1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
|
/* Alias analysis for GNU C
Copyright (C) 1997-2018 Free Software Foundation, Inc.
Contributed by John Carr (jfc@mit.edu).
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "gimple-ssa.h"
#include "emit-rtl.h"
#include "alias.h"
#include "fold-const.h"
#include "varasm.h"
#include "cselib.h"
#include "langhooks.h"
#include "cfganal.h"
#include "rtl-iter.h"
#include "cgraph.h"
/* The aliasing API provided here solves related but different problems:
Say there exists (in c)
struct X {
struct Y y1;
struct Z z2;
} x1, *px1, *px2;
struct Y y2, *py;
struct Z z2, *pz;
py = &x1.y1;
px2 = &x1;
Consider the four questions:
Can a store to x1 interfere with px2->y1?
Can a store to x1 interfere with px2->z2?
Can a store to x1 change the value pointed to by with py?
Can a store to x1 change the value pointed to by with pz?
The answer to these questions can be yes, yes, yes, and maybe.
The first two questions can be answered with a simple examination
of the type system. If structure X contains a field of type Y then
a store through a pointer to an X can overwrite any field that is
contained (recursively) in an X (unless we know that px1 != px2).
The last two questions can be solved in the same way as the first
two questions but this is too conservative. The observation is
that in some cases we can know which (if any) fields are addressed
and if those addresses are used in bad ways. This analysis may be
language specific. In C, arbitrary operations may be applied to
pointers. However, there is some indication that this may be too
conservative for some C++ types.
The pass ipa-type-escape does this analysis for the types whose
instances do not escape across the compilation boundary.
Historically in GCC, these two problems were combined and a single
data structure that was used to represent the solution to these
problems. We now have two similar but different data structures,
The data structure to solve the last two questions is similar to
the first, but does not contain the fields whose address are never
taken. For types that do escape the compilation unit, the data
structures will have identical information.
*/
/* The alias sets assigned to MEMs assist the back-end in determining
which MEMs can alias which other MEMs. In general, two MEMs in
different alias sets cannot alias each other, with one important
exception. Consider something like:
struct S { int i; double d; };
a store to an `S' can alias something of either type `int' or type
`double'. (However, a store to an `int' cannot alias a `double'
and vice versa.) We indicate this via a tree structure that looks
like:
struct S
/ \
/ \
|/_ _\|
int double
(The arrows are directed and point downwards.)
In this situation we say the alias set for `struct S' is the
`superset' and that those for `int' and `double' are `subsets'.
To see whether two alias sets can point to the same memory, we must
see if either alias set is a subset of the other. We need not trace
past immediate descendants, however, since we propagate all
grandchildren up one level.
Alias set zero is implicitly a superset of all other alias sets.
However, this is no actual entry for alias set zero. It is an
error to attempt to explicitly construct a subset of zero. */
struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
struct GTY(()) alias_set_entry {
/* The alias set number, as stored in MEM_ALIAS_SET. */
alias_set_type alias_set;
/* Nonzero if would have a child of zero: this effectively makes this
alias set the same as alias set zero. */
bool has_zero_child;
/* Nonzero if alias set corresponds to pointer type itself (i.e. not to
aggregate contaiing pointer.
This is used for a special case where we need an universal pointer type
compatible with all other pointer types. */
bool is_pointer;
/* Nonzero if is_pointer or if one of childs have has_pointer set. */
bool has_pointer;
/* The children of the alias set. These are not just the immediate
children, but, in fact, all descendants. So, if we have:
struct T { struct S s; float f; }
continuing our example above, the children here will be all of
`int', `double', `float', and `struct S'. */
hash_map<alias_set_hash, int> *children;
};
static int rtx_equal_for_memref_p (const_rtx, const_rtx);
static void record_set (rtx, const_rtx, void *);
static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
machine_mode);
static rtx find_base_value (rtx);
static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
static alias_set_entry *get_alias_set_entry (alias_set_type);
static tree decl_for_component_ref (tree);
static int write_dependence_p (const_rtx,
const_rtx, machine_mode, rtx,
bool, bool, bool);
static int compare_base_symbol_refs (const_rtx, const_rtx);
static void memory_modified_1 (rtx, const_rtx, void *);
/* Query statistics for the different low-level disambiguators.
A high-level query may trigger multiple of them. */
static struct {
unsigned long long num_alias_zero;
unsigned long long num_same_alias_set;
unsigned long long num_same_objects;
unsigned long long num_volatile;
unsigned long long num_dag;
unsigned long long num_universal;
unsigned long long num_disambiguated;
} alias_stats;
/* Set up all info needed to perform alias analysis on memory references. */
/* Returns the size in bytes of the mode of X. */
#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
/* Cap the number of passes we make over the insns propagating alias
information through set chains.
??? 10 is a completely arbitrary choice. This should be based on the
maximum loop depth in the CFG, but we do not have this information
available (even if current_loops _is_ available). */
#define MAX_ALIAS_LOOP_PASSES 10
/* reg_base_value[N] gives an address to which register N is related.
If all sets after the first add or subtract to the current value
or otherwise modify it so it does not point to a different top level
object, reg_base_value[N] is equal to the address part of the source
of the first set.
A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
expressions represent three types of base:
1. incoming arguments. There is just one ADDRESS to represent all
arguments, since we do not know at this level whether accesses
based on different arguments can alias. The ADDRESS has id 0.
2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
(if distinct from frame_pointer_rtx) and arg_pointer_rtx.
Each of these rtxes has a separate ADDRESS associated with it,
each with a negative id.
GCC is (and is required to be) precise in which register it
chooses to access a particular region of stack. We can therefore
assume that accesses based on one of these rtxes do not alias
accesses based on another of these rtxes.
3. bases that are derived from malloc()ed memory (REG_NOALIAS).
Each such piece of memory has a separate ADDRESS associated
with it, each with an id greater than 0.
Accesses based on one ADDRESS do not alias accesses based on other
ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
alias globals either; the ADDRESSes have Pmode to indicate this.
The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
indicate this. */
static GTY(()) vec<rtx, va_gc> *reg_base_value;
static rtx *new_reg_base_value;
/* The single VOIDmode ADDRESS that represents all argument bases.
It has id 0. */
static GTY(()) rtx arg_base_value;
/* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
static int unique_id;
/* We preserve the copy of old array around to avoid amount of garbage
produced. About 8% of garbage produced were attributed to this
array. */
static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
/* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
registers. */
#define UNIQUE_BASE_VALUE_SP -1
#define UNIQUE_BASE_VALUE_ARGP -2
#define UNIQUE_BASE_VALUE_FP -3
#define UNIQUE_BASE_VALUE_HFP -4
#define static_reg_base_value \
(this_target_rtl->x_static_reg_base_value)
#define REG_BASE_VALUE(X) \
(REGNO (X) < vec_safe_length (reg_base_value) \
? (*reg_base_value)[REGNO (X)] : 0)
/* Vector indexed by N giving the initial (unchanging) value known for
pseudo-register N. This vector is initialized in init_alias_analysis,
and does not change until end_alias_analysis is called. */
static GTY(()) vec<rtx, va_gc> *reg_known_value;
/* Vector recording for each reg_known_value whether it is due to a
REG_EQUIV note. Future passes (viz., reload) may replace the
pseudo with the equivalent expression and so we account for the
dependences that would be introduced if that happens.
The REG_EQUIV notes created in assign_parms may mention the arg
pointer, and there are explicit insns in the RTL that modify the
arg pointer. Thus we must ensure that such insns don't get
scheduled across each other because that would invalidate the
REG_EQUIV notes. One could argue that the REG_EQUIV notes are
wrong, but solving the problem in the scheduler will likely give
better code, so we do it here. */
static sbitmap reg_known_equiv_p;
/* True when scanning insns from the start of the rtl to the
NOTE_INSN_FUNCTION_BEG note. */
static bool copying_arguments;
/* The splay-tree used to store the various alias set entries. */
static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
/* Build a decomposed reference object for querying the alias-oracle
from the MEM rtx and store it in *REF.
Returns false if MEM is not suitable for the alias-oracle. */
static bool
ao_ref_from_mem (ao_ref *ref, const_rtx mem)
{
tree expr = MEM_EXPR (mem);
tree base;
if (!expr)
return false;
ao_ref_init (ref, expr);
/* Get the base of the reference and see if we have to reject or
adjust it. */
base = ao_ref_base (ref);
if (base == NULL_TREE)
return false;
/* The tree oracle doesn't like bases that are neither decls
nor indirect references of SSA names. */
if (!(DECL_P (base)
|| (TREE_CODE (base) == MEM_REF
&& TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
|| (TREE_CODE (base) == TARGET_MEM_REF
&& TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
return false;
/* If this is a reference based on a partitioned decl replace the
base with a MEM_REF of the pointer representative we
created during stack slot partitioning. */
if (VAR_P (base)
&& ! is_global_var (base)
&& cfun->gimple_df->decls_to_pointers != NULL)
{
tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
if (namep)
ref->base = build_simple_mem_ref (*namep);
}
ref->ref_alias_set = MEM_ALIAS_SET (mem);
/* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
is conservative, so trust it. */
if (!MEM_OFFSET_KNOWN_P (mem)
|| !MEM_SIZE_KNOWN_P (mem))
return true;
/* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
drop ref->ref. */
if (maybe_lt (MEM_OFFSET (mem), 0)
|| (ref->max_size_known_p ()
&& maybe_gt ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT,
ref->max_size)))
ref->ref = NULL_TREE;
/* Refine size and offset we got from analyzing MEM_EXPR by using
MEM_SIZE and MEM_OFFSET. */
ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
/* The MEM may extend into adjacent fields, so adjust max_size if
necessary. */
if (ref->max_size_known_p ())
ref->max_size = upper_bound (ref->max_size, ref->size);
/* If MEM_OFFSET and MEM_SIZE might get us outside of the base object of
the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
if (MEM_EXPR (mem) != get_spill_slot_decl (false)
&& (maybe_lt (ref->offset, 0)
|| (DECL_P (ref->base)
&& (DECL_SIZE (ref->base) == NULL_TREE
|| !poly_int_tree_p (DECL_SIZE (ref->base))
|| maybe_lt (wi::to_poly_offset (DECL_SIZE (ref->base)),
ref->offset + ref->size)))))
return false;
return true;
}
/* Query the alias-oracle on whether the two memory rtx X and MEM may
alias. If TBAA_P is set also apply TBAA. Returns true if the
two rtxen may alias, false otherwise. */
static bool
rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
{
ao_ref ref1, ref2;
if (!ao_ref_from_mem (&ref1, x)
|| !ao_ref_from_mem (&ref2, mem))
return true;
return refs_may_alias_p_1 (&ref1, &ref2,
tbaa_p
&& MEM_ALIAS_SET (x) != 0
&& MEM_ALIAS_SET (mem) != 0);
}
/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
such an entry, or NULL otherwise. */
static inline alias_set_entry *
get_alias_set_entry (alias_set_type alias_set)
{
return (*alias_sets)[alias_set];
}
/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
the two MEMs cannot alias each other. */
static inline int
mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
{
return (flag_strict_aliasing
&& ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
MEM_ALIAS_SET (mem2)));
}
/* Return true if the first alias set is a subset of the second. */
bool
alias_set_subset_of (alias_set_type set1, alias_set_type set2)
{
alias_set_entry *ase2;
/* Disable TBAA oracle with !flag_strict_aliasing. */
if (!flag_strict_aliasing)
return true;
/* Everything is a subset of the "aliases everything" set. */
if (set2 == 0)
return true;
/* Check if set1 is a subset of set2. */
ase2 = get_alias_set_entry (set2);
if (ase2 != 0
&& (ase2->has_zero_child
|| (ase2->children && ase2->children->get (set1))))
return true;
/* As a special case we consider alias set of "void *" to be both subset
and superset of every alias set of a pointer. This extra symmetry does
not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
to return true on the following testcase:
void *ptr;
char **ptr2=(char **)&ptr;
*ptr2 = ...
