1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
|
/* AddressSanitizer, a fast memory error detector.
Copyright (C) 2012-2018 Free Software Foundation, Inc.
Contributed by Kostya Serebryany <kcc@google.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "alloc-pool.h"
#include "tree-pass.h"
#include "memmodel.h"
#include "tm_p.h"
#include "ssa.h"
#include "stringpool.h"
#include "tree-ssanames.h"
#include "optabs.h"
#include "emit-rtl.h"
#include "cgraph.h"
#include "gimple-pretty-print.h"
#include "alias.h"
#include "fold-const.h"
#include "cfganal.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "varasm.h"
#include "stor-layout.h"
#include "tree-iterator.h"
#include "stringpool.h"
#include "attribs.h"
#include "asan.h"
#include "dojump.h"
#include "explow.h"
#include "expr.h"
#include "output.h"
#include "langhooks.h"
#include "cfgloop.h"
#include "gimple-builder.h"
#include "gimple-fold.h"
#include "ubsan.h"
#include "params.h"
#include "builtins.h"
#include "fnmatch.h"
#include "tree-inline.h"
/* AddressSanitizer finds out-of-bounds and use-after-free bugs
with <2x slowdown on average.
The tool consists of two parts:
instrumentation module (this file) and a run-time library.
The instrumentation module adds a run-time check before every memory insn.
For a 8- or 16- byte load accessing address X:
ShadowAddr = (X >> 3) + Offset
ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
if (ShadowValue)
__asan_report_load8(X);
For a load of N bytes (N=1, 2 or 4) from address X:
ShadowAddr = (X >> 3) + Offset
ShadowValue = *(char*)ShadowAddr;
if (ShadowValue)
if ((X & 7) + N - 1 > ShadowValue)
__asan_report_loadN(X);
Stores are instrumented similarly, but using __asan_report_storeN functions.
A call too __asan_init_vN() is inserted to the list of module CTORs.
N is the version number of the AddressSanitizer API. The changes between the
API versions are listed in libsanitizer/asan/asan_interface_internal.h.
The run-time library redefines malloc (so that redzone are inserted around
the allocated memory) and free (so that reuse of free-ed memory is delayed),
provides __asan_report* and __asan_init_vN functions.
Read more:
http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
The current implementation supports detection of out-of-bounds and
use-after-free in the heap, on the stack and for global variables.
[Protection of stack variables]
To understand how detection of out-of-bounds and use-after-free works
for stack variables, lets look at this example on x86_64 where the
stack grows downward:
int
foo ()
{
char a[23] = {0};
int b[2] = {0};
a[5] = 1;
b[1] = 2;
return a[5] + b[1];
}
For this function, the stack protected by asan will be organized as
follows, from the top of the stack to the bottom:
Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
the next slot be 32 bytes aligned; this one is called Partial
Redzone; this 32 bytes alignment is an asan constraint]
Slot 3/ [24 bytes for variable 'a']
Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
Slot 6/ [8 bytes for variable 'b']
Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
'LEFT RedZone']
The 32 bytes of LEFT red zone at the bottom of the stack can be
decomposed as such:
1/ The first 8 bytes contain a magical asan number that is always
0x41B58AB3.
2/ The following 8 bytes contains a pointer to a string (to be
parsed at runtime by the runtime asan library), which format is
the following:
"<function-name> <space> <num-of-variables-on-the-stack>
(<32-bytes-aligned-offset-in-bytes-of-variable> <space>
<length-of-var-in-bytes> ){n} "
where '(...){n}' means the content inside the parenthesis occurs 'n'
times, with 'n' being the number of variables on the stack.
3/ The following 8 bytes contain the PC of the current function which
will be used by the run-time library to print an error message.
4/ The following 8 bytes are reserved for internal use by the run-time.
The shadow memory for that stack layout is going to look like this:
- content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
The F1 byte pattern is a magic number called
ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
the memory for that shadow byte is part of a the LEFT red zone
intended to seat at the bottom of the variables on the stack.
- content of shadow memory 8 bytes for slots 6 and 5:
0xF4F4F400. The F4 byte pattern is a magic number
called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
memory region for this shadow byte is a PARTIAL red zone
intended to pad a variable A, so that the slot following
{A,padding} is 32 bytes aligned.
Note that the fact that the least significant byte of this
shadow memory content is 00 means that 8 bytes of its
corresponding memory (which corresponds to the memory of
variable 'b') is addressable.
- content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
The F2 byte pattern is a magic number called
ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
region for this shadow byte is a MIDDLE red zone intended to
seat between two 32 aligned slots of {variable,padding}.
- content of shadow memory 8 bytes for slot 3 and 2:
0xF4000000. This represents is the concatenation of
variable 'a' and the partial red zone following it, like what we
had for variable 'b'. The least significant 3 bytes being 00
means that the 3 bytes of variable 'a' are addressable.
- content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
The F3 byte pattern is a magic number called
ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
region for this shadow byte is a RIGHT red zone intended to seat
at the top of the variables of the stack.
Note that the real variable layout is done in expand_used_vars in
cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
stack variables as well as the different red zones, emits some
prologue code to populate the shadow memory as to poison (mark as
non-accessible) the regions of the red zones and mark the regions of
stack variables as accessible, and emit some epilogue code to
un-poison (mark as accessible) the regions of red zones right before
the function exits.
[Protection of global variables]
The basic idea is to insert a red zone between two global variables
and install a constructor function that calls the asan runtime to do
the populating of the relevant shadow memory regions at load time.
So the global variables are laid out as to insert a red zone between
them. The size of the red zones is so that each variable starts on a
32 bytes boundary.
Then a constructor function is installed so that, for each global
variable, it calls the runtime asan library function
__asan_register_globals_with an instance of this type:
struct __asan_global
{
// Address of the beginning of the global variable.
const void *__beg;
// Initial size of the global variable.
uptr __size;
// Size of the global variable + size of the red zone. This
// size is 32 bytes aligned.
uptr __size_with_redzone;
// Name of the global variable.
const void *__name;
// Name of the module where the global variable is declared.
const void *__module_name;
// 1 if it has dynamic initialization, 0 otherwise.
uptr __has_dynamic_init;
// A pointer to struct that contains source location, could be NULL.
__asan_global_source_location *__location;
}
A destructor function that calls the runtime asan library function
_asan_unregister_globals is also installed. */
static unsigned HOST_WIDE_INT asan_shadow_offset_value;
static bool asan_shadow_offset_computed;
static vec<char *> sanitized_sections;
static tree last_alloca_addr;
/* Set of variable declarations that are going to be guarded by
use-after-scope sanitizer. */
hash_set<tree> *asan_handled_variables = NULL;
hash_set <tree> *asan_used_labels = NULL;
/* Sets shadow offset to value in string VAL. */
bool
set_asan_shadow_offset (const char *val)
{
char *endp;
errno = 0;
#ifdef HAVE_LONG_LONG
asan_shadow_offset_value = strtoull (val, &endp, 0);
#else
asan_shadow_offset_value = strtoul (val, &endp, 0);
#endif
if (!(*val != '\0' && *endp == '\0' && errno == 0))
return false;
asan_shadow_offset_computed = true;
return true;
}
/* Set list of user-defined sections that need to be sanitized. */
void
set_sanitized_sections (const char *sections)
{
char *pat;
unsigned i;
FOR_EACH_VEC_ELT (sanitized_sections, i, pat)
free (pat);
sanitized_sections.truncate (0);
for (const char *s = sections; *s; )
{
const char *end;
for (end = s; *end && *end != ','; ++end);
size_t len = end - s;
sanitized_sections.safe_push (xstrndup (s, len));
s = *end ? end + 1 : end;
}
}
bool
asan_mark_p (gimple *stmt, enum asan_mark_flags flag)
{
return (gimple_call_internal_p (stmt, IFN_ASAN_MARK)
&& tree_to_uhwi (gimple_call_arg (stmt, 0)) == flag);
}
bool
asan_sanitize_stack_p (void)
{
return (sanitize_flags_p (SANITIZE_ADDRESS) && ASAN_STACK);
}
bool
asan_sanitize_allocas_p (void)
{
return (asan_sanitize_stack_p () && ASAN_PROTECT_ALLOCAS);
}
/* Checks whether section SEC should be sanitized. */
static bool
section_sanitized_p (const char *sec)
{
char *pat;
unsigned i;
FOR_EACH_VEC_ELT (sanitized_sections, i, pat)
if (fnmatch (pat, sec, FNM_PERIOD) == 0)
return true;
return false;
}
/* Returns Asan shadow offset. */
static unsigned HOST_WIDE_INT
asan_shadow_offset ()
{
if (!asan_shadow_offset_computed)
{
asan_shadow_offset_computed = true;
asan_shadow_offset_value = targetm.asan_shadow_offset ();
}
return asan_shadow_offset_value;
}
alias_set_type asan_shadow_set = -1;
/* Pointer types to 1, 2 or 4 byte integers in shadow memory. A separate
alias set is used for all shadow memory accesses. */
static GTY(()) tree shadow_ptr_types[3];
/* Decl for __asan_option_detect_stack_use_after_return. */
static GTY(()) tree asan_detect_stack_use_after_return;
/* Hashtable support for memory references used by gimple
statements. */
/* This type represents a reference to a memory region. */
struct asan_mem_ref
{
/* The expression of the beginning of the memory region. */
tree start;
/* The size of the access. */
HOST_WIDE_INT access_size;
};
object_allocator <asan_mem_ref> asan_mem_ref_pool ("asan_mem_ref");
/* Initializes an instance of asan_mem_ref. */
static void
asan_mem_ref_init (asan_mem_ref *ref, tree start, HOST_WIDE_INT access_size)
{
ref->start = start;
ref->access_size = access_size;
}
/* Allocates memory for an instance of asan_mem_ref into the memory
pool returned by asan_mem_ref_get_alloc_pool and initialize it.
START is the address of (or the expression pointing to) the
beginning of memory reference. ACCESS_SIZE is the size of the
access to the referenced memory. */
static asan_mem_ref*
asan_mem_ref_new (tree start, HOST_WIDE_INT access_size)
{
asan_mem_ref *ref = asan_mem_ref_pool.allocate ();
asan_mem_ref_init (ref, start, access_size);
return ref;
}
/* This builds and returns a pointer to the end of the memory region
that starts at START and of length LEN. */
tree
asan_mem_ref_get_end (tree start, tree len)
{
if (len == NULL_TREE || integer_zerop (len))
return start;
if (!ptrofftype_p (len))
len = convert_to_ptrofftype (len);
return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
}
/* Return a tree expression that represents the end of the referenced
memory region. Beware that this function can actually build a new
tree expression. */
tree
asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
{
return asan_mem_ref_get_end (ref->start, len);
}
struct asan_mem_ref_hasher : nofree_ptr_hash <asan_mem_ref>
{
static inline hashval_t hash (const asan_mem_ref *);
static inline bool equal (const asan_mem_ref *, const asan_mem_ref *);
};
/* Hash a memory reference. */
inline hashval_t
asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
{
return iterative_hash_expr (mem_ref->start, 0);
}
/* Compare two memory references. We accept the length of either
memory references to be NULL_TREE. */
inline bool
asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
const asan_mem_ref *m2)
{
return operand_equal_p (m1->start, m2->start, 0);
}
static hash_table<asan_mem_ref_hasher> *asan_mem_ref_ht;
/* Returns a reference to the hash table containing memory references.
This function ensures that the hash table is created. Note that
this hash table is updated by the function
update_mem_ref_hash_table. */
static hash_table<asan_mem_ref_hasher> *
get_mem_ref_hash_table ()
{
if (!asan_mem_ref_ht)
asan_mem_ref_ht = new hash_table<asan_mem_ref_hasher> (10);
return asan_mem_ref_ht;
}
/* Clear all entries from the memory references hash table. */
static void
empty_mem_ref_hash_table ()
{
if (asan_mem_ref_ht)
asan_mem_ref_ht->empty ();
}
/* Free the memory references hash table. */
static void
free_mem_ref_resources ()
{
delete asan_mem_ref_ht;
asan_mem_ref_ht = NULL;
asan_mem_ref_pool.release ();
}
/* Return true iff the memory reference REF has been instrumented. */
static bool
has_mem_ref_been_instrumented (tree ref, HOST_WIDE_INT access_size)
{
asan_mem_ref r;
asan_mem_ref_init (&r, ref, access_size);
asan_mem_ref *saved_ref = get_mem_ref_hash_table ()->find (&r);
return saved_ref && saved_ref->access_size >= access_size;
}
/* Return true iff the memory reference REF has been instrumented. */
static bool
has_mem_ref_been_instrumented (const asan_mem_ref *ref)
{
return has_mem_ref_been_instrumented (ref->start, ref->access_size);
}
/* Return true iff access to memory region starting at REF and of
length LEN has been instrumented. */
static bool
has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
{
HOST_WIDE_INT size_in_bytes
= tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
return size_in_bytes != -1
&& has_mem_ref_been_instrumented (ref->start, size_in_bytes);
}
/* Set REF to the memory reference present in a gimple assignment
ASSIGNMENT. Return true upon successful completion, false
otherwise. */
static bool
get_mem_ref_of_assignment (const gassign *assignment,
asan_mem_ref *ref,
bool *ref_is_store)
{
gcc_assert (gimple_assign_single_p (assignment));
if (gimple_store_p (assignment)
&& !gimple_clobber_p (assignment))
{
ref->start = gimple_assign_lhs (assignment);
*ref_is_store = true;
}
else if (gimple_assign_load_p (assignment))
{
ref->start = gimple_assign_rhs1 (assignment);
*ref_is_store = false;
}
else
return false;
ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
return true;
}
/* Return address of last allocated dynamic alloca. */
static tree
get_last_alloca_addr ()
{
if (last_alloca_addr)
return last_alloca_addr;
last_alloca_addr = create_tmp_reg (ptr_type_node, "last_alloca_addr");
gassign *g = gimple_build_assign (last_alloca_addr, null_pointer_node);
edge e = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
gsi_insert_on_edge_immediate (e, g);
return last_alloca_addr;
}
/* Insert __asan_allocas_unpoison (top, bottom) call before
__builtin_stack_restore (new_sp) call.
The pseudocode of this routine should look like this:
top = last_alloca_addr;
bot = new_sp;
__asan_allocas_unpoison (top, bot);
last_alloca_addr = new_sp;
__builtin_stack_restore (new_sp);
In general, we can't use new_sp as bot parameter because on some
architectures SP has non zero offset from dynamic stack area. Moreover, on
some architectures this offset (STACK_DYNAMIC_OFFSET) becomes known for each
particular function only after all callees were expanded to rtl.
The most noticeable example is PowerPC{,64}, see
http://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi.html#DYNAM-STACK.
To overcome the issue we use following trick: pass new_sp as a second
parameter to __asan_allocas_unpoison and rewrite it during expansion with
new_sp + (virtual_dynamic_stack_rtx - sp) later in
expand_asan_emit_allocas_unpoison function. */
static void
handle_builtin_stack_restore (gcall *call, gimple_stmt_iterator *iter)
{
if (!iter || !asan_sanitize_allocas_p ())
return;
tree last_alloca = get_last_alloca_addr ();
tree restored_stack = gimple_call_arg (call, 0);
tree fn = builtin_decl_implicit (BUILT_IN_ASAN_ALLOCAS_UNPOISON);
gimple *g = gimple_build_call (fn, 2, last_alloca, restored_stack);
gsi_insert_before (iter, g, GSI_SAME_STMT);
g = gimple_build_assign (last_alloca, restored_stack);
gsi_insert_before (iter, g, GSI_SAME_STMT);
}
/* Deploy and poison redzones around __builtin_alloca call. To do this, we
should replace this call with another one with changed parameters and
replace all its uses with new address, so
addr = __builtin_alloca (old_size, align);
is replaced by
left_redzone_size = max (align, ASAN_RED_ZONE_SIZE);
Following two statements are optimized out if we know that
old_size & (ASAN_RED_ZONE_SIZE - 1) == 0, i.e. alloca doesn't need partial
redzone.
misalign = old_size & (ASAN_RED_ZONE_SIZE - 1);
partial_redzone_size = ASAN_RED_ZONE_SIZE - misalign;
right_redzone_size = ASAN_RED_ZONE_SIZE;
additional_size = left_redzone_size + partial_redzone_size +
right_redzone_size;
new_size = old_size + additional_size;
new_alloca = __builtin_alloca (new_size, max (align, 32))
__asan_alloca_poison (new_alloca, old_size)
addr = new_alloca + max (align, ASAN_RED_ZONE_SIZE);
last_alloca_addr = new_alloca;
ADDITIONAL_SIZE is added to make new memory allocation contain not only
requested memory, but also left, partial and right redzones as well as some
additional space, required by alignment. */
static void
handle_builtin_alloca (gcall *call, gimple_stmt_iterator *iter)
{
if (!iter || !asan_sanitize_allocas_p ())
return;
gassign *g;
gcall *gg;
const HOST_WIDE_INT redzone_mask = ASAN_RED_ZONE_SIZE - 1;
tree last_alloca = get_last_alloca_addr ();
tree callee = gimple_call_fndecl (call);
tree old_size = gimple_call_arg (call, 0);
tree ptr_type = gimple_call_lhs (call) ? TREE_TYPE (gimple_call_lhs (call))
: ptr_type_node;
tree partial_size = NULL_TREE;
unsigned int align
= DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
? 0 : tree_to_uhwi (gimple_call_arg (call, 1));
/* If ALIGN > ASAN_RED_ZONE_SIZE, we embed left redzone into first ALIGN
bytes of allocated space. Otherwise, align alloca to ASAN_RED_ZONE_SIZE
manually. */
align = MAX (align, ASAN_RED_ZONE_SIZE * BITS_PER_UNIT);
tree alloca_rz_mask = build_int_cst (size_type_node, redzone_mask);
tree redzone_size = build_int_cst (size_type_node, ASAN_RED_ZONE_SIZE);
/* Extract lower bits from old_size. */
wide_int size_nonzero_bits = get_nonzero_bits (old_size);
wide_int rz_mask
= wi::uhwi (redzone_mask, wi::get_precision (size_nonzero_bits));
wide_int old_size_lower_bits = wi::bit_and (size_nonzero_bits, rz_mask);
/* If alloca size is aligned to ASAN_RED_ZONE_SIZE, we don't need partial
redzone. Otherwise, compute its size here. */
if (wi::ne_p (old_size_lower_bits, 0))
{
/* misalign = size & (ASAN_RED_ZONE_SIZE - 1)
partial_size = ASAN_RED_ZONE_SIZE - misalign. */
g = gimple_build_assign (make_ssa_name (size_type_node, NULL),
BIT_AND_EXPR, old_size, alloca_rz_mask);
gsi_insert_before (iter, g, GSI_SAME_STMT);
tree misalign = gimple_assign_lhs (g);
g = gimple_build_assign (make_ssa_name (size_type_node, NULL), MINUS_EXPR,
redzone_size, misalign);
gsi_insert_before (iter, g, GSI_SAME_STMT);
partial_size = gimple_assign_lhs (g);
}
/* additional_size = align + ASAN_RED_ZONE_SIZE. */
tree additional_size = build_int_cst (size_type_node, align / BITS_PER_UNIT
+ ASAN_RED_ZONE_SIZE);
/* If alloca has partial redzone, include it to additional_size too. */
if (partial_size)
{
/* additional_size += partial_size. */
g = gimple_build_assign (make_ssa_name (size_type_node), PLUS_EXPR,
partial_size, additional_size);
gsi_insert_before (iter, g, GSI_SAME_STMT);
additional_size = gimple_assign_lhs (g);
}
/* new_size = old_size + additional_size. */
g = gimple_build_assign (make_ssa_name (size_type_node), PLUS_EXPR, old_size,
additional_size);
gsi_insert_before (iter, g, GSI_SAME_STMT);
tree new_size = gimple_assign_lhs (g);
/* Build new __builtin_alloca call:
new_alloca_with_rz = __builtin_alloca (new_size, align). */
tree fn = builtin_decl_implicit (BUILT_IN_ALLOCA_WITH_ALIGN);
gg = gimple_build_call (fn, 2, new_size,
build_int_cst (size_type_node, align));
tree new_alloca_with_rz = make_ssa_name (ptr_type, gg);
gimple_call_set_lhs (gg, new_alloca_with_rz);
gsi_insert_before (iter, gg, GSI_SAME_STMT);
/* new_alloca = new_alloca_with_rz + align. */
g = gimple_build_assign (make_ssa_name (ptr_type), POINTER_PLUS_EXPR,
new_alloca_with_rz,
build_int_cst (size_type_node,
align / BITS_PER_UNIT));
gsi_insert_before (iter, g, GSI_SAME_STMT);
tree new_alloca = gimple_assign_lhs (g);
/* Poison newly created alloca redzones:
__asan_alloca_poison (new_alloca, old_size). */
fn = builtin_decl_implicit (BUILT_IN_ASAN_ALLOCA_POISON);
gg = gimple_build_call (fn, 2, new_alloca, old_size);
gsi_insert_before (iter, gg, GSI_SAME_STMT);
/* Save new_alloca_with_rz value into last_alloca to use it during
allocas unpoisoning. */
g = gimple_build_assign (last_alloca, new_alloca_with_rz);
gsi_insert_before (iter, g, GSI_SAME_STMT);
/* Finally, replace old alloca ptr with NEW_ALLOCA. */
replace_call_with_value (iter, new_alloca);
}
/* Return the memory references contained in a gimple statement
representing a builtin call that has to do with memory access. */
static bool
get_mem_refs_of_builtin_call (gcall *call,
asan_mem_ref *src0,
tree *src0_len,
bool *src0_is_store,
asan_mem_ref *src1,
tree *src1_len,
bool *src1_is_store,
asan_mem_ref *dst,
tree *dst_len,
bool *dst_is_store,
bool *dest_is_deref,
bool *intercepted_p,
gimple_stmt_iterator *iter = NULL)
{
gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
tree callee = gimple_call_fndecl (call);
tree source0 = NULL_TREE, source1 = NULL_TREE,
dest = NULL_TREE, len = NULL_TREE;
bool is_store = true, got_reference_p = false;
HOST_WIDE_INT access_size = 1;
*intercepted_p = asan_intercepted_p ((DECL_FUNCTION_CODE (callee)));
switch (DECL_FUNCTION_CODE (callee))
{
/* (s, s, n) style memops. */
case BUILT_IN_BCMP:
case BUILT_IN_MEMCMP:
source0 = gimple_call_arg (call, 0);
source1 = gimple_call_arg (call, 1);
len = gimple_call_arg (call, 2);
break;
/* (src, dest, n) style memops. */
case BUILT_IN_BCOPY:
source0 = gimple_call_arg (call, 0);
dest = gimple_call_arg (call, 1);
len = gimple_call_arg (call, 2);
break;
/* (dest, src, n) style memops. */
case BUILT_IN_MEMCPY:
case BUILT_IN_MEMCPY_CHK:
case BUILT_IN_MEMMOVE:
case BUILT_IN_MEMMOVE_CHK:
case BUILT_IN_MEMPCPY:
case BUILT_IN_MEMPCPY_CHK:
dest = gimple_call_arg (call, 0);
source0 = gimple_call_arg (call, 1);
len = gimple_call_arg (call, 2);
break;
/* (dest, n) style memops. */
case BUILT_IN_BZERO:
dest = gimple_call_arg (call, 0);
len = gimple_call_arg (call, 1);
break;
/* (dest, x, n) style memops*/
case BUILT_IN_MEMSET:
case BUILT_IN_MEMSET_CHK:
dest = gimple_call_arg (call, 0);
len = gimple_call_arg (call, 2);
break;
case BUILT_IN_STRLEN:
source0 = gimple_call_arg (call, 0);
len = gimple_call_lhs (call);
break;
case BUILT_IN_STACK_RESTORE:
handle_builtin_stack_restore (call, iter);
break;
CASE_BUILT_IN_ALLOCA:
handle_builtin_alloca (call, iter);
break;
/* And now the __atomic* and __sync builtins.
These are handled differently from the classical memory memory
access builtins above. */
case BUILT_IN_ATOMIC_LOAD_1:
is_store = false;
/* FALLTHRU */
case BUILT_IN_SYNC_FETCH_AND_ADD_1:
case BUILT_IN_SYNC_FETCH_AND_SUB_1:
case BUILT_IN_SYNC_FETCH_AND_OR_1:
case BUILT_IN_SYNC_FETCH_AND_AND_1:
case BUILT_IN_SYNC_FETCH_AND_XOR_1:
case BUILT_IN_SYNC_FETCH_AND_NAND_1:
case BUILT_IN_SYNC_ADD_AND_FETCH_1:
case BUILT_IN_SYNC_SUB_AND_FETCH_1:
case BUILT_IN_SYNC_OR_AND_FETCH_1:
case BUILT_IN_SYNC_AND_AND_FETCH_1:
case BUILT_IN_SYNC_XOR_AND_FETCH_1:
case BUILT_IN_SYNC_NAND_AND_FETCH_1:
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
case BUILT_IN_SYNC_LOCK_RELEASE_1:
case BUILT_IN_ATOMIC_EXCHANGE_1:
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
case BUILT_IN_ATOMIC_STORE_1:
case BUILT_IN_ATOMIC_ADD_FETCH_1:
case BUILT_IN_ATOMIC_SUB_FETCH_1:
case BUILT_IN_ATOMIC_AND_FETCH_1:
case BUILT_IN_ATOMIC_NAND_FETCH_1:
case BUILT_IN_ATOMIC_XOR_FETCH_1:
case BUILT_IN_ATOMIC_OR_FETCH_1:
case BUILT_IN_ATOMIC_FETCH_ADD_1:
case BUILT_IN_ATOMIC_FETCH_SUB_1:
case BUILT_IN_ATOMIC_FETCH_AND_1:
case BUILT_IN_ATOMIC_FETCH_NAND_1:
case BUILT_IN_ATOMIC_FETCH_XOR_1:
case BUILT_IN_ATOMIC_FETCH_OR_1:
access_size = 1;
goto do_atomic;
case BUILT_IN_ATOMIC_LOAD_2:
is_store = false;
/* FALLTHRU */
case BUILT_IN_SYNC_FETCH_AND_ADD_2:
case BUILT_IN_SYNC_FETCH_AND_SUB_2:
case BUILT_IN_SYNC_FETCH_AND_OR_2:
case BUILT_IN_SYNC_FETCH_AND_AND_2:
case BUILT_IN_SYNC_FETCH_AND_XOR_2:
case BUILT_IN_SYNC_FETCH_AND_NAND_2:
case BUILT_IN_SYNC_ADD_AND_FETCH_2:
case BUILT_IN_SYNC_SUB_AND_FETCH_2:
case BUILT_IN_SYNC_OR_AND_FETCH_2:
case BUILT_IN_SYNC_AND_AND_FETCH_2:
case BUILT_IN_SYNC_XOR_AND_FETCH_2:
case BUILT_IN_SYNC_NAND_AND_FETCH_2:
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
case BUILT_IN_SYNC_LOCK_RELEASE_2:
case BUILT_IN_ATOMIC_EXCHANGE_2:
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
case BUILT_IN_ATOMIC_STORE_2:
case BUILT_IN_ATOMIC_ADD_FETCH_2:
case BUILT_IN_ATOMIC_SUB_FETCH_2:
case BUILT_IN_ATOMIC_AND_FETCH_2:
case BUILT_IN_ATOMIC_NAND_FETCH_2:
case BUILT_IN_ATOMIC_XOR_FETCH_2:
case BUILT_IN_ATOMIC_OR_FETCH_2:
case BUILT_IN_ATOMIC_FETCH_ADD_2:
case BUILT_IN_ATOMIC_FETCH_SUB_2:
case BUILT_IN_ATOMIC_FETCH_AND_2:
case BUILT_IN_ATOMIC_FETCH_NAND_2:
case BUILT_IN_ATOMIC_FETCH_XOR_2:
case BUILT_IN_ATOMIC_FETCH_OR_2:
access_size = 2;
goto do_atomic;
case BUILT_IN_ATOMIC_LOAD_4:
is_store = false;
/* FALLTHRU */
case BUILT_IN_SYNC_FETCH_AND_ADD_4:
case BUILT_IN_SYNC_FETCH_AND_SUB_4:
case BUILT_IN_SYNC_FETCH_AND_OR_4:
case BUILT_IN_SYNC_FETCH_AND_AND_4:
case BUILT_IN_SYNC_FETCH_AND_XOR_4:
case BUILT_IN_SYNC_FETCH_AND_NAND_4:
case BUILT_IN_SYNC_ADD_AND_FETCH_4:
case BUILT_IN_SYNC_SUB_AND_FETCH_4:
case BUILT_IN_SYNC_OR_AND_FETCH_4:
case BUILT_IN_SYNC_AND_AND_FETCH_4:
case BUILT_IN_SYNC_XOR_AND_FETCH_4:
case BUILT_IN_SYNC_NAND_AND_FETCH_4:
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
case BUILT_IN_SYNC_LOCK_RELEASE_4:
case BUILT_IN_ATOMIC_EXCHANGE_4:
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
case BUILT_IN_ATOMIC_STORE_4:
case BUILT_IN_ATOMIC_ADD_FETCH_4:
case BUILT_IN_ATOMIC_SUB_FETCH_4:
case BUILT_IN_ATOMIC_AND_FETCH_4:
case BUILT_IN_ATOMIC_NAND_FETCH_4:
case BUILT_IN_ATOMIC_XOR_FETCH_4:
case BUILT_IN_ATOMIC_OR_FETCH_4:
case BUILT_IN_ATOMIC_FETCH_ADD_4:
case BUILT_IN_ATOMIC_FETCH_SUB_4:
case BUILT_IN_ATOMIC_FETCH_AND_4:
case BUILT_IN_ATOMIC_FETCH_NAND_4:
case BUILT_IN_ATOMIC_FETCH_XOR_4:
case BUILT_IN_ATOMIC_FETCH_OR_4:
access_size = 4;
goto do_atomic;
case BUILT_IN_ATOMIC_LOAD_8:
is_store = false;
/* FALLTHRU */
case BUILT_IN_SYNC_FETCH_AND_ADD_8:
case BUILT_IN_SYNC_FETCH_AND_SUB_8:
case BUILT_IN_SYNC_FETCH_AND_OR_8:
case BUILT_IN_SYNC_FETCH_AND_AND_8:
case BUILT_IN_SYNC_FETCH_AND_XOR_8:
case BUILT_IN_SYNC_FETCH_AND_NAND_8:
case BUILT_IN_SYNC_ADD_AND_FETCH_8:
case BUILT_IN_SYNC_SUB_AND_FETCH_8:
case BUILT_IN_SYNC_OR_AND_FETCH_8:
case BUILT_IN_SYNC_AND_AND_FETCH_8:
case BUILT_IN_SYNC_XOR_AND_FETCH_8:
case BUILT_IN_SYNC_NAND_AND_FETCH_8:
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
case BUILT_IN_SYNC_LOCK_RELEASE_8:
case BUILT_IN_ATOMIC_EXCHANGE_8:
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
case BUILT_IN_ATOMIC_STORE_8:
case BUILT_IN_ATOMIC_ADD_FETCH_8:
case BUILT_IN_ATOMIC_SUB_FETCH_8:
case BUILT_IN_ATOMIC_AND_FETCH_8:
case BUILT_IN_ATOMIC_NAND_FETCH_8:
case BUILT_IN_ATOMIC_XOR_FETCH_8:
case BUILT_IN_ATOMIC_OR_FETCH_8:
case BUILT_IN_ATOMIC_FETCH_ADD_8:
case BUILT_IN_ATOMIC_FETCH_SUB_8:
case BUILT_IN_ATOMIC_FETCH_AND_8:
case BUILT_IN_ATOMIC_FETCH_NAND_8:
case BUILT_IN_ATOMIC_FETCH_XOR_8:
case BUILT_IN_ATOMIC_FETCH_OR_8:
access_size = 8;
goto do_atomic;
case BUILT_IN_ATOMIC_LOAD_16:
is_store = false;
/* FALLTHRU */
case BUILT_IN_SYNC_FETCH_AND_ADD_16:
case BUILT_IN_SYNC_FETCH_AND_SUB_16:
case BUILT_IN_SYNC_FETCH_AND_OR_16:
case BUILT_IN_SYNC_FETCH_AND_AND_16:
case BUILT_IN_SYNC_FETCH_AND_XOR_16:
case BUILT_IN_SYNC_FETCH_AND_NAND_16:
case BUILT_IN_SYNC_ADD_AND_FETCH_16:
case BUILT_IN_SYNC_SUB_AND_FETCH_16:
case BUILT_IN_SYNC_OR_AND_FETCH_16:
case BUILT_IN_SYNC_AND_AND_FETCH_16:
case BUILT_IN_SYNC_XOR_AND_FETCH_16:
case BUILT_IN_SYNC_NAND_AND_FETCH_16:
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
case BUILT_IN_SYNC_LOCK_RELEASE_16:
case BUILT_IN_ATOMIC_EXCHANGE_16:
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
case BUILT_IN_ATOMIC_STORE_16:
case BUILT_IN_ATOMIC_ADD_FETCH_16:
case BUILT_IN_ATOMIC_SUB_FETCH_16:
case BUILT_IN_ATOMIC_AND_FETCH_16:
case BUILT_IN_ATOMIC_NAND_FETCH_16:
case BUILT_IN_ATOMIC_XOR_FETCH_16:
case BUILT_IN_ATOMIC_OR_FETCH_16:
case BUILT_IN_ATOMIC_FETCH_ADD_16:
case BUILT_IN_ATOMIC_FETCH_SUB_16:
case BUILT_IN_ATOMIC_FETCH_AND_16:
case BUILT_IN_ATOMIC_FETCH_NAND_16:
case BUILT_IN_ATOMIC_FETCH_XOR_16:
case BUILT_IN_ATOMIC_FETCH_OR_16:
access_size = 16;
/* FALLTHRU */
do_atomic:
{
dest = gimple_call_arg (call, 0);
/* DEST represents the address of a memory location.
instrument_derefs wants the memory location, so lets
dereference the address DEST before handing it to
instrument_derefs. */
tree type = build_nonstandard_integer_type (access_size
* BITS_PER_UNIT, 1);
dest = build2 (MEM_REF, type, dest,
build_int_cst (build_pointer_type (char_type_node), 0));
break;
}
default:
/* The other builtins memory access are not instrumented in this
function because they either don't have any length parameter,
or their length parameter is just a limit. */
break;
}
if (len != NULL_TREE)
{
if (source0 != NULL_TREE)
{
src0->start = source0;
src0->access_size = access_size;
*src0_len = len;
*src0_is_store = false;
}
if (source1 != NULL_TREE)
{
src1->start = source1;
src1->access_size = access_size;
*src1_len = len;
*src1_is_store = false;
}
if (dest != NULL_TREE)
{
dst->start = dest;
dst->access_size = access_size;
*dst_len = len;
*dst_is_store = true;
}
got_reference_p = true;
}
else if (dest)
{
dst->start = dest;
dst->access_size = access_size;
*dst_len = NULL_TREE;
*dst_is_store = is_store;
*dest_is_deref = true;
got_reference_p = true;
}
return got_reference_p;
}
/* Return true iff a given gimple statement has been instrumented.
Note that the statement is "defined" by the memory references it
contains. */
static bool
has_stmt_been_instrumented_p (gimple *stmt)
{
if (gimple_assign_single_p (stmt))
{
bool r_is_store;
asan_mem_ref r;
asan_mem_ref_init (&r, NULL, 1);
if (get_mem_ref_of_assignment (as_a <gassign *> (stmt), &r,
&r_is_store))
return has_mem_ref_been_instrumented (&r);
}
else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
{
asan_mem_ref src0, src1, dest;
asan_mem_ref_init (&src0, NULL, 1);
asan_mem_ref_init (&src1, NULL, 1);
asan_mem_ref_init (&dest, NULL, 1);
tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
bool src0_is_store = false, src1_is_store = false,
dest_is_store = false, dest_is_deref = false, intercepted_p = true;
if (get_mem_refs_of_builtin_call (as_a <gcall *> (stmt),
&src0, &src0_len, &src0_is_store,
&src1, &src1_len, &src1_is_store,
&dest, &dest_len, &dest_is_store,
&dest_is_deref, &intercepted_p))
{
if (src0.start != NULL_TREE
&& !has_mem_ref_been_instrumented (&src0, src0_len))
return false;
if (src1.start != NULL_TREE
&& !has_mem_ref_been_instrumented (&src1, src1_len))
return false;
if (dest.start != NULL_TREE
&& !has_mem_ref_been_instrumented (&dest, dest_len))
return false;
return true;
}
}
else if (is_gimple_call (stmt) && gimple_store_p (stmt))
{
asan_mem_ref r;
asan_mem_ref_init (&r, NULL, 1);
r.start = gimple_call_lhs (stmt);
r.access_size = int_size_in_bytes (TREE_TYPE (r.start));
return has_mem_ref_been_instrumented (&r);
}
return false;
}
/* Insert a memory reference into the hash table. */
static void
update_mem_ref_hash_table (tree ref, HOST_WIDE_INT access_size)
{
hash_table<asan_mem_ref_hasher> *ht = get_mem_ref_hash_table ();
asan_mem_ref r;
asan_mem_ref_init (&r, ref, access_size);
asan_mem_ref **slot = ht->find_slot (&r, INSERT);
if (*slot == NULL || (*slot)->access_size < access_size)
*slot = asan_mem_ref_new (ref, access_size);
}
/* Initialize shadow_ptr_types array. */
static void
asan_init_shadow_ptr_types (void)
{
asan_shadow_set = new_alias_set ();
tree types[3] = { signed_char_type_node, short_integer_type_node,
integer_type_node };
for (unsigned i = 0; i < 3; i++)
{
shadow_ptr_types[i] = build_distinct_type_copy (types[i]);
TYPE_ALIAS_SET (shadow_ptr_types[i]) = asan_shadow_set;
shadow_ptr_types[i] = build_pointer_type (shadow_ptr_types[i]);
}
initialize_sanitizer_builtins ();
}
/* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
static tree
asan_pp_string (pretty_printer *pp)
{
const char *buf = pp_formatted_text (pp);
size_t len = strlen (buf);
tree ret = build_string (len + 1, buf);
TREE_TYPE (ret)
= build_array_type (TREE_TYPE (shadow_ptr_types[0]),
build_index_type (size_int (len)));
TREE_READONLY (ret) = 1;
TREE_STATIC (ret) = 1;
return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
}
/* Return a CONST_INT representing 4 subsequent shadow memory bytes. */
static rtx
asan_shadow_cst (unsigned char shadow_bytes[4])
{
int i;
unsigned HOST_WIDE_INT val = 0;
gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
for (i = 0; i < 4; i++)
val |= (unsigned HOST_WIDE_INT) shadow_bytes[BYTES_BIG_ENDIAN ? 3 - i : i]
<< (BITS_PER_UNIT * i);
return gen_int_mode (val, SImode);
}
/* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
though. */
static void
asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
{
rtx_insn *insn, *insns, *jump;
rtx_code_label *top_label;
rtx end, addr, tmp;
start_sequence ();
clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
insns = get_insns ();
end_sequence ();
for (insn = insns; insn; insn = NEXT_INSN (insn))
if (CALL_P (insn))
break;
if (insn == NULL_RTX)
{
emit_insn (insns);
return;
}
gcc_assert ((len & 3) == 0);
top_label = gen_label_rtx ();
addr = copy_to_mode_reg (Pmode, XEXP (shadow_mem, 0));
shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
end = force_reg (Pmode, plus_constant (Pmode, addr, len));
emit_label (top_label);
emit_move_insn (shadow_mem, const0_rtx);
tmp = expand_simple_binop (Pmode, PLUS, addr, gen_int_mode (4, Pmode), addr,
true, OPTAB_LIB_WIDEN);
if (tmp != addr)
emit_move_insn (addr, tmp);
emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
jump = get_last_insn ();
gcc_assert (JUMP_P (jump));
add_reg_br_prob_note (jump,
profile_probability::guessed_always ()
.apply_scale (80, 100));
}
void
asan_function_start (void)
{
section *fnsec = function_section (current_function_decl);
switch_to_section (fnsec);
ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LASANPC",
current_function_funcdef_no);
}
/* Return number of shadow bytes that are occupied by a local variable
of SIZE bytes. */
static unsigned HOST_WIDE_INT
shadow_mem_size (unsigned HOST_WIDE_INT size)
{
/* It must be possible to align stack variables to granularity
of shadow memory. */
gcc_assert (BITS_PER_UNIT
* ASAN_SHADOW_GRANULARITY <= MAX_SUPPORTED_STACK_ALIGNMENT);
return ROUND_UP (size, ASAN_SHADOW_GRANULARITY) / ASAN_SHADOW_GRANULARITY;
}
/* Insert code to protect stack vars. The prologue sequence should be emitted
directly, epilogue sequence returned. BASE is the register holding the
stack base, against which OFFSETS array offsets are relative to, OFFSETS
array contains pairs of offsets in reverse order, always the end offset
of some gap that needs protection followed by starting offset,
and DECLS is an array of representative decls for each var partition.
LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
elements long (OFFSETS include gap before the first variable as well
as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
register which stack vars DECL_RTLs are based on. Either BASE should be
assigned to PBASE, when not doing use after return protection, or
corresponding address based on __asan_stack_malloc* return value. */
rtx_insn *
asan_emit_stack_protection (rtx base, rtx pbase, unsigned int alignb,
HOST_WIDE_INT *offsets, tree *decls, int length)
{
rtx shadow_base, shadow_mem, ret, mem, orig_base;
rtx_code_label *lab;
rtx_insn *insns;
char buf[32];
unsigned char shadow_bytes[4];
HOST_WIDE_INT base_offset = offsets[length - 1];
HOST_WIDE_INT base_align_bias = 0, offset, prev_offset;
HOST_WIDE_INT asan_frame_size = offsets[0] - base_offset;
HOST_WIDE_INT last_offset, last_size;
int l;
unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
tree str_cst, decl, id;
int use_after_return_class = -1;
if (shadow_ptr_types[0] == NULL_TREE)
asan_init_shadow_ptr_types ();
/* First of all, prepare the description string. */
pretty_printer asan_pp;
pp_decimal_int (&asan_pp, length / 2 - 1);
pp_space (&asan_pp);
for (l = length - 2; l; l -= 2)
{
tree decl = decls[l / 2 - 1];
pp_wide_integer (&asan_pp, offsets[l] - base_offset);
pp_space (&asan_pp);
pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
pp_space (&asan_pp);
if (DECL_P (decl) && DECL_NAME (decl))
{
pp_decimal_int (&asan_pp, IDENTIFIER_LENGTH (DECL_NAME (decl)));
pp_space (&asan_pp);
pp_tree_identifier (&asan_pp, DECL_NAME (decl));
}
else
pp_string (&asan_pp, "9 <unknown>");
pp_space (&asan_pp);
}
str_cst = asan_pp_string (&asan_pp);
/* Emit the prologue sequence. */
if (asan_frame_size > 32 && asan_frame_size <= 65536 && pbase
&& ASAN_USE_AFTER_RETURN)
{
use_after_return_class = floor_log2 (asan_frame_size - 1) - 5;
/* __asan_stack_malloc_N guarantees alignment
N < 6 ? (64 << N) : 4096 bytes. */
if (alignb > (use_after_return_class < 6
? (64U << use_after_return_class) : 4096U))
use_after_return_class = -1;
else if (alignb > ASAN_RED_ZONE_SIZE && (asan_frame_size & (alignb - 1)))
base_align_bias = ((asan_frame_size + alignb - 1)
& ~(alignb - HOST_WIDE_INT_1)) - asan_frame_size;
}
/* Align base if target is STRICT_ALIGNMENT. */
if (STRICT_ALIGNMENT)
base = expand_binop (Pmode, and_optab, base,
gen_int_mode (-((GET_MODE_ALIGNMENT (SImode)
<< ASAN_SHADOW_SHIFT)
/ BITS_PER_UNIT), Pmode), NULL_RTX,
1, OPTAB_DIRECT);
if (use_after_return_class == -1 && pbase)
emit_move_insn (pbase, base);
base = expand_binop (Pmode, add_optab, base,
gen_int_mode (base_offset - base_align_bias, Pmode),
NULL_RTX, 1, OPTAB_DIRECT);
orig_base = NULL_RTX;
if (use_after_return_class != -1)
{
if (asan_detect_stack_use_after_return == NULL_TREE)
{
id = get_identifier ("__asan_option_detect_stack_use_after_return");
decl = build_decl (BUILTINS_LOCATION, VAR_DECL, id,
integer_type_node);
SET_DECL_ASSEMBLER_NAME (decl, id);
TREE_ADDRESSABLE (decl) = 1;
DECL_ARTIFICIAL (decl) = 1;
DECL_IGNORED_P (decl) = 1;
DECL_EXTERNAL (decl) = 1;
TREE_STATIC (decl) = 1;
TREE_PUBLIC (decl) = 1;
TREE_USED (decl) = 1;
asan_detect_stack_use_after_return = decl;
}
orig_base = gen_reg_rtx (Pmode);
emit_move_insn (orig_base, base);
ret = expand_normal (asan_detect_stack_use_after_return);
lab = gen_label_rtx ();
emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
VOIDmode, 0, lab,
profile_probability::very_likely ());
snprintf (buf, sizeof buf, "__asan_stack_malloc_%d",
use_after_return_class);
ret = init_one_libfunc (buf);
ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode,
GEN_INT (asan_frame_size
+ base_align_bias),
TYPE_MODE (pointer_sized_int_node));
/* __asan_stack_malloc_[n] returns a pointer to fake stack if succeeded
and NULL otherwise. Check RET value is NULL here and jump over the
BASE reassignment in this case. Otherwise, reassign BASE to RET. */
emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
VOIDmode, 0, lab,
profile_probability:: very_unlikely ());
ret = convert_memory_address (Pmode, ret);
emit_move_insn (base, ret);
emit_label (lab);
emit_move_insn (pbase, expand_binop (Pmode, add_optab, base,
gen_int_mode (base_align_bias
- base_offset, Pmode),
NULL_RTX, 1, OPTAB_DIRECT));
}
mem = gen_rtx_MEM (ptr_mode, base);
mem = adjust_address (mem, VOIDmode, base_align_bias);
emit_move_insn (mem, gen_int_mode (ASAN_STACK_FRAME_MAGIC, ptr_mode));
mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
emit_move_insn (mem, expand_normal (str_cst));
mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
ASM_GENERATE_INTERNAL_LABEL (buf, "LASANPC", current_function_funcdef_no);
id = get_identifier (buf);
decl = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
VAR_DECL, id, char_type_node);
SET_DECL_ASSEMBLER_NAME (decl, id);
TREE_ADDRESSABLE (decl) = 1;
TREE_READONLY (decl) = 1;
DECL_ARTIFICIAL (decl) = 1;
DECL_IGNORED_P (decl) = 1;
TREE_STATIC (decl) = 1;
TREE_PUBLIC (decl) = 0;
TREE_USED (decl) = 1;
DECL_INITIAL (decl) = decl;
TREE_ASM_WRITTEN (decl) = 1;
TREE_ASM_WRITTEN (id) = 1;
emit_move_insn (mem, expand_normal (build_fold_addr_expr (decl)));
shadow_base = expand_binop (Pmode, lshr_optab, base,
gen_int_shift_amount (Pmode, ASAN_SHADOW_SHIFT),
NULL_RTX, 1, OPTAB_DIRECT);
shadow_base
= plus_constant (Pmode, shadow_base,
asan_shadow_offset ()
+ (base_align_bias >> ASAN_SHADOW_SHIFT));
gcc_assert (asan_shadow_set != -1
&& (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
shadow_mem = gen_rtx_MEM (SImode, shadow_base);
set_mem_alias_set (shadow_mem, asan_shadow_set);
if (STRICT_ALIGNMENT)
set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
prev_offset = base_offset;
for (l = length; l; l -= 2)
{
if (l == 2)
cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
offset = offsets[l - 1];
if ((offset - base_offset) & (ASAN_RED_ZONE_SIZE - 1))
{
int i;
HOST_WIDE_INT aoff
= base_offset + ((offset - base_offset)
& ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
shadow_mem = adjust_address (shadow_mem, VOIDmode,
(aoff - prev_offset)
>> ASAN_SHADOW_SHIFT);
prev_offset = aoff;
for (i = 0; i < 4; i++, aoff += ASAN_SHADOW_GRANULARITY)
if (aoff < offset)
{
if (aoff < offset - (HOST_WIDE_INT)ASAN_SHADOW_GRANULARITY + 1)
shadow_bytes[i] = 0;
else
shadow_bytes[i] = offset - aoff;
}
else
shadow_bytes[i] = ASAN_STACK_MAGIC_MIDDLE;
emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
offset = aoff;
}
while (offset <= offsets[l - 2] - ASAN_RED_ZONE_SIZE)
{
shadow_mem = adjust_address (shadow_mem, VOIDmode,
(offset - prev_offset)
>> ASAN_SHADOW_SHIFT);
prev_offset = offset;
memset (shadow_bytes, cur_shadow_byte, 4);
emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
offset += ASAN_RED_ZONE_SIZE;
}
cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
}
do_pending_stack_adjust ();
/* Construct epilogue sequence. */
start_sequence ();
lab = NULL;
if (use_after_return_class != -1)
{
rtx_code_label *lab2 = gen_label_rtx ();
char c = (char) ASAN_STACK_MAGIC_USE_AFTER_RET;
emit_cmp_and_jump_insns (orig_base, base, EQ, NULL_RTX,
VOIDmode, 0, lab2,
profile_probability::very_likely ());
shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
set_mem_alias_set (shadow_mem, asan_shadow_set);
mem = gen_rtx_MEM (ptr_mode, base);
mem = adjust_address (mem, VOIDmode, base_align_bias);
emit_move_insn (mem, gen_int_mode (ASAN_STACK_RETIRED_MAGIC, ptr_mode));
unsigned HOST_WIDE_INT sz = asan_frame_size >> ASAN_SHADOW_SHIFT;
if (use_after_return_class < 5
&& can_store_by_pieces (sz, builtin_memset_read_str, &c,
BITS_PER_UNIT, true))
store_by_pieces (shadow_mem, sz, builtin_memset_read_str, &c,
BITS_PER_UNIT, true, 0);
else if (use_after_return_class >= 5
|| !set_storage_via_setmem (shadow_mem,
GEN_INT (sz),
gen_int_mode (c, QImode),
BITS_PER_UNIT, BITS_PER_UNIT,
-1, sz, sz, sz))
{
snprintf (buf, sizeof buf, "__asan_stack_free_%d",
use_after_return_class);
ret = init_one_libfunc (buf);
rtx addr = convert_memory_address (ptr_mode, base);
rtx orig_addr = convert_memory_address (ptr_mode, orig_base);
emit_library_call (ret, LCT_NORMAL, ptr_mode, addr, ptr_mode,
GEN_INT (asan_frame_size + base_align_bias),
TYPE_MODE (pointer_sized_int_node),
orig_addr, ptr_mode);
}
lab = gen_label_rtx ();
emit_jump (lab);
emit_label (lab2);
}
shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
set_mem_alias_set (shadow_mem, asan_shadow_set);
if (STRICT_ALIGNMENT)
set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
prev_offset = base_offset;
last_offset = base_offset;
last_size = 0;
for (l = length; l; l -= 2)
{
offset = base_offset + ((offsets[l - 1] - base_offset)
& ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
if (last_offset + last_size != offset)
{
shadow_mem = adjust_address (shadow_mem, VOIDmode,
(last_offset - prev_offset)
>> ASAN_SHADOW_SHIFT);
prev_offset = last_offset;
asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
last_offset = offset;
last_size = 0;
}
last_size += base_offset + ((offsets[l - 2] - base_offset)
& ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
- offset;
/* Unpoison shadow memory that corresponds to a variable that is
is subject of use-after-return sanitization. */
if (l > 2)
{
decl = decls[l / 2 - 2];
if (asan_handled_variables != NULL
&& asan_handled_variables->contains (decl))
{
HOST_WIDE_INT size = offsets[l - 3] - offsets[l - 2];
if (dump_file && (dump_flags & TDF_DETAILS))
{
const char *n = (DECL_NAME (decl)
? IDENTIFIER_POINTER (DECL_NAME (decl))
: "<unknown>");
fprintf (dump_file, "Unpoisoning shadow stack for variable: "
"%s (%" PRId64 " B)\n", n, size);
}
last_size += size & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1);
}
}
}
if (last_size)
{
shadow_mem = adjust_address (shadow_mem, VOIDmode,
(last_offset - prev_offset)
>> ASAN_SHADOW_SHIFT);
asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
}
/* Clean-up set with instrumented stack variables. */
delete asan_handled_variables;
asan_handled_variables = NULL;
delete asan_used_labels;
asan_used_labels = NULL;
do_pending_stack_adjust ();
if (lab)
emit_label (lab);
insns = get_insns ();
end_sequence ();
return insns;
}
/* Emit __asan_allocas_unpoison (top, bot) call. The BASE parameter corresponds
to BOT argument, for TOP virtual_stack_dynamic_rtx is used. NEW_SEQUENCE
indicates whether we're emitting new instructions sequence or not. */
rtx_insn *
asan_emit_allocas_unpoison (rtx top, rtx bot, rtx_insn *before)
{
if (before)
push_to_sequence (before);
else
start_sequence ();
rtx ret = init_one_libfunc ("__asan_allocas_unpoison");
top = convert_memory_address (ptr_mode, top);
bot = convert_memory_address (ptr_mode, bot);
ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode,
top, ptr_mode, bot, ptr_mode);
do_pending_stack_adjust ();
rtx_insn *insns = get_insns ();
end_sequence ();
return insns;
}
/* Return true if DECL, a global var, might be overridden and needs
therefore a local alias. */
static bool
asan_needs_local_alias (tree decl)
{
return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
}
/* Return true if DECL, a global var, is an artificial ODR indicator symbol
therefore doesn't need protection. */
static bool
is_odr_indicator (tree decl)
{
return (DECL_ARTIFICIAL (decl)
&& lookup_attribute ("asan odr indicator", DECL_ATTRIBUTES (decl)));
}
/* Return true if DECL is a VAR_DECL that should be protected
by Address Sanitizer, by appending a red zone with protected
shadow memory after it and aligning it to at least
ASAN_RED_ZONE_SIZE bytes. */
bool
asan_protect_global (tree decl, bool ignore_decl_rtl_set_p)
{
if (!ASAN_GLOBALS)
return false;
rtx rtl, symbol;
if (TREE_CODE (decl) == STRING_CST)
{
/* Instrument all STRING_CSTs except those created
by asan_pp_string here. */
if (shadow_ptr_types[0] != NULL_TREE
&& TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
&& TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
return false;
return true;
}
if (!VAR_P (decl)
/* TLS vars aren't statically protectable. */
|| DECL_THREAD_LOCAL_P (decl)
/* Externs will be protected elsewhere. */
|| DECL_EXTERNAL (decl)
/* PR sanitizer/81697: For architectures that use section anchors first
call to asan_protect_global may occur before DECL_RTL (decl) is set.
We should ignore DECL_RTL_SET_P then, because otherwise the first call
to asan_protect_global will return FALSE and the following calls on the
same decl after setting DECL_RTL (decl) will return TRUE and we'll end
up with inconsistency at runtime. */
|| (!DECL_RTL_SET_P (decl) && !ignore_decl_rtl_set_p)
/* Comdat vars pose an ABI problem, we can't know if
the var that is selected by the linker will have
padding or not. */
|| DECL_ONE_ONLY (decl)
/* Similarly for common vars. People can use -fno-common.
Note: Linux kernel is built with -fno-common, so we do instrument
globals there even if it is C. */
|| (DECL_COMMON (decl) && TREE_PUBLIC (decl))
/* Don't protect if using user section, often vars placed
into user section from multiple TUs are then assumed
to be an array of such vars, putting padding in there
breaks this assumption. */
|| (DECL_SECTION_NAME (decl) != NULL
&& !symtab_node::get (decl)->implicit_section
&& !section_sanitized_p (DECL_SECTION_NAME (decl)))
|| DECL_SIZE (decl) == 0
|| ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
|| TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST
|| !valid_constant_size_p (DECL_SIZE_UNIT (decl))
|| DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE
|| TREE_TYPE (decl) == ubsan_get_source_location_type ()
|| is_odr_indicator (decl))
return false;
if (!ignore_decl_rtl_set_p || DECL_RTL_SET_P (decl))
{
rtl = DECL_RTL (decl);
if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
return false;
symbol = XEXP (rtl, 0);
if (CONSTANT_POOL_ADDRESS_P (symbol)
|| TREE_CONSTANT_POOL_ADDRESS_P (symbol))
return false;
}
if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
return false;
if (!TARGET_SUPPORTS_ALIASES && asan_needs_local_alias (decl))
return false;
return true;
}
/* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
IS_STORE is either 1 (for a store) or 0 (for a load). */
static tree
report_error_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
int *nargs)
{
static enum built_in_function report[2][2][6]
= { { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
BUILT_IN_ASAN_REPORT_LOAD16, BUILT_IN_ASAN_REPORT_LOAD_N },
{ BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
BUILT_IN_ASAN_REPORT_STORE16, BUILT_IN_ASAN_REPORT_STORE_N } },
{ { BUILT_IN_ASAN_REPORT_LOAD1_NOABORT,
BUILT_IN_ASAN_REPORT_LOAD2_NOABORT,
BUILT_IN_ASAN_REPORT_LOAD4_NOABORT,
BUILT_IN_ASAN_REPORT_LOAD8_NOABORT,
BUILT_IN_ASAN_REPORT_LOAD16_NOABORT,
BUILT_IN_ASAN_REPORT_LOAD_N_NOABORT },
{ BUILT_IN_ASAN_REPORT_STORE1_NOABORT,
BUILT_IN_ASAN_REPORT_STORE2_NOABORT,
BUILT_IN_ASAN_REPORT_STORE4_NOABORT,
BUILT_IN_ASAN_REPORT_STORE8_NOABORT,
BUILT_IN_ASAN_REPORT_STORE16_NOABORT,
BUILT_IN_ASAN_REPORT_STORE_N_NOABORT } } };
if (size_in_bytes == -1)
{
*nargs = 2;
return builtin_decl_implicit (report[recover_p][is_store][5]);
}
*nargs = 1;
int size_log2 = exact_log2 (size_in_bytes);
return builtin_decl_implicit (report[recover_p][is_store][size_log2]);
}
/* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
IS_STORE is either 1 (for a store) or 0 (for a load). */
static tree
check_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
int *nargs)
{
static enum built_in_function check[2][2][6]
= { { { BUILT_IN_ASAN_LOAD1, BUILT_IN_ASAN_LOAD2,
BUILT_IN_ASAN_LOAD4, BUILT_IN_ASAN_LOAD8,
BUILT_IN_ASAN_LOAD16, BUILT_IN_ASAN_LOADN },
{ BUILT_IN_ASAN_STORE1, BUILT_IN_ASAN_STORE2,
BUILT_IN_ASAN_STORE4, BUILT_IN_ASAN_STORE8,
BUILT_IN_ASAN_STORE16, BUILT_IN_ASAN_STOREN } },
{ { BUILT_IN_ASAN_LOAD1_NOABORT,
BUILT_IN_ASAN_LOAD2_NOABORT,
BUILT_IN_ASAN_LOAD4_NOABORT,
BUILT_IN_ASAN_LOAD8_NOABORT,
BUILT_IN_ASAN_LOAD16_NOABORT,
BUILT_IN_ASAN_LOADN_NOABORT },
{ BUILT_IN_ASAN_STORE1_NOABORT,
BUILT_IN_ASAN_STORE2_NOABORT,
BUILT_IN_ASAN_STORE4_NOABORT,
BUILT_IN_ASAN_STORE8_NOABORT,
BUILT_IN_ASAN_STORE16_NOABORT,
BUILT_IN_ASAN_STOREN_NOABORT } } };
if (size_in_bytes == -1)
{
*nargs = 2;
return builtin_decl_implicit (check[recover_p][is_store][5]);
}
*nargs = 1;
int size_log2 = exact_log2 (size_in_bytes);
return builtin_decl_implicit (check[recover_p][is_store][size_log2]);
}
/* Split the current basic block and create a condition statement
insertion point right before or after the statement pointed to by
ITER. Return an iterator to the point at which the caller might
safely insert the condition statement.
THEN_BLOCK must be set to the address of an uninitialized instance
of basic_block. The function will then set *THEN_BLOCK to the
'then block' of the condition statement to be inserted by the
caller.
If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
*THEN_BLOCK to *FALLTHROUGH_BLOCK.
Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
block' of the condition statement to be inserted by the caller.
Note that *FALLTHROUGH_BLOCK is a new block that contains the
statements starting from *ITER, and *THEN_BLOCK is a new empty
block.
*ITER is adjusted to point to always point to the first statement
of the basic block * FALLTHROUGH_BLOCK. That statement is the
same as what ITER was pointing to prior to calling this function,
if BEFORE_P is true; otherwise, it is its following statement. */
gimple_stmt_iterator
create_cond_insert_point (gimple_stmt_iterator *iter,
bool before_p,
bool then_more_likely_p,
bool create_then_fallthru_edge,
basic_block *then_block,
basic_block *fallthrough_block)
{
gimple_stmt_iterator gsi = *iter;
if (!gsi_end_p (gsi) && before_p)
gsi_prev (&gsi);
basic_block cur_bb = gsi_bb (*iter);
edge e = split_block (cur_bb, gsi_stmt (gsi));
/* Get a hold on the 'condition block', the 'then block' and the
'else block'. */
basic_block cond_bb = e->src;
basic_block fallthru_bb = e->dest;
basic_block then_bb = create_empty_bb (cond_bb);
if (current_loops)
{
add_bb_to_loop (then_bb, cond_bb->loop_father);
loops_state_set (LOOPS_NEED_FIXUP);
}
/* Set up the newly created 'then block'. */
e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
profile_probability fallthrough_probability
= then_more_likely_p
? profile_probability::very_unlikely ()
: profile_probability::very_likely ();
e->probability = fallthrough_probability.invert ();
then_bb->count = e->count ();
if (create_then_fallthru_edge)
make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
/* Set up the fallthrough basic block. */
e = find_edge (cond_bb, fallthru_bb);
e->flags = EDGE_FALSE_VALUE;
e->probability = fallthrough_probability;
/* Update dominance info for the newly created then_bb; note that
fallthru_bb's dominance info has already been updated by
split_bock. */
if (dom_info_available_p (CDI_DOMINATORS))
set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
*then_block = then_bb;
*fallthrough_block = fallthru_bb;
*iter = gsi_start_bb (fallthru_bb);
return gsi_last_bb (cond_bb);
}
/* Insert an if condition followed by a 'then block' right before the
statement pointed to by ITER. The fallthrough block -- which is the
else block of the condition as well as the destination of the
outcoming edge of the 'then block' -- starts with the statement
pointed to by ITER.
COND is the condition of the if.
If THEN_MORE_LIKELY_P is true, the probability of the edge to the
'then block' is higher than the probability of the edge to the
fallthrough block.
Upon completion of the function, *THEN_BB is set to the newly
inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
fallthrough block.
*ITER is adjusted to still point to the same statement it was
pointing to initially. */
static void
insert_if_then_before_iter (gcond *cond,
gimple_stmt_iterator *iter,
bool then_more_likely_p,
basic_block *then_bb,
basic_block *fallthrough_bb)
{
gimple_stmt_iterator cond_insert_point =
create_cond_insert_point (iter,
/*before_p=*/true,
then_more_likely_p,
/*create_then_fallthru_edge=*/true,
then_bb,
fallthrough_bb);
gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
}
/* Build (base_addr >> ASAN_SHADOW_SHIFT) + asan_shadow_offset ().
If RETURN_ADDRESS is set to true, return memory location instread
of a value in the shadow memory. */
static tree
build_shadow_mem_access (gimple_stmt_iterator *gsi, location_t location,
tree base_addr, tree shadow_ptr_type,
bool return_address = false)
{
tree t, uintptr_type = TREE_TYPE (base_addr);
tree shadow_type = TREE_TYPE (shadow_ptr_type);
gimple *g;
t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
g = gimple_build_assign (make_ssa_name (uintptr_type), RSHIFT_EXPR,
base_addr, t);
gimple_set_location (g, location);
gsi_insert_after (gsi, g, GSI_NEW_STMT);
t = build_int_cst (uintptr_type, asan_shadow_offset ());
g = gimple_build_assign (make_ssa_name (uintptr_type), PLUS_EXPR,
gimple_assign_lhs (g), t);
gimple_set_location (g, location);
gsi_insert_after (gsi, g, GSI_NEW_STMT);
g = gimple_build_assign (make_ssa_name (shadow_ptr_type), NOP_EXPR,
gimple_assign_lhs (g));
gimple_set_location (g, location);
gsi_insert_after (gsi, g, GSI_NEW_STMT);
if (!return_address)
{
t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
build_int_cst (shadow_ptr_type, 0));
g = gimple_build_assign (make_ssa_name (shadow_type), MEM_REF, t);
gimple_set_location (g, location);
gsi_insert_after (gsi, g, GSI_NEW_STMT);
}
return gimple_assign_lhs (g);
}
/* BASE can already be an SSA_NAME; in that case, do not create a
new SSA_NAME for it. */
static tree
maybe_create_ssa_name (location_t loc, tree base, gimple_stmt_iterator *iter,
bool before_p)
{
if (TREE_CODE (base) == SSA_NAME)
return base;
gimple *g = gimple_build_assign (make_ssa_name (TREE_TYPE (base)),
TREE_CODE (base), base);
gimple_set_location (g, loc);
if (before_p)
gsi_insert_before (iter, g, GSI_SAME_STMT);
else
gsi_insert_after (iter, g, GSI_NEW_STMT);
return gimple_assign_lhs (g);
}
/* LEN can already have necessary size and precision;
in that case, do not create a new variable. */
tree
maybe_cast_to_ptrmode (location_t loc, tree len, gimple_stmt_iterator *iter,
bool before_p)
{
if (ptrofftype_p (len))
return len;
gimple *g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
NOP_EXPR, len);
gimple_set_location (g, loc);
if (before_p)
gsi_insert_before (iter, g, GSI_SAME_STMT);
else
gsi_insert_after (iter, g, GSI_NEW_STMT);
return gimple_assign_lhs (g);
}
/* Instrument the memory access instruction BASE. Insert new
statements before or after ITER.
Note that the memory access represented by BASE can be either an
SSA_NAME, or a non-SSA expression. LOCATION is the source code
location. IS_STORE is TRUE for a store, FALSE for a load.
BEFORE_P is TRUE for inserting the instrumentation code before
ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
for a scalar memory access and FALSE for memory region access.
NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
length. ALIGN tells alignment of accessed memory object.
START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
memory region have already been instrumented.
If BEFORE_P is TRUE, *ITER is arranged to still point to the
statement it was pointing to prior to calling this function,
otherwise, it points to the statement logically following it. */
static void
build_check_stmt (location_t loc, tree base, tree len,
HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
bool is_non_zero_len, bool before_p, bool is_store,
bool is_scalar_access, unsigned int align = 0)
{
gimple_stmt_iterator gsi = *iter;
gimple *g;
gcc_assert (!(size_in_bytes > 0 && !is_non_zero_len));
gsi = *iter;
base = unshare_expr (base);
base = maybe_create_ssa_name (loc, base, &gsi, before_p);
if (len)
{
len = unshare_expr (len);
len = maybe_cast_to_ptrmode (loc, len, iter, before_p);
}
else
{
gcc_assert (size_in_bytes != -1);
len = build_int_cst (pointer_sized_int_node, size_in_bytes);
}
if (size_in_bytes > 1)
{
if ((size_in_bytes & (size_in_bytes - 1)) != 0
|| size_in_bytes > 16)
is_scalar_access = false;
else if (align && align < size_in_bytes * BITS_PER_UNIT)
{
/* On non-strict alignment targets, if
16-byte access is just 8-byte aligned,
this will result in misaligned shadow
memory 2 byte load, but otherwise can
be handled using one read. */
if (size_in_bytes != 16
|| STRICT_ALIGNMENT
|| align < 8 * BITS_PER_UNIT)
is_scalar_access = false;
}
}
HOST_WIDE_INT flags = 0;
if (is_store)
flags |= ASAN_CHECK_STORE;
if (is_non_zero_len)
flags |= ASAN_CHECK_NON_ZERO_LEN;
if (is_scalar_access)
flags |= ASAN_CHECK_SCALAR_ACCESS;
g = gimple_build_call_internal (IFN_ASAN_CHECK, 4,
build_int_cst (integer_type_node, flags),
base, len,
build_int_cst (integer_type_node,
align / BITS_PER_UNIT));
gimple_set_location (g, loc);
if (before_p)
gsi_insert_before (&gsi, g, GSI_SAME_STMT);
else
{
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
gsi_next (&gsi);
*iter = gsi;
}
}
/* If T represents a memory access, add instrumentation code before ITER.
LOCATION is source code location.
IS_STORE is either TRUE (for a store) or FALSE (for a load). */
static void
instrument_derefs (gimple_stmt_iterator *iter, tree t,
location_t location, bool is_store)
{
if (is_store && !ASAN_INSTRUMENT_WRITES)
return;
if (!is_store && !ASAN_INSTRUMENT_READS)
return;
tree type, base;
HOST_WIDE_INT size_in_bytes;
if (location == UNKNOWN_LOCATION)
location = EXPR_LOCATION (t);
type = TREE_TYPE (t);
switch (TREE_CODE (t))
{
case ARRAY_REF:
case COMPONENT_REF:
case INDIRECT_REF:
case MEM_REF:
case VAR_DECL:
case BIT_FIELD_REF:
break;
/* FALLTHRU */
default:
return;
}
size_in_bytes = int_size_in_bytes (type);
if (size_in_bytes <= 0)
return;
poly_int64 bitsize, bitpos;
tree offset;
machine_mode mode;
int unsignedp, reversep, volatilep = 0;
tree inner = get_inner_reference (t, &bitsize, &bitpos, &offset, &mode,
&unsignedp, &reversep, &volatilep);
if (TREE_CODE (t) == COMPONENT_REF
&& DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
{
tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
TREE_OPERAND (t, 0), repr,
TREE_OPERAND (t, 2)),
location, is_store);
return;
}
if (!multiple_p (bitpos, BITS_PER_UNIT)
|| maybe_ne (bitsize, size_in_bytes * BITS_PER_UNIT))
return;
if (VAR_P (inner) && DECL_HARD_REGISTER (inner))
return;
poly_int64 decl_size;
if (VAR_P (inner)
&& offset == NULL_TREE
&& DECL_SIZE (inner)
&& poly_int_tree_p (DECL_SIZE (inner), &decl_size)
&& known_subrange_p (bitpos, bitsize, 0, decl_size))
{
if (DECL_THREAD_LOCAL_P (inner))
return;
if (!ASAN_GLOBALS && is_global_var (inner))
return;
if (!TREE_STATIC (inner))
{
/* Automatic vars in the current function will be always
accessible. */
if (decl_function_context (inner) == current_function_decl
&& (!asan_sanitize_use_after_scope ()
|| !TREE_ADDRESSABLE (inner)))
return;
}
/* Always instrument external vars, they might be dynamically
initialized. */
else if (!DECL_EXTERNAL (inner))
{
/* For static vars if they are known not to be dynamically
initialized, they will be always accessible. */
varpool_node *vnode = varpool_node::get (inner);
if (vnode && !vnode->dynamically_initialized)
return;
}
}
base = build_fold_addr_expr (t);
if (!has_mem_ref_been_instrumented (base, size_in_bytes))
{
unsigned int align = get_object_alignment (t);
build_check_stmt (location, base, NULL_TREE, size_in_bytes, iter,
/*is_non_zero_len*/size_in_bytes > 0, /*before_p=*/true,
is_store, /*is_scalar_access*/true, align);
update_mem_ref_hash_table (base, size_in_bytes);
update_mem_ref_hash_table (t, size_in_bytes);
}
}
/* Insert a memory reference into the hash table if access length
can be determined in compile time. */
static void
maybe_update_mem_ref_hash_table (tree base, tree len)
{
if (!POINTER_TYPE_P (TREE_TYPE (base))
|| !INTEGRAL_TYPE_P (TREE_TYPE (len)))
return;
HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
if (size_in_bytes != -1)
update_mem_ref_hash_table (base, size_in_bytes);
}
/* Instrument an access to a contiguous memory region that starts at
the address pointed to by BASE, over a length of LEN (expressed in
the sizeof (*BASE) bytes). ITER points to the instruction before
which the instrumentation instructions must be inserted. LOCATION
is the source location that the instrumentation instructions must
have. If IS_STORE is true, then the memory access is a store;
otherwise, it's a load. */
static void
instrument_mem_region_access (tree base, tree len,
gimple_stmt_iterator *iter,
location_t location, bool is_store)
{
if (!POINTER_TYPE_P (TREE_TYPE (base))
|| !INTEGRAL_TYPE_P (TREE_TYPE (len))
|| integer_zerop (len))
return;
HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
if ((size_in_bytes == -1)
|| !has_mem_ref_been_instrumented (base, size_in_bytes))
{
build_check_stmt (location, base, len, size_in_bytes, iter,
/*is_non_zero_len*/size_in_bytes > 0, /*before_p*/true,
is_store, /*is_scalar_access*/false, /*align*/0);
}
maybe_update_mem_ref_hash_table (base, len);
*iter = gsi_for_stmt (gsi_stmt (*iter));
}
/* Instrument the call to a built-in memory access function that is
pointed to by the iterator ITER.
Upon completion, return TRUE iff *ITER has been advanced to the
statement following the one it was originally pointing to. */
static bool
instrument_builtin_call (gimple_stmt_iterator *iter)
{
if (!ASAN_MEMINTRIN)
return false;
bool iter_advanced_p = false;
gcall *call = as_a <gcall *> (gsi_stmt (*iter));
gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
location_t loc = gimple_location (call);
asan_mem_ref src0, src1, dest;
asan_mem_ref_init (&src0, NULL, 1);
asan_mem_ref_init (&src1, NULL, 1);
asan_mem_ref_init (&dest, NULL, 1);
tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
bool src0_is_store = false, src1_is_store = false, dest_is_store = false,
dest_is_deref = false, intercepted_p = true;
if (get_mem_refs_of_builtin_call (call,
&src0, &src0_len, &src0_is_store,
&src1, &src1_len, &src1_is_store,
&dest, &dest_len, &dest_is_store,
&dest_is_deref, &intercepted_p, iter))
{
if (dest_is_deref)
{
instrument_derefs (iter, dest.start, loc, dest_is_store);
gsi_next (iter);
iter_advanced_p = true;
}
else if (!intercepted_p
&& (src0_len || src1_len || dest_len))
{
if (src0.start != NULL_TREE)
instrument_mem_region_access (src0.start, src0_len,
iter, loc, /*is_store=*/false);
if (src1.start != NULL_TREE)
instrument_mem_region_access (src1.start, src1_len,
iter, loc, /*is_store=*/false);
if (dest.start != NULL_TREE)
instrument_mem_region_access (dest.start, dest_len,
iter, loc, /*is_store=*/true);
*iter = gsi_for_stmt (call);
gsi_next (iter);
iter_advanced_p = true;
}
else
{
if (src0.start != NULL_TREE)
maybe_update_mem_ref_hash_table (src0.start, src0_len);
if (src1.start != NULL_TREE)
maybe_update_mem_ref_hash_table (src1.start, src1_len);
if (dest.start != NULL_TREE)
maybe_update_mem_ref_hash_table (dest.start, dest_len);
}
}
return iter_advanced_p;
}
/* Instrument the assignment statement ITER if it is subject to
instrumentation. Return TRUE iff instrumentation actually
happened. In that case, the iterator ITER is advanced to the next
logical expression following the one initially pointed to by ITER,
and the relevant memory reference that which access has been
instrumented is added to the memory references hash table. */
static bool
maybe_instrument_assignment (gimple_stmt_iterator *iter)
{
gimple *s = gsi_stmt (*iter);
gcc_assert (gimple_assign_single_p (s));
tree ref_expr = NULL_TREE;
bool is_store, is_instrumented = false;
if (gimple_store_p (s))
{
ref_expr = gimple_assign_lhs (s);
is_store = true;
instrument_derefs (iter, ref_expr,
gimple_location (s),
is_store);
is_instrumented = true;
}
if (gimple_assign_load_p (s))
{
ref_expr = gimple_assign_rhs1 (s);
is_store = false;
instrument_derefs (iter, ref_expr,
gimple_location (s),
is_store);
is_instrumented = true;
}
if (is_instrumented)
gsi_next (iter);
return is_instrumented;
}
/* Instrument the function call pointed to by the iterator ITER, if it
is subject to instrumentation. At the moment, the only function
calls that are instrumented are some built-in functions that access
memory. Look at instrument_builtin_call to learn more.
Upon completion return TRUE iff *ITER was advanced to the statement
following the one it was originally pointing to. */
static bool
maybe_instrument_call (gimple_stmt_iterator *iter)
{
gimple *stmt = gsi_stmt (*iter);
bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);
if (is_builtin && instrument_builtin_call (iter))
return true;
if (gimple_call_noreturn_p (stmt))
{
if (is_builtin)
{
tree callee = gimple_call_fndecl (stmt);
switch (DECL_FUNCTION_CODE (callee))
{
case BUILT_IN_UNREACHABLE:
case BUILT_IN_TRAP:
/* Don't instrument these. */
return false;
default:
break;
}
}
tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
gimple *g = gimple_build_call (decl, 0);
gimple_set_location (g, gimple_location (stmt));
gsi_insert_before (iter, g, GSI_SAME_STMT);
}
bool instrumented = false;
if (gimple_store_p (stmt))
{
tree ref_expr = gimple_call_lhs (stmt);
instrument_derefs (iter, ref_expr,
gimple_location (stmt),
/*is_store=*/true);
instrumented = true;
}
/* Walk through gimple_call arguments and check them id needed. */
unsigned args_num = gimple_call_num_args (stmt);
for (unsigned i = 0; i < args_num; ++i)
{
tree arg = gimple_call_arg (stmt, i);
/* If ARG is not a non-aggregate register variable, compiler in general
creates temporary for it and pass it as argument to gimple call.
But in some cases, e.g. when we pass by value a small structure that
fits to register, compiler can avoid extra overhead by pulling out
these temporaries. In this case, we should check the argument. */
if (!is_gimple_reg (arg) && !is_gimple_min_invariant (arg))
{
instrument_derefs (iter, arg,
gimple_location (stmt),
/*is_store=*/false);
instrumented = true;
}
}
if (instrumented)
gsi_next (iter);
return instrumented;
}
/* Walk each instruction of all basic block and instrument those that
represent memory references: loads, stores, or function calls.
In a given basic block, this function avoids instrumenting memory
references that have already been instrumented. */
static void
transform_statements (void)
{
basic_block bb, last_bb = NULL;
gimple_stmt_iterator i;
int saved_last_basic_block = last_basic_block_for_fn (cfun);
FOR_EACH_BB_FN (bb, cfun)
{
basic_block prev_bb = bb;
if (bb->index >= saved_last_basic_block) continue;
/* Flush the mem ref hash table, if current bb doesn't have
exactly one predecessor, or if that predecessor (skipping
over asan created basic blocks) isn't the last processed
basic block. Thus we effectively flush on extended basic
block boundaries. */
while (single_pred_p (prev_bb))
{
prev_bb = single_pred (prev_bb);
if (prev_bb->index < saved_last_basic_block)
break;
}
if (prev_bb != last_bb)
empty_mem_ref_hash_table ();
last_bb = bb;
for (i = gsi_start_bb (bb); !gsi_end_p (i);)
{
gimple *s = gsi_stmt (i);
if (has_stmt_been_instrumented_p (s))
gsi_next (&i);
else if (gimple_assign_single_p (s)
&& !gimple_clobber_p (s)
&& maybe_instrument_assignment (&i))
/* Nothing to do as maybe_instrument_assignment advanced
the iterator I. */;
else if (is_gimple_call (s) && maybe_instrument_call (&i))
/* Nothing to do as maybe_instrument_call
advanced the iterator I. */;
else
{
/* No instrumentation happened.
If the current instruction is a function call that
might free something, let's forget about the memory
references that got instrumented. Otherwise we might
miss some instrumentation opportunities. Do the same
for a ASAN_MARK poisoning internal function. */
if (is_gimple_call (s)
&& (!nonfreeing_call_p (s)
|| asan_mark_p (s, ASAN_MARK_POISON)))
empty_mem_ref_hash_table ();
gsi_next (&i);
}
}
}
free_mem_ref_resources ();
}
/* Build
__asan_before_dynamic_init (module_name)
or
__asan_after_dynamic_init ()
call. */
tree
asan_dynamic_init_call (bool after_p)
{
if (shadow_ptr_types[0] == NULL_TREE)
asan_init_shadow_ptr_types ();
tree fn = builtin_decl_implicit (after_p
? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
: BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT);
tree module_name_cst = NULL_TREE;
if (!after_p)
{
pretty_printer module_name_pp;
pp_string (&module_name_pp, main_input_filename);
module_name_cst = asan_pp_string (&module_name_pp);
module_name_cst = fold_convert (const_ptr_type_node,
module_name_cst);
}
return build_call_expr (fn, after_p ? 0 : 1, module_name_cst);
}
/* Build
struct __asan_global
{
const void *__beg;
uptr __size;
uptr __size_with_redzone;
const void *__name;
const void *__module_name;
uptr __has_dynamic_init;
__asan_global_source_location *__location;
char *__odr_indicator;
} type. */
static tree
asan_global_struct (void)
{
static const char *field_names[]
= { "__beg", "__size", "__size_with_redzone",
"__name", "__module_name", "__has_dynamic_init", "__location",
"__odr_indicator" };
tree fields[ARRAY_SIZE (field_names)], ret;
unsigned i;
ret = make_node (RECORD_TYPE);
for (i = 0; i < ARRAY_SIZE (field_names); i++)
{
fields[i]
= build_decl (UNKNOWN_LOCATION, FIELD_DECL,
get_identifier (field_names[i]),
(i == 0 || i == 3) ? const_ptr_type_node
: pointer_sized_int_node);
DECL_CONTEXT (fields[i]) = ret;
if (i)
DECL_CHAIN (fields[i - 1]) = fields[i];
}
tree type_decl = build_decl (input_location, TYPE_DECL,
get_identifier ("__asan_global"), ret);
DECL_IGNORED_P (type_decl) = 1;
DECL_ARTIFICIAL (type_decl) = 1;
TYPE_FIELDS (ret) = fields[0];
TYPE_NAME (ret) = type_decl;
TYPE_STUB_DECL (ret) = type_decl;
layout_type (ret);
return ret;
}
/* Create and return odr indicator symbol for DECL.
TYPE is __asan_global struct type as returned by asan_global_struct. */
static tree
create_odr_indicator (tree decl, tree type)
{
char *name;
tree uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
tree decl_name
= (HAS_DECL_ASSEMBLER_NAME_P (decl) ? DECL_ASSEMBLER_NAME (decl)
: DECL_NAME (decl));
/* DECL_NAME theoretically might be NULL. Bail out with 0 in this case. */
if (decl_name == NULL_TREE)
return build_int_cst (uptr, 0);
const char *dname = IDENTIFIER_POINTER (decl_name);
if (HAS_DECL_ASSEMBLER_NAME_P (decl))
dname = targetm.strip_name_encoding (dname);
size_t len = strlen (dname) + sizeof ("__odr_asan_");
name = XALLOCAVEC (char, len);
snprintf (name, len, "__odr_asan_%s", dname);
#ifndef NO_DOT_IN_LABEL
name[sizeof ("__odr_asan") - 1] = '.';
#elif !defined(NO_DOLLAR_IN_LABEL)
name[sizeof ("__odr_asan") - 1] = '$';
#endif
tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (name),
char_type_node);
TREE_ADDRESSABLE (var) = 1;
TREE_READONLY (var) = 0;
TREE_THIS_VOLATILE (var) = 1;
DECL_GIMPLE_REG_P (var) = 0;
DECL_ARTIFICIAL (var) = 1;
DECL_IGNORED_P (var) = 1;
TREE_STATIC (var) = 1;
TREE_PUBLIC (var) = 1;
DECL_VISIBILITY (var) = DECL_VISIBILITY (decl);
DECL_VISIBILITY_SPECIFIED (var) = DECL_VISIBILITY_SPECIFIED (decl);
TREE_USED (var) = 1;
tree ctor = build_constructor_va (TREE_TYPE (var), 1, NULL_TREE,
build_int_cst (unsigned_type_node, 0));
TREE_CONSTANT (ctor) = 1;
TREE_STATIC (ctor) = 1;
DECL_INITIAL (var) = ctor;
DECL_ATTRIBUTES (var) = tree_cons (get_identifier ("asan odr indicator"),
NULL, DECL_ATTRIBUTES (var));
make_decl_rtl (var);
varpool_node::finalize_decl (var);
return fold_convert (uptr, build_fold_addr_expr (var));
}
/* Return true if DECL, a global var, might be overridden and needs
an additional odr indicator symbol. */
static bool
asan_needs_odr_indicator_p (tree decl)
{
/* Don't emit ODR indicators for kernel because:
a) Kernel is written in C thus doesn't need ODR indicators.
b) Some kernel code may have assumptions about symbols containing specific
patterns in their names. Since ODR indicators contain original names
of symbols they are emitted for, these assumptions would be broken for
ODR indicator symbols. */
return (!(flag_sanitize & SANITIZE_KERNEL_ADDRESS)
&& !DECL_ARTIFICIAL (decl)
&& !DECL_WEAK (decl)
&& TREE_PUBLIC (decl));
}
/* Append description of a single global DECL into vector V.
TYPE is __asan_global struct type as returned by asan_global_struct. */
static void
asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
{
tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
unsigned HOST_WIDE_INT size;
tree str_cst, module_name_cst, refdecl = decl;
vec<constructor_elt, va_gc> *vinner = NULL;
pretty_printer asan_pp, module_name_pp;
if (DECL_NAME (decl))
pp_tree_identifier (&asan_pp, DECL_NAME (decl));
else
pp_string (&asan_pp, "<unknown>");
str_cst = asan_pp_string (&asan_pp);
pp_string (&module_name_pp, main_input_filename);
module_name_cst = asan_pp_string (&module_name_pp);
if (asan_needs_local_alias (decl))
{
char buf[20];
ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
TREE_READONLY (refdecl) = TREE_READONLY (decl);
TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
DECL_GIMPLE_REG_P (refdecl) = DECL_GIMPLE_REG_P (decl);
DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
TREE_STATIC (refdecl) = 1;
TREE_PUBLIC (refdecl) = 0;
TREE_USED (refdecl) = 1;
assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
}
tree odr_indicator_ptr
= (asan_needs_odr_indicator_p (decl) ? create_odr_indicator (decl, type)
: build_int_cst (uptr, 0));
CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
fold_convert (const_ptr_type_node,
build_fold_addr_expr (refdecl)));
size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
size += asan_red_zone_size (size);
CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
fold_convert (const_ptr_type_node, str_cst));
CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
fold_convert (const_ptr_type_node, module_name_cst));
varpool_node *vnode = varpool_node::get (decl);
int has_dynamic_init = 0;
/* FIXME: Enable initialization order fiasco detection in LTO mode once
proper fix for PR 79061 will be applied. */
if (!in_lto_p)
has_dynamic_init = vnode ? vnode->dynamically_initialized : 0;
CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
build_int_cst (uptr, has_dynamic_init));
tree locptr = NULL_TREE;
location_t loc = DECL_SOURCE_LOCATION (decl);
expanded_location xloc = expand_location (loc);
if (xloc.file != NULL)
{
static int lasanloccnt = 0;
char buf[25];
ASM_GENERATE_INTERNAL_LABEL (buf, "LASANLOC", ++lasanloccnt);
tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
ubsan_get_source_location_type ());
TREE_STATIC (var) = 1;
TREE_PUBLIC (var) = 0;
DECL_ARTIFICIAL (var) = 1;
DECL_IGNORED_P (var) = 1;
pretty_printer filename_pp;
pp_string (&filename_pp, xloc.file);
tree str = asan_pp_string (&filename_pp);
tree ctor = build_constructor_va (TREE_TYPE (var), 3,
NULL_TREE, str, NULL_TREE,
build_int_cst (unsigned_type_node,
xloc.line), NULL_TREE,
build_int_cst (unsigned_type_node,
xloc.column));
TREE_CONSTANT (ctor) = 1;
TREE_STATIC (ctor) = 1;
DECL_INITIAL (var) = ctor;
varpool_node::finalize_decl (var);
locptr = fold_convert (uptr, build_fold_addr_expr (var));
}
else
locptr = build_int_cst (uptr, 0);
CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, locptr);
CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, odr_indicator_ptr);
init = build_constructor (type, vinner);
CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
}
/* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
void
initialize_sanitizer_builtins (void)
{
tree decl;
if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
return;
tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
tree BT_FN_VOID_PTR
= build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
tree BT_FN_VOID_CONST_PTR
= build_function_type_list (void_type_node, const_ptr_type_node, NULL_TREE);
tree BT_FN_VOID_PTR_PTR
= build_function_type_list (void_type_node, ptr_type_node,
ptr_type_node, NULL_TREE);
tree BT_FN_VOID_PTR_PTR_PTR
= build_function_type_list (void_type_node, ptr_type_node,
ptr_type_node, ptr_type_node, NULL_TREE);
tree BT_FN_VOID_PTR_PTRMODE
= build_function_type_list (void_type_node, ptr_type_node,
pointer_sized_int_node, NULL_TREE);
tree BT_FN_VOID_INT
= build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
tree BT_FN_SIZE_CONST_PTR_INT
= build_function_type_list (size_type_node, const_ptr_type_node,
integer_type_node, NULL_TREE);
tree BT_FN_VOID_UINT8_UINT8
= build_function_type_list (void_type_node, unsigned_char_type_node,
unsigned_char_type_node, NULL_TREE);
tree BT_FN_VOID_UINT16_UINT16
= build_function_type_list (void_type_node, uint16_type_node,
uint16_type_node, NULL_TREE);
tree BT_FN_VOID_UINT32_UINT32
= build_function_type_list (void_type_node, uint32_type_node,
uint32_type_node, NULL_TREE);
tree BT_FN_VOID_UINT64_UINT64
= build_function_type_list (void_type_node, uint64_type_node,
uint64_type_node, NULL_TREE);
tree BT_FN_VOID_FLOAT_FLOAT
= build_function_type_list (void_type_node, float_type_node,
float_type_node, NULL_TREE);
tree BT_FN_VOID_DOUBLE_DOUBLE
= build_function_type_list (void_type_node, double_type_node,
double_type_node, NULL_TREE);
tree BT_FN_VOID_UINT64_PTR
= build_function_type_list (void_type_node, uint64_type_node,
ptr_type_node, NULL_TREE);
tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
tree BT_FN_IX_CONST_VPTR_INT[5];
tree BT_FN_IX_VPTR_IX_INT[5];
tree BT_FN_VOID_VPTR_IX_INT[5];
tree vptr
= build_pointer_type (build_qualified_type (void_type_node,
TYPE_QUAL_VOLATILE));
tree cvptr
= build_pointer_type (build_qualified_type (void_type_node,
TYPE_QUAL_VOLATILE
|TYPE_QUAL_CONST));
tree boolt
= lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
int i;
for (i = 0; i < 5; i++)
{
tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
= build_function_type_list (boolt, vptr, ptr_type_node, ix,
integer_type_node, integer_type_node,
NULL_TREE);
BT_FN_IX_CONST_VPTR_INT[i]
= build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
BT_FN_IX_VPTR_IX_INT[i]
= build_function_type_list (ix, vptr, ix, integer_type_node,
NULL_TREE);
BT_FN_VOID_VPTR_IX_INT[i]
= build_function_type_list (void_type_node, vptr, ix,
integer_type_node, NULL_TREE);
}
#define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
#define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
#define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
#define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
#define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
#define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
#define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
#define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
#define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
#define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
#define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
#define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
#define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
#define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
#define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
#define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
#define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
#define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
#define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
#define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
#undef ATTR_NOTHROW_LEAF_LIST
#define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
#undef ATTR_TMPURE_NOTHROW_LEAF_LIST
#define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
#undef ATTR_NORETURN_NOTHROW_LEAF_LIST
#define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
#undef ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
#define ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST \
ECF_CONST | ATTR_NORETURN_NOTHROW_LEAF_LIST
#undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
#define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
#undef ATTR_COLD_NOTHROW_LEAF_LIST
#define ATTR_COLD_NOTHROW_LEAF_LIST \
/* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
#undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
#define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
/* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
#undef ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST
#define ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST \
/* ECF_COLD missing */ ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
#undef ATTR_PURE_NOTHROW_LEAF_LIST
#define ATTR_PURE_NOTHROW_LEAF_LIST ECF_PURE | ATTR_NOTHROW_LEAF_LIST
#undef DEF_BUILTIN_STUB
#define DEF_BUILTIN_STUB(ENUM, NAME)
#undef DEF_SANITIZER_BUILTIN_1
#define DEF_SANITIZER_BUILTIN_1(ENUM, NAME, TYPE, ATTRS) \
do { \
decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
BUILT_IN_NORMAL, NAME, NULL_TREE); \
set_call_expr_flags (decl, ATTRS); \
set_builtin_decl (ENUM, decl, true); \
} while (0)
#undef DEF_SANITIZER_BUILTIN
#define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
DEF_SANITIZER_BUILTIN_1 (ENUM, NAME, TYPE, ATTRS);
#include "sanitizer.def"
/* -fsanitize=object-size uses __builtin_object_size, but that might
not be available for e.g. Fortran at this point. We use
DEF_SANITIZER_BUILTIN here only as a convenience macro. */
if ((flag_sanitize & SANITIZE_OBJECT_SIZE)
&& !builtin_decl_implicit_p (BUILT_IN_OBJECT_SIZE))
DEF_SANITIZER_BUILTIN_1 (BUILT_IN_OBJECT_SIZE, "object_size",
BT_FN_SIZE_CONST_PTR_INT,
ATTR_PURE_NOTHROW_LEAF_LIST);
#undef DEF_SANITIZER_BUILTIN_1
#undef DEF_SANITIZER_BUILTIN
#undef DEF_BUILTIN_STUB
}
/* Called via htab_traverse. Count number of emitted
STRING_CSTs in the constant hash table. */
int
count_string_csts (constant_descriptor_tree **slot,
unsigned HOST_WIDE_INT *data)
{
struct constant_descriptor_tree *desc = *slot;
if (TREE_CODE (desc->value) == STRING_CST
&& TREE_ASM_WRITTEN (desc->value)
&& asan_protect_global (desc->value))
++*data;
return 1;
}
/* Helper structure to pass two parameters to
add_string_csts. */
struct asan_add_string_csts_data
{
tree type;
vec<constructor_elt, va_gc> *v;
};
/* Called via hash_table::traverse. Call asan_add_global
on emitted STRING_CSTs from the constant hash table. */
int
add_string_csts (constant_descriptor_tree **slot,
asan_add_string_csts_data *aascd)
{
struct constant_descriptor_tree *desc = *slot;
if (TREE_CODE (desc->value) == STRING_CST
&& TREE_ASM_WRITTEN (desc->value)
&& asan_protect_global (desc->value))
{
asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
aascd->type, aascd->v);
}
return 1;
}
/* Needs to be GTY(()), because cgraph_build_static_cdtor may
invoke ggc_collect. */
static GTY(()) tree asan_ctor_statements;
/* Module-level instrumentation.
- Insert __asan_init_vN() into the list of CTORs.
- TODO: insert redzones around globals.
*/
void
asan_finish_file (void)
{
varpool_node *vnode;
unsigned HOST_WIDE_INT gcount = 0;
if (shadow_ptr_types[0] == NULL_TREE)
asan_init_shadow_ptr_types ();
/* Avoid instrumenting code in the asan ctors/dtors.
We don't need to insert padding after the description strings,
nor after .LASAN* array. */
flag_sanitize &= ~SANITIZE_ADDRESS;
/* For user-space we want asan constructors to run first.
Linux kernel does not support priorities other than default, and the only
other user of constructors is coverage. So we run with the default
priority. */
int priority = flag_sanitize & SANITIZE_USER_ADDRESS
? MAX_RESERVED_INIT_PRIORITY - 1 : DEFAULT_INIT_PRIORITY;
if (flag_sanitize & SANITIZE_USER_ADDRESS)
{
tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
fn = builtin_decl_implicit (BUILT_IN_ASAN_VERSION_MISMATCH_CHECK);
append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
}
FOR_EACH_DEFINED_VARIABLE (vnode)
if (TREE_ASM_WRITTEN (vnode->decl)
&& asan_protect_global (vnode->decl))
++gcount;
hash_table<tree_descriptor_hasher> *const_desc_htab = constant_pool_htab ();
const_desc_htab->traverse<unsigned HOST_WIDE_INT *, count_string_csts>
(&gcount);
if (gcount)
{
tree type = asan_global_struct (), var, ctor;
tree dtor_statements = NULL_TREE;
vec<constructor_elt, va_gc> *v;
char buf[20];
type = build_array_type_nelts (type, gcount);
ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
type);
TREE_STATIC (var) = 1;
TREE_PUBLIC (var) = 0;
DECL_ARTIFICIAL (var) = 1;
DECL_IGNORED_P (var) = 1;
vec_alloc (v, gcount);
FOR_EACH_DEFINED_VARIABLE (vnode)
if (TREE_ASM_WRITTEN (vnode->decl)
&& asan_protect_global (vnode->decl))
asan_add_global (vnode->decl, TREE_TYPE (type), v);
struct asan_add_string_csts_data aascd;
aascd.type = TREE_TYPE (type);
aascd.v = v;
const_desc_htab->traverse<asan_add_string_csts_data *, add_string_csts>
(&aascd);
ctor = build_constructor (type, v);
TREE_CONSTANT (ctor) = 1;
TREE_STATIC (ctor) = 1;
DECL_INITIAL (var) = ctor;
SET_DECL_ALIGN (var, MAX (DECL_ALIGN (var),
ASAN_SHADOW_GRANULARITY * BITS_PER_UNIT));
varpool_node::finalize_decl (var);
tree fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
tree gcount_tree = build_int_cst (pointer_sized_int_node, gcount);
append_to_statement_list (build_call_expr (fn, 2,
build_fold_addr_expr (var),
gcount_tree),
&asan_ctor_statements);
fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
append_to_statement_list (build_call_expr (fn, 2,
build_fold_addr_expr (var),
gcount_tree),
&dtor_statements);
cgraph_build_static_cdtor ('D', dtor_statements, priority);
}
if (asan_ctor_statements)
cgraph_build_static_cdtor ('I', asan_ctor_statements, priority);
flag_sanitize |= SANITIZE_ADDRESS;
}
/* Poison or unpoison (depending on IS_CLOBBER variable) shadow memory based
on SHADOW address. Newly added statements will be added to ITER with
given location LOC. We mark SIZE bytes in shadow memory, where
LAST_CHUNK_SIZE is greater than zero in situation where we are at the
end of a variable. */
static void
asan_store_shadow_bytes (gimple_stmt_iterator *iter, location_t loc,
tree shadow,
unsigned HOST_WIDE_INT base_addr_offset,
bool is_clobber, unsigned size,
unsigned last_chunk_size)
{
tree shadow_ptr_type;
switch (size)
{
case 1:
shadow_ptr_type = shadow_ptr_types[0];
break;
case 2:
shadow_ptr_type = shadow_ptr_types[1];
break;
case 4:
shadow_ptr_type = shadow_ptr_types[2];
break;
default:
gcc_unreachable ();
}
unsigned char c = (char) is_clobber ? ASAN_STACK_MAGIC_USE_AFTER_SCOPE : 0;
unsigned HOST_WIDE_INT val = 0;
unsigned last_pos = size;
if (last_chunk_size && !is_clobber)
last_pos = BYTES_BIG_ENDIAN ? 0 : size - 1;
for (unsigned i = 0; i < size; ++i)
{
unsigned char shadow_c = c;
if (i == last_pos)
shadow_c = last_chunk_size;
val |= (unsigned HOST_WIDE_INT) shadow_c << (BITS_PER_UNIT * i);
}
/* Handle last chunk in unpoisoning. */
tree magic = build_int_cst (TREE_TYPE (shadow_ptr_type), val);
tree dest = build2 (MEM_REF, TREE_TYPE (shadow_ptr_type), shadow,
build_int_cst (shadow_ptr_type, base_addr_offset));
gimple *g = gimple_build_assign (dest, magic);
gimple_set_location (g, loc);
gsi_insert_after (iter, g, GSI_NEW_STMT);
}
/* Expand the ASAN_MARK builtins. */
bool
asan_expand_mark_ifn (gimple_stmt_iterator *iter)
{
gimple *g = gsi_stmt (*iter);
location_t loc = gimple_location (g);
HOST_WIDE_INT flag = tree_to_shwi (gimple_call_arg (g, 0));
bool is_poison = ((asan_mark_flags)flag) == ASAN_MARK_POISON;
tree base = gimple_call_arg (g, 1);
gcc_checking_assert (TREE_CODE (base) == ADDR_EXPR);
tree decl = TREE_OPERAND (base, 0);
/* For a nested function, we can have: ASAN_MARK (2, &FRAME.2.fp_input, 4) */
if (TREE_CODE (decl) == COMPONENT_REF
&& DECL_NONLOCAL_FRAME (TREE_OPERAND (decl, 0)))
decl = TREE_OPERAND (decl, 0);
gcc_checking_assert (TREE_CODE (decl) == VAR_DECL);
if (is_poison)
{
if (asan_handled_variables == NULL)
asan_handled_variables = new hash_set<tree> (16);
asan_handled_variables->add (decl);
}
tree len = gimple_call_arg (g, 2);
gcc_assert (tree_fits_shwi_p (len));
unsigned HOST_WIDE_INT size_in_bytes = tree_to_shwi (len);
gcc_assert (size_in_bytes);
g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
NOP_EXPR, base);
gimple_set_location (g, loc);
gsi_replace (iter, g, false);
tree base_addr = gimple_assign_lhs (g);
/* Generate direct emission if size_in_bytes is small. */
if (size_in_bytes <= ASAN_PARAM_USE_AFTER_SCOPE_DIRECT_EMISSION_THRESHOLD)
{
unsigned HOST_WIDE_INT shadow_size = shadow_mem_size (size_in_bytes);
tree shadow = build_shadow_mem_access (iter, loc, base_addr,
shadow_ptr_types[0], true);
for (unsigned HOST_WIDE_INT offset = 0; offset < shadow_size;)
{
unsigned size = 1;
if (shadow_size - offset >= 4)
size = 4;
else if (shadow_size - offset >= 2)
size = 2;
unsigned HOST_WIDE_INT last_chunk_size = 0;
unsigned HOST_WIDE_INT s = (offset + size) * ASAN_SHADOW_GRANULARITY;
if (s > size_in_bytes)
last_chunk_size = ASAN_SHADOW_GRANULARITY - (s - size_in_bytes);
asan_store_shadow_bytes (iter, loc, shadow, offset, is_poison,
size, last_chunk_size);
offset += size;
}
}
else
{
g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
NOP_EXPR, len);
gimple_set_location (g, loc);
gsi_insert_before (iter, g, GSI_SAME_STMT);
tree sz_arg = gimple_assign_lhs (g);
tree fun
= builtin_decl_implicit (is_poison ? BUILT_IN_ASAN_POISON_STACK_MEMORY
: BUILT_IN_ASAN_UNPOISON_STACK_MEMORY);
g = gimple_build_call (fun, 2, base_addr, sz_arg);
gimple_set_location (g, loc);
gsi_insert_after (iter, g, GSI_NEW_STMT);
}
return false;
}
/* Expand the ASAN_{LOAD,STORE} builtins. */
bool
asan_expand_check_ifn (gimple_stmt_iterator *iter, bool use_calls)
{
gimple *g = gsi_stmt (*iter);
location_t loc = gimple_location (g);
bool recover_p;
if (flag_sanitize & SANITIZE_USER_ADDRESS)
recover_p = (flag_sanitize_recover & SANITIZE_USER_ADDRESS) != 0;
else
recover_p = (flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
HOST_WIDE_INT flags = tree_to_shwi (gimple_call_arg (g, 0));
gcc_assert (flags < ASAN_CHECK_LAST);
bool is_scalar_access = (flags & ASAN_CHECK_SCALAR_ACCESS) != 0;
bool is_store = (flags & ASAN_CHECK_STORE) != 0;
bool is_non_zero_len = (flags & ASAN_CHECK_NON_ZERO_LEN) != 0;
tree base = gimple_call_arg (g, 1);
tree len = gimple_call_arg (g, 2);
HOST_WIDE_INT align = tree_to_shwi (gimple_call_arg (g, 3));
HOST_WIDE_INT size_in_bytes
= is_scalar_access && tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
if (use_calls)
{
/* Instrument using callbacks. */
gimple *g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
NOP_EXPR, base);
gimple_set_location (g, loc);
gsi_insert_before (iter, g, GSI_SAME_STMT);
tree base_addr = gimple_assign_lhs (g);
int nargs;
tree fun = check_func (is_store, recover_p, size_in_bytes, &nargs);
if (nargs == 1)
g = gimple_build_call (fun, 1, base_addr);
else
{
gcc_assert (nargs == 2);
g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
NOP_EXPR, len);
gimple_set_location (g, loc);
gsi_insert_before (iter, g, GSI_SAME_STMT);
tree sz_arg = gimple_assign_lhs (g);
g = gimple_build_call (fun, nargs, base_addr, sz_arg);
}
gimple_set_location (g, loc);
gsi_replace (iter, g, false);
return false;
}
HOST_WIDE_INT real_size_in_bytes = size_in_bytes == -1 ? 1 : size_in_bytes;
tree shadow_ptr_type = shadow_ptr_types[real_size_in_bytes == 16 ? 1 : 0];
tree shadow_type = TREE_TYPE (shadow_ptr_type);
gimple_stmt_iterator gsi = *iter;
if (!is_non_zero_len)
{
/* So, the length of the memory area to asan-protect is
non-constant. Let's guard the generated instrumentation code
like:
if (len != 0)
{
//asan instrumentation code goes here.
}
// falltrough instructions, starting with *ITER. */
g = gimple_build_cond (NE_EXPR,
len,
build_int_cst (TREE_TYPE (len), 0),
NULL_TREE, NULL_TREE);
gimple_set_location (g, loc);
basic_block then_bb, fallthrough_bb;
insert_if_then_before_iter (as_a <gcond *> (g), iter,
/*then_more_likely_p=*/true,
&then_bb, &fallthrough_bb);
/* Note that fallthrough_bb starts with the statement that was
pointed to by ITER. */
/* The 'then block' of the 'if (len != 0) condition is where
we'll generate the asan instrumentation code now. */
gsi = gsi_last_bb (then_bb);
}
/* Get an iterator on the point where we can add the condition
statement for the instrumentation. */
basic_block then_bb, else_bb;
gsi = create_cond_insert_point (&gsi, /*before_p*/false,
/*then_more_likely_p=*/false,
/*create_then_fallthru_edge*/recover_p,
&then_bb,
&else_bb);
g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
NOP_EXPR, base);
gimple_set_location (g, loc);
gsi_insert_before (&gsi, g, GSI_NEW_STMT);
tree base_addr = gimple_assign_lhs (g);
tree t = NULL_TREE;
if (real_size_in_bytes >= 8)
{
tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
shadow_ptr_type);
t = shadow;
}
else
{
/* Slow path for 1, 2 and 4 byte accesses. */
/* Test (shadow != 0)
& ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
shadow_ptr_type);
gimple *shadow_test = build_assign (NE_EXPR, shadow, 0);
gimple_seq seq = NULL;
gimple_seq_add_stmt (&seq, shadow_test);
/* Aligned (>= 8 bytes) can test just
(real_size_in_bytes - 1 >= shadow), as base_addr & 7 is known
to be 0. */
if (align < 8)
{
gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
base_addr, 7));
gimple_seq_add_stmt (&seq,
build_type_cast (shadow_type,
gimple_seq_last (seq)));
if (real_size_in_bytes > 1)
gimple_seq_add_stmt (&seq,
build_assign (PLUS_EXPR,
gimple_seq_last (seq),
real_size_in_bytes - 1));
t = gimple_assign_lhs (gimple_seq_last_stmt (seq));
}
else
t = build_int_cst (shadow_type, real_size_in_bytes - 1);
gimple_seq_add_stmt (&seq, build_assign (GE_EXPR, t, shadow));
gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
gimple_seq_last (seq)));
t = gimple_assign_lhs (gimple_seq_last (seq));
gimple_seq_set_location (seq, loc);
gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
/* For non-constant, misaligned or otherwise weird access sizes,
check first and last byte. */
if (size_in_bytes == -1)
{
g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
MINUS_EXPR, len,
build_int_cst (pointer_sized_int_node, 1));
gimple_set_location (g, loc);
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
tree last = gimple_assign_lhs (g);
g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
PLUS_EXPR, base_addr, last);
gimple_set_location (g, loc);
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
tree base_end_addr = gimple_assign_lhs (g);
tree shadow = build_shadow_mem_access (&gsi, loc, base_end_addr,
shadow_ptr_type);
gimple *shadow_test = build_assign (NE_EXPR, shadow, 0);
gimple_seq seq = NULL;
gimple_seq_add_stmt (&seq, shadow_test);
gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
base_end_addr, 7));
gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
gimple_seq_last (seq)));
gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
gimple_seq_last (seq),
shadow));
gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
gimple_seq_last (seq)));
gimple_seq_add_stmt (&seq, build_assign (BIT_IOR_EXPR, t,
gimple_seq_last (seq)));
t = gimple_assign_lhs (gimple_seq_last (seq));
gimple_seq_set_location (seq, loc);
gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
}
}
g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
NULL_TREE, NULL_TREE);
gimple_set_location (g, loc);
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
/* Generate call to the run-time library (e.g. __asan_report_load8). */
gsi = gsi_start_bb (then_bb);
int nargs;
tree fun = report_error_func (is_store, recover_p, size_in_bytes, &nargs);
g = gimple_build_call (fun, nargs, base_addr, len);
gimple_set_location (g, loc);
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
gsi_remove (iter, true);
*iter = gsi_start_bb (else_bb);
return true;
}
/* Create ASAN shadow variable for a VAR_DECL which has been rewritten
into SSA. Already seen VAR_DECLs are stored in SHADOW_VARS_MAPPING. */
static tree
create_asan_shadow_var (tree var_decl,
hash_map<tree, tree> &shadow_vars_mapping)
{
tree *slot = shadow_vars_mapping.get (var_decl);
if (slot == NULL)
{
tree shadow_var = copy_node (var_decl);
copy_body_data id;
memset (&id, 0, sizeof (copy_body_data));
id.src_fn = id.dst_fn = current_function_decl;
copy_decl_for_dup_finish (&id, var_decl, shadow_var);
DECL_ARTIFICIAL (shadow_var) = 1;
DECL_IGNORED_P (shadow_var) = 1;
DECL_SEEN_IN_BIND_EXPR_P (shadow_var) = 0;
gimple_add_tmp_var (shadow_var);
shadow_vars_mapping.put (var_decl, shadow_var);
return shadow_var;
}
else
return *slot;
}
/* Expand ASAN_POISON ifn. */
bool
asan_expand_poison_ifn (gimple_stmt_iterator *iter,
bool *need_commit_edge_insert,
hash_map<tree, tree> &shadow_vars_mapping)
{
gimple *g = gsi_stmt (*iter);
tree poisoned_var = gimple_call_lhs (g);
if (!poisoned_var || has_zero_uses (poisoned_var))
{
gsi_remove (iter, true);
return true;
}
if (SSA_NAME_VAR (poisoned_var) == NULL_TREE)
SET_SSA_NAME_VAR_OR_IDENTIFIER (poisoned_var,
create_tmp_var (TREE_TYPE (poisoned_var)));
tree shadow_var = create_asan_shadow_var (SSA_NAME_VAR (poisoned_var),
shadow_vars_mapping);
bool recover_p;
if (flag_sanitize & SANITIZE_USER_ADDRESS)
recover_p = (flag_sanitize_recover & SANITIZE_USER_ADDRESS) != 0;
else
recover_p = (flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
tree size = DECL_SIZE_UNIT (shadow_var);
gimple *poison_call
= gimple_build_call_internal (IFN_ASAN_MARK, 3,
build_int_cst (integer_type_node,
ASAN_MARK_POISON),
build_fold_addr_expr (shadow_var), size);
gimple *use;
imm_use_iterator imm_iter;
FOR_EACH_IMM_USE_STMT (use, imm_iter, poisoned_var)
{
if (is_gimple_debug (use))
continue;
int nargs;
bool store_p = gimple_call_internal_p (use, IFN_ASAN_POISON_USE);
tree fun = report_error_func (store_p, recover_p, tree_to_uhwi (size),
&nargs);
gcall *call = gimple_build_call (fun, 1,
build_fold_addr_expr (shadow_var));
gimple_set_location (call, gimple_location (use));
gimple *call_to_insert = call;
/* The USE can be a gimple PHI node. If so, insert the call on
all edges leading to the PHI node. */
if (is_a <gphi *> (use))
{
gphi *phi = dyn_cast<gphi *> (use);
for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
if (gimple_phi_arg_def (phi, i) == poisoned_var)
{
edge e = gimple_phi_arg_edge (phi, i);
/* Do not insert on an edge we can't split. */
if (e->flags & EDGE_ABNORMAL)
continue;
if (call_to_insert == NULL)
call_to_insert = gimple_copy (call);
gsi_insert_seq_on_edge (e, call_to_insert);
*need_commit_edge_insert = true;
call_to_insert = NULL;
}
}
else
{
gimple_stmt_iterator gsi = gsi_for_stmt (use);
if (store_p)
gsi_replace (&gsi, call, true);
else
gsi_insert_before (&gsi, call, GSI_NEW_STMT);
}
}
SSA_NAME_IS_DEFAULT_DEF (poisoned_var) = true;
SSA_NAME_DEF_STMT (poisoned_var) = gimple_build_nop ();
gsi_replace (iter, poison_call, false);
return true;
}
/* Instrument the current function. */
static unsigned int
asan_instrument (void)
{
if (shadow_ptr_types[0] == NULL_TREE)
asan_init_shadow_ptr_types ();
transform_statements ();
last_alloca_addr = NULL_TREE;
return 0;
}
static bool
gate_asan (void)
{
return sanitize_flags_p (SANITIZE_ADDRESS);
}
namespace {
const pass_data pass_data_asan =
{
GIMPLE_PASS, /* type */
"asan", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_update_ssa, /* todo_flags_finish */
};
class pass_asan : public gimple_opt_pass
{
public:
pass_asan (gcc::context *ctxt)
: gimple_opt_pass (pass_data_asan, ctxt)
{}
/* opt_pass methods: */
opt_pass * clone () { return new pass_asan (m_ctxt); }
virtual bool gate (function *) { return gate_asan (); }
virtual unsigned int execute (function *) { return asan_instrument (); }
}; // class pass_asan
} // anon namespace
gimple_opt_pass *
make_pass_asan (gcc::context *ctxt)
{
return new pass_asan (ctxt);
}
namespace {
const pass_data pass_data_asan_O0 =
{
GIMPLE_PASS, /* type */
"asan0", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_update_ssa, /* todo_flags_finish */
};
class pass_asan_O0 : public gimple_opt_pass
{
public:
pass_asan_O0 (gcc::context *ctxt)
: gimple_opt_pass (pass_data_asan_O0, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *) { return !optimize && gate_asan (); }
virtual unsigned int execute (function *) { return asan_instrument (); }
}; // class pass_asan_O0
} // anon namespace
gimple_opt_pass *
make_pass_asan_O0 (gcc::context *ctxt)
{
return new pass_asan_O0 (ctxt);
}
#include "gt-asan.h"
|