1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344
|
/* Subroutines shared by all languages that are variants of C.
Copyright (C) 1992-2018 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#define GCC_C_COMMON_C
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "target.h"
#include "function.h"
#include "tree.h"
#include "memmodel.h"
#include "c-common.h"
#include "gimple-expr.h"
#include "tm_p.h"
#include "stringpool.h"
#include "cgraph.h"
#include "diagnostic.h"
#include "intl.h"
#include "stor-layout.h"
#include "calls.h"
#include "attribs.h"
#include "varasm.h"
#include "trans-mem.h"
#include "c-objc.h"
#include "common/common-target.h"
#include "langhooks.h"
#include "tree-inline.h"
#include "toplev.h"
#include "tree-iterator.h"
#include "opts.h"
#include "gimplify.h"
#include "substring-locations.h"
#include "spellcheck.h"
#include "selftest.h"
cpp_reader *parse_in; /* Declared in c-pragma.h. */
/* Mode used to build pointers (VOIDmode means ptr_mode). */
machine_mode c_default_pointer_mode = VOIDmode;
/* The following symbols are subsumed in the c_global_trees array, and
listed here individually for documentation purposes.
INTEGER_TYPE and REAL_TYPE nodes for the standard data types.
tree short_integer_type_node;
tree long_integer_type_node;
tree long_long_integer_type_node;
tree short_unsigned_type_node;
tree long_unsigned_type_node;
tree long_long_unsigned_type_node;
tree truthvalue_type_node;
tree truthvalue_false_node;
tree truthvalue_true_node;
tree ptrdiff_type_node;
tree unsigned_char_type_node;
tree signed_char_type_node;
tree wchar_type_node;
tree char16_type_node;
tree char32_type_node;
tree float_type_node;
tree double_type_node;
tree long_double_type_node;
tree complex_integer_type_node;
tree complex_float_type_node;
tree complex_double_type_node;
tree complex_long_double_type_node;
tree dfloat32_type_node;
tree dfloat64_type_node;
tree_dfloat128_type_node;
tree intQI_type_node;
tree intHI_type_node;
tree intSI_type_node;
tree intDI_type_node;
tree intTI_type_node;
tree unsigned_intQI_type_node;
tree unsigned_intHI_type_node;
tree unsigned_intSI_type_node;
tree unsigned_intDI_type_node;
tree unsigned_intTI_type_node;
tree widest_integer_literal_type_node;
tree widest_unsigned_literal_type_node;
Nodes for types `void *' and `const void *'.
tree ptr_type_node, const_ptr_type_node;
Nodes for types `char *' and `const char *'.
tree string_type_node, const_string_type_node;
Type `char[SOMENUMBER]'.
Used when an array of char is needed and the size is irrelevant.
tree char_array_type_node;
Type `wchar_t[SOMENUMBER]' or something like it.
Used when a wide string literal is created.
tree wchar_array_type_node;
Type `char16_t[SOMENUMBER]' or something like it.
Used when a UTF-16 string literal is created.
tree char16_array_type_node;
Type `char32_t[SOMENUMBER]' or something like it.
Used when a UTF-32 string literal is created.
tree char32_array_type_node;
Type `int ()' -- used for implicit declaration of functions.
tree default_function_type;
A VOID_TYPE node, packaged in a TREE_LIST.
tree void_list_node;
The lazily created VAR_DECLs for __FUNCTION__, __PRETTY_FUNCTION__,
and __func__. (C doesn't generate __FUNCTION__ and__PRETTY_FUNCTION__
VAR_DECLS, but C++ does.)
tree function_name_decl_node;
tree pretty_function_name_decl_node;
tree c99_function_name_decl_node;
Stack of nested function name VAR_DECLs.
tree saved_function_name_decls;
*/
tree c_global_trees[CTI_MAX];
/* Switches common to the C front ends. */
/* Nonzero means don't output line number information. */
char flag_no_line_commands;
/* Nonzero causes -E output not to be done, but directives such as
#define that have side effects are still obeyed. */
char flag_no_output;
/* Nonzero means dump macros in some fashion. */
char flag_dump_macros;
/* Nonzero means pass #include lines through to the output. */
char flag_dump_includes;
/* Nonzero means process PCH files while preprocessing. */
bool flag_pch_preprocess;
/* The file name to which we should write a precompiled header, or
NULL if no header will be written in this compile. */
const char *pch_file;
/* Nonzero if an ISO standard was selected. It rejects macros in the
user's namespace. */
int flag_iso;
/* C/ObjC language option variables. */
/* Nonzero means allow type mismatches in conditional expressions;
just make their values `void'. */
int flag_cond_mismatch;
/* Nonzero means enable C89 Amendment 1 features. */
int flag_isoc94;
/* Nonzero means use the ISO C99 (or C11) dialect of C. */
int flag_isoc99;
/* Nonzero means use the ISO C11 dialect of C. */
int flag_isoc11;
/* Nonzero means that we have builtin functions, and main is an int. */
int flag_hosted = 1;
/* ObjC language option variables. */
/* Tells the compiler that this is a special run. Do not perform any
compiling, instead we are to test some platform dependent features
and output a C header file with appropriate definitions. */
int print_struct_values;
/* Tells the compiler what is the constant string class for ObjC. */
const char *constant_string_class_name;
/* C++ language option variables. */
/* The reference version of the ABI for -Wabi. */
int warn_abi_version = -1;
/* Nonzero means generate separate instantiation control files and
juggle them at link time. */
int flag_use_repository;
/* The C++ dialect being used. Default set in c_common_post_options. */
enum cxx_dialect cxx_dialect = cxx_unset;
/* Maximum template instantiation depth. This limit exists to limit the
time it takes to notice excessively recursive template instantiations.
The default is lower than the 1024 recommended by the C++0x standard
because G++ runs out of stack before 1024 with highly recursive template
argument deduction substitution (g++.dg/cpp0x/enum11.C). */
int max_tinst_depth = 900;
/* The elements of `ridpointers' are identifier nodes for the reserved
type names and storage classes. It is indexed by a RID_... value. */
tree *ridpointers;
tree (*make_fname_decl) (location_t, tree, int);
/* Nonzero means don't warn about problems that occur when the code is
executed. */
int c_inhibit_evaluation_warnings;
/* Whether we are building a boolean conversion inside
convert_for_assignment, or some other late binary operation. If
build_binary_op is called for C (from code shared by C and C++) in
this case, then the operands have already been folded and the
result will not be folded again, so C_MAYBE_CONST_EXPR should not
be generated. */
bool in_late_binary_op;
/* Whether lexing has been completed, so subsequent preprocessor
errors should use the compiler's input_location. */
bool done_lexing = false;
/* Information about how a function name is generated. */
struct fname_var_t
{
tree *const decl; /* pointer to the VAR_DECL. */
const unsigned rid; /* RID number for the identifier. */
const int pretty; /* How pretty is it? */
};
/* The three ways of getting then name of the current function. */
const struct fname_var_t fname_vars[] =
{
/* C99 compliant __func__, must be first. */
{&c99_function_name_decl_node, RID_C99_FUNCTION_NAME, 0},
/* GCC __FUNCTION__ compliant. */
{&function_name_decl_node, RID_FUNCTION_NAME, 0},
/* GCC __PRETTY_FUNCTION__ compliant. */
{&pretty_function_name_decl_node, RID_PRETTY_FUNCTION_NAME, 1},
{NULL, 0, 0},
};
/* Global visibility options. */
struct visibility_flags visibility_options;
static tree check_case_value (location_t, tree);
static bool check_case_bounds (location_t, tree, tree, tree *, tree *,
bool *);
static void check_nonnull_arg (void *, tree, unsigned HOST_WIDE_INT);
static bool nonnull_check_p (tree, unsigned HOST_WIDE_INT);
/* Reserved words. The third field is a mask: keywords are disabled
if they match the mask.
Masks for languages:
C --std=c89: D_C99 | D_CXXONLY | D_OBJC | D_CXX_OBJC
C --std=c99: D_CXXONLY | D_OBJC
ObjC is like C except that D_OBJC and D_CXX_OBJC are not set
C++ --std=c++98: D_CONLY | D_CXX11 | D_OBJC
C++ --std=c++11: D_CONLY | D_OBJC
ObjC++ is like C++ except that D_OBJC is not set
If -fno-asm is used, D_ASM is added to the mask. If
-fno-gnu-keywords is used, D_EXT is added. If -fno-asm and C in
C89 mode, D_EXT89 is added for both -fno-asm and -fno-gnu-keywords.
In C with -Wc++-compat, we warn if D_CXXWARN is set.
Note the complication of the D_CXX_OBJC keywords. These are
reserved words such as 'class'. In C++, 'class' is a reserved
word. In Objective-C++ it is too. In Objective-C, it is a
reserved word too, but only if it follows an '@' sign.
