead on all loop exits. */
return 1;
}
/* Try to calculate the final value of the biv, the value it will have at
the end of the loop. If we can do it, return that value. */
rtx
final_biv_value (bl, loop_start, loop_end)
struct iv_class *bl;
rtx loop_start, loop_end;
{
rtx increment, tem;
/* ??? This only works for MODE_INT biv's. Reject all others for now. */
if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
return 0;
/* The final value for reversed bivs must be calculated differently than
for ordinary bivs. In this case, there is already an insn after the
loop which sets this biv's final value (if necessary), and there are
no other loop exits, so we can return any value. */
if (bl->reversed)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Final biv value for %d, reversed biv.\n", bl->regno);
return const0_rtx;
}
/* Try to calculate the final value as initial value + (number of iterations
* increment). For this to work, increment must be invariant, the only
exit from the loop must be the fall through at the bottom (otherwise
it may not have its final value when the loop exits), and the initial
value of the biv must be invariant. */
if (loop_n_iterations != 0
&& ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
&& invariant_p (bl->initial_value))
{
increment = biv_total_increment (bl, loop_start, loop_end);
if (increment && invariant_p (increment))
{
/* Can calculate the loop exit value, emit insns after loop
end to calculate this value into a temporary register in
case it is needed later. */
tem = gen_reg_rtx (bl->biv->mode);
/* Make sure loop_end is not the last insn. */
if (NEXT_INSN (loop_end) == 0)
emit_note_after (NOTE_INSN_DELETED, loop_end);
emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
bl->initial_value, tem, NEXT_INSN (loop_end));
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Final biv value for %d, calculated.\n", bl->regno);
return tem;
}
}
/* Check to see if the biv is dead at all loop exits. */
if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Final biv value for %d, biv dead after loop exit.\n",
bl->regno);
return const0_rtx;
}
return 0;
}
/* Try to calculate the final value of the giv, the value it will have at
the end of the loop. If we can do it, return that value. */
rtx
final_giv_value (v, loop_start, loop_end)
struct induction *v;
rtx loop_start, loop_end;
{
struct iv_class *bl;
rtx insn;
rtx increment, tem;
rtx insert_before, seq;
bl = reg_biv_class[REGNO (v->src_reg)];
/* The final value for givs which depend on reversed bivs must be calculated
differently than for ordinary givs. In this case, there is already an
insn after the loop which sets this giv's final value (if necessary),
and there are no other loop exits, so we can return any value. */
if (bl->reversed)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Final giv value for %d, depends on reversed biv\n",
REGNO (v->dest_reg));
return const0_rtx;
}
/* Try to calculate the final value as a function of the biv it depends
upon. The only exit from the loop must be the fall through at the bottom
(otherwise it may not have its final value when the loop exits). */
/* ??? Can calculate the final giv value by subtracting off the
extra biv increments times the giv's mult_val. The loop must have
only one exit for this to work, but the loop iterations does not need
to be known. */
if (loop_n_iterations != 0
&& ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
{
/* ?? It is tempting to use the biv's value here since these insns will
be put after the loop, and hence the biv will have its final value
then. However, this fails if the biv is subsequently eliminated.
Perhaps determine whether biv's are eliminable before trying to
determine whether giv's are replaceable so that we can use the
biv value here if it is not eliminable. */
/* We are emitting code after the end of the loop, so we must make
sure that bl->initial_value is still valid then. It will still
be valid if it is invariant. */
increment = biv_total_increment (bl, loop_start, loop_end);
if (increment && invariant_p (increment)
&& invariant_p (bl->initial_value))
{
/* Can calculate the loop exit value of its biv as
(loop_n_iterations * increment) + initial_value */
/* The loop exit value of the giv is then
(final_biv_value - extra increments) * mult_val + add_val.
The extra increments are any increments to the biv which
occur in the loop after the giv's value is calculated.
We must search from the insn that sets the giv to the end
of the loop to calculate this value. */
insert_before = NEXT_INSN (loop_end);
/* Put the final biv value in tem. */
tem = gen_reg_rtx (bl->biv->mode);
emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
bl->initial_value, tem, insert_before);
/* Subtract off extra increments as we find them. */
for (insn = NEXT_INSN (v->insn); insn != loop_end;
insn = NEXT_INSN (insn))
{
struct induction *biv;
for (biv = bl->biv; biv; biv = biv->next_iv)
if (biv->insn == insn)
{
start_sequence ();
tem = expand_binop (GET_MODE (tem), sub_optab, tem,
biv->add_val, NULL_RTX, 0,
OPTAB_LIB_WIDEN);
seq = gen_sequence ();
end_sequence ();
emit_insn_before (seq, insert_before);
}
}
/* Now calculate the giv's final value. */
emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
insert_before);
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Final giv value for %d, calc from biv's value.\n",
REGNO (v->dest_reg));
return tem;
}
}
/* Replaceable giv's should never reach here. */
if (v->replaceable)
abort ();
/* Check to see if the biv is dead at all loop exits. */
if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Final giv value for %d, giv dead after loop exit.\n",
REGNO (v->dest_reg));
return const0_rtx;
}
return 0;
}
/* Calculate the number of loop iterations. Returns the exact number of loop
iterations if it can be calculated, otherwise returns zero. */
unsigned HOST_WIDE_INT
loop_iterations (loop_start, loop_end)
rtx loop_start, loop_end;
{
rtx comparison, comparison_value;
rtx iteration_var, initial_value, increment, final_value;
enum rtx_code comparison_code;
HOST_WIDE_INT i;
int increment_dir;
int unsigned_compare, compare_dir, final_larger;
unsigned long tempu;
rtx last_loop_insn;
/* First find the iteration variable. If the last insn is a conditional
branch, and the insn before tests a register value, make that the
iteration variable. */
loop_initial_value = 0;
loop_increment = 0;
loop_final_value = 0;
loop_iteration_var = 0;
/* We used to use pren_nonnote_insn here, but that fails because it might
accidentally get the branch for a contained loop if the branch for this
loop was deleted. We can only trust branches immediately before the
loop_end. */
last_loop_insn = PREV_INSN (loop_end);
comparison = get_condition_for_loop (last_loop_insn);
if (comparison == 0)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Loop unrolling: No final conditional branch found.\n");
return 0;
}
/* ??? Get_condition may switch position of induction variable and
invariant register when it canonicalizes the comparison. */
comparison_code = GET_CODE (comparison);
iteration_var = XEXP (comparison, 0);
comparison_value = XEXP (comparison, 1);
if (GET_CODE (iteration_var) != REG)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Loop unrolling: Comparison not against register.\n");
return 0;
}
/* Loop iterations is always called before any new registers are created
now, so this should never occur. */
if (REGNO (iteration_var) >= max_reg_before_loop)
abort ();
iteration_info (iteration_var, &initial_value, &increment,
loop_start, loop_end);
if (initial_value == 0)
/* iteration_info already printed a message. */
return 0;
/* If the comparison value is an invariant register, then try to find
its value from the insns before the start of the loop. */
if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
{
rtx insn, set;
for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
{
if (GET_CODE (insn) == CODE_LABEL)
break;
else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
&& reg_set_p (comparison_value, insn))
{
/* We found the last insn before the loop that sets the register.
If it sets the entire register, and has a REG_EQUAL note,
then use the value of the REG_EQUAL note. */
if ((set = single_set (insn))
&& (SET_DEST (set) == comparison_value))
{
rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
/* Only use the REG_EQUAL note if it is a constant.
Other things, divide in particular, will cause
problems later if we use them. */
if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
&& CONSTANT_P (XEXP (note, 0)))
comparison_value = XEXP (note, 0);
}
break;
}
}
}
final_value = approx_final_value (comparison_code, comparison_value,
&unsigned_compare, &compare_dir);
/* Save the calculated values describing this loop's bounds, in case
precondition_loop_p will need them later. These values can not be
recalculated inside precondition_loop_p because strength reduction
optimizations may obscure the loop's structure. */
loop_iteration_var = iteration_var;
loop_initial_value = initial_value;
loop_increment = increment;
loop_final_value = final_value;
loop_comparison_code = comparison_code;
if (increment == 0)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Loop unrolling: Increment value can't be calculated.\n");
return 0;
}
else if (GET_CODE (increment) != CONST_INT)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Loop unrolling: Increment value not constant.\n");
return 0;
}
else if (GET_CODE (initial_value) != CONST_INT)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Loop unrolling: Initial value not constant.\n");
return 0;
}
else if (final_value == 0)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Loop unrolling: EQ comparison loop.\n");
return 0;
}
else if (GET_CODE (final_value) != CONST_INT)
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Loop unrolling: Final value not constant.\n");
return 0;
}
/* ?? Final value and initial value do not have to be constants.
Only their difference has to be constant. When the iteration variable
is an array address, the final value and initial value might both
be addresses with the same base but different constant offsets.
Final value must be invariant for this to work.
To do this, need some way to find the values of registers which are
invariant. */
/* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
if (unsigned_compare)
final_larger
= ((unsigned HOST_WIDE_INT) INTVAL (final_value)
> (unsigned HOST_WIDE_INT) INTVAL (initial_value))
- ((unsigned HOST_WIDE_INT) INTVAL (final_value)
< (unsigned HOST_WIDE_INT) INTVAL (initial_value));
else
final_larger = (INTVAL (final_value) > INTVAL (initial_value))
- (INTVAL (final_value) < INTVAL (initial_value));
if (INTVAL (increment) > 0)
increment_dir = 1;
else if (INTVAL (increment) == 0)
increment_dir = 0;
else
increment_dir = -1;
/* There are 27 different cases: compare_dir = -1, 0, 1;
final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
There are 4 normal cases, 4 reverse cases (where the iteration variable
will overflow before the loop exits), 4 infinite loop cases, and 15
immediate exit (0 or 1 iteration depending on loop type) cases.
Only try to optimize the normal cases. */
/* (compare_dir/final_larger/increment_dir)
Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
/* ?? If the meaning of reverse loops (where the iteration variable
will overflow before the loop exits) is undefined, then could
eliminate all of these special checks, and just always assume
the loops are normal/immediate/infinite. Note that this means
the sign of increment_dir does not have to be known. Also,
since it does not really hurt if immediate exit loops or infinite loops
are optimized, then that case could be ignored also, and hence all
loops can be optimized.
According to ANSI Spec, the reverse loop case result is undefined,
because the action on overflow is undefined.
See also the special test for NE loops below. */
if (final_larger == increment_dir && final_larger != 0
&& (final_larger == compare_dir || compare_dir == 0))
/* Normal case. */
;
else
{
if (loop_dump_stream)
fprintf (loop_dump_stream,
"Loop unrolling: Not normal loop.\n");
return 0;
}
/* Calculate the number of iterations, final_value is only an approximation,
so correct for that. Note that tempu and loop_n_iterations are
unsigned, because they can be as large as 2^n - 1. */
i = INTVAL (increment);
if (i > 0)
tempu = INTVAL (final_value) - INTVAL (initial_value);
else if (i < 0)
{
tempu = INTVAL (initial_value) - INTVAL (final_value);
i = -i;
}
else
abort ();
/* For NE tests, make sure that the iteration variable won't miss the
final value. If tempu mod i is not zero, then the iteration variable
will overflow before the loop exits, and we can not calculate the
number of iterations. */
if (compare_dir == 0 && (tempu % i) != 0)
return 0;
return tempu / i + ((tempu % i) != 0);
}
/* Replace uses of split bivs with their split pseudo register. This is
for original instructions which remain after loop unrolling without
copying. */
static rtx
remap_split_bivs (x)
rtx x;
{
register enum rtx_code code;
register int i;
register char *fmt;
if (x == 0)
return x;
code = GET_CODE (x);
switch (code)
{
case SCRATCH:
case PC:
case CC0:
case CONST_INT:
case CONST_DOUBLE:
case CONST:
case SYMBOL_REF:
case LABEL_REF:
return x;
case REG:
#if 0
/* If non-reduced/final-value givs were split, then this would also
have to remap those givs also. */
#endif
if (REGNO (x) < max_reg_before_loop
&& reg_iv_type[REGNO (x)] == BASIC_INDUCT)
return reg_biv_class[REGNO (x)]->biv->src_reg;
break;
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
XEXP (x, i) = remap_split_bivs (XEXP (x, i));
if (fmt[i] == 'E')
{
register int j;
for (j = 0; j < XVECLEN (x, i); j++)
XVECEXP (x, i, j) = remap_split_bivs (XVECEXP (x, i, j));
}
}
return x;
}
/* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
return 0. COPY_START is where we can start looking for the insns
FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
insns.
If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
must dominate LAST_UID.
If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
may not dominate LAST_UID.
If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
must dominate LAST_UID. */
int
set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
int regno;
int first_uid;
int last_uid;
rtx copy_start;
rtx copy_end;
{
int passed_jump = 0;
rtx p = NEXT_INSN (copy_start);
while (INSN_UID (p) != first_uid)
{
if (GET_CODE (p) == JUMP_INSN)
passed_jump= 1;
/* Could not find FIRST_UID. */
if (p == copy_end)
return 0;
p = NEXT_INSN (p);
}
/* Verify that FIRST_UID is an insn that entirely sets REGNO. */
if (GET_RTX_CLASS (GET_CODE (p)) != 'i'
|| ! dead_or_set_regno_p (p, regno))
return 0;
/* FIRST_UID is always executed. */
if (passed_jump == 0)
return 1;
while (INSN_UID (p) != last_uid)
{
/* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
can not be sure that FIRST_UID dominates LAST_UID. */
if (GET_CODE (p) == CODE_LABEL)
return 0;
/* Could not find LAST_UID, but we reached the end of the loop, so
it must be safe. */
else if (p == copy_end)
return 1;
p = NEXT_INSN (p);
}
/* FIRST_UID is always executed if LAST_UID is executed. */
return 1;
}
|