Additionally if a set contains universal pointer, we consider every pointer
to be a subset of it, but we do not represent this explicitely - doing so
would require us to update transitive closure each time we introduce new
pointer type. This makes aliasing_component_refs_p to return true
on the following testcase:
struct a {void *ptr;}
char **ptr = (char **)&a.ptr;
ptr = ...
This makes void * truly universal pointer type. See pointer handling in
get_alias_set for more details. */
if (ase2 && ase2->has_pointer)
{
alias_set_entry *ase1 = get_alias_set_entry (set1);
if (ase1 && ase1->is_pointer)
{
alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
/* If one is ptr_type_node and other is pointer, then we consider
them subset of each other. */
if (set1 == voidptr_set || set2 == voidptr_set)
return true;
/* If SET2 contains universal pointer's alias set, then we consdier
every (non-universal) pointer. */
if (ase2->children && set1 != voidptr_set
&& ase2->children->get (voidptr_set))
return true;
}
}
return false;
}
/* Return 1 if the two specified alias sets may conflict. */
int
alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
{
alias_set_entry *ase1;
alias_set_entry *ase2;
/* The easy case. */
if (alias_sets_must_conflict_p (set1, set2))
return 1;
/* See if the first alias set is a subset of the second. */
ase1 = get_alias_set_entry (set1);
if (ase1 != 0
&& ase1->children && ase1->children->get (set2))
{
++alias_stats.num_dag;
return 1;
}
/* Now do the same, but with the alias sets reversed. */
ase2 = get_alias_set_entry (set2);
if (ase2 != 0
&& ase2->children && ase2->children->get (set1))
{
++alias_stats.num_dag;
return 1;
}
/* We want void * to be compatible with any other pointer without
really dropping it to alias set 0. Doing so would make it
compatible with all non-pointer types too.
This is not strictly necessary by the C/C++ language
standards, but avoids common type punning mistakes. In
addition to that, we need the existence of such universal
pointer to implement Fortran's C_PTR type (which is defined as
type compatible with all C pointers). */
if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
{
alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
/* If one of the sets corresponds to universal pointer,
we consider it to conflict with anything that is
or contains pointer. */
if (set1 == voidptr_set || set2 == voidptr_set)
{
++alias_stats.num_universal;
return true;
}
/* If one of sets is (non-universal) pointer and the other
contains universal pointer, we also get conflict. */
if (ase1->is_pointer && set2 != voidptr_set
&& ase2->children && ase2->children->get (voidptr_set))
{
++alias_stats.num_universal;
return true;
}
if (ase2->is_pointer && set1 != voidptr_set
&& ase1->children && ase1->children->get (voidptr_set))
{
++alias_stats.num_universal;
return true;
}
}
++alias_stats.num_disambiguated;
/* The two alias sets are distinct and neither one is the
child of the other. Therefore, they cannot conflict. */
return 0;
}
/* Return 1 if the two specified alias sets will always conflict. */
int
alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
{
/* Disable TBAA oracle with !flag_strict_aliasing. */
if (!flag_strict_aliasing)
return 1;
if (set1 == 0 || set2 == 0)
{
++alias_stats.num_alias_zero;
return 1;
}
if (set1 == set2)
{
++alias_stats.num_same_alias_set;
return 1;
}
return 0;
}
/* Return 1 if any MEM object of type T1 will always conflict (using the
dependency routines in this file) with any MEM object of type T2.
This is used when allocating temporary storage. If T1 and/or T2 are
NULL_TREE, it means we know nothing about the storage. */
int
objects_must_conflict_p (tree t1, tree t2)
{
alias_set_type set1, set2;
/* If neither has a type specified, we don't know if they'll conflict
because we may be using them to store objects of various types, for
example the argument and local variables areas of inlined functions. */
if (t1 == 0 && t2 == 0)
return 0;
/* If they are the same type, they must conflict. */
if (t1 == t2)
{
++alias_stats.num_same_objects;
return 1;
}
/* Likewise if both are volatile. */
if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
{
++alias_stats.num_volatile;
return 1;
}
set1 = t1 ? get_alias_set (t1) : 0;
set2 = t2 ? get_alias_set (t2) : 0;
/* We can't use alias_sets_conflict_p because we must make sure
that every subtype of t1 will conflict with every subtype of
t2 for which a pair of subobjects of these respective subtypes
overlaps on the stack. */
return alias_sets_must_conflict_p (set1, set2);
}
/* Return the outermost parent of component present in the chain of
component references handled by get_inner_reference in T with the
following property:
- the component is non-addressable, or
- the parent has alias set zero,
or NULL_TREE if no such parent exists. In the former cases, the alias
set of this parent is the alias set that must be used for T itself. */
tree
component_uses_parent_alias_set_from (const_tree t)
{
const_tree found = NULL_TREE;
if (AGGREGATE_TYPE_P (TREE_TYPE (t))
&& TYPE_TYPELESS_STORAGE (TREE_TYPE (t)))
return const_cast <tree> (t);
while (handled_component_p (t))
{
switch (TREE_CODE (t))
{
case COMPONENT_REF:
if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
found = t;
/* Permit type-punning when accessing a union, provided the access
is directly through the union. For example, this code does not
permit taking the address of a union member and then storing
through it. Even the type-punning allowed here is a GCC
extension, albeit a common and useful one; the C standard says
that such accesses have implementation-defined behavior. */
else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
found = t;
break;
case ARRAY_REF:
case ARRAY_RANGE_REF:
if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
found = t;
break;
case REALPART_EXPR:
case IMAGPART_EXPR:
break;
case BIT_FIELD_REF:
case VIEW_CONVERT_EXPR:
/* Bitfields and casts are never addressable. */
found = t;
break;
default:
gcc_unreachable ();
}
if (get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) == 0)
found = t;
t = TREE_OPERAND (t, 0);
}
if (found)
return TREE_OPERAND (found, 0);
return NULL_TREE;
}
/* Return whether the pointer-type T effective for aliasing may
access everything and thus the reference has to be assigned
alias-set zero. */
static bool
ref_all_alias_ptr_type_p (const_tree t)
{
return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
|| TYPE_REF_CAN_ALIAS_ALL (t));
}
/* Return the alias set for the memory pointed to by T, which may be
either a type or an expression. Return -1 if there is nothing
special about dereferencing T. */
static alias_set_type
get_deref_alias_set_1 (tree t)
{
/* All we care about is the type. */
if (! TYPE_P (t))
t = TREE_TYPE (t);
/* If we have an INDIRECT_REF via a void pointer, we don't
know anything about what that might alias. Likewise if the
pointer is marked that way. */
if (ref_all_alias_ptr_type_p (t))
return 0;
return -1;
}
/* Return the alias set for the memory pointed to by T, which may be
either a type or an expression. */
alias_set_type
get_deref_alias_set (tree t)
{
/* If we're not doing any alias analysis, just assume everything
aliases everything else. */
if (!flag_strict_aliasing)
return 0;
alias_set_type set = get_deref_alias_set_1 (t);
/* Fall back to the alias-set of the pointed-to type. */
if (set == -1)
{
if (! TYPE_P (t))
t = TREE_TYPE (t);
set = get_alias_set (TREE_TYPE (t));
}
return set;
}
/* Return the pointer-type relevant for TBAA purposes from the
memory reference tree *T or NULL_TREE in which case *T is
adjusted to point to the outermost component reference that
can be used for assigning an alias set. */
static tree
reference_alias_ptr_type_1 (tree *t)
{
tree inner;
/* Get the base object of the reference. */
inner = *t;
while (handled_component_p (inner))
{
/* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
the type of any component references that wrap it to
determine the alias-set. */
if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
*t = TREE_OPERAND (inner, 0);
inner = TREE_OPERAND (inner, 0);
}
/* Handle pointer dereferences here, they can override the
alias-set. */
if (INDIRECT_REF_P (inner)
&& ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
return TREE_TYPE (TREE_OPERAND (inner, 0));
else if (TREE_CODE (inner) == TARGET_MEM_REF)
return TREE_TYPE (TMR_OFFSET (inner));
else if (TREE_CODE (inner) == MEM_REF
&& ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
return TREE_TYPE (TREE_OPERAND (inner, 1));
/* If the innermost reference is a MEM_REF that has a
conversion embedded treat it like a VIEW_CONVERT_EXPR above,
using the memory access type for determining the alias-set. */
if (TREE_CODE (inner) == MEM_REF
&& (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
!= TYPE_MAIN_VARIANT
(TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
return TREE_TYPE (TREE_OPERAND (inner, 1));
/* Otherwise, pick up the outermost object that we could have
a pointer to. */
tree tem = component_uses_parent_alias_set_from (*t);
if (tem)
*t = tem;
return NULL_TREE;
}
/* Return the pointer-type relevant for TBAA purposes from the
gimple memory reference tree T. This is the type to be used for
the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
and guarantees that get_alias_set will return the same alias
set for T and the replacement. */
tree
reference_alias_ptr_type (tree t)
{
/* If the frontend assigns this alias-set zero, preserve that. */
if (lang_hooks.get_alias_set (t) == 0)
return ptr_type_node;
tree ptype = reference_alias_ptr_type_1 (&t);
/* If there is a given pointer type for aliasing purposes, return it. */
if (ptype != NULL_TREE)
return ptype;
/* Otherwise build one from the outermost component reference we
may use. */
if (TREE_CODE (t) == MEM_REF
|| TREE_CODE (t) == TARGET_MEM_REF)
return TREE_TYPE (TREE_OPERAND (t, 1));
else
return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
}
/* Return whether the pointer-types T1 and T2 used to determine
two alias sets of two references will yield the same answer
from get_deref_alias_set. */
bool
alias_ptr_types_compatible_p (tree t1, tree t2)
{
if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
return true;
if (ref_all_alias_ptr_type_p (t1)
|| ref_all_alias_ptr_type_p (t2))
return false;
return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
== TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
}
/* Create emptry alias set entry. */
alias_set_entry *
init_alias_set_entry (alias_set_type set)
{
alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
ase->alias_set = set;
ase->children = NULL;
ase->has_zero_child = false;
ase->is_pointer = false;
ase->has_pointer = false;
gcc_checking_assert (!get_alias_set_entry (set));
(*alias_sets)[set] = ase;
return ase;
}
/* Return the alias set for T, which may be either a type or an
expression. Call language-specific routine for help, if needed. */
alias_set_type
get_alias_set (tree t)
{
alias_set_type set;
/* We can not give up with -fno-strict-aliasing because we need to build
proper type representation for possible functions which are build with
-fstrict-aliasing. */
/* return 0 if this or its type is an error. */
if (t == error_mark_node
|| (! TYPE_P (t)
&& (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
return 0;
/* We can be passed either an expression or a type. This and the
language-specific routine may make mutually-recursive calls to each other
to figure out what to do. At each juncture, we see if this is a tree
that the language may need to handle specially. First handle things that
aren't types. */
if (! TYPE_P (t))
{
/* Give the language a chance to do something with this tree
before we look at it. */
STRIP_NOPS (t);
set = lang_hooks.get_alias_set (t);
if (set != -1)
return set;
/* Get the alias pointer-type to use or the outermost object
that we could have a pointer to. */
tree ptype = reference_alias_ptr_type_1 (&t);
if (ptype != NULL)
return get_deref_alias_set (ptype);
/* If we've already determined the alias set for a decl, just return
it. This is necessary for C++ anonymous unions, whose component
variables don't look like union members (boo!). */
if (VAR_P (t)
&& DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
return MEM_ALIAS_SET (DECL_RTL (t));
/* Now all we care about is the type. */
t = TREE_TYPE (t);
}
/* Variant qualifiers don't affect the alias set, so get the main
variant. */
t = TYPE_MAIN_VARIANT (t);
if (AGGREGATE_TYPE_P (t)
&& TYPE_TYPELESS_STORAGE (t))
return 0;
/* Always use the canonical type as well. If this is a type that
requires structural comparisons to identify compatible types
use alias set zero. */
if (TYPE_STRUCTURAL_EQUALITY_P (t))
{
/* Allow the language to specify another alias set for this
type. */
set = lang_hooks.get_alias_set (t);
if (set != -1)
return set;
/* Handle structure type equality for pointer types, arrays and vectors.
This is easy to do, because the code bellow ignore canonical types on
these anyway. This is important for LTO, where TYPE_CANONICAL for
pointers can not be meaningfuly computed by the frotnend. */
if (canonical_type_used_p (t))
{
/* In LTO we set canonical types for all types where it makes
sense to do so. Double check we did not miss some type. */
gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
return 0;
}
}
else
{
t = TYPE_CANONICAL (t);
gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
}
/* If this is a type with a known alias set, return it. */
gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
if (TYPE_ALIAS_SET_KNOWN_P (t))
return TYPE_ALIAS_SET (t);
/* We don't want to set TYPE_ALIAS_SET for incomplete types. */
if (!COMPLETE_TYPE_P (t))
{
/* For arrays with unknown size the conservative answer is the
alias set of the element type. */
if (TREE_CODE (t) == ARRAY_TYPE)
return get_alias_set (TREE_TYPE (t));
/* But return zero as a conservative answer for incomplete types. */
return 0;
}
/* See if the language has special handling for this type. */
set = lang_hooks.get_alias_set (t);
if (set != -1)
return set;
/* There are no objects of FUNCTION_TYPE, so there's no point in
using up an alias set for them. (There are, of course, pointers
and references to functions, but that's different.) */
else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
set = 0;
/* Unless the language specifies otherwise, let vector types alias
their components. This avoids some nasty type punning issues in
normal usage. And indeed lets vectors be treated more like an
array slice. */
else if (TREE_CODE (t) == VECTOR_TYPE)
set = get_alias_set (TREE_TYPE (t));
/* Unless the language specifies otherwise, treat array types the
same as their components. This avoids the asymmetry we get
through recording the components. Consider accessing a
character(kind=1) through a reference to a character(kind=1)[1:1].
Or consider if we want to assign integer(kind=4)[0:D.1387] and
integer(kind=4)[4] the same alias set or not.
Just be pragmatic here and make sure the array and its element
type get the same alias set assigned. */
else if (TREE_CODE (t) == ARRAY_TYPE
&& (!TYPE_NONALIASED_COMPONENT (t)
|| TYPE_STRUCTURAL_EQUALITY_P (t)))
set = get_alias_set (TREE_TYPE (t));
/* From the former common C and C++ langhook implementation:
Unfortunately, there is no canonical form of a pointer type.
In particular, if we have `typedef int I', then `int *', and
`I *' are different types. So, we have to pick a canonical
representative. We do this below.
Technically, this approach is actually more conservative that
it needs to be. In particular, `const int *' and `int *'
should be in different alias sets, according to the C and C++
standard, since their types are not the same, and so,
technically, an `int **' and `const int **' cannot point at
the same thing.
But, the standard is wrong. In particular, this code is
legal C++:
int *ip;
int **ipp = &ip;
const int* const* cipp = ipp;
And, it doesn't make sense for that to be legal unless you
can dereference IPP and CIPP. So, we ignore cv-qualifiers on
the pointed-to types. This issue has been reported to the
C++ committee.
For this reason go to canonical type of the unqalified pointer type.
Until GCC 6 this code set all pointers sets to have alias set of
ptr_type_node but that is a bad idea, because it prevents disabiguations
in between pointers. For Firefox this accounts about 20% of all
disambiguations in the program. */
else if (POINTER_TYPE_P (t) && t != ptr_type_node)
{
tree p;
auto_vec <bool, 8> reference;
/* Unnest all pointers and references.
We also want to make pointer to array/vector equivalent to pointer to
its element (see the reasoning above). Skip all those types, too. */
for (p = t; POINTER_TYPE_P (p)
|| (TREE_CODE (p) == ARRAY_TYPE
&& (!TYPE_NONALIASED_COMPONENT (p)
|| !COMPLETE_TYPE_P (p)
|| TYPE_STRUCTURAL_EQUALITY_P (p)))
|| TREE_CODE (p) == VECTOR_TYPE;
p = TREE_TYPE (p))
{
/* Ada supports recusive pointers. Instead of doing recrusion check
just give up once the preallocated space of 8 elements is up.
In this case just punt to void * alias set. */
if (reference.length () == 8)
{
p = ptr_type_node;
break;
}
if (TREE_CODE (p) == REFERENCE_TYPE)
/* In LTO we want languages that use references to be compatible
with languages that use pointers. */
reference.safe_push (true && !in_lto_p);
if (TREE_CODE (p) == POINTER_TYPE)
reference.safe_push (false);
}
p = TYPE_MAIN_VARIANT (p);
/* Make void * compatible with char * and also void **.
Programs are commonly violating TBAA by this.
We also make void * to conflict with every pointer
(see record_component_aliases) and thus it is safe it to use it for
pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
set = get_alias_set (ptr_type_node);
else
{
/* Rebuild pointer type starting from canonical types using
unqualified pointers and references only. This way all such
pointers will have the same alias set and will conflict with
each other.
Most of time we already have pointers or references of a given type.
If not we build new one just to be sure that if someone later
(probably only middle-end can, as we should assign all alias
classes only after finishing translation unit) builds the pointer
type, the canonical type will match. */
p = TYPE_CANONICAL (p);
while (!reference.is_empty ())
{
if (reference.pop ())
p = build_reference_type (p);
else
p = build_pointer_type (p);
gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
/* build_pointer_type should always return the canonical type.
For LTO TYPE_CANOINCAL may be NULL, because we do not compute
them. Be sure that frontends do not glob canonical types of
pointers in unexpected way and that p == TYPE_CANONICAL (p)
in all other cases. */
gcc_checking_assert (!TYPE_CANONICAL (p)
|| p == TYPE_CANONICAL (p));
}
/* Assign the alias set to both p and t.
We can not call get_alias_set (p) here as that would trigger
infinite recursion when p == t. In other cases it would just
trigger unnecesary legwork of rebuilding the pointer again. */
gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
if (TYPE_ALIAS_SET_KNOWN_P (p))
set = TYPE_ALIAS_SET (p);
else
{
set = new_alias_set ();
TYPE_ALIAS_SET (p) = set;
}
}
}
/* Alias set of ptr_type_node is special and serve as universal pointer which
is TBAA compatible with every other pointer type. Be sure we have the
alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
of pointer types NULL. */
else if (t == ptr_type_node)
set = new_alias_set ();
/* Otherwise make a new alias set for this type. */
else
{
/* Each canonical type gets its own alias set, so canonical types
shouldn't form a tree. It doesn't really matter for types
we handle specially above, so only check it where it possibly
would result in a bogus alias set. */
gcc_checking_assert (TYPE_CANONICAL (t) == t);
set = new_alias_set ();
}
TYPE_ALIAS_SET (t) = set;
/* If this is an aggregate type or a complex type, we must record any
component aliasing information. */
if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
record_component_aliases (t);
/* We treat pointer types specially in alias_set_subset_of. */
if (POINTER_TYPE_P (t) && set)
{
alias_set_entry *ase = get_alias_set_entry (set);
if (!ase)
ase = init_alias_set_entry (set);
ase->is_pointer = true;
ase->has_pointer = true;
}
return set;
}
/* Return a brand-new alias set. */
alias_set_type
new_alias_set (void)
{
if (alias_sets == 0)
vec_safe_push (alias_sets, (alias_set_entry *) NULL);
vec_safe_push (alias_sets, (alias_set_entry *) NULL);
return alias_sets->length () - 1;
}
/* Indicate that things in SUBSET can alias things in SUPERSET, but that
not everything that aliases SUPERSET also aliases SUBSET. For example,
in C, a store to an `int' can alias a load of a structure containing an
`int', and vice versa. But it can't alias a load of a 'double' member
of the same structure. Here, the structure would be the SUPERSET and
`int' the SUBSET. This relationship is also described in the comment at
the beginning of this file.
This function should be called only once per SUPERSET/SUBSET pair.
It is illegal for SUPERSET to be zero; everything is implicitly a
subset of alias set zero. */
void
record_alias_subset (alias_set_type superset, alias_set_type subset)
{
alias_set_entry *superset_entry;
alias_set_entry *subset_entry;
/* It is possible in complex type situations for both sets to be the same,
in which case we can ignore this operation. */
if (superset == subset)
return;
gcc_assert (superset);
superset_entry = get_alias_set_entry (superset);
if (superset_entry == 0)
{
/* Create an entry for the SUPERSET, so that we have a place to
attach the SUBSET. */
superset_entry = init_alias_set_entry (superset);
}
if (subset == 0)
superset_entry->has_zero_child = 1;
else
{
subset_entry = get_alias_set_entry (subset);
if (!superset_entry->children)
superset_entry->children
= hash_map<alias_set_hash, int>::create_ggc (64);
/* If there is an entry for the subset, enter all of its children
(if they are not already present) as children of the SUPERSET. */
if (subset_entry)
{
if (subset_entry->has_zero_child)
superset_entry->has_zero_child = true;
if (subset_entry->has_pointer)
superset_entry->has_pointer = true;
if (subset_entry->children)
{
hash_map<alias_set_hash, int>::iterator iter
= subset_entry->children->begin ();
for (; iter != subset_entry->children->end (); ++iter)
superset_entry->children->put ((*iter).first, (*iter).second);
}
}
/* Enter the SUBSET itself as a child of the SUPERSET. */
superset_entry->children->put (subset, 0);
}
}
/* Record that component types of TYPE, if any, are part of that type for
aliasing purposes. For record types, we only record component types
for fields that are not marked non-addressable. For array types, we
only record the component type if it is not marked non-aliased. */
void
record_component_aliases (tree type)
{
alias_set_type superset = get_alias_set (type);
tree field;
if (superset == 0)
return;
switch (TREE_CODE (type))
{
case RECORD_TYPE:
case UNION_TYPE:
case QUAL_UNION_TYPE:
for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
{
/* LTO type merging does not make any difference between
component pointer types. We may have
struct foo {int *a;};
as TYPE_CANONICAL of
struct bar {float *a;};
Because accesses to int * and float * do not alias, we would get
false negative when accessing the same memory location by
float ** and bar *. We thus record the canonical type as:
struct {void *a;};
void * is special cased and works as a universal pointer type.
Accesses to it conflicts with accesses to any other pointer
type. */
tree t = TREE_TYPE (field);
if (in_lto_p)
{
/* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
element type and that type has to be normalized to void *,
too, in the case it is a pointer. */
while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
{
gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
t = TREE_TYPE (t);
}
if (POINTER_TYPE_P (t))
t = ptr_type_node;
else if (flag_checking)
gcc_checking_assert (get_alias_set (t)
== get_alias_set (TREE_TYPE (field)));
}
record_alias_subset (superset, get_alias_set (t));
}
break;
case COMPLEX_TYPE:
record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
break;
/* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
element type. */
default:
break;
}
}
/* Allocate an alias set for use in storing and reading from the varargs
spill area. */
static GTY(()) alias_set_type varargs_set = -1;
alias_set_type
get_varargs_alias_set (void)
{
#if 1
/* We now lower VA_ARG_EXPR, and there's currently no way to attach the
varargs alias set to an INDIRECT_REF (FIXME!), so we can't
consistently use the varargs alias set for loads from the varargs
area. So don't use it anywhere. */
return 0;
#else
if (varargs_set == -1)
varargs_set = new_alias_set ();
return varargs_set;
#endif
}
/* Likewise, but used for the fixed portions of the frame, e.g., register
save areas. */
static GTY(()) alias_set_type frame_set = -1;
alias_set_type
get_frame_alias_set (void)
{
if (frame_set == -1)
frame_set = new_alias_set ();
return frame_set;
}
/* Create a new, unique base with id ID. */
static rtx
unique_base_value (HOST_WIDE_INT id)
{
return gen_rtx_ADDRESS (Pmode, id);
}
/* Return true if accesses based on any other base value cannot alias
those based on X. */
static bool
unique_base_value_p (rtx x)
{
return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
}
/* Return true if X is known to be a base value. */
static bool
known_base_value_p (rtx x)
{
switch (GET_CODE (x))
{
case LABEL_REF:
case SYMBOL_REF:
return true;
case ADDRESS:
/* Arguments may or may not be bases; we don't know for sure. */
return GET_MODE (x) != VOIDmode;
default:
return false;
}
}
/* Inside SRC, the source of a SET, find a base address. */
static rtx
find_base_value (rtx src)
{
unsigned int regno;
scalar_int_mode int_mode;
#if defined (FIND_BASE_TERM)
/* Try machine-dependent ways to find the base term. */
src = FIND_BASE_TERM (src);
#endif
switch (GET_CODE (src))
{
case SYMBOL_REF:
case LABEL_REF:
return src;
case REG:
regno = REGNO (src);
/* At the start of a function, argument registers have known base
values which may be lost later. Returning an ADDRESS
expression here allows optimization based on argument values
even when the argument registers are used for other purposes. */
if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
return new_reg_base_value[regno];
/* If a pseudo has a known base value, return it. Do not do this
for non-fixed hard regs since it can result in a circular
dependency chain for registers which have values at function entry.
The test above is not sufficient because the scheduler may move
a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
&& regno < vec_safe_length (reg_base_value))
{
/* If we're inside init_alias_analysis, use new_reg_base_value
to reduce the number of relaxation iterations. */
if (new_reg_base_value && new_reg_base_value[regno]
&& DF_REG_DEF_COUNT (regno) == 1)
return new_reg_base_value[regno];
if ((*reg_base_value)[regno])
return (*reg_base_value)[regno];
}
return 0;
case MEM:
/* Check for an argument passed in memory. Only record in the
copying-arguments block; it is too hard to track changes
otherwise. */
if (copying_arguments
&& (XEXP (src, 0) == arg_pointer_rtx
|| (GET_CODE (XEXP (src, 0)) == PLUS
&& XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
return arg_base_value;
return 0;
case CONST:
src = XEXP (src, 0);
if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
break;
/* fall through */
case PLUS:
case MINUS:
{
rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
/* If either operand is a REG that is a known pointer, then it
is the base. */
if (REG_P (src_0) && REG_POINTER (src_0))
return find_base_value (src_0);
if (REG_P (src_1) && REG_POINTER (src_1))
return find_base_value (src_1);
/* If either operand is a REG, then see if we already have
a known value for it. */
if (REG_P (src_0))
{
temp = find_base_value (src_0);
if (temp != 0)
src_0 = temp;
}
if (REG_P (src_1))
{
temp = find_base_value (src_1);
if (temp!= 0)
src_1 = temp;
}
/* If either base is named object or a special address
(like an argument or stack reference), then use it for the
base term. */
if (src_0 != 0 && known_base_value_p (src_0))
return src_0;
if (src_1 != 0 && known_base_value_p (src_1))
return src_1;
/* Guess which operand is the base address:
If either operand is a symbol, then it is the base. If
either operand is a CONST_INT, then the other is the base. */
if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
return find_base_value (src_0);
else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
return find_base_value (src_1);
return 0;
}
case LO_SUM:
/* The standard form is (lo_sum reg sym) so look only at the
second operand. */
return find_base_value (XEXP (src, 1));
case AND:
/* If the second operand is constant set the base
address to the first operand. */
if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
return find_base_value (XEXP (src, 0));
return 0;
case TRUNCATE:
/* As we do not know which address space the pointer is referring to, we can
handle this only if the target does not support different pointer or
address modes depending on the address space. */
if (!target_default_pointer_address_modes_p ())
break;
if (!is_a <scalar_int_mode> (GET_MODE (src), &int_mode)
|| GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
break;
/* Fall through. */
case HIGH:
case PRE_INC:
case PRE_DEC:
case POST_INC:
case POST_DEC:
case PRE_MODIFY:
case POST_MODIFY:
return find_base_value (XEXP (src, 0));
case ZERO_EXTEND:
case SIGN_EXTEND: /* used for NT/Alpha pointers */
/* As we do not know which address space the pointer is referring to, we can
handle this only if the target does not support different pointer or
address modes depending on the address space. */
if (!target_default_pointer_address_modes_p ())
break;
{
rtx temp = find_base_value (XEXP (src, 0));
if (temp != 0 && CONSTANT_P (temp))
temp = convert_memory_address (Pmode, temp);
return temp;
}
default:
break;
}
return 0;
}
/* Called from init_alias_analysis indirectly through note_stores,
or directly if DEST is a register with a REG_NOALIAS note attached.
SET is null in the latter case. */
/* While scanning insns to find base values, reg_seen[N] is nonzero if
register N has been set in this function. */
static sbitmap reg_seen;
static void
record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
{
unsigned regno;
rtx src;
int n;
if (!REG_P (dest))
return;
regno = REGNO (dest);
gcc_checking_assert (regno < reg_base_value->length ());
n = REG_NREGS (dest);
if (n != 1)
{
while (--n >= 0)
{
bitmap_set_bit (reg_seen, regno + n);
new_reg_base_value[regno + n] = 0;
}
return;
}
if (set)
{
/* A CLOBBER wipes out any old value but does not prevent a previously
unset register from acquiring a base address (i.e. reg_seen is not
set). */
if (GET_CODE (set) == CLOBBER)
{
new_reg_base_value[regno] = 0;
return;
}
src = SET_SRC (set);
}
else
{
/* There's a REG_NOALIAS note against DEST. */
if (bitmap_bit_p (reg_seen, regno))
{
new_reg_base_value[regno] = 0;
return;
}
bitmap_set_bit (reg_seen, regno);
new_reg_base_value[regno] = unique_base_value (unique_id++);
return;
}
/* If this is not the first set of REGNO, see whether the new value
is related to the old one. There are two cases of interest:
(1) The register might be assigned an entirely new value
that has the same base term as the original set.
(2) The set might be a simple self-modification that
cannot change REGNO's base value.
If neither case holds, reject the original base value as invalid.
Note that the following situation is not detected:
extern int x, y; int *p = &x; p += (&y-&x);
ANSI C does not allow computing the difference of addresses
of distinct top level objects. */
if (new_reg_base_value[regno] != 0
&& find_base_value (src) != new_reg_base_value[regno])
switch (GET_CODE (src))
{
case LO_SUM:
case MINUS:
if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
new_reg_base_value[regno] = 0;
break;
case PLUS:
/* If the value we add in the PLUS is also a valid base value,
this might be the actual base value, and the original value
an index. */
{
rtx other = NULL_RTX;
if (XEXP (src, 0) == dest)
other = XEXP (src, 1);
else if (XEXP (src, 1) == dest)
other = XEXP (src, 0);
if (! other || find_base_value (other))
new_reg_base_value[regno] = 0;
break;
}
case AND:
if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
new_reg_base_value[regno] = 0;
break;
default:
new_reg_base_value[regno] = 0;
break;
}
/* If this is the first set of a register, record the value. */
else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
&& ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
new_reg_base_value[regno] = find_base_value (src);
bitmap_set_bit (reg_seen, regno);
}
/* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
using hard registers with non-null REG_BASE_VALUE for renaming. */
rtx
get_reg_base_value (unsigned int regno)
{
return (*reg_base_value)[regno];
}
/* If a value is known for REGNO, return it. */
rtx
get_reg_known_value (unsigned int regno)
{
if (regno >= FIRST_PSEUDO_REGISTER)
{
regno -= FIRST_PSEUDO_REGISTER;
if (regno < vec_safe_length (reg_known_value))
return (*reg_known_value)[regno];
}
return NULL;
}
/* Set it. */
static void
set_reg_known_value (unsigned int regno, rtx val)
{
if (regno >= FIRST_PSEUDO_REGISTER)
{
regno -= FIRST_PSEUDO_REGISTER;
if (regno < vec_safe_length (reg_known_value))
(*reg_known_value)[regno] = val;
}
}
/* Similarly for reg_known_equiv_p. */
bool
get_reg_known_equiv_p (unsigned int regno)
{
if (regno >= FIRST_PSEUDO_REGISTER)
{
regno -= FIRST_PSEUDO_REGISTER;
if (regno < vec_safe_length (reg_known_value))
return bitmap_bit_p (reg_known_equiv_p, regno);
}
return false;
}
static void
set_reg_known_equiv_p (unsigned int regno, bool val)
{
if (regno >= FIRST_PSEUDO_REGISTER)
{
regno -= FIRST_PSEUDO_REGISTER;
if (regno < vec_safe_length (reg_known_value))
{
if (val)
bitmap_set_bit (reg_known_equiv_p, regno);
else
bitmap_clear_bit (reg_known_equiv_p, regno);
}
}
}
/* Returns a canonical version of X, from the point of view alias
analysis. (For example, if X is a MEM whose address is a register,
and the register has a known value (say a SYMBOL_REF), then a MEM
whose address is the SYMBOL_REF is returned.) */
rtx
canon_rtx (rtx x)
{
/* Recursively look for equivalences. */
if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
{
rtx t = get_reg_known_value (REGNO (x));
if (t == x)
return x;
if (t)
return canon_rtx (t);
}
if (GET_CODE (x) == PLUS)
{
rtx x0 = canon_rtx (XEXP (x, 0));
rtx x1 = canon_rtx (XEXP (x, 1));
if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
return simplify_gen_binary (PLUS, GET_MODE (x), x0, x1);
}
/* This gives us much better alias analysis when called from
the loop optimizer. Note we want to leave the original
MEM alone, but need to return the canonicalized MEM with
all the flags with their original values. */
else if (MEM_P (x))
x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
return x;
}
/* Return 1 if X and Y are identical-looking rtx's.
Expect that X and Y has been already canonicalized.
We use the data in reg_known_value above to see if two registers with
different numbers are, in fact, equivalent. */
static int
rtx_equal_for_memref_p (const_rtx x, const_rtx y)
{
int i;
int j;
enum rtx_code code;
const char *fmt;
if (x == 0 && y == 0)
return 1;
if (x == 0 || y == 0)
return 0;
if (x == y)
return 1;
code = GET_CODE (x);
/* Rtx's of different codes cannot be equal. */
if (code != GET_CODE (y))
return 0;
/* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
(REG:SI x) and (REG:HI x) are NOT equivalent. */
if (GET_MODE (x) != GET_MODE (y))
return 0;
/* Some RTL can be compared without a recursive examination. */
switch (code)
{
case REG:
return REGNO (x) == REGNO (y);
case LABEL_REF:
return label_ref_label (x) == label_ref_label (y);
case SYMBOL_REF:
return compare_base_symbol_refs (x, y) == 1;
case ENTRY_VALUE:
/* This is magic, don't go through canonicalization et al. */
return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
case VALUE:
CASE_CONST_UNIQUE:
/* Pointer equality guarantees equality for these nodes. */
return 0;
default:
break;
}
/* canon_rtx knows how to handle plus. No need to canonicalize. */
if (code == PLUS)
return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
&& rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
|| (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
&& rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
/* For commutative operations, the RTX match if the operand match in any
order. Also handle the simple binary and unary cases without a loop. */
if (COMMUTATIVE_P (x))
{
rtx xop0 = canon_rtx (XEXP (x, 0));
rtx yop0 = canon_rtx (XEXP (y, 0));
rtx yop1 = canon_rtx (XEXP (y, 1));
return ((rtx_equal_for_memref_p (xop0, yop0)
&& rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
|| (rtx_equal_for_memref_p (xop0, yop1)
&& rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
}
else if (NON_COMMUTATIVE_P (x))
{
return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
canon_rtx (XEXP (y, 0)))
&& rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
canon_rtx (XEXP (y, 1))));
}
else if (UNARY_P (x))
return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
canon_rtx (XEXP (y, 0)));
/* Compare the elements. If any pair of corresponding elements
fail to match, return 0 for the whole things.
Limit cases to types which actually appear in addresses. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
switch (fmt[i])
{
case 'i':
if (XINT (x, i) != XINT (y, i))
return 0;
break;
case 'p':
if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
return 0;
break;
case 'E':
/* Two vectors must have the same length. */
if (XVECLEN (x, i) != XVECLEN (y, i))
return 0;
/* And the corresponding elements must match. */
for (j = 0; j < XVECLEN (x, i); j++)
if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
canon_rtx (XVECEXP (y, i, j))) == 0)
return 0;
break;
case 'e':
if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
canon_rtx (XEXP (y, i))) == 0)
return 0;
break;
/* This can happen for asm operands. */
case 's':
if (strcmp (XSTR (x, i), XSTR (y, i)))
return 0;
break;
/* This can happen for an asm which clobbers memory. */
case '0':
break;
/* It is believed that rtx's at this level will never
contain anything but integers and other rtx's,
except for within LABEL_REFs and SYMBOL_REFs. */
default:
gcc_unreachable ();
}
}
return 1;
}
static rtx
find_base_term (rtx x, vec<std::pair<cselib_val *,
struct elt_loc_list *> > &visited_vals)
{
cselib_val *val;
struct elt_loc_list *l, *f;
rtx ret;
scalar_int_mode int_mode;
#if defined (FIND_BASE_TERM)
/* Try machine-dependent ways to find the base term. */
x = FIND_BASE_TERM (x);
#endif
switch (GET_CODE (x))
{
case REG:
return REG_BASE_VALUE (x);
case TRUNCATE:
/* As we do not know which address space the pointer is referring to, we can
handle this only if the target does not support different pointer or
address modes depending on the address space. */
if (!target_default_pointer_address_modes_p ())
return 0;
if (!is_a <scalar_int_mode> (GET_MODE (x), &int_mode)
|| GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
return 0;
/* Fall through. */
case HIGH:
case PRE_INC:
case PRE_DEC:
case POST_INC:
case POST_DEC:
case PRE_MODIFY:
case POST_MODIFY:
return find_base_term (XEXP (x, 0), visited_vals);
case ZERO_EXTEND:
case SIGN_EXTEND: /* Used for Alpha/NT pointers */
/* As we do not know which address space the pointer is referring to, we can
handle this only if the target does not support different pointer or
address modes depending on the address space. */
if (!target_default_pointer_address_modes_p ())
return 0;
{
rtx temp = find_base_term (XEXP (x, 0), visited_vals);
if (temp != 0 && CONSTANT_P (temp))
temp = convert_memory_address (Pmode, temp);
return temp;
}
case VALUE:
val = CSELIB_VAL_PTR (x);
ret = NULL_RTX;
if (!val)
return ret;
if (cselib_sp_based_value_p (val))
return static_reg_base_value[STACK_POINTER_REGNUM];
f = val->locs;
/* Reset val->locs to avoid infinite recursion. */
if (f)
visited_vals.safe_push (std::make_pair (val, f));
val->locs = NULL;
for (l = f; l; l = l->next)
if (GET_CODE (l->loc) == VALUE
&& CSELIB_VAL_PTR (l->loc)->locs
&& !CSELIB_VAL_PTR (l->loc)->locs->next
&& CSELIB_VAL_PTR (l->loc)->locs->loc == x)
continue;
else if ((ret = find_base_term (l->loc, visited_vals)) != 0)
break;
return ret;
case LO_SUM:
/* The standard form is (lo_sum reg sym) so look only at the
second operand. */
return find_base_term (XEXP (x, 1), visited_vals);
case CONST:
x = XEXP (x, 0);
if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
return 0;
/* Fall through. */
case PLUS:
case MINUS:
{
rtx tmp1 = XEXP (x, 0);
rtx tmp2 = XEXP (x, 1);
/* This is a little bit tricky since we have to determine which of
the two operands represents the real base address. Otherwise this
routine may return the index register instead of the base register.
That may cause us to believe no aliasing was possible, when in
fact aliasing is possible.
We use a few simple tests to guess the base register. Additional
tests can certainly be added. For example, if one of the operands
is a shift or multiply, then it must be the index register and the
other operand is the base register. */
if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
return find_base_term (tmp2, visited_vals);
/* If either operand is known to be a pointer, then prefer it
to determine the base term. */
if (REG_P (tmp1) && REG_POINTER (tmp1))
;
else if (REG_P (tmp2) && REG_POINTER (tmp2))
std::swap (tmp1, tmp2);
/* If second argument is constant which has base term, prefer it
over variable tmp1. See PR64025. */
else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
std::swap (tmp1, tmp2);
/* Go ahead and find the base term for both operands. If either base
term is from a pointer or is a named object or a special address
(like an argument or stack reference), then use it for the
base term. */
rtx base = find_base_term (tmp1, visited_vals);
if (base != NULL_RTX
&& ((REG_P (tmp1) && REG_POINTER (tmp1))
|| known_base_value_p (base)))
return base;
base = find_base_term (tmp2, visited_vals);
if (base != NULL_RTX
&& ((REG_P (tmp2) && REG_POINTER (tmp2))
|| known_base_value_p (base)))
return base;
/* We could not determine which of the two operands was the
base register and which was the index. So we can determine
nothing from the base alias check. */
return 0;
}
case AND:
if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
return find_base_term (XEXP (x, 0), visited_vals);
return 0;
case SYMBOL_REF:
case LABEL_REF:
return x;
default:
return 0;
}
}
/* Wrapper around the worker above which removes locs from visited VALUEs
to avoid visiting them multiple times. We unwind that changes here. */
static rtx
find_base_term (rtx x)
{
auto_vec<std::pair<cselib_val *, struct elt_loc_list *>, 32> visited_vals;
rtx res = find_base_term (x, visited_vals);
for (unsigned i = 0; i < visited_vals.length (); ++i)
visited_vals[i].first->locs = visited_vals[i].second;
return res;
}
/* Return true if accesses to address X may alias accesses based
on the stack pointer. */
bool
may_be_sp_based_p (rtx x)
{
rtx base = find_base_term (x);
return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
}
/* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
if they refer to different objects and -1 if we can not decide. */
int
compare_base_decls (tree base1, tree base2)
{
int ret;
gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
if (base1 == base2)
return 1;
/* If we have two register decls with register specification we
cannot decide unless their assembler names are the same. */
if (DECL_REGISTER (base1)
&& DECL_REGISTER (base2)
&& HAS_DECL_ASSEMBLER_NAME_P (base1)
&& HAS_DECL_ASSEMBLER_NAME_P (base2)
&& DECL_ASSEMBLER_NAME_SET_P (base1)
&& DECL_ASSEMBLER_NAME_SET_P (base2))
{
if (DECL_ASSEMBLER_NAME_RAW (base1) == DECL_ASSEMBLER_NAME_RAW (base2))
return 1;
return -1;
}
/* Declarations of non-automatic variables may have aliases. All other
decls are unique. */
if (!decl_in_symtab_p (base1)
|| !decl_in_symtab_p (base2))
return 0;
/* Don't cause symbols to be inserted by the act of checking. */
symtab_node *node1 = symtab_node::get (base1);
if (!node1)
return 0;
symtab_node *node2 = symtab_node::get (base2);
if (!node2)
return 0;
ret = node1->equal_address_to (node2, true);
return ret;
}
/* Same as compare_base_decls but for SYMBOL_REF. */
static int
compare_base_symbol_refs (const_rtx x_base, const_rtx y_base)
{
tree x_decl = SYMBOL_REF_DECL (x_base);
tree y_decl = SYMBOL_REF_DECL (y_base);
bool binds_def = true;
if (XSTR (x_base, 0) == XSTR (y_base, 0))
return 1;
if (x_decl && y_decl)
return compare_base_decls (x_decl, y_decl);
if (x_decl || y_decl)
{
if (!x_decl)
{
std::swap (x_decl, y_decl);
std::swap (x_base, y_base);
}
/* We handle specially only section anchors and assume that other
labels may overlap with user variables in an arbitrary way. */
if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
return -1;
/* Anchors contains static VAR_DECLs and CONST_DECLs. We are safe
to ignore CONST_DECLs because they are readonly. */
if (!VAR_P (x_decl)
|| (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
return 0;
symtab_node *x_node = symtab_node::get_create (x_decl)
->ultimate_alias_target ();
/* External variable can not be in section anchor. */
if (!x_node->definition)
return 0;
x_base = XEXP (DECL_RTL (x_node->decl), 0);
/* If not in anchor, we can disambiguate. */
if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
return 0;
/* We have an alias of anchored variable. If it can be interposed;
we must assume it may or may not alias its anchor. */
binds_def = decl_binds_to_current_def_p (x_decl);
}
/* If we have variable in section anchor, we can compare by offset. */
if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
&& SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
{
if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
return 0;
if (SYMBOL_REF_BLOCK_OFFSET (x_base) == SYMBOL_REF_BLOCK_OFFSET (y_base))
return binds_def ? 1 : -1;
if (SYMBOL_REF_ANCHOR_P (x_base) != SYMBOL_REF_ANCHOR_P (y_base))
return -1;
return 0;
}
/* In general we assume that memory locations pointed to by different labels
may overlap in undefined ways. */
return -1;
}
/* Return 0 if the addresses X and Y are known to point to different
objects, 1 if they might be pointers to the same object. */
static int
base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
machine_mode x_mode, machine_mode y_mode)
{
/* If the address itself has no known base see if a known equivalent
value has one. If either address still has no known base, nothing
is known about aliasing. */
if (x_base == 0)
{
rtx x_c;
if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
return 1;
x_base = find_base_term (x_c);
if (x_base == 0)
return 1;
}
if (y_base == 0)
{
rtx y_c;
if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
return 1;
y_base = find_base_term (y_c);
if (y_base == 0)
return 1;
}
/* If the base addresses are equal nothing is known about aliasing. */
if (rtx_equal_p (x_base, y_base))
return 1;
/* The base addresses are different expressions. If they are not accessed
via AND, there is no conflict. We can bring knowledge of object
alignment into play here. For example, on alpha, "char a, b;" can
alias one another, though "char a; long b;" cannot. AND addresses may
implicitly alias surrounding objects; i.e. unaligned access in DImode
via AND address can alias all surrounding object types except those
with aligment 8 or higher. */
if (GET_CODE (x) == AND && GET_CODE (y) == AND)
return 1;
if (GET_CODE (x) == AND
&& (!CONST_INT_P (XEXP (x, 1))
|| (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
return 1;
if (GET_CODE (y) == AND
&& (!CONST_INT_P (XEXP (y, 1))
|| (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
return 1;
/* Differing symbols not accessed via AND never alias. */
if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
return compare_base_symbol_refs (x_base, y_base) != 0;
if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
return 0;
if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
return 0;
return 1;
}
/* Return TRUE if EXPR refers to a VALUE whose uid is greater than
(or equal to) that of V. */
static bool
refs_newer_value_p (const_rtx expr, rtx v)
{
int minuid = CSELIB_VAL_PTR (v)->uid;
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
return true;
return false;
}
/* Convert the address X into something we can use. This is done by returning
it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
we call cselib to get a more useful rtx. */
rtx
get_addr (rtx x)
{
cselib_val *v;
struct elt_loc_list *l;
if (GET_CODE (x) != VALUE)
{
if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
&& GET_CODE (XEXP (x, 0)) == VALUE
&& CONST_SCALAR_INT_P (XEXP (x, 1)))
{
rtx op0 = get_addr (XEXP (x, 0));
if (op0 != XEXP (x, 0))
{
if (GET_CODE (x) == PLUS
&& GET_CODE (XEXP (x, 1)) == CONST_INT)
return plus_constant (GET_MODE (x), op0, INTVAL (XEXP (x, 1)));
return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
op0, XEXP (x, 1));
}
}
return x;
}
v = CSELIB_VAL_PTR (x);
if (v)
{
bool have_equivs = cselib_have_permanent_equivalences ();
if (have_equivs)
v = canonical_cselib_val (v);
for (l = v->locs; l; l = l->next)
if (CONSTANT_P (l->loc))
return l->loc;
for (l = v->locs; l; l = l->next)
if (!REG_P (l->loc) && !MEM_P (l->loc)
/* Avoid infinite recursion when potentially dealing with
var-tracking artificial equivalences, by skipping the
equivalences themselves, and not choosing expressions
that refer to newer VALUEs. */
&& (!have_equivs
|| (GET_CODE (l->loc) != VALUE
&& !refs_newer_value_p (l->loc, x))))
return l->loc;
if (have_equivs)
{
for (l = v->locs; l; l = l->next)
if (REG_P (l->loc)
|| (GET_CODE (l->loc) != VALUE
&& !refs_newer_value_p (l->loc, x)))
return l->loc;
/* Return the canonical value. */
return v->val_rtx;
}
if (v->locs)
return v->locs->loc;
}
return x;
}
/* Return the address of the (N_REFS + 1)th memory reference to ADDR
where SIZE is the size in bytes of the memory reference. If ADDR
is not modified by the memory reference then ADDR is returned. */
static rtx
addr_side_effect_eval (rtx addr, poly_int64 size, int n_refs)
{
poly_int64 offset = 0;
switch (GET_CODE (addr))
{
case PRE_INC:
offset = (n_refs + 1) * size;
break;
case PRE_DEC:
offset = -(n_refs + 1) * size;
break;
case POST_INC:
offset = n_refs * size;
break;
case POST_DEC:
offset = -n_refs * size;
break;
default:
return addr;
}
addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), offset);
addr = canon_rtx (addr);
return addr;
}
/* Return TRUE if an object X sized at XSIZE bytes and another object
Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
any of the sizes is zero, assume an overlap, otherwise use the
absolute value of the sizes as the actual sizes. */
static inline bool
offset_overlap_p (poly_int64 c, poly_int64 xsize, poly_int64 ysize)
{
if (known_eq (xsize, 0) || known_eq (ysize, 0))
return true;
if (maybe_ge (c, 0))
return maybe_gt (maybe_lt (xsize, 0) ? -xsize : xsize, c);
else
return maybe_gt (maybe_lt (ysize, 0) ? -ysize : ysize, -c);
}
/* Return one if X and Y (memory addresses) reference the
same location in memory or if the references overlap.
Return zero if they do not overlap, else return
minus one in which case they still might reference the same location.
C is an offset accumulator. When
C is nonzero, we are testing aliases between X and Y + C.
XSIZE is the size in bytes of the X reference,
similarly YSIZE is the size in bytes for Y.
Expect that canon_rtx has been already called for X and Y.
If XSIZE or YSIZE is zero, we do not know the amount of memory being
referenced (the reference was BLKmode), so make the most pessimistic
assumptions.
If XSIZE or YSIZE is negative, we may access memory outside the object
being referenced as a side effect. This can happen when using AND to
align memory references, as is done on the Alpha.
Nice to notice that varying addresses cannot conflict with fp if no
local variables had their addresses taken, but that's too hard now.
??? Contrary to the tree alias oracle this does not return
one for X + non-constant and Y + non-constant when X and Y are equal.
If that is fixed the TBAA hack for union type-punning can be removed. */
static int
memrefs_conflict_p (poly_int64 xsize, rtx x, poly_int64 ysize, rtx y,
poly_int64 c)
{
if (GET_CODE (x) == VALUE)
{
if (REG_P (y))
{
struct elt_loc_list *l = NULL;
if (CSELIB_VAL_PTR (x))
for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
l; l = l->next)
if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
break;
if (l)
x = y;
else
x = get_addr (x);
}
/* Don't call get_addr if y is the same VALUE. */
else if (x != y)
x = get_addr (x);
}
if (GET_CODE (y) == VALUE)
{
if (REG_P (x))
{
struct elt_loc_list *l = NULL;
if (CSELIB_VAL_PTR (y))
for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
l; l = l->next)
if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
break;
if (l)
y = x;
else
y = get_addr (y);
}
/* Don't call get_addr if x is the same VALUE. */
else if (y != x)
y = get_addr (y);
}
if (GET_CODE (x) == HIGH)
x = XEXP (x, 0);
else if (GET_CODE (x) == LO_SUM)
x = XEXP (x, 1);
else
x = addr_side_effect_eval (x, maybe_lt (xsize, 0) ? -xsize : xsize, 0);
if (GET_CODE (y) == HIGH)
y = XEXP (y, 0);
else if (GET_CODE (y) == LO_SUM)
y = XEXP (y, 1);
else
y = addr_side_effect_eval (y, maybe_lt (ysize, 0) ? -ysize : ysize, 0);
if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
{
int cmp = compare_base_symbol_refs (x,y);
/* If both decls are the same, decide by offsets. */
if (cmp == 1)
return offset_overlap_p (c, xsize, ysize);
/* Assume a potential overlap for symbolic addresses that went
through alignment adjustments (i.e., that have negative
sizes), because we can't know how far they are from each
other. */
if (maybe_lt (xsize, 0) || maybe_lt (ysize, 0))
return -1;
/* If decls are different or we know by offsets that there is no overlap,
we win. */
if (!cmp || !offset_overlap_p (c, xsize, ysize))
return 0;
/* Decls may or may not be different and offsets overlap....*/
return -1;
}
else if (rtx_equal_for_memref_p (x, y))
{
return offset_overlap_p (c, xsize, ysize);
}
/* This code used to check for conflicts involving stack references and
globals but the base address alias code now handles these cases. */
if (GET_CODE (x) == PLUS)
{
/* The fact that X is canonicalized means that this
PLUS rtx is canonicalized. */
rtx x0 = XEXP (x, 0);
rtx x1 = XEXP (x, 1);
/* However, VALUEs might end up in different positions even in
canonical PLUSes. Comparing their addresses is enough. */
if (x0 == y)
return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
else if (x1 == y)
return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
poly_int64 cx1, cy1;
if (GET_CODE (y) == PLUS)
{
/* The fact that Y is canonicalized means that this
PLUS rtx is canonicalized. */
rtx y0 = XEXP (y, 0);
rtx y1 = XEXP (y, 1);
if (x0 == y1)
return memrefs_conflict_p (xsize, x1, ysize, y0, c);
if (x1 == y0)
return memrefs_conflict_p (xsize, x0, ysize, y1, c);
if (rtx_equal_for_memref_p (x1, y1))
return memrefs_conflict_p (xsize, x0, ysize, y0, c);
if (rtx_equal_for_memref_p (x0, y0))
return memrefs_conflict_p (xsize, x1, ysize, y1, c);
if (poly_int_rtx_p (x1, &cx1))
{
if (poly_int_rtx_p (y1, &cy1))
return memrefs_conflict_p (xsize, x0, ysize, y0,
c - cx1 + cy1);
else
return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
}
else if (poly_int_rtx_p (y1, &cy1))
return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
return -1;
}
else if (poly_int_rtx_p (x1, &cx1))
return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
}
else if (GET_CODE (y) == PLUS)
{
/* The fact that Y is canonicalized means that this
PLUS rtx is canonicalized. */
rtx y0 = XEXP (y, 0);
rtx y1 = XEXP (y, 1);
if (x == y0)
return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
if (x == y1)
return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
poly_int64 cy1;
if (poly_int_rtx_p (y1, &cy1))
return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
else
return -1;
}
if (GET_CODE (x) == GET_CODE (y))
switch (GET_CODE (x))
{
case MULT:
{
/* Handle cases where we expect the second operands to be the
same, and check only whether the first operand would conflict
or not. */
rtx x0, y0;
rtx x1 = canon_rtx (XEXP (x, 1));
rtx y1 = canon_rtx (XEXP (y, 1));
if (! rtx_equal_for_memref_p (x1, y1))
return -1;
x0 = canon_rtx (XEXP (x, 0));
y0 = canon_rtx (XEXP (y, 0));
if (rtx_equal_for_memref_p (x0, y0))
return offset_overlap_p (c, xsize, ysize);
/* Can't properly adjust our sizes. */
if (!CONST_INT_P (x1)
|| !can_div_trunc_p (xsize, INTVAL (x1), &xsize)
|| !can_div_trunc_p (ysize, INTVAL (x1), &ysize)
|| !can_div_trunc_p (c, INTVAL (x1), &c))
return -1;
return memrefs_conflict_p (xsize, x0, ysize, y0, c);
}
default:
break;
}
/* Deal with alignment ANDs by adjusting offset and size so as to
cover the maximum range, without taking any previously known
alignment into account. Make a size negative after such an
adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
assume a potential overlap, because they may end up in contiguous
memory locations and the stricter-alignment access may span over
part of both. */
if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
{
HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
unsigned HOST_WIDE_INT uc = sc;
if (sc < 0 && pow2_or_zerop (-uc))
{
if (maybe_gt (xsize, 0))
xsize = -xsize;
if (maybe_ne (xsize, 0))
xsize += sc + 1;
c -= sc + 1;
return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
ysize, y, c);
}
}
if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
{
HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
unsigned HOST_WIDE_INT uc = sc;
if (sc < 0 && pow2_or_zerop (-uc))
{
if (maybe_gt (ysize, 0))
ysize = -ysize;
if (maybe_ne (ysize, 0))
ysize += sc + 1;
c += sc + 1;
return memrefs_conflict_p (xsize, x,
ysize, canon_rtx (XEXP (y, 0)), c);
}
}
if (CONSTANT_P (x))
{
poly_int64 cx, cy;
if (poly_int_rtx_p (x, &cx) && poly_int_rtx_p (y, &cy))
{
c += cy - cx;
return offset_overlap_p (c, xsize, ysize);
}
if (GET_CODE (x) == CONST)
{
if (GET_CODE (y) == CONST)
return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
ysize, canon_rtx (XEXP (y, 0)), c);
else
return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
ysize, y, c);
}
if (GET_CODE (y) == CONST)
return memrefs_conflict_p (xsize, x, ysize,
canon_rtx (XEXP (y, 0)), c);
/* Assume a potential overlap for symbolic addresses that went
through alignment adjustments (i.e., that have negative
sizes), because we can't know how far they are from each
other. */
if (CONSTANT_P (y))
return (maybe_lt (xsize, 0)
|| maybe_lt (ysize, 0)
|| offset_overlap_p (c, xsize, ysize));
return -1;
}
return -1;
}
/* Functions to compute memory dependencies.
Since we process the insns in execution order, we can build tables
to keep track of what registers are fixed (and not aliased), what registers
are varying in known ways, and what registers are varying in unknown
ways.
If both memory references are volatile, then there must always be a
dependence between the two references, since their order can not be
changed. A volatile and non-volatile reference can be interchanged
though.
We also must allow AND addresses, because they may generate accesses
outside the object being referenced. This is used to generate aligned
addresses from unaligned addresses, for instance, the alpha
storeqi_unaligned pattern. */
/* Read dependence: X is read after read in MEM takes place. There can
only be a dependence here if both reads are volatile, or if either is
an explicit barrier. */
int
read_dependence (const_rtx mem, const_rtx x)
{
if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
return true;
if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
|| MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
return true;
return false;
}
/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
static tree
decl_for_component_ref (tree x)
{
do
{
x = TREE_OPERAND (x, 0);
}
while (x && TREE_CODE (x) == COMPONENT_REF);
return x && DECL_P (x) ? x : NULL_TREE;
}
/* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
for the offset of the field reference. *KNOWN_P says whether the
offset is known. */
static void
adjust_offset_for_component_ref (tree x, bool *known_p,
poly_int64 *offset)
{
if (!*known_p)
return;
do
{
tree xoffset = component_ref_field_offset (x);
tree field = TREE_OPERAND (x, 1);
if (TREE_CODE (xoffset) != INTEGER_CST)
{
*known_p = false;
return;
}
offset_int woffset
= (wi::to_offset (xoffset)
+ (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
>> LOG2_BITS_PER_UNIT));
if (!wi::fits_uhwi_p (woffset))
{
*known_p = false;
return;
}
*offset += woffset.to_uhwi ();
x = TREE_OPERAND (x, 0);
}
while (x && TREE_CODE (x) == COMPONENT_REF);
}
/* Return nonzero if we can determine the exprs corresponding to memrefs
X and Y and they do not overlap.
If LOOP_VARIANT is set, skip offset-based disambiguation */
int
nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
{
tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
rtx rtlx, rtly;
rtx basex, basey;
bool moffsetx_known_p, moffsety_known_p;
poly_int64 moffsetx = 0, moffsety = 0;
poly_int64 offsetx = 0, offsety = 0, sizex, sizey;
/* Unless both have exprs, we can't tell anything. */
if (exprx == 0 || expry == 0)
return 0;
/* For spill-slot accesses make sure we have valid offsets. */
if ((exprx == get_spill_slot_decl (false)
&& ! MEM_OFFSET_KNOWN_P (x))
|| (expry == get_spill_slot_decl (false)
&& ! MEM_OFFSET_KNOWN_P (y)))
return 0;
/* If the field reference test failed, look at the DECLs involved. */
moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
if (moffsetx_known_p)
moffsetx = MEM_OFFSET (x);
if (TREE_CODE (exprx) == COMPONENT_REF)
{
tree t = decl_for_component_ref (exprx);
if (! t)
return 0;
adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
exprx = t;
}
moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
if (moffsety_known_p)
moffsety = MEM_OFFSET (y);
if (TREE_CODE (expry) == COMPONENT_REF)
{
tree t = decl_for_component_ref (expry);
if (! t)
return 0;
adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
expry = t;
}
if (! DECL_P (exprx) || ! DECL_P (expry))
return 0;
/* If we refer to different gimple registers, or one gimple register
and one non-gimple-register, we know they can't overlap. First,
gimple registers don't have their addresses taken. Now, there
could be more than one stack slot for (different versions of) the
same gimple register, but we can presumably tell they don't
overlap based on offsets from stack base addresses elsewhere.
It's important that we don't proceed to DECL_RTL, because gimple
registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
able to do anything about them since no SSA information will have
remained to guide it. */
if (is_gimple_reg (exprx) || is_gimple_reg (expry))
return exprx != expry
|| (moffsetx_known_p && moffsety_known_p
&& MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
&& !offset_overlap_p (moffsety - moffsetx,
MEM_SIZE (x), MEM_SIZE (y)));
/* With invalid code we can end up storing into the constant pool.
Bail out to avoid ICEing when creating RTL for this.
See gfortran.dg/lto/20091028-2_0.f90. */
if (TREE_CODE (exprx) == CONST_DECL
|| TREE_CODE (expry) == CONST_DECL)
return 1;
/* If one decl is known to be a function or label in a function and
the other is some kind of data, they can't overlap. */
if ((TREE_CODE (exprx) == FUNCTION_DECL
|| TREE_CODE (exprx) == LABEL_DECL)
!= (TREE_CODE (expry) == FUNCTION_DECL
|| TREE_CODE (expry) == LABEL_DECL))
return 1;
/* If either of the decls doesn't have DECL_RTL set (e.g. marked as
living in multiple places), we can't tell anything. Exception
are FUNCTION_DECLs for which we can create DECL_RTL on demand. */
if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL)
|| (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL))
return 0;
rtlx = DECL_RTL (exprx);
rtly = DECL_RTL (expry);
/* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
can't overlap unless they are the same because we never reuse that part
of the stack frame used for locals for spilled pseudos. */
if ((!MEM_P (rtlx) || !MEM_P (rtly))
&& ! rtx_equal_p (rtlx, rtly))
return 1;
/* If we have MEMs referring to different address spaces (which can
potentially overlap), we cannot easily tell from the addresses
whether the references overlap. */
if (MEM_P (rtlx) && MEM_P (rtly)
&& MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
return 0;
/* Get the base and offsets of both decls. If either is a register, we
know both are and are the same, so use that as the base. The only
we can avoid overlap is if we can deduce that they are nonoverlapping
pieces of that decl, which is very rare. */
basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
basex = strip_offset_and_add (basex, &offsetx);
basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
basey = strip_offset_and_add (basey, &offsety);
/* If the bases are different, we know they do not overlap if both
are constants or if one is a constant and the other a pointer into the
stack frame. Otherwise a different base means we can't tell if they
overlap or not. */
if (compare_base_decls (exprx, expry) == 0)
return ((CONSTANT_P (basex) && CONSTANT_P (basey))
|| (CONSTANT_P (basex) && REG_P (basey)
&& REGNO_PTR_FRAME_P (REGNO (basey)))
|| (CONSTANT_P (basey) && REG_P (basex)
&& REGNO_PTR_FRAME_P (REGNO (basex))));
/* Offset based disambiguation not appropriate for loop invariant */
if (loop_invariant)
return 0;
/* Offset based disambiguation is OK even if we do not know that the
declarations are necessarily different
(i.e. compare_base_decls (exprx, expry) == -1) */
sizex = (!MEM_P (rtlx) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtlx)))
: MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
: -1);
sizey = (!MEM_P (rtly) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtly)))
: MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
: -1);
/* If we have an offset for either memref, it can update the values computed
above. */
if (moffsetx_known_p)
offsetx += moffsetx, sizex -= moffsetx;
if (moffsety_known_p)
offsety += moffsety, sizey -= moffsety;
/* If a memref has both a size and an offset, we can use the smaller size.
We can't do this if the offset isn't known because we must view this
memref as being anywhere inside the DECL's MEM. */
if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
sizex = MEM_SIZE (x);
if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
sizey = MEM_SIZE (y);
return !ranges_maybe_overlap_p (offsetx, sizex, offsety, sizey);
}
/* Helper for true_dependence and canon_true_dependence.
Checks for true dependence: X is read after store in MEM takes place.
If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
NULL_RTX, and the canonical addresses of MEM and X are both computed
here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
Returns 1 if there is a true dependence, 0 otherwise. */
static int
true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
const_rtx x, rtx x_addr, bool mem_canonicalized)
{
rtx true_mem_addr;
rtx base;
int ret;
gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
: (mem_addr == NULL_RTX && x_addr == NULL_RTX));
if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
return 1;
/* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
This is used in epilogue deallocation functions, and in cselib. */
if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
return 1;
if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
return 1;
if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
|| MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
return 1;
if (! x_addr)
x_addr = XEXP (x, 0);
x_addr = get_addr (x_addr);
if (! mem_addr)
{
mem_addr = XEXP (mem, 0);
if (mem_mode == VOIDmode)
mem_mode = GET_MODE (mem);
}
true_mem_addr = get_addr (mem_addr);
/* Read-only memory is by definition never modified, and therefore can't
conflict with anything. However, don't assume anything when AND
addresses are involved and leave to the code below to determine
dependence. We don't expect to find read-only set on MEM, but
stupid user tricks can produce them, so don't die. */
if (MEM_READONLY_P (x)
&& GET_CODE (x_addr) != AND
&& GET_CODE (true_mem_addr) != AND)
return 0;
/* If we have MEMs referring to different address spaces (which can
potentially overlap), we cannot easily tell from the addresses
whether the references overlap. */
if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
return 1;
base = find_base_term (x_addr);
if (base && (GET_CODE (base) == LABEL_REF
|| (GET_CODE (base) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (base))))
return 0;
rtx mem_base = find_base_term (true_mem_addr);
if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
GET_MODE (x), mem_mode))
return 0;
x_addr = canon_rtx (x_addr);
if (!mem_canonicalized)
mem_addr = canon_rtx (true_mem_addr);
if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
SIZE_FOR_MODE (x), x_addr, 0)) != -1)
return ret;
if (mems_in_disjoint_alias_sets_p (x, mem))
return 0;
if (nonoverlapping_memrefs_p (mem, x, false))
return 0;
return rtx_refs_may_alias_p (x, mem, true);
}
/* True dependence: X is read after store in MEM takes place. */
int
true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
{
return true_dependence_1 (mem, mem_mode, NULL_RTX,
x, NULL_RTX, /*mem_canonicalized=*/false);
}
/* Canonical true dependence: X is read after store in MEM takes place.
Variant of true_dependence which assumes MEM has already been
canonicalized (hence we no longer do that here).
The mem_addr argument has been added, since true_dependence_1 computed
this value prior to canonicalizing. */
int
canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
const_rtx x, rtx x_addr)
{
return true_dependence_1 (mem, mem_mode, mem_addr,
x, x_addr, /*mem_canonicalized=*/true);
}
/* Returns nonzero if a write to X might alias a previous read from
(or, if WRITEP is true, a write to) MEM.
If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
and X_MODE the mode for that access.
If MEM_CANONICALIZED is true, MEM is canonicalized. */
static int
write_dependence_p (const_rtx mem,
const_rtx x, machine_mode x_mode, rtx x_addr,
bool mem_canonicalized, bool x_canonicalized, bool writep)
{
rtx mem_addr;
rtx true_mem_addr, true_x_addr;
rtx base;
int ret;
gcc_checking_assert (x_canonicalized
? (x_addr != NULL_RTX
&& (x_mode != VOIDmode || GET_MODE (x) == VOIDmode))
: (x_addr == NULL_RTX && x_mode == VOIDmode));
if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
return 1;
/* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
This is used in epilogue deallocation functions. */
if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
return 1;
if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
return 1;
if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
|| MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
return 1;
if (!x_addr)
x_addr = XEXP (x, 0);
true_x_addr = get_addr (x_addr);
mem_addr = XEXP (mem, 0);
true_mem_addr = get_addr (mem_addr);
/* A read from read-only memory can't conflict with read-write memory.
Don't assume anything when AND addresses are involved and leave to
the code below to determine dependence. */
if (!writep
&& MEM_READONLY_P (mem)
&& GET_CODE (true_x_addr) != AND
&& GET_CODE (true_mem_addr) != AND)
return 0;
/* If we have MEMs referring to different address spaces (which can
potentially overlap), we cannot easily tell from the addresses
whether the references overlap. */
if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
return 1;
base = find_base_term (true_mem_addr);
if (! writep
&& base
&& (GET_CODE (base) == LABEL_REF
|| (GET_CODE (base) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (base))))
return 0;
rtx x_base = find_base_term (true_x_addr);
if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
GET_MODE (x), GET_MODE (mem)))
return 0;
if (!x_canonicalized)
{
x_addr = canon_rtx (true_x_addr);
x_mode = GET_MODE (x);
}
if (!mem_canonicalized)
mem_addr = canon_rtx (true_mem_addr);
if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
return ret;
if (nonoverlapping_memrefs_p (x, mem, false))
return 0;
return rtx_refs_may_alias_p (x, mem, false);
}
/* Anti dependence: X is written after read in MEM takes place. */
int
anti_dependence (const_rtx mem, const_rtx x)
{
return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
/*mem_canonicalized=*/false,
/*x_canonicalized*/false, /*writep=*/false);
}
/* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
Also, consider X in X_MODE (which might be from an enclosing
STRICT_LOW_PART / ZERO_EXTRACT).
If MEM_CANONICALIZED is true, MEM is canonicalized. */
int
canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
const_rtx x, machine_mode x_mode, rtx x_addr)
{
return write_dependence_p (mem, x, x_mode, x_addr,
mem_canonicalized, /*x_canonicalized=*/true,
/*writep=*/false);
}
/* Output dependence: X is written after store in MEM takes place. */
int
output_dependence (const_rtx mem, const_rtx x)
{
return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
/*mem_canonicalized=*/false,
/*x_canonicalized*/false, /*writep=*/true);
}
/* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
Also, consider X in X_MODE (which might be from an enclosing
STRICT_LOW_PART / ZERO_EXTRACT).
If MEM_CANONICALIZED is true, MEM is canonicalized. */
int
canon_output_dependence (const_rtx mem, bool mem_canonicalized,
const_rtx x, machine_mode x_mode, rtx x_addr)
{
return write_dependence_p (mem, x, x_mode, x_addr,
mem_canonicalized, /*x_canonicalized=*/true,
/*writep=*/true);
}
/* Check whether X may be aliased with MEM. Don't do offset-based
memory disambiguation & TBAA. */
int
may_alias_p (const_rtx mem, const_rtx x)
{
rtx x_addr, mem_addr;
if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
return 1;
/* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
This is used in epilogue deallocation functions. */
if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
return 1;
if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
return 1;
if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
|| MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
return 1;
x_addr = XEXP (x, 0);
x_addr = get_addr (x_addr);
mem_addr = XEXP (mem, 0);
mem_addr = get_addr (mem_addr);
/* Read-only memory is by definition never modified, and therefore can't
conflict with anything. However, don't assume anything when AND
addresses are involved and leave to the code below to determine
dependence. We don't expect to find read-only set on MEM, but
stupid user tricks can produce them, so don't die. */
if (MEM_READONLY_P (x)
&& GET_CODE (x_addr) != AND
&& GET_CODE (mem_addr) != AND)
return 0;
/* If we have MEMs referring to different address spaces (which can
potentially overlap), we cannot easily tell from the addresses
whether the references overlap. */
if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
return 1;
rtx x_base = find_base_term (x_addr);
rtx mem_base = find_base_term (mem_addr);
if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
GET_MODE (x), GET_MODE (mem_addr)))
return 0;
if (nonoverlapping_memrefs_p (mem, x, true))
return 0;
/* TBAA not valid for loop_invarint */
return rtx_refs_may_alias_p (x, mem, false);
}
void
init_alias_target (void)
{
int i;
if (!arg_base_value)
arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
memset (static_reg_base_value, 0, sizeof static_reg_base_value);
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
/* Check whether this register can hold an incoming pointer
argument. FUNCTION_ARG_REGNO_P tests outgoing register
numbers, so translate if necessary due to register windows. */
if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
&& targetm.hard_regno_mode_ok (i, Pmode))
static_reg_base_value[i] = arg_base_value;
/* RTL code is required to be consistent about whether it uses the
stack pointer, the frame pointer or the argument pointer to
access a given area of the frame. We can therefore use the
base address to distinguish between the different areas. */
static_reg_base_value[STACK_POINTER_REGNUM]
= unique_base_value (UNIQUE_BASE_VALUE_SP);
static_reg_base_value[ARG_POINTER_REGNUM]
= unique_base_value (UNIQUE_BASE_VALUE_ARGP);
static_reg_base_value[FRAME_POINTER_REGNUM]
= unique_base_value (UNIQUE_BASE_VALUE_FP);
/* The above rules extend post-reload, with eliminations applying
consistently to each of the three pointers. Cope with cases in
which the frame pointer is eliminated to the hard frame pointer
rather than the stack pointer. */
if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
= unique_base_value (UNIQUE_BASE_VALUE_HFP);
}
/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
to be memory reference. */
static bool memory_modified;
static void
memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
{
if (MEM_P (x))
{
if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
memory_modified = true;
}
}
/* Return true when INSN possibly modify memory contents of MEM
(i.e. address can be modified). */
bool
memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
{
if (!INSN_P (insn))
return false;
/* Conservatively assume all non-readonly MEMs might be modified in
calls. */
if (CALL_P (insn))
return true;
memory_modified = false;
note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
return memory_modified;
}
/* Return TRUE if the destination of a set is rtx identical to
ITEM. */
static inline bool
set_dest_equal_p (const_rtx set, const_rtx item)
{
rtx dest = SET_DEST (set);
return rtx_equal_p (dest, item);
}
/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
array. */
void
init_alias_analysis (void)
{
unsigned int maxreg = max_reg_num ();
int changed, pass;
int i;
unsigned int ui;
rtx_insn *insn;
rtx val;
int rpo_cnt;
int *rpo;
timevar_push (TV_ALIAS_ANALYSIS);
vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
bitmap_clear (reg_known_equiv_p);
/* If we have memory allocated from the previous run, use it. */
if (old_reg_base_value)
reg_base_value = old_reg_base_value;
if (reg_base_value)
reg_base_value->truncate (0);
vec_safe_grow_cleared (reg_base_value, maxreg);
new_reg_base_value = XNEWVEC (rtx, maxreg);
reg_seen = sbitmap_alloc (maxreg);
/* The basic idea is that each pass through this loop will use the
"constant" information from the previous pass to propagate alias
information through another level of assignments.
The propagation is done on the CFG in reverse post-order, to propagate
things forward as far as possible in each iteration.
This could get expensive if the assignment chains are long. Maybe
we should throttle the number of iterations, possibly based on
the optimization level or flag_expensive_optimizations.
We could propagate more information in the first pass by making use
of DF_REG_DEF_COUNT to determine immediately that the alias information
for a pseudo is "constant".
A program with an uninitialized variable can cause an infinite loop
here. Instead of doing a full dataflow analysis to detect such problems
we just cap the number of iterations for the loop.
The state of the arrays for the set chain in question does not matter
since the program has undefined behavior. */
rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
/* The prologue/epilogue insns are not threaded onto the
insn chain until after reload has completed. Thus,
there is no sense wasting time checking if INSN is in
the prologue/epilogue until after reload has completed. */
bool could_be_prologue_epilogue = ((targetm.have_prologue ()
|| targetm.have_epilogue ())
&& reload_completed);
pass = 0;
do
{
/* Assume nothing will change this iteration of the loop. */
changed = 0;
/* We want to assign the same IDs each iteration of this loop, so
start counting from one each iteration of the loop. */
unique_id = 1;
/* We're at the start of the function each iteration through the
loop, so we're copying arguments. */
copying_arguments = true;
/* Wipe the potential alias information clean for this pass. */
memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
/* Wipe the reg_seen array clean. */
bitmap_clear (reg_seen);
/* Initialize the alias information for this pass. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (static_reg_base_value[i]
/* Don't treat the hard frame pointer as special if we
eliminated the frame pointer to the stack pointer instead. */
&& !(i == HARD_FRAME_POINTER_REGNUM
&& reload_completed
&& !frame_pointer_needed
&& targetm.can_eliminate (FRAME_POINTER_REGNUM,
STACK_POINTER_REGNUM)))
{
new_reg_base_value[i] = static_reg_base_value[i];
bitmap_set_bit (reg_seen, i);
}
/* Walk the insns adding values to the new_reg_base_value array. */
for (i = 0; i < rpo_cnt; i++)
{
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
FOR_BB_INSNS (bb, insn)
{
if (NONDEBUG_INSN_P (insn))
{
rtx note, set;
if (could_be_prologue_epilogue
&& prologue_epilogue_contains (insn))
continue;
/* If this insn has a noalias note, process it, Otherwise,
scan for sets. A simple set will have no side effects
which could change the base value of any other register. */
if (GET_CODE (PATTERN (insn)) == SET
&& REG_NOTES (insn) != 0
&& find_reg_note (insn, REG_NOALIAS, NULL_RTX))
record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
else
note_stores (PATTERN (insn), record_set, NULL);
set = single_set (insn);
if (set != 0
&& REG_P (SET_DEST (set))
&& REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
{
unsigned int regno = REGNO (SET_DEST (set));
rtx src = SET_SRC (set);
rtx t;
note = find_reg_equal_equiv_note (insn);
if (note && REG_NOTE_KIND (note) == REG_EQUAL
&& DF_REG_DEF_COUNT (regno) != 1)
note = NULL_RTX;
if (note != NULL_RTX
&& GET_CODE (XEXP (note, 0)) != EXPR_LIST
&& ! rtx_varies_p (XEXP (note, 0), 1)
&& ! reg_overlap_mentioned_p (SET_DEST (set),
XEXP (note, 0)))
{
set_reg_known_value (regno, XEXP (note, 0));
set_reg_known_equiv_p (regno,
REG_NOTE_KIND (note) == REG_EQUIV);
}
else if (DF_REG_DEF_COUNT (regno) == 1
&& GET_CODE (src) == PLUS
&& REG_P (XEXP (src, 0))
&& (t = get_reg_known_value (REGNO (XEXP (src, 0))))
&& CONST_INT_P (XEXP (src, 1)))
{
t = plus_constant (GET_MODE (src), t,
INTVAL (XEXP (src, 1)));
set_reg_known_value (regno, t);
set_reg_known_equiv_p (regno, false);
}
else if (DF_REG_DEF_COUNT (regno) == 1
&& ! rtx_varies_p (src, 1))
{
set_reg_known_value (regno, src);
set_reg_known_equiv_p (regno, false);
}
}
}
else if (NOTE_P (insn)
&& NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
copying_arguments = false;
}
}
/* Now propagate values from new_reg_base_value to reg_base_value. */
gcc_assert (maxreg == (unsigned int) max_reg_num ());
for (ui = 0; ui < maxreg; ui++)
{
if (new_reg_base_value[ui]
&& new_reg_base_value[ui] != (*reg_base_value)[ui]
&& ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
{
(*reg_base_value)[ui] = new_reg_base_value[ui];
changed = 1;
}
}
}
while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
XDELETEVEC (rpo);
/* Fill in the remaining entries. */
FOR_EACH_VEC_ELT (*reg_known_value, i, val)
{
int regno = i + FIRST_PSEUDO_REGISTER;
if (! val)
set_reg_known_value (regno, regno_reg_rtx[regno]);
}
/* Clean up. */
free (new_reg_base_value);
new_reg_base_value = 0;
sbitmap_free (reg_seen);
reg_seen = 0;
timevar_pop (TV_ALIAS_ANALYSIS);
}
/* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
Special API for var-tracking pass purposes. */
void
vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
{
(*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
}
void
end_alias_analysis (void)
{
old_reg_base_value = reg_base_value;
vec_free (reg_known_value);
sbitmap_free (reg_known_equiv_p);
}
void
dump_alias_stats_in_alias_c (FILE *s)
{
fprintf (s, " TBAA oracle: %llu disambiguations %llu queries\n"
" %llu are in alias set 0\n"
" %llu queries asked about the same object\n"
" %llu queries asked about the same alias set\n"
" %llu access volatile\n"
" %llu are dependent in the DAG\n"
" %llu are aritificially in conflict with void *\n",
alias_stats.num_disambiguated,
alias_stats.num_alias_zero + alias_stats.num_same_alias_set
+ alias_stats.num_same_objects + alias_stats.num_volatile
+ alias_stats.num_dag + alias_stats.num_disambiguated
+ alias_stats.num_universal,
alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
alias_stats.num_same_objects, alias_stats.num_volatile,
alias_stats.num_dag, alias_stats.num_universal);
}
#include "gt-alias.h"
|