*/
const struct c_common_resword c_common_reswords[] =
{
{ "_Alignas", RID_ALIGNAS, D_CONLY },
{ "_Alignof", RID_ALIGNOF, D_CONLY },
{ "_Atomic", RID_ATOMIC, D_CONLY },
{ "_Bool", RID_BOOL, D_CONLY },
{ "_Complex", RID_COMPLEX, 0 },
{ "_Imaginary", RID_IMAGINARY, D_CONLY },
{ "_Float16", RID_FLOAT16, D_CONLY },
{ "_Float32", RID_FLOAT32, D_CONLY },
{ "_Float64", RID_FLOAT64, D_CONLY },
{ "_Float128", RID_FLOAT128, D_CONLY },
{ "_Float32x", RID_FLOAT32X, D_CONLY },
{ "_Float64x", RID_FLOAT64X, D_CONLY },
{ "_Float128x", RID_FLOAT128X, D_CONLY },
{ "_Decimal32", RID_DFLOAT32, D_CONLY | D_EXT },
{ "_Decimal64", RID_DFLOAT64, D_CONLY | D_EXT },
{ "_Decimal128", RID_DFLOAT128, D_CONLY | D_EXT },
{ "_Fract", RID_FRACT, D_CONLY | D_EXT },
{ "_Accum", RID_ACCUM, D_CONLY | D_EXT },
{ "_Sat", RID_SAT, D_CONLY | D_EXT },
{ "_Static_assert", RID_STATIC_ASSERT, D_CONLY },
{ "_Noreturn", RID_NORETURN, D_CONLY },
{ "_Generic", RID_GENERIC, D_CONLY },
{ "_Thread_local", RID_THREAD, D_CONLY },
{ "__FUNCTION__", RID_FUNCTION_NAME, 0 },
{ "__PRETTY_FUNCTION__", RID_PRETTY_FUNCTION_NAME, 0 },
{ "__alignof", RID_ALIGNOF, 0 },
{ "__alignof__", RID_ALIGNOF, 0 },
{ "__asm", RID_ASM, 0 },
{ "__asm__", RID_ASM, 0 },
{ "__attribute", RID_ATTRIBUTE, 0 },
{ "__attribute__", RID_ATTRIBUTE, 0 },
{ "__auto_type", RID_AUTO_TYPE, D_CONLY },
{ "__bases", RID_BASES, D_CXXONLY },
{ "__builtin_addressof", RID_ADDRESSOF, D_CXXONLY },
{ "__builtin_call_with_static_chain",
RID_BUILTIN_CALL_WITH_STATIC_CHAIN, D_CONLY },
{ "__builtin_choose_expr", RID_CHOOSE_EXPR, D_CONLY },
{ "__builtin_complex", RID_BUILTIN_COMPLEX, D_CONLY },
{ "__builtin_launder", RID_BUILTIN_LAUNDER, D_CXXONLY },
{ "__builtin_shuffle", RID_BUILTIN_SHUFFLE, 0 },
{ "__builtin_tgmath", RID_BUILTIN_TGMATH, D_CONLY },
{ "__builtin_offsetof", RID_OFFSETOF, 0 },
{ "__builtin_types_compatible_p", RID_TYPES_COMPATIBLE_P, D_CONLY },
{ "__builtin_va_arg", RID_VA_ARG, 0 },
{ "__complex", RID_COMPLEX, 0 },
{ "__complex__", RID_COMPLEX, 0 },
{ "__const", RID_CONST, 0 },
{ "__const__", RID_CONST, 0 },
{ "__decltype", RID_DECLTYPE, D_CXXONLY },
{ "__direct_bases", RID_DIRECT_BASES, D_CXXONLY },
{ "__extension__", RID_EXTENSION, 0 },
{ "__func__", RID_C99_FUNCTION_NAME, 0 },
{ "__has_nothrow_assign", RID_HAS_NOTHROW_ASSIGN, D_CXXONLY },
{ "__has_nothrow_constructor", RID_HAS_NOTHROW_CONSTRUCTOR, D_CXXONLY },
{ "__has_nothrow_copy", RID_HAS_NOTHROW_COPY, D_CXXONLY },
{ "__has_trivial_assign", RID_HAS_TRIVIAL_ASSIGN, D_CXXONLY },
{ "__has_trivial_constructor", RID_HAS_TRIVIAL_CONSTRUCTOR, D_CXXONLY },
{ "__has_trivial_copy", RID_HAS_TRIVIAL_COPY, D_CXXONLY },
{ "__has_trivial_destructor", RID_HAS_TRIVIAL_DESTRUCTOR, D_CXXONLY },
{ "__has_unique_object_representations", RID_HAS_UNIQUE_OBJ_REPRESENTATIONS,
D_CXXONLY },
{ "__has_virtual_destructor", RID_HAS_VIRTUAL_DESTRUCTOR, D_CXXONLY },
{ "__imag", RID_IMAGPART, 0 },
{ "__imag__", RID_IMAGPART, 0 },
{ "__inline", RID_INLINE, 0 },
{ "__inline__", RID_INLINE, 0 },
{ "__is_abstract", RID_IS_ABSTRACT, D_CXXONLY },
{ "__is_aggregate", RID_IS_AGGREGATE, D_CXXONLY },
{ "__is_base_of", RID_IS_BASE_OF, D_CXXONLY },
{ "__is_class", RID_IS_CLASS, D_CXXONLY },
{ "__is_empty", RID_IS_EMPTY, D_CXXONLY },
{ "__is_enum", RID_IS_ENUM, D_CXXONLY },
{ "__is_final", RID_IS_FINAL, D_CXXONLY },
{ "__is_literal_type", RID_IS_LITERAL_TYPE, D_CXXONLY },
{ "__is_pod", RID_IS_POD, D_CXXONLY },
{ "__is_polymorphic", RID_IS_POLYMORPHIC, D_CXXONLY },
{ "__is_same_as", RID_IS_SAME_AS, D_CXXONLY },
{ "__is_standard_layout", RID_IS_STD_LAYOUT, D_CXXONLY },
{ "__is_trivial", RID_IS_TRIVIAL, D_CXXONLY },
{ "__is_trivially_assignable", RID_IS_TRIVIALLY_ASSIGNABLE, D_CXXONLY },
{ "__is_trivially_constructible", RID_IS_TRIVIALLY_CONSTRUCTIBLE, D_CXXONLY },
{ "__is_trivially_copyable", RID_IS_TRIVIALLY_COPYABLE, D_CXXONLY },
{ "__is_union", RID_IS_UNION, D_CXXONLY },
{ "__label__", RID_LABEL, 0 },
{ "__null", RID_NULL, 0 },
{ "__real", RID_REALPART, 0 },
{ "__real__", RID_REALPART, 0 },
{ "__restrict", RID_RESTRICT, 0 },
{ "__restrict__", RID_RESTRICT, 0 },
{ "__signed", RID_SIGNED, 0 },
{ "__signed__", RID_SIGNED, 0 },
{ "__thread", RID_THREAD, 0 },
{ "__transaction_atomic", RID_TRANSACTION_ATOMIC, 0 },
{ "__transaction_relaxed", RID_TRANSACTION_RELAXED, 0 },
{ "__transaction_cancel", RID_TRANSACTION_CANCEL, 0 },
{ "__typeof", RID_TYPEOF, 0 },
{ "__typeof__", RID_TYPEOF, 0 },
{ "__underlying_type", RID_UNDERLYING_TYPE, D_CXXONLY },
{ "__volatile", RID_VOLATILE, 0 },
{ "__volatile__", RID_VOLATILE, 0 },
{ "__GIMPLE", RID_GIMPLE, D_CONLY },
{ "__PHI", RID_PHI, D_CONLY },
{ "__RTL", RID_RTL, D_CONLY },
{ "alignas", RID_ALIGNAS, D_CXXONLY | D_CXX11 | D_CXXWARN },
{ "alignof", RID_ALIGNOF, D_CXXONLY | D_CXX11 | D_CXXWARN },
{ "asm", RID_ASM, D_ASM },
{ "auto", RID_AUTO, 0 },
{ "bool", RID_BOOL, D_CXXONLY | D_CXXWARN },
{ "break", RID_BREAK, 0 },
{ "case", RID_CASE, 0 },
{ "catch", RID_CATCH, D_CXX_OBJC | D_CXXWARN },
{ "char", RID_CHAR, 0 },
{ "char16_t", RID_CHAR16, D_CXXONLY | D_CXX11 | D_CXXWARN },
{ "char32_t", RID_CHAR32, D_CXXONLY | D_CXX11 | D_CXXWARN },
{ "class", RID_CLASS, D_CXX_OBJC | D_CXXWARN },
{ "const", RID_CONST, 0 },
{ "constexpr", RID_CONSTEXPR, D_CXXONLY | D_CXX11 | D_CXXWARN },
{ "const_cast", RID_CONSTCAST, D_CXXONLY | D_CXXWARN },
{ "continue", RID_CONTINUE, 0 },
{ "decltype", RID_DECLTYPE, D_CXXONLY | D_CXX11 | D_CXXWARN },
{ "default", RID_DEFAULT, 0 },
{ "delete", RID_DELETE, D_CXXONLY | D_CXXWARN },
{ "do", RID_DO, 0 },
{ "double", RID_DOUBLE, 0 },
{ "dynamic_cast", RID_DYNCAST, D_CXXONLY | D_CXXWARN },
{ "else", RID_ELSE, 0 },
{ "enum", RID_ENUM, 0 },
{ "explicit", RID_EXPLICIT, D_CXXONLY | D_CXXWARN },
{ "export", RID_EXPORT, D_CXXONLY | D_CXXWARN },
{ "extern", RID_EXTERN, 0 },
{ "false", RID_FALSE, D_CXXONLY | D_CXXWARN },
{ "float", RID_FLOAT, 0 },
{ "for", RID_FOR, 0 },
{ "friend", RID_FRIEND, D_CXXONLY | D_CXXWARN },
{ "goto", RID_GOTO, 0 },
{ "if", RID_IF, 0 },
{ "inline", RID_INLINE, D_EXT89 },
{ "int", RID_INT, 0 },
{ "long", RID_LONG, 0 },
{ "mutable", RID_MUTABLE, D_CXXONLY | D_CXXWARN },
{ "namespace", RID_NAMESPACE, D_CXXONLY | D_CXXWARN },
{ "new", RID_NEW, D_CXXONLY | D_CXXWARN },
{ "noexcept", RID_NOEXCEPT, D_CXXONLY | D_CXX11 | D_CXXWARN },
{ "nullptr", RID_NULLPTR, D_CXXONLY | D_CXX11 | D_CXXWARN },
{ "operator", RID_OPERATOR, D_CXXONLY | D_CXXWARN },
{ "private", RID_PRIVATE, D_CXX_OBJC | D_CXXWARN },
{ "protected", RID_PROTECTED, D_CXX_OBJC | D_CXXWARN },
{ "public", RID_PUBLIC, D_CXX_OBJC | D_CXXWARN },
{ "register", RID_REGISTER, 0 },
{ "reinterpret_cast", RID_REINTCAST, D_CXXONLY | D_CXXWARN },
{ "restrict", RID_RESTRICT, D_CONLY | D_C99 },
{ "return", RID_RETURN, 0 },
{ "short", RID_SHORT, 0 },
{ "signed", RID_SIGNED, 0 },
{ "sizeof", RID_SIZEOF, 0 },
{ "static", RID_STATIC, 0 },
{ "static_assert", RID_STATIC_ASSERT, D_CXXONLY | D_CXX11 | D_CXXWARN },
{ "static_cast", RID_STATCAST, D_CXXONLY | D_CXXWARN },
{ "struct", RID_STRUCT, 0 },
{ "switch", RID_SWITCH, 0 },
{ "template", RID_TEMPLATE, D_CXXONLY | D_CXXWARN },
{ "this", RID_THIS, D_CXXONLY | D_CXXWARN },
{ "thread_local", RID_THREAD, D_CXXONLY | D_CXX11 | D_CXXWARN },
{ "throw", RID_THROW, D_CXX_OBJC | D_CXXWARN },
{ "true", RID_TRUE, D_CXXONLY | D_CXXWARN },
{ "try", RID_TRY, D_CXX_OBJC | D_CXXWARN },
{ "typedef", RID_TYPEDEF, 0 },
{ "typename", RID_TYPENAME, D_CXXONLY | D_CXXWARN },
{ "typeid", RID_TYPEID, D_CXXONLY | D_CXXWARN },
{ "typeof", RID_TYPEOF, D_ASM | D_EXT },
{ "union", RID_UNION, 0 },
{ "unsigned", RID_UNSIGNED, 0 },
{ "using", RID_USING, D_CXXONLY | D_CXXWARN },
{ "virtual", RID_VIRTUAL, D_CXXONLY | D_CXXWARN },
{ "void", RID_VOID, 0 },
{ "volatile", RID_VOLATILE, 0 },
{ "wchar_t", RID_WCHAR, D_CXXONLY },
{ "while", RID_WHILE, 0 },
{ "__is_assignable", RID_IS_ASSIGNABLE, D_CXXONLY },
{ "__is_constructible", RID_IS_CONSTRUCTIBLE, D_CXXONLY },
/* C++ transactional memory. */
{ "synchronized", RID_SYNCHRONIZED, D_CXX_OBJC | D_TRANSMEM },
{ "atomic_noexcept", RID_ATOMIC_NOEXCEPT, D_CXXONLY | D_TRANSMEM },
{ "atomic_cancel", RID_ATOMIC_CANCEL, D_CXXONLY | D_TRANSMEM },
{ "atomic_commit", RID_TRANSACTION_ATOMIC, D_CXXONLY | D_TRANSMEM },
/* Concepts-related keywords */
{ "concept", RID_CONCEPT, D_CXX_CONCEPTS_FLAGS | D_CXXWARN },
{ "requires", RID_REQUIRES, D_CXX_CONCEPTS_FLAGS | D_CXXWARN },
/* These Objective-C keywords are recognized only immediately after
an '@'. */
{ "compatibility_alias", RID_AT_ALIAS, D_OBJC },
{ "defs", RID_AT_DEFS, D_OBJC },
{ "encode", RID_AT_ENCODE, D_OBJC },
{ "end", RID_AT_END, D_OBJC },
{ "implementation", RID_AT_IMPLEMENTATION, D_OBJC },
{ "interface", RID_AT_INTERFACE, D_OBJC },
{ "protocol", RID_AT_PROTOCOL, D_OBJC },
{ "selector", RID_AT_SELECTOR, D_OBJC },
{ "finally", RID_AT_FINALLY, D_OBJC },
{ "optional", RID_AT_OPTIONAL, D_OBJC },
{ "required", RID_AT_REQUIRED, D_OBJC },
{ "property", RID_AT_PROPERTY, D_OBJC },
{ "package", RID_AT_PACKAGE, D_OBJC },
{ "synthesize", RID_AT_SYNTHESIZE, D_OBJC },
{ "dynamic", RID_AT_DYNAMIC, D_OBJC },
/* These are recognized only in protocol-qualifier context
(see above) */
{ "bycopy", RID_BYCOPY, D_OBJC },
{ "byref", RID_BYREF, D_OBJC },
{ "in", RID_IN, D_OBJC },
{ "inout", RID_INOUT, D_OBJC },
{ "oneway", RID_ONEWAY, D_OBJC },
{ "out", RID_OUT, D_OBJC },
/* These are recognized inside a property attribute list */
{ "assign", RID_ASSIGN, D_OBJC },
{ "copy", RID_COPY, D_OBJC },
{ "getter", RID_GETTER, D_OBJC },
{ "nonatomic", RID_NONATOMIC, D_OBJC },
{ "readonly", RID_READONLY, D_OBJC },
{ "readwrite", RID_READWRITE, D_OBJC },
{ "retain", RID_RETAIN, D_OBJC },
{ "setter", RID_SETTER, D_OBJC },
};
const unsigned int num_c_common_reswords =
sizeof c_common_reswords / sizeof (struct c_common_resword);
/* Return identifier for address space AS. */
const char *
c_addr_space_name (addr_space_t as)
{
int rid = RID_FIRST_ADDR_SPACE + as;
gcc_assert (ridpointers [rid]);
return IDENTIFIER_POINTER (ridpointers [rid]);
}
/* Push current bindings for the function name VAR_DECLS. */
void
start_fname_decls (void)
{
unsigned ix;
tree saved = NULL_TREE;
for (ix = 0; fname_vars[ix].decl; ix++)
{
tree decl = *fname_vars[ix].decl;
if (decl)
{
saved = tree_cons (decl, build_int_cst (integer_type_node, ix),
saved);
*fname_vars[ix].decl = NULL_TREE;
}
}
if (saved || saved_function_name_decls)
/* Normally they'll have been NULL, so only push if we've got a
stack, or they are non-NULL. */
saved_function_name_decls = tree_cons (saved, NULL_TREE,
saved_function_name_decls);
}
/* Finish up the current bindings, adding them into the current function's
statement tree. This must be done _before_ finish_stmt_tree is called.
If there is no current function, we must be at file scope and no statements
are involved. Pop the previous bindings. */
void
finish_fname_decls (void)
{
unsigned ix;
tree stmts = NULL_TREE;
tree stack = saved_function_name_decls;
for (; stack && TREE_VALUE (stack); stack = TREE_CHAIN (stack))
append_to_statement_list (TREE_VALUE (stack), &stmts);
if (stmts)
{
tree *bodyp = &DECL_SAVED_TREE (current_function_decl);
if (TREE_CODE (*bodyp) == BIND_EXPR)
bodyp = &BIND_EXPR_BODY (*bodyp);
append_to_statement_list_force (*bodyp, &stmts);
*bodyp = stmts;
}
for (ix = 0; fname_vars[ix].decl; ix++)
*fname_vars[ix].decl = NULL_TREE;
if (stack)
{
/* We had saved values, restore them. */
tree saved;
for (saved = TREE_PURPOSE (stack); saved; saved = TREE_CHAIN (saved))
{
tree decl = TREE_PURPOSE (saved);
unsigned ix = TREE_INT_CST_LOW (TREE_VALUE (saved));
*fname_vars[ix].decl = decl;
}
stack = TREE_CHAIN (stack);
}
saved_function_name_decls = stack;
}
/* Return the text name of the current function, suitably prettified
by PRETTY_P. Return string must be freed by caller. */
const char *
fname_as_string (int pretty_p)
{
const char *name = "top level";
char *namep;
int vrb = 2, len;
cpp_string cstr = { 0, 0 }, strname;
if (!pretty_p)
{
name = "";
vrb = 0;
}
if (current_function_decl)
name = lang_hooks.decl_printable_name (current_function_decl, vrb);
len = strlen (name) + 3; /* Two for '"'s. One for NULL. */
namep = XNEWVEC (char, len);
snprintf (namep, len, "\"%s\"", name);
strname.text = (unsigned char *) namep;
strname.len = len - 1;
if (cpp_interpret_string (parse_in, &strname, 1, &cstr, CPP_STRING))
{
XDELETEVEC (namep);
return (const char *) cstr.text;
}
return namep;
}
/* Return the VAR_DECL for a const char array naming the current
function. If the VAR_DECL has not yet been created, create it
now. RID indicates how it should be formatted and IDENTIFIER_NODE
ID is its name (unfortunately C and C++ hold the RID values of
keywords in different places, so we can't derive RID from ID in
this language independent code. LOC is the location of the
function. */
tree
fname_decl (location_t loc, unsigned int rid, tree id)
{
unsigned ix;
tree decl = NULL_TREE;
for (ix = 0; fname_vars[ix].decl; ix++)
if (fname_vars[ix].rid == rid)
break;
decl = *fname_vars[ix].decl;
if (!decl)
{
/* If a tree is built here, it would normally have the lineno of
the current statement. Later this tree will be moved to the
beginning of the function and this line number will be wrong.
To avoid this problem set the lineno to 0 here; that prevents
it from appearing in the RTL. */
tree stmts;
location_t saved_location = input_location;
input_location = UNKNOWN_LOCATION;
stmts = push_stmt_list ();
decl = (*make_fname_decl) (loc, id, fname_vars[ix].pretty);
stmts = pop_stmt_list (stmts);
if (!IS_EMPTY_STMT (stmts))
saved_function_name_decls
= tree_cons (decl, stmts, saved_function_name_decls);
*fname_vars[ix].decl = decl;
input_location = saved_location;
}
if (!ix && !current_function_decl)
pedwarn (loc, 0, "%qD is not defined outside of function scope", decl);
return decl;
}
/* Given a STRING_CST, give it a suitable array-of-chars data type. */
tree
fix_string_type (tree value)
{
int length = TREE_STRING_LENGTH (value);
int nchars;
tree e_type, i_type, a_type;
/* Compute the number of elements, for the array type. */
if (TREE_TYPE (value) == char_array_type_node || !TREE_TYPE (value))
{
nchars = length;
e_type = char_type_node;
}
else if (TREE_TYPE (value) == char16_array_type_node)
{
nchars = length / (TYPE_PRECISION (char16_type_node) / BITS_PER_UNIT);
e_type = char16_type_node;
}
else if (TREE_TYPE (value) == char32_array_type_node)
{
nchars = length / (TYPE_PRECISION (char32_type_node) / BITS_PER_UNIT);
e_type = char32_type_node;
}
else
{
nchars = length / (TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT);
e_type = wchar_type_node;
}
/* C89 2.2.4.1, C99 5.2.4.1 (Translation limits). The analogous
limit in C++98 Annex B is very large (65536) and is not normative,
so we do not diagnose it (warn_overlength_strings is forced off
in c_common_post_options). */
if (warn_overlength_strings)
{
const int nchars_max = flag_isoc99 ? 4095 : 509;
const int relevant_std = flag_isoc99 ? 99 : 90;
if (nchars - 1 > nchars_max)
/* Translators: The %d after 'ISO C' will be 90 or 99. Do not
separate the %d from the 'C'. 'ISO' should not be
translated, but it may be moved after 'C%d' in languages
where modifiers follow nouns. */
pedwarn (input_location, OPT_Woverlength_strings,
"string length %qd is greater than the length %qd "
"ISO C%d compilers are required to support",
nchars - 1, nchars_max, relevant_std);
}
/* Create the array type for the string constant. The ISO C++
standard says that a string literal has type `const char[N]' or
`const wchar_t[N]'. We use the same logic when invoked as a C
front-end with -Wwrite-strings.
??? We should change the type of an expression depending on the
state of a warning flag. We should just be warning -- see how
this is handled in the C++ front-end for the deprecated implicit
conversion from string literals to `char*' or `wchar_t*'.
The C++ front end relies on TYPE_MAIN_VARIANT of a cv-qualified
array type being the unqualified version of that type.
Therefore, if we are constructing an array of const char, we must
construct the matching unqualified array type first. The C front
end does not require this, but it does no harm, so we do it
unconditionally. */
i_type = build_index_type (size_int (nchars - 1));
a_type = build_array_type (e_type, i_type);
if (c_dialect_cxx() || warn_write_strings)
a_type = c_build_qualified_type (a_type, TYPE_QUAL_CONST);
TREE_TYPE (value) = a_type;
TREE_CONSTANT (value) = 1;
TREE_READONLY (value) = 1;
TREE_STATIC (value) = 1;
return value;
}
/* Given a string of type STRING_TYPE, determine what kind of string
token would give an equivalent execution encoding: CPP_STRING,
CPP_STRING16, or CPP_STRING32. Return CPP_OTHER in case of error.
This may not be exactly the string token type that initially created
the string, since CPP_WSTRING is indistinguishable from the 16/32 bit
string type at this point.
This effectively reverses part of the logic in lex_string and
fix_string_type. */
static enum cpp_ttype
get_cpp_ttype_from_string_type (tree string_type)
{
gcc_assert (string_type);
if (TREE_CODE (string_type) == POINTER_TYPE)
string_type = TREE_TYPE (string_type);
if (TREE_CODE (string_type) != ARRAY_TYPE)
return CPP_OTHER;
tree element_type = TREE_TYPE (string_type);
if (TREE_CODE (element_type) != INTEGER_TYPE)
return CPP_OTHER;
int bits_per_character = TYPE_PRECISION (element_type);
switch (bits_per_character)
{
case 8:
return CPP_STRING; /* It could have also been CPP_UTF8STRING. */
case 16:
return CPP_STRING16;
case 32:
return CPP_STRING32;
}
return CPP_OTHER;
}
/* The global record of string concatentations, for use in
extracting locations within string literals. */
GTY(()) string_concat_db *g_string_concat_db;
/* Implementation of LANG_HOOKS_GET_SUBSTRING_LOCATION. */
const char *
c_get_substring_location (const substring_loc &substr_loc,
location_t *out_loc)
{
enum cpp_ttype tok_type
= get_cpp_ttype_from_string_type (substr_loc.get_string_type ());
if (tok_type == CPP_OTHER)
return "unrecognized string type";
return get_source_location_for_substring (parse_in, g_string_concat_db,
substr_loc.get_fmt_string_loc (),
tok_type,
substr_loc.get_caret_idx (),
substr_loc.get_start_idx (),
substr_loc.get_end_idx (),
out_loc);
}
/* Return true iff T is a boolean promoted to int. */
bool
bool_promoted_to_int_p (tree t)
{
return (CONVERT_EXPR_P (t)
&& TREE_TYPE (t) == integer_type_node
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == BOOLEAN_TYPE);
}
/* vector_targets_convertible_p is used for vector pointer types. The
callers perform various checks that the qualifiers are satisfactory,
while OTOH vector_targets_convertible_p ignores the number of elements
in the vectors. That's fine with vector pointers as we can consider,
say, a vector of 8 elements as two consecutive vectors of 4 elements,
and that does not require and conversion of the pointer values.
In contrast, vector_types_convertible_p and
vector_types_compatible_elements_p are used for vector value types. */
/* True if pointers to distinct types T1 and T2 can be converted to
each other without an explicit cast. Only returns true for opaque
vector types. */
bool
vector_targets_convertible_p (const_tree t1, const_tree t2)
{
if (VECTOR_TYPE_P (t1) && VECTOR_TYPE_P (t2)
&& (TYPE_VECTOR_OPAQUE (t1) || TYPE_VECTOR_OPAQUE (t2))
&& tree_int_cst_equal (TYPE_SIZE (t1), TYPE_SIZE (t2)))
return true;
return false;
}
/* vector_types_convertible_p is used for vector value types.
It could in principle call vector_targets_convertible_p as a subroutine,
but then the check for vector type would be duplicated with its callers,
and also the purpose of vector_targets_convertible_p would become
muddled.
Where vector_types_convertible_p returns true, a conversion might still be
needed to make the types match.
In contrast, vector_targets_convertible_p is used for vector pointer
values, and vector_types_compatible_elements_p is used specifically
in the context for binary operators, as a check if use is possible without
conversion. */
/* True if vector types T1 and T2 can be converted to each other
without an explicit cast. If EMIT_LAX_NOTE is true, and T1 and T2
can only be converted with -flax-vector-conversions yet that is not
in effect, emit a note telling the user about that option if such
a note has not previously been emitted. */
bool
vector_types_convertible_p (const_tree t1, const_tree t2, bool emit_lax_note)
{
static bool emitted_lax_note = false;
bool convertible_lax;
if ((TYPE_VECTOR_OPAQUE (t1) || TYPE_VECTOR_OPAQUE (t2))
&& tree_int_cst_equal (TYPE_SIZE (t1), TYPE_SIZE (t2)))
return true;
convertible_lax =
(tree_int_cst_equal (TYPE_SIZE (t1), TYPE_SIZE (t2))
&& (TREE_CODE (TREE_TYPE (t1)) != REAL_TYPE
|| known_eq (TYPE_VECTOR_SUBPARTS (t1),
TYPE_VECTOR_SUBPARTS (t2)))
&& (INTEGRAL_TYPE_P (TREE_TYPE (t1))
== INTEGRAL_TYPE_P (TREE_TYPE (t2))));
if (!convertible_lax || flag_lax_vector_conversions)
return convertible_lax;
if (known_eq (TYPE_VECTOR_SUBPARTS (t1), TYPE_VECTOR_SUBPARTS (t2))
&& lang_hooks.types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2)))
return true;
if (emit_lax_note && !emitted_lax_note)
{
emitted_lax_note = true;
inform (input_location, "use -flax-vector-conversions to permit "
"conversions between vectors with differing "
"element types or numbers of subparts");
}
return false;
}
/* Build a VEC_PERM_EXPR if V0, V1 and MASK are not error_mark_nodes
and have vector types, V0 has the same type as V1, and the number of
elements of V0, V1, MASK is the same.
In case V1 is a NULL_TREE it is assumed that __builtin_shuffle was
called with two arguments. In this case implementation passes the
first argument twice in order to share the same tree code. This fact
could enable the mask-values being twice the vector length. This is
an implementation accident and this semantics is not guaranteed to
the user. */
tree
c_build_vec_perm_expr (location_t loc, tree v0, tree v1, tree mask,
bool complain)
{
tree ret;
bool wrap = true;
bool maybe_const = false;
bool two_arguments = false;
if (v1 == NULL_TREE)
{
two_arguments = true;
v1 = v0;
}
if (v0 == error_mark_node || v1 == error_mark_node
|| mask == error_mark_node)
return error_mark_node;
if (!VECTOR_INTEGER_TYPE_P (TREE_TYPE (mask)))
{
if (complain)
error_at (loc, "__builtin_shuffle last argument must "
"be an integer vector");
return error_mark_node;
}
if (!VECTOR_TYPE_P (TREE_TYPE (v0))
|| !VECTOR_TYPE_P (TREE_TYPE (v1)))
{
if (complain)
error_at (loc, "__builtin_shuffle arguments must be vectors");
return error_mark_node;
}
if (TYPE_MAIN_VARIANT (TREE_TYPE (v0)) != TYPE_MAIN_VARIANT (TREE_TYPE (v1)))
{
if (complain)
error_at (loc, "__builtin_shuffle argument vectors must be of "
"the same type");
return error_mark_node;
}
if (maybe_ne (TYPE_VECTOR_SUBPARTS (TREE_TYPE (v0)),
TYPE_VECTOR_SUBPARTS (TREE_TYPE (mask)))
&& maybe_ne (TYPE_VECTOR_SUBPARTS (TREE_TYPE (v1)),
TYPE_VECTOR_SUBPARTS (TREE_TYPE (mask))))
{
if (complain)
error_at (loc, "__builtin_shuffle number of elements of the "
"argument vector(s) and the mask vector should "
"be the same");
return error_mark_node;
}
if (GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (TREE_TYPE (v0))))
!= GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (TREE_TYPE (mask)))))
{
if (complain)
error_at (loc, "__builtin_shuffle argument vector(s) inner type "
"must have the same size as inner type of the mask");
return error_mark_node;
}
if (!c_dialect_cxx ())
{
/* Avoid C_MAYBE_CONST_EXPRs inside VEC_PERM_EXPR. */
v0 = c_fully_fold (v0, false, &maybe_const);
wrap &= maybe_const;
if (two_arguments)
v1 = v0 = save_expr (v0);
else
{
v1 = c_fully_fold (v1, false, &maybe_const);
wrap &= maybe_const;
}
mask = c_fully_fold (mask, false, &maybe_const);
wrap &= maybe_const;
}
else if (two_arguments)
v1 = v0 = save_expr (v0);
ret = build3_loc (loc, VEC_PERM_EXPR, TREE_TYPE (v0), v0, v1, mask);
if (!c_dialect_cxx () && !wrap)
ret = c_wrap_maybe_const (ret, true);
return ret;
}
/* Like tree.c:get_narrower, but retain conversion from C++0x scoped enum
to integral type. */
tree
c_common_get_narrower (tree op, int *unsignedp_ptr)
{
op = get_narrower (op, unsignedp_ptr);
if (TREE_CODE (TREE_TYPE (op)) == ENUMERAL_TYPE
&& ENUM_IS_SCOPED (TREE_TYPE (op)))
{
/* C++0x scoped enumerations don't implicitly convert to integral
type; if we stripped an explicit conversion to a larger type we
need to replace it so common_type will still work. */
tree type = c_common_type_for_size (TYPE_PRECISION (TREE_TYPE (op)),
TYPE_UNSIGNED (TREE_TYPE (op)));
op = fold_convert (type, op);
}
return op;
}
/* This is a helper function of build_binary_op.
For certain operations if both args were extended from the same
smaller type, do the arithmetic in that type and then extend.
BITWISE indicates a bitwise operation.
For them, this optimization is safe only if
both args are zero-extended or both are sign-extended.
Otherwise, we might change the result.
Eg, (short)-1 | (unsigned short)-1 is (int)-1
but calculated in (unsigned short) it would be (unsigned short)-1.
*/
tree
shorten_binary_op (tree result_type, tree op0, tree op1, bool bitwise)
{
int unsigned0, unsigned1;
tree arg0, arg1;
int uns;
tree type;
/* Cast OP0 and OP1 to RESULT_TYPE. Doing so prevents
excessive narrowing when we call get_narrower below. For
example, suppose that OP0 is of unsigned int extended
from signed char and that RESULT_TYPE is long long int.
If we explicitly cast OP0 to RESULT_TYPE, OP0 would look
like
(long long int) (unsigned int) signed_char
which get_narrower would narrow down to
(unsigned int) signed char
If we do not cast OP0 first, get_narrower would return
signed_char, which is inconsistent with the case of the
explicit cast. */
op0 = convert (result_type, op0);
op1 = convert (result_type, op1);
arg0 = c_common_get_narrower (op0, &unsigned0);
arg1 = c_common_get_narrower (op1, &unsigned1);
/* UNS is 1 if the operation to be done is an unsigned one. */
uns = TYPE_UNSIGNED (result_type);
/* Handle the case that OP0 (or OP1) does not *contain* a conversion
but it *requires* conversion to FINAL_TYPE. */
if ((TYPE_PRECISION (TREE_TYPE (op0))
== TYPE_PRECISION (TREE_TYPE (arg0)))
&& TREE_TYPE (op0) != result_type)
unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
if ((TYPE_PRECISION (TREE_TYPE (op1))
== TYPE_PRECISION (TREE_TYPE (arg1)))
&& TREE_TYPE (op1) != result_type)
unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
/* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE. */
/* For bitwise operations, signedness of nominal type
does not matter. Consider only how operands were extended. */
if (bitwise)
uns = unsigned0;
/* Note that in all three cases below we refrain from optimizing
an unsigned operation on sign-extended args.
That would not be valid. */
/* Both args variable: if both extended in same way
from same width, do it in that width.
Do it unsigned if args were zero-extended. */
if ((TYPE_PRECISION (TREE_TYPE (arg0))
< TYPE_PRECISION (result_type))
&& (TYPE_PRECISION (TREE_TYPE (arg1))
== TYPE_PRECISION (TREE_TYPE (arg0)))
&& unsigned0 == unsigned1
&& (unsigned0 || !uns))
return c_common_signed_or_unsigned_type
(unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
else if (TREE_CODE (arg0) == INTEGER_CST
&& (unsigned1 || !uns)
&& (TYPE_PRECISION (TREE_TYPE (arg1))
< TYPE_PRECISION (result_type))
&& (type
= c_common_signed_or_unsigned_type (unsigned1,
TREE_TYPE (arg1)))
&& !POINTER_TYPE_P (type)
&& int_fits_type_p (arg0, type))
return type;
else if (TREE_CODE (arg1) == INTEGER_CST
&& (unsigned0 || !uns)
&& (TYPE_PRECISION (TREE_TYPE (arg0))
< TYPE_PRECISION (result_type))
&& (type
= c_common_signed_or_unsigned_type (unsigned0,
TREE_TYPE (arg0)))
&& !POINTER_TYPE_P (type)
&& int_fits_type_p (arg1, type))
return type;
return result_type;
}
/* Returns true iff any integer value of type FROM_TYPE can be represented as
real of type TO_TYPE. This is a helper function for unsafe_conversion_p. */
static bool
int_safely_convertible_to_real_p (const_tree from_type, const_tree to_type)
{
tree type_low_bound = TYPE_MIN_VALUE (from_type);
tree type_high_bound = TYPE_MAX_VALUE (from_type);
REAL_VALUE_TYPE real_low_bound =
real_value_from_int_cst (0, type_low_bound);
REAL_VALUE_TYPE real_high_bound =
real_value_from_int_cst (0, type_high_bound);
return exact_real_truncate (TYPE_MODE (to_type), &real_low_bound)
&& exact_real_truncate (TYPE_MODE (to_type), &real_high_bound);
}
/* Checks if expression EXPR of complex/real/integer type cannot be converted
to the complex/real/integer type TYPE. Function returns non-zero when:
* EXPR is a constant which cannot be exactly converted to TYPE.
* EXPR is not a constant and size of EXPR's type > than size of TYPE,
for EXPR type and TYPE being both integers or both real, or both
complex.
* EXPR is not a constant of complex type and TYPE is a real or
an integer.
* EXPR is not a constant of real type and TYPE is an integer.
* EXPR is not a constant of integer type which cannot be
exactly converted to real type.
Function allows conversions between types of different signedness and
can return SAFE_CONVERSION (zero) in that case. Function can produce
signedness warnings if PRODUCE_WARNS is true.
RESULT, when non-null is the result of the conversion. When constant
it is included in the text of diagnostics.
Function allows conversions from complex constants to non-complex types,
provided that imaginary part is zero and real part can be safely converted
to TYPE. */
enum conversion_safety
unsafe_conversion_p (location_t loc, tree type, tree expr, tree result,
bool produce_warns)
{
enum conversion_safety give_warning = SAFE_CONVERSION; /* is 0 or false */
tree expr_type = TREE_TYPE (expr);
bool cstresult = (result
&& TREE_CODE_CLASS (TREE_CODE (result)) == tcc_constant);
loc = expansion_point_location_if_in_system_header (loc);
if (TREE_CODE (expr) == REAL_CST || TREE_CODE (expr) == INTEGER_CST)
{
/* If type is complex, we are interested in compatibility with
underlying type. */
if (TREE_CODE (type) == COMPLEX_TYPE)
type = TREE_TYPE (type);
/* Warn for real constant that is not an exact integer converted
to integer type. */
if (TREE_CODE (expr_type) == REAL_TYPE
&& TREE_CODE (type) == INTEGER_TYPE)
{
if (!real_isinteger (TREE_REAL_CST_PTR (expr), TYPE_MODE (expr_type)))
give_warning = UNSAFE_REAL;
}
/* Warn for an integer constant that does not fit into integer type. */
else if (TREE_CODE (expr_type) == INTEGER_TYPE
&& TREE_CODE (type) == INTEGER_TYPE
&& !int_fits_type_p (expr, type))
{
if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (expr_type)
&& tree_int_cst_sgn (expr) < 0)
{
if (produce_warns)
{
if (cstresult)
warning_at (loc, OPT_Wsign_conversion,
"unsigned conversion from %qT to %qT "
"changes value from %qE to %qE",
expr_type, type, expr, result);
else
warning_at (loc, OPT_Wsign_conversion,
"unsigned conversion from %qT to %qT "
"changes the value of %qE",
expr_type, type, expr);
}
}
else if (!TYPE_UNSIGNED (type) && TYPE_UNSIGNED (expr_type))
{
if (cstresult)
warning_at (loc, OPT_Wsign_conversion,
"signed conversion from %qT to %qT changes "
"value from %qE to %qE",
expr_type, type, expr, result);
else
warning_at (loc, OPT_Wsign_conversion,
"signed conversion from %qT to %qT changes "
"the value of %qE",
expr_type, type, expr);
}
else
give_warning = UNSAFE_OTHER;
}
else if (TREE_CODE (type) == REAL_TYPE)
{
/* Warn for an integer constant that does not fit into real type. */
if (TREE_CODE (expr_type) == INTEGER_TYPE)
{
REAL_VALUE_TYPE a = real_value_from_int_cst (0, expr);
if (!exact_real_truncate (TYPE_MODE (type), &a))
give_warning = UNSAFE_REAL;
}
/* Warn for a real constant that does not fit into a smaller
real type. */
else if (TREE_CODE (expr_type) == REAL_TYPE
&& TYPE_PRECISION (type) < TYPE_PRECISION (expr_type))
{
REAL_VALUE_TYPE a = TREE_REAL_CST (expr);
if (!exact_real_truncate (TYPE_MODE (type), &a))
give_warning = UNSAFE_REAL;
}
}
}
else if (TREE_CODE (expr) == COMPLEX_CST)
{
tree imag_part = TREE_IMAGPART (expr);
/* Conversion from complex constant with zero imaginary part,
perform check for conversion of real part. */
if ((TREE_CODE (imag_part) == REAL_CST
&& real_zerop (imag_part))
|| (TREE_CODE (imag_part) == INTEGER_CST
&& integer_zerop (imag_part)))
/* Note: in this branch we use recursive call to unsafe_conversion_p
with different type of EXPR, but it is still safe, because when EXPR
is a constant, it's type is not used in text of generated warnings
(otherwise they could sound misleading). */
return unsafe_conversion_p (loc, type, TREE_REALPART (expr), result,
produce_warns);
/* Conversion from complex constant with non-zero imaginary part. */
else
{
/* Conversion to complex type.
Perform checks for both real and imaginary parts. */
if (TREE_CODE (type) == COMPLEX_TYPE)
{
/* Unfortunately, produce_warns must be false in two subsequent
calls of unsafe_conversion_p, because otherwise we could
produce strange "double" warnings, if both real and imaginary
parts have conversion problems related to signedness.
For example:
int32_t _Complex a = 0x80000000 + 0x80000000i;
Possible solution: add a separate function for checking
constants and combine result of two calls appropriately. */
enum conversion_safety re_safety =
unsafe_conversion_p (loc, type, TREE_REALPART (expr),
result, false);
enum conversion_safety im_safety =
unsafe_conversion_p (loc, type, imag_part, result, false);
/* Merge the results into appropriate single warning. */
/* Note: this case includes SAFE_CONVERSION, i.e. success. */
if (re_safety == im_safety)
give_warning = re_safety;
else if (!re_safety && im_safety)
give_warning = im_safety;
else if (re_safety && !im_safety)
give_warning = re_safety;
else
give_warning = UNSAFE_OTHER;
}
/* Warn about conversion from complex to real or integer type. */
else
give_warning = UNSAFE_IMAGINARY;
}
}
/* Checks for remaining case: EXPR is not constant. */
else
{
/* Warn for real types converted to integer types. */
if (TREE_CODE (expr_type) == REAL_TYPE
&& TREE_CODE (type) == INTEGER_TYPE)
give_warning = UNSAFE_REAL;
else if (TREE_CODE (expr_type) == INTEGER_TYPE
&& TREE_CODE (type) == INTEGER_TYPE)
{
/* Don't warn about unsigned char y = 0xff, x = (int) y; */
expr = get_unwidened (expr, 0);
expr_type = TREE_TYPE (expr);
/* Don't warn for short y; short x = ((int)y & 0xff); */
if (TREE_CODE (expr) == BIT_AND_EXPR
|| TREE_CODE (expr) == BIT_IOR_EXPR
|| TREE_CODE (expr) == BIT_XOR_EXPR)
{
/* If both args were extended from a shortest type,
use that type if that is safe. */
expr_type = shorten_binary_op (expr_type,
TREE_OPERAND (expr, 0),
TREE_OPERAND (expr, 1),
/* bitwise */1);
if (TREE_CODE (expr) == BIT_AND_EXPR)
{
tree op0 = TREE_OPERAND (expr, 0);
tree op1 = TREE_OPERAND (expr, 1);
bool unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
bool unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
/* If one of the operands is a non-negative constant
that fits in the target type, then the type of the
other operand does not matter. */
if ((TREE_CODE (op0) == INTEGER_CST
&& int_fits_type_p (op0, c_common_signed_type (type))
&& int_fits_type_p (op0, c_common_unsigned_type (type)))
|| (TREE_CODE (op1) == INTEGER_CST
&& int_fits_type_p (op1, c_common_signed_type (type))
&& int_fits_type_p (op1,
c_common_unsigned_type (type))))
return SAFE_CONVERSION;
/* If constant is unsigned and fits in the target
type, then the result will also fit. */
else if ((TREE_CODE (op0) == INTEGER_CST
&& unsigned0
&& int_fits_type_p (op0, type))
|| (TREE_CODE (op1) == INTEGER_CST
&& unsigned1
&& int_fits_type_p (op1, type)))
return SAFE_CONVERSION;
}
}
/* Warn for integer types converted to smaller integer types. */
if (TYPE_PRECISION (type) < TYPE_PRECISION (expr_type))
give_warning = UNSAFE_OTHER;
/* When they are the same width but different signedness,
then the value may change. */
else if (((TYPE_PRECISION (type) == TYPE_PRECISION (expr_type)
&& TYPE_UNSIGNED (expr_type) != TYPE_UNSIGNED (type))
/* Even when converted to a bigger type, if the type is
unsigned but expr is signed, then negative values
will be changed. */
|| (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (expr_type)))
&& produce_warns)
warning_at (loc, OPT_Wsign_conversion, "conversion to %qT from %qT "
"may change the sign of the result",
type, expr_type);
}
/* Warn for integer types converted to real types if and only if
all the range of values of the integer type cannot be
represented by the real type. */
else if (TREE_CODE (expr_type) == INTEGER_TYPE
&& TREE_CODE (type) == REAL_TYPE)
{
/* Don't warn about char y = 0xff; float x = (int) y; */
expr = get_unwidened (expr, 0);
expr_type = TREE_TYPE (expr);
if (!int_safely_convertible_to_real_p (expr_type, type))
give_warning = UNSAFE_OTHER;
}
/* Warn for real types converted to smaller real types. */
else if (TREE_CODE (expr_type) == REAL_TYPE
&& TREE_CODE (type) == REAL_TYPE
&& TYPE_PRECISION (type) < TYPE_PRECISION (expr_type))
give_warning = UNSAFE_REAL;
/* Check conversion between two complex types. */
else if (TREE_CODE (expr_type) == COMPLEX_TYPE
&& TREE_CODE (type) == COMPLEX_TYPE)
{
/* Extract underlying types (i.e., type of real and imaginary
parts) of expr_type and type. */
tree from_type = TREE_TYPE (expr_type);
tree to_type = TREE_TYPE (type);
/* Warn for real types converted to integer types. */
if (TREE_CODE (from_type) == REAL_TYPE
&& TREE_CODE (to_type) == INTEGER_TYPE)
give_warning = UNSAFE_REAL;
/* Warn for real types converted to smaller real types. */
else if (TREE_CODE (from_type) == REAL_TYPE
&& TREE_CODE (to_type) == REAL_TYPE
&& TYPE_PRECISION (to_type) < TYPE_PRECISION (from_type))
give_warning = UNSAFE_REAL;
/* Check conversion for complex integer types. Here implementation
is simpler than for real-domain integers because it does not
involve sophisticated cases, such as bitmasks, casts, etc. */
else if (TREE_CODE (from_type) == INTEGER_TYPE
&& TREE_CODE (to_type) == INTEGER_TYPE)
{
/* Warn for integer types converted to smaller integer types. */
if (TYPE_PRECISION (to_type) < TYPE_PRECISION (from_type))
give_warning = UNSAFE_OTHER;
/* Check for different signedness, see case for real-domain
integers (above) for a more detailed comment. */
else if (((TYPE_PRECISION (to_type) == TYPE_PRECISION (from_type)
&& TYPE_UNSIGNED (to_type) != TYPE_UNSIGNED (from_type))
|| (TYPE_UNSIGNED (to_type) && !TYPE_UNSIGNED (from_type)))
&& produce_warns)
warning_at (loc, OPT_Wsign_conversion,
"conversion to %qT from %qT "
"may change the sign of the result",
type, expr_type);
}
else if (TREE_CODE (from_type) == INTEGER_TYPE
&& TREE_CODE (to_type) == REAL_TYPE
&& !int_safely_convertible_to_real_p (from_type, to_type))
give_warning = UNSAFE_OTHER;
}
/* Warn for complex types converted to real or integer types. */
else if (TREE_CODE (expr_type) == COMPLEX_TYPE
&& TREE_CODE (type) != COMPLEX_TYPE)
give_warning = UNSAFE_IMAGINARY;
}
return give_warning;
}
/* Convert EXPR to TYPE, warning about conversion problems with constants.
Invoke this function on every expression that is converted implicitly,
i.e. because of language rules and not because of an explicit cast. */
tree
convert_and_check (location_t loc, tree type, tree expr)
{
tree result;
tree expr_for_warning;
/* Convert from a value with possible excess precision rather than
via the semantic type, but do not warn about values not fitting
exactly in the semantic type. */
if (TREE_CODE (expr) == EXCESS_PRECISION_EXPR)
{
tree orig_type = TREE_TYPE (expr);
expr = TREE_OPERAND (expr, 0);
expr_for_warning = convert (orig_type, expr);
if (orig_type == type)
return expr_for_warning;
}
else
expr_for_warning = expr;
if (TREE_TYPE (expr) == type)
return expr;
result = convert (type, expr);
if (c_inhibit_evaluation_warnings == 0
&& !TREE_OVERFLOW_P (expr)
&& result != error_mark_node)
warnings_for_convert_and_check (loc, type, expr_for_warning, result);
return result;
}
/* A node in a list that describes references to variables (EXPR), which are
either read accesses if WRITER is zero, or write accesses, in which case
WRITER is the parent of EXPR. */
struct tlist
{
struct tlist *next;
tree expr, writer;
};
/* Used to implement a cache the results of a call to verify_tree. We only
use this for SAVE_EXPRs. */
struct tlist_cache
{
struct tlist_cache *next;
struct tlist *cache_before_sp;
struct tlist *cache_after_sp;
tree expr;
};
/* Obstack to use when allocating tlist structures, and corresponding
firstobj. */
static struct obstack tlist_obstack;
static char *tlist_firstobj = 0;
/* Keep track of the identifiers we've warned about, so we can avoid duplicate
warnings. */
static struct tlist *warned_ids;
/* SAVE_EXPRs need special treatment. We process them only once and then
cache the results. */
static struct tlist_cache *save_expr_cache;
static void add_tlist (struct tlist **, struct tlist *, tree, int);
static void merge_tlist (struct tlist **, struct tlist *, int);
static void verify_tree (tree, struct tlist **, struct tlist **, tree);
static bool warning_candidate_p (tree);
static bool candidate_equal_p (const_tree, const_tree);
static void warn_for_collisions (struct tlist *);
static void warn_for_collisions_1 (tree, tree, struct tlist *, int);
static struct tlist *new_tlist (struct tlist *, tree, tree);
/* Create a new struct tlist and fill in its fields. */
static struct tlist *
new_tlist (struct tlist *next, tree t, tree writer)
{
struct tlist *l;
l = XOBNEW (&tlist_obstack, struct tlist);
l->next = next;
l->expr = t;
l->writer = writer;
return l;
}
/* Add duplicates of the nodes found in ADD to the list *TO. If EXCLUDE_WRITER
is nonnull, we ignore any node we find which has a writer equal to it. */
static void
add_tlist (struct tlist **to, struct tlist *add, tree exclude_writer, int copy)
{
while (add)
{
struct tlist *next = add->next;
if (!copy)
add->next = *to;
if (!exclude_writer || !candidate_equal_p (add->writer, exclude_writer))
*to = copy ? new_tlist (*to, add->expr, add->writer) : add;
add = next;
}
}
/* Merge the nodes of ADD into TO. This merging process is done so that for
each variable that already exists in TO, no new node is added; however if
there is a write access recorded in ADD, and an occurrence on TO is only
a read access, then the occurrence in TO will be modified to record the
write. */
static void
merge_tlist (struct tlist **to, struct tlist *add, int copy)
{
struct tlist **end = to;
while (*end)
end = &(*end)->next;
while (add)
{
int found = 0;
struct tlist *tmp2;
struct tlist *next = add->next;
for (tmp2 = *to; tmp2; tmp2 = tmp2->next)
if (candidate_equal_p (tmp2->expr, add->expr))
{
found = 1;
if (!tmp2->writer)
tmp2->writer = add->writer;
}
if (!found)
{
*end = copy ? new_tlist (NULL, add->expr, add->writer) : add;
end = &(*end)->next;
*end = 0;
}
add = next;
}
}
/* WRITTEN is a variable, WRITER is its parent. Warn if any of the variable
references in list LIST conflict with it, excluding reads if ONLY writers
is nonzero. */
static void
warn_for_collisions_1 (tree written, tree writer, struct tlist *list,
int only_writes)
{
struct tlist *tmp;
/* Avoid duplicate warnings. */
for (tmp = warned_ids; tmp; tmp = tmp->next)
if (candidate_equal_p (tmp->expr, written))
return;
while (list)
{
if (candidate_equal_p (list->expr, written)
&& !candidate_equal_p (list->writer, writer)
&& (!only_writes || list->writer))
{
warned_ids = new_tlist (warned_ids, written, NULL_TREE);
warning_at (EXPR_LOC_OR_LOC (writer, input_location),
OPT_Wsequence_point, "operation on %qE may be undefined",
list->expr);
}
list = list->next;
}
}
/* Given a list LIST of references to variables, find whether any of these
can cause conflicts due to missing sequence points. */
static void
warn_for_collisions (struct tlist *list)
{
struct tlist *tmp;
for (tmp = list; tmp; tmp = tmp->next)
{
if (tmp->writer)
warn_for_collisions_1 (tmp->expr, tmp->writer, list, 0);
}
}
/* Return nonzero if X is a tree that can be verified by the sequence point
warnings. */
static bool
warning_candidate_p (tree x)
{
if (DECL_P (x) && DECL_ARTIFICIAL (x))
return false;
if (TREE_CODE (x) == BLOCK)
return false;
/* VOID_TYPE_P (TREE_TYPE (x)) is workaround for cp/tree.c
(lvalue_p) crash on TRY/CATCH. */
if (TREE_TYPE (x) == NULL_TREE || VOID_TYPE_P (TREE_TYPE (x)))
return false;
if (!lvalue_p (x))
return false;
/* No point to track non-const calls, they will never satisfy
operand_equal_p. */
if (TREE_CODE (x) == CALL_EXPR && (call_expr_flags (x) & ECF_CONST) == 0)
return false;
if (TREE_CODE (x) == STRING_CST)
return false;
return true;
}
/* Return nonzero if X and Y appear to be the same candidate (or NULL) */
static bool
candidate_equal_p (const_tree x, const_tree y)
{
return (x == y) || (x && y && operand_equal_p (x, y, 0));
}
/* Walk the tree X, and record accesses to variables. If X is written by the
parent tree, WRITER is the parent.
We store accesses in one of the two lists: PBEFORE_SP, and PNO_SP. If this
expression or its only operand forces a sequence point, then everything up
to the sequence point is stored in PBEFORE_SP. Everything else gets stored
in PNO_SP.
Once we return, we will have emitted warnings if any subexpression before
such a sequence point could be undefined. On a higher level, however, the
sequence point may not be relevant, and we'll merge the two lists.
Example: (b++, a) + b;
The call that processes the COMPOUND_EXPR will store the increment of B
in PBEFORE_SP, and the use of A in PNO_SP. The higher-level call that
processes the PLUS_EXPR will need to merge the two lists so that
eventually, all accesses end up on the same list (and we'll warn about the
unordered subexpressions b++ and b.
A note on merging. If we modify the former example so that our expression
becomes
(b++, b) + a
care must be taken not simply to add all three expressions into the final
PNO_SP list. The function merge_tlist takes care of that by merging the
before-SP list of the COMPOUND_EXPR into its after-SP list in a special
way, so that no more than one access to B is recorded. */
static void
verify_tree (tree x, struct tlist **pbefore_sp, struct tlist **pno_sp,
tree writer)
{
struct tlist *tmp_before, *tmp_nosp, *tmp_list2, *tmp_list3;
enum tree_code code;
enum tree_code_class cl;
/* X may be NULL if it is the operand of an empty statement expression
({ }). */
if (x == NULL)
return;
restart:
code = TREE_CODE (x);
cl = TREE_CODE_CLASS (code);
if (warning_candidate_p (x))
*pno_sp = new_tlist (*pno_sp, x, writer);
switch (code)
{
case CONSTRUCTOR:
case SIZEOF_EXPR:
return;
case COMPOUND_EXPR:
case TRUTH_ANDIF_EXPR:
case TRUTH_ORIF_EXPR:
tmp_before = tmp_nosp = tmp_list2 = tmp_list3 = 0;
verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_nosp, NULL_TREE);
warn_for_collisions (tmp_nosp);
merge_tlist (pbefore_sp, tmp_before, 0);
merge_tlist (pbefore_sp, tmp_nosp, 0);
verify_tree (TREE_OPERAND (x, 1), &tmp_list3, &tmp_list2, NULL_TREE);
warn_for_collisions (tmp_list2);
merge_tlist (pbefore_sp, tmp_list3, 0);
merge_tlist (pno_sp, tmp_list2, 0);
return;
case COND_EXPR:
tmp_before = tmp_list2 = 0;
verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_list2, NULL_TREE);
warn_for_collisions (tmp_list2);
merge_tlist (pbefore_sp, tmp_before, 0);
merge_tlist (pbefore_sp, tmp_list2, 0);
tmp_list3 = tmp_nosp = 0;
verify_tree (TREE_OPERAND (x, 1), &tmp_list3, &tmp_nosp, NULL_TREE);
warn_for_collisions (tmp_nosp);
merge_tlist (pbefore_sp, tmp_list3, 0);
tmp_list3 = tmp_list2 = 0;
verify_tree (TREE_OPERAND (x, 2), &tmp_list3, &tmp_list2, NULL_TREE);
warn_for_collisions (tmp_list2);
merge_tlist (pbefore_sp, tmp_list3, 0);
/* Rather than add both tmp_nosp and tmp_list2, we have to merge the
two first, to avoid warning for (a ? b++ : b++). */
merge_tlist (&tmp_nosp, tmp_list2, 0);
add_tlist (pno_sp, tmp_nosp, NULL_TREE, 0);
return;
case PREDECREMENT_EXPR:
case PREINCREMENT_EXPR:
case POSTDECREMENT_EXPR:
case POSTINCREMENT_EXPR:
verify_tree (TREE_OPERAND (x, 0), pno_sp, pno_sp, x);
return;
case MODIFY_EXPR:
tmp_before = tmp_nosp = tmp_list3 = 0;
verify_tree (TREE_OPERAND (x, 1), &tmp_before, &tmp_nosp, NULL_TREE);
verify_tree (TREE_OPERAND (x, 0), &tmp_list3, &tmp_list3, x);
/* Expressions inside the LHS are not ordered wrt. the sequence points
in the RHS. Example:
*a = (a++, 2)
Despite the fact that the modification of "a" is in the before_sp
list (tmp_before), it conflicts with the use of "a" in the LHS.
We can handle this by adding the contents of tmp_list3
to those of tmp_before, and redoing the collision warnings for that
list. */
add_tlist (&tmp_before, tmp_list3, x, 1);
warn_for_collisions (tmp_before);
/* Exclude the LHS itself here; we first have to merge it into the
tmp_nosp list. This is done to avoid warning for "a = a"; if we
didn't exclude the LHS, we'd get it twice, once as a read and once
as a write. */
add_tlist (pno_sp, tmp_list3, x, 0);
warn_for_collisions_1 (TREE_OPERAND (x, 0), x, tmp_nosp, 1);
merge_tlist (pbefore_sp, tmp_before, 0);
if (warning_candidate_p (TREE_OPERAND (x, 0)))
merge_tlist (&tmp_nosp, new_tlist (NULL, TREE_OPERAND (x, 0), x), 0);
add_tlist (pno_sp, tmp_nosp, NULL_TREE, 1);
return;
case CALL_EXPR:
/* We need to warn about conflicts among arguments and conflicts between
args and the function address. Side effects of the function address,
however, are not ordered by the sequence point of the call. */
{
call_expr_arg_iterator iter;
tree arg;
tmp_before = tmp_nosp = 0;
verify_tree (CALL_EXPR_FN (x), &tmp_before, &tmp_nosp, NULL_TREE);
FOR_EACH_CALL_EXPR_ARG (arg, iter, x)
{
tmp_list2 = tmp_list3 = 0;
verify_tree (arg, &tmp_list2, &tmp_list3, NULL_TREE);
merge_tlist (&tmp_list3, tmp_list2, 0);
add_tlist (&tmp_before, tmp_list3, NULL_TREE, 0);
}
add_tlist (&tmp_before, tmp_nosp, NULL_TREE, 0);
warn_for_collisions (tmp_before);
add_tlist (pbefore_sp, tmp_before, NULL_TREE, 0);
return;
}
case TREE_LIST:
/* Scan all the list, e.g. indices of multi dimensional array. */
while (x)
{
tmp_before = tmp_nosp = 0;
verify_tree (TREE_VALUE (x), &tmp_before, &tmp_nosp, NULL_TREE);
merge_tlist (&tmp_nosp, tmp_before, 0);
add_tlist (pno_sp, tmp_nosp, NULL_TREE, 0);
x = TREE_CHAIN (x);
}
return;
case SAVE_EXPR:
{
struct tlist_cache *t;
for (t = save_expr_cache; t; t = t->next)
if (candidate_equal_p (t->expr, x))
break;
if (!t)
{
t = XOBNEW (&tlist_obstack, struct tlist_cache);
t->next = save_expr_cache;
t->expr = x;
save_expr_cache = t;
tmp_before = tmp_nosp = 0;
verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_nosp, NULL_TREE);
warn_for_collisions (tmp_nosp);
tmp_list3 = 0;
merge_tlist (&tmp_list3, tmp_nosp, 0);
t->cache_before_sp = tmp_before;
t->cache_after_sp = tmp_list3;
}
merge_tlist (pbefore_sp, t->cache_before_sp, 1);
add_tlist (pno_sp, t->cache_after_sp, NULL_TREE, 1);
return;
}
case ADDR_EXPR:
x = TREE_OPERAND (x, 0);
if (DECL_P (x))
return;
writer = 0;
goto restart;
default:
/* For other expressions, simply recurse on their operands.
Manual tail recursion for unary expressions.
Other non-expressions need not be processed. */
if (cl == tcc_unary)
{
x = TREE_OPERAND (x, 0);
writer = 0;
goto restart;
}
else if (IS_EXPR_CODE_CLASS (cl))
{
int lp;
int max = TREE_OPERAND_LENGTH (x);
for (lp = 0; lp < max; lp++)
{
tmp_before = tmp_nosp = 0;
verify_tree (TREE_OPERAND (x, lp), &tmp_before, &tmp_nosp, 0);
merge_tlist (&tmp_nosp, tmp_before, 0);
add_tlist (pno_sp, tmp_nosp, NULL_TREE, 0);
}
}
return;
}
}
/* Try to warn for undefined behavior in EXPR due to missing sequence
points. */
DEBUG_FUNCTION void
verify_sequence_points (tree expr)
{
struct tlist *before_sp = 0, *after_sp = 0;
warned_ids = 0;
save_expr_cache = 0;
if (tlist_firstobj == 0)
{
gcc_obstack_init (&tlist_obstack);
tlist_firstobj = (char *) obstack_alloc (&tlist_obstack, 0);
}
verify_tree (expr, &before_sp, &after_sp, 0);
warn_for_collisions (after_sp);
obstack_free (&tlist_obstack, tlist_firstobj);
}
/* Validate the expression after `case' and apply default promotions. */
static tree
check_case_value (location_t loc, tree value)
{
if (value == NULL_TREE)
return value;
if (TREE_CODE (value) == INTEGER_CST)
/* Promote char or short to int. */
value = perform_integral_promotions (value);
else if (value != error_mark_node)
{
error_at (loc, "case label does not reduce to an integer constant");
value = error_mark_node;
}
constant_expression_warning (value);
return value;
}
/* See if the case values LOW and HIGH are in the range of the original
type (i.e. before the default conversion to int) of the switch testing
expression.
TYPE is the promoted type of the testing expression, and ORIG_TYPE is
the type before promoting it. CASE_LOW_P is a pointer to the lower
bound of the case label, and CASE_HIGH_P is the upper bound or NULL
if the case is not a case range.
The caller has to make sure that we are not called with NULL for
CASE_LOW_P (i.e. the default case). OUTSIDE_RANGE_P says whether there
was a case value that doesn't fit into the range of the ORIG_TYPE.
Returns true if the case label is in range of ORIG_TYPE (saturated or
untouched) or false if the label is out of range. */
static bool
check_case_bounds (location_t loc, tree type, tree orig_type,
tree *case_low_p, tree *case_high_p,
bool *outside_range_p)
{
tree min_value, max_value;
tree case_low = *case_low_p;
tree case_high = case_high_p ? *case_high_p : case_low;
/* If there was a problem with the original type, do nothing. */
if (orig_type == error_mark_node)
return true;
min_value = TYPE_MIN_VALUE (orig_type);
max_value = TYPE_MAX_VALUE (orig_type);
/* We'll really need integer constants here. */
case_low = fold (case_low);
case_high = fold (case_high);
/* Case label is less than minimum for type. */
if (tree_int_cst_compare (case_low, min_value) < 0
&& tree_int_cst_compare (case_high, min_value) < 0)
{
warning_at (loc, 0, "case label value is less than minimum value "
"for type");
*outside_range_p = true;
return false;
}
/* Case value is greater than maximum for type. */
if (tree_int_cst_compare (case_low, max_value) > 0
&& tree_int_cst_compare (case_high, max_value) > 0)
{
warning_at (loc, 0, "case label value exceeds maximum value for type");
*outside_range_p = true;
return false;
}
/* Saturate lower case label value to minimum. */
if (tree_int_cst_compare (case_high, min_value) >= 0
&& tree_int_cst_compare (case_low, min_value) < 0)
{
warning_at (loc, 0, "lower value in case label range"
" less than minimum value for type");
*outside_range_p = true;
case_low = min_value;
}
/* Saturate upper case label value to maximum. */
if (tree_int_cst_compare (case_low, max_value) <= 0
&& tree_int_cst_compare (case_high, max_value) > 0)
{
warning_at (loc, 0, "upper value in case label range"
" exceeds maximum value for type");
*outside_range_p = true;
case_high = max_value;
}
if (*case_low_p != case_low)
*case_low_p = convert (type, case_low);
if (case_high_p && *case_high_p != case_high)
*case_high_p = convert (type, case_high);
return true;
}
/* Return an integer type with BITS bits of precision,
that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
tree
c_common_type_for_size (unsigned int bits, int unsignedp)
{
int i;
if (bits == TYPE_PRECISION (integer_type_node))
return unsignedp ? unsigned_type_node : integer_type_node;
if (bits == TYPE_PRECISION (signed_char_type_node))
return unsignedp ? unsigned_char_type_node : signed_char_type_node;
if (bits == TYPE_PRECISION (short_integer_type_node))
return unsignedp ? short_unsigned_type_node : short_integer_type_node;
if (bits == TYPE_PRECISION (long_integer_type_node))
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
if (bits == TYPE_PRECISION (long_long_integer_type_node))
return (unsignedp ? long_long_unsigned_type_node
: long_long_integer_type_node);
for (i = 0; i < NUM_INT_N_ENTS; i ++)
if (int_n_enabled_p[i]
&& bits == int_n_data[i].bitsize)
return (unsignedp ? int_n_trees[i].unsigned_type
: int_n_trees[i].signed_type);
if (bits == TYPE_PRECISION (widest_integer_literal_type_node))
return (unsignedp ? widest_unsigned_literal_type_node
: widest_integer_literal_type_node);
if (bits <= TYPE_PRECISION (intQI_type_node))
return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
if (bits <= TYPE_PRECISION (intHI_type_node))
return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
if (bits <= TYPE_PRECISION (intSI_type_node))
return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
if (bits <= TYPE_PRECISION (intDI_type_node))
return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
return NULL_TREE;
}
/* Return a fixed-point type that has at least IBIT ibits and FBIT fbits
that is unsigned if UNSIGNEDP is nonzero, otherwise signed;
and saturating if SATP is nonzero, otherwise not saturating. */
tree
c_common_fixed_point_type_for_size (unsigned int ibit, unsigned int fbit,
int unsignedp, int satp)
{
enum mode_class mclass;
if (ibit == 0)
mclass = unsignedp ? MODE_UFRACT : MODE_FRACT;
else
mclass = unsignedp ? MODE_UACCUM : MODE_ACCUM;
opt_scalar_mode opt_mode;
scalar_mode mode;
FOR_EACH_MODE_IN_CLASS (opt_mode, mclass)
{
mode = opt_mode.require ();
if (GET_MODE_IBIT (mode) >= ibit && GET_MODE_FBIT (mode) >= fbit)
break;
}
if (!opt_mode.exists (&mode) || !targetm.scalar_mode_supported_p (mode))
{
sorry ("GCC cannot support operators with integer types and "
"fixed-point types that have too many integral and "
"fractional bits together");
return NULL_TREE;
}
return c_common_type_for_mode (mode, satp);
}
/* Used for communication between c_common_type_for_mode and
c_register_builtin_type. */
tree registered_builtin_types;
/* Return a data type that has machine mode MODE.
If the mode is an integer,
then UNSIGNEDP selects between signed and unsigned types.
If the mode is a fixed-point mode,
then UNSIGNEDP selects between saturating and nonsaturating types. */
tree
c_common_type_for_mode (machine_mode mode, int unsignedp)
{
tree t;
int i;
if (mode == TYPE_MODE (integer_type_node))
return unsignedp ? unsigned_type_node : integer_type_node;
if (mode == TYPE_MODE (signed_char_type_node))
return unsignedp ? unsigned_char_type_node : signed_char_type_node;
if (mode == TYPE_MODE (short_integer_type_node))
return unsignedp ? short_unsigned_type_node : short_integer_type_node;
if (mode == TYPE_MODE (long_integer_type_node))
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
if (mode == TYPE_MODE (long_long_integer_type_node))
return unsignedp ? long_long_unsigned_type_node : long_long_integer_type_node;
for (i = 0; i < NUM_INT_N_ENTS; i ++)
if (int_n_enabled_p[i]
&& mode == int_n_data[i].m)
return (unsignedp ? int_n_trees[i].unsigned_type
: int_n_trees[i].signed_type);
if (mode == QImode)
return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
if (mode == HImode)
return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
if (mode == SImode)
return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
if (mode == DImode)
return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
#if HOST_BITS_PER_WIDE_INT >= 64
if (mode == TYPE_MODE (intTI_type_node))
return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
#endif
if (mode == TYPE_MODE (float_type_node))
return float_type_node;
if (mode == TYPE_MODE (double_type_node))
return double_type_node;
if (mode == TYPE_MODE (long_double_type_node))
return long_double_type_node;
for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE
&& mode == TYPE_MODE (FLOATN_NX_TYPE_NODE (i)))
return FLOATN_NX_TYPE_NODE (i);
if (mode == TYPE_MODE (void_type_node))
return void_type_node;
if (mode == TYPE_MODE (build_pointer_type (char_type_node))
|| mode == TYPE_MODE (build_pointer_type (integer_type_node)))
{
unsigned int precision
= GET_MODE_PRECISION (as_a <scalar_int_mode> (mode));
return (unsignedp
? make_unsigned_type (precision)
: make_signed_type (precision));
}
if (COMPLEX_MODE_P (mode))
{
machine_mode inner_mode;
tree inner_type;
if (mode == TYPE_MODE (complex_float_type_node))
return complex_float_type_node;
if (mode == TYPE_MODE (complex_double_type_node))
return complex_double_type_node;
if (mode == TYPE_MODE (complex_long_double_type_node))
return complex_long_double_type_node;
for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
if (COMPLEX_FLOATN_NX_TYPE_NODE (i) != NULL_TREE
&& mode == TYPE_MODE (COMPLEX_FLOATN_NX_TYPE_NODE (i)))
return COMPLEX_FLOATN_NX_TYPE_NODE (i);
if (mode == TYPE_MODE (complex_integer_type_node) && !unsignedp)
return complex_integer_type_node;
inner_mode = GET_MODE_INNER (mode);
inner_type = c_common_type_for_mode (inner_mode, unsignedp);
if (inner_type != NULL_TREE)
return build_complex_type (inner_type);
}
else if (GET_MODE_CLASS (mode) == MODE_VECTOR_BOOL
&& valid_vector_subparts_p (GET_MODE_NUNITS (mode)))
{
unsigned int elem_bits = vector_element_size (GET_MODE_BITSIZE (mode),
GET_MODE_NUNITS (mode));
tree bool_type = build_nonstandard_boolean_type (elem_bits);
return build_vector_type_for_mode (bool_type, mode);
}
else if (VECTOR_MODE_P (mode)
&& valid_vector_subparts_p (GET_MODE_NUNITS (mode)))
{
machine_mode inner_mode = GET_MODE_INNER (mode);
tree inner_type = c_common_type_for_mode (inner_mode, unsignedp);
if (inner_type != NULL_TREE)
return build_vector_type_for_mode (inner_type, mode);
}
if (mode == TYPE_MODE (dfloat32_type_node))
return dfloat32_type_node;
if (mode == TYPE_MODE (dfloat64_type_node))
return dfloat64_type_node;
if (mode == TYPE_MODE (dfloat128_type_node))
return dfloat128_type_node;
if (ALL_SCALAR_FIXED_POINT_MODE_P (mode))
{
if (mode == TYPE_MODE (short_fract_type_node))
return unsignedp ? sat_short_fract_type_node : short_fract_type_node;
if (mode == TYPE_MODE (fract_type_node))
return unsignedp ? sat_fract_type_node : fract_type_node;
if (mode == TYPE_MODE (long_fract_type_node))
return unsignedp ? sat_long_fract_type_node : long_fract_type_node;
if (mode == TYPE_MODE (long_long_fract_type_node))
return unsignedp ? sat_long_long_fract_type_node
: long_long_fract_type_node;
if (mode == TYPE_MODE (unsigned_short_fract_type_node))
return unsignedp ? sat_unsigned_short_fract_type_node
: unsigned_short_fract_type_node;
if (mode == TYPE_MODE (unsigned_fract_type_node))
return unsignedp ? sat_unsigned_fract_type_node
: unsigned_fract_type_node;
if (mode == TYPE_MODE (unsigned_long_fract_type_node))
return unsignedp ? sat_unsigned_long_fract_type_node
: unsigned_long_fract_type_node;
if (mode == TYPE_MODE (unsigned_long_long_fract_type_node))
return unsignedp ? sat_unsigned_long_long_fract_type_node
: unsigned_long_long_fract_type_node;
if (mode == TYPE_MODE (short_accum_type_node))
return unsignedp ? sat_short_accum_type_node : short_accum_type_node;
if (mode == TYPE_MODE (accum_type_node))
return unsignedp ? sat_accum_type_node : accum_type_node;
if (mode == TYPE_MODE (long_accum_type_node))
return unsignedp ? sat_long_accum_type_node : long_accum_type_node;
if (mode == TYPE_MODE (long_long_accum_type_node))
return unsignedp ? sat_long_long_accum_type_node
: long_long_accum_type_node;
if (mode == TYPE_MODE (unsigned_short_accum_type_node))
return unsignedp ? sat_unsigned_short_accum_type_node
: unsigned_short_accum_type_node;
if (mode == TYPE_MODE (unsigned_accum_type_node))
return unsignedp ? sat_unsigned_accum_type_node
: unsigned_accum_type_node;
if (mode == TYPE_MODE (unsigned_long_accum_type_node))
return unsignedp ? sat_unsigned_long_accum_type_node
: unsigned_long_accum_type_node;
if (mode == TYPE_MODE (unsigned_long_long_accum_type_node))
return unsignedp ? sat_unsigned_long_long_accum_type_node
: unsigned_long_long_accum_type_node;
if (mode == QQmode)
return unsignedp ? sat_qq_type_node : qq_type_node;
if (mode == HQmode)
return unsignedp ? sat_hq_type_node : hq_type_node;
if (mode == SQmode)
return unsignedp ? sat_sq_type_node : sq_type_node;
if (mode == DQmode)
return unsignedp ? sat_dq_type_node : dq_type_node;
if (mode == TQmode)
return unsignedp ? sat_tq_type_node : tq_type_node;
if (mode == UQQmode)
return unsignedp ? sat_uqq_type_node : uqq_type_node;
if (mode == UHQmode)
return unsignedp ? sat_uhq_type_node : uhq_type_node;
if (mode == USQmode)
return unsignedp ? sat_usq_type_node : usq_type_node;
if (mode == UDQmode)
return unsignedp ? sat_udq_type_node : udq_type_node;
if (mode == UTQmode)
return unsignedp ? sat_utq_type_node : utq_type_node;
if (mode == HAmode)
return unsignedp ? sat_ha_type_node : ha_type_node;
if (mode == SAmode)
return unsignedp ? sat_sa_type_node : sa_type_node;
if (mode == DAmode)
return unsignedp ? sat_da_type_node : da_type_node;
if (mode == TAmode)
return unsignedp ? sat_ta_type_node : ta_type_node;
if (mode == UHAmode)
return unsignedp ? sat_uha_type_node : uha_type_node;
if (mode == USAmode)
return unsignedp ? sat_usa_type_node : usa_type_node;
if (mode == UDAmode)
return unsignedp ? sat_uda_type_node : uda_type_node;
if (mode == UTAmode)
return unsignedp ? sat_uta_type_node : uta_type_node;
}
for (t = registered_builtin_types; t; t = TREE_CHAIN (t))
if (TYPE_MODE (TREE_VALUE (t)) == mode
&& !!unsignedp == !!TYPE_UNSIGNED (TREE_VALUE (t)))
return TREE_VALUE (t);
return NULL_TREE;
}
tree
c_common_unsigned_type (tree type)
{
return c_common_signed_or_unsigned_type (1, type);
}
/* Return a signed type the same as TYPE in other respects. */
tree
c_common_signed_type (tree type)
{
return c_common_signed_or_unsigned_type (0, type);
}
/* Return a type the same as TYPE except unsigned or
signed according to UNSIGNEDP. */
tree
c_common_signed_or_unsigned_type (int unsignedp, tree type)
{
tree type1;
int i;
/* This block of code emulates the behavior of the old
c_common_unsigned_type. In particular, it returns
long_unsigned_type_node if passed a long, even when a int would
have the same size. This is necessary for warnings to work
correctly in archs where sizeof(int) == sizeof(long) */
type1 = TYPE_MAIN_VARIANT (type);
if (type1 == signed_char_type_node || type1 == char_type_node || type1 == unsigned_char_type_node)
return unsignedp ? unsigned_char_type_node : signed_char_type_node;
if (type1 == integer_type_node || type1 == unsigned_type_node)
return unsignedp ? unsigned_type_node : integer_type_node;
if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
return unsignedp ? short_unsigned_type_node : short_integer_type_node;
if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
if (type1 == long_long_integer_type_node || type1 == long_long_unsigned_type_node)
return unsignedp ? long_long_unsigned_type_node : long_long_integer_type_node;
for (i = 0; i < NUM_INT_N_ENTS; i ++)
if (int_n_enabled_p[i]
&& (type1 == int_n_trees[i].unsigned_type
|| type1 == int_n_trees[i].signed_type))
return (unsignedp ? int_n_trees[i].unsigned_type
: int_n_trees[i].signed_type);
#if HOST_BITS_PER_WIDE_INT >= 64
if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
#endif
if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
#define C_COMMON_FIXED_TYPES(NAME) \
if (type1 == short_ ## NAME ## _type_node \
|| type1 == unsigned_short_ ## NAME ## _type_node) \
return unsignedp ? unsigned_short_ ## NAME ## _type_node \
: short_ ## NAME ## _type_node; \
if (type1 == NAME ## _type_node \
|| type1 == unsigned_ ## NAME ## _type_node) \
return unsignedp ? unsigned_ ## NAME ## _type_node \
: NAME ## _type_node; \
if (type1 == long_ ## NAME ## _type_node \
|| type1 == unsigned_long_ ## NAME ## _type_node) \
return unsignedp ? unsigned_long_ ## NAME ## _type_node \
: long_ ## NAME ## _type_node; \
if (type1 == long_long_ ## NAME ## _type_node \
|| type1 == unsigned_long_long_ ## NAME ## _type_node) \
return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
: long_long_ ## NAME ## _type_node;
#define C_COMMON_FIXED_MODE_TYPES(NAME) \
if (type1 == NAME ## _type_node \
|| type1 == u ## NAME ## _type_node) \
return unsignedp ? u ## NAME ## _type_node \
: NAME ## _type_node;
#define C_COMMON_FIXED_TYPES_SAT(NAME) \
if (type1 == sat_ ## short_ ## NAME ## _type_node \
|| type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
: sat_ ## short_ ## NAME ## _type_node; \
if (type1 == sat_ ## NAME ## _type_node \
|| type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
: sat_ ## NAME ## _type_node; \
if (type1 == sat_ ## long_ ## NAME ## _type_node \
|| type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
: sat_ ## long_ ## NAME ## _type_node; \
if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
|| type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
: sat_ ## long_long_ ## NAME ## _type_node;
#define C_COMMON_FIXED_MODE_TYPES_SAT(NAME) \
if (type1 == sat_ ## NAME ## _type_node \
|| type1 == sat_ ## u ## NAME ## _type_node) \
return unsignedp ? sat_ ## u ## NAME ## _type_node \
: sat_ ## NAME ## _type_node;
C_COMMON_FIXED_TYPES (fract);
C_COMMON_FIXED_TYPES_SAT (fract);
C_COMMON_FIXED_TYPES (accum);
C_COMMON_FIXED_TYPES_SAT (accum);
C_COMMON_FIXED_MODE_TYPES (qq);
C_COMMON_FIXED_MODE_TYPES (hq);
C_COMMON_FIXED_MODE_TYPES (sq);
C_COMMON_FIXED_MODE_TYPES (dq);
C_COMMON_FIXED_MODE_TYPES (tq);
C_COMMON_FIXED_MODE_TYPES_SAT (qq);
C_COMMON_FIXED_MODE_TYPES_SAT (hq);
C_COMMON_FIXED_MODE_TYPES_SAT (sq);
C_COMMON_FIXED_MODE_TYPES_SAT (dq);
C_COMMON_FIXED_MODE_TYPES_SAT (tq);
C_COMMON_FIXED_MODE_TYPES (ha);
C_COMMON_FIXED_MODE_TYPES (sa);
C_COMMON_FIXED_MODE_TYPES (da);
C_COMMON_FIXED_MODE_TYPES (ta);
C_COMMON_FIXED_MODE_TYPES_SAT (ha);
C_COMMON_FIXED_MODE_TYPES_SAT (sa);
C_COMMON_FIXED_MODE_TYPES_SAT (da);
C_COMMON_FIXED_MODE_TYPES_SAT (ta);
/* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
the precision; they have precision set to match their range, but
may use a wider mode to match an ABI. If we change modes, we may
wind up with bad conversions. For INTEGER_TYPEs in C, must check
the precision as well, so as to yield correct results for
bit-field types. C++ does not have these separate bit-field
types, and producing a signed or unsigned variant of an
ENUMERAL_TYPE may cause other problems as well. */
if (!INTEGRAL_TYPE_P (type)
|| TYPE_UNSIGNED (type) == unsignedp)
return type;
#define TYPE_OK(node) \
(TYPE_MODE (type) == TYPE_MODE (node) \
&& TYPE_PRECISION (type) == TYPE_PRECISION (node))
if (TYPE_OK (signed_char_type_node))
return unsignedp ? unsigned_char_type_node : signed_char_type_node;
if (TYPE_OK (integer_type_node))
return unsignedp ? unsigned_type_node : integer_type_node;
if (TYPE_OK (short_integer_type_node))
return unsignedp ? short_unsigned_type_node : short_integer_type_node;
if (TYPE_OK (long_integer_type_node))
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
if (TYPE_OK (long_long_integer_type_node))
return (unsignedp ? long_long_unsigned_type_node
: long_long_integer_type_node);
for (i = 0; i < NUM_INT_N_ENTS; i ++)
if (int_n_enabled_p[i]
&& TYPE_MODE (type) == int_n_data[i].m
&& TYPE_PRECISION (type) == int_n_data[i].bitsize)
return (unsignedp ? int_n_trees[i].unsigned_type
: int_n_trees[i].signed_type);
#if HOST_BITS_PER_WIDE_INT >= 64
if (TYPE_OK (intTI_type_node))
return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
#endif
if (TYPE_OK (intDI_type_node))
return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
if (TYPE_OK (intSI_type_node))
return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
if (TYPE_OK (intHI_type_node))
return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
if (TYPE_OK (intQI_type_node))
return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
#undef TYPE_OK
return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
}
/* Build a bit-field integer type for the given WIDTH and UNSIGNEDP. */
tree
c_build_bitfield_integer_type (unsigned HOST_WIDE_INT width, int unsignedp)
{
int i;
/* Extended integer types of the same width as a standard type have
lesser rank, so those of the same width as int promote to int or
unsigned int and are valid for printf formats expecting int or
unsigned int. To avoid such special cases, avoid creating
extended integer types for bit-fields if a standard integer type
is available. */
if (width == TYPE_PRECISION (integer_type_node))
return unsignedp ? unsigned_type_node : integer_type_node;
if (width == TYPE_PRECISION (signed_char_type_node))
return unsignedp ? unsigned_char_type_node : signed_char_type_node;
if (width == TYPE_PRECISION (short_integer_type_node))
return unsignedp ? short_unsigned_type_node : short_integer_type_node;
if (width == TYPE_PRECISION (long_integer_type_node))
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
if (width == TYPE_PRECISION (long_long_integer_type_node))
return (unsignedp ? long_long_unsigned_type_node
: long_long_integer_type_node);
for (i = 0; i < NUM_INT_N_ENTS; i ++)
if (int_n_enabled_p[i]
&& width == int_n_data[i].bitsize)
return (unsignedp ? int_n_trees[i].unsigned_type
: int_n_trees[i].signed_type);
return build_nonstandard_integer_type (width, unsignedp);
}
/* The C version of the register_builtin_type langhook. */
void
c_register_builtin_type (tree type, const char* name)
{
tree decl;
decl = build_decl (UNKNOWN_LOCATION,
TYPE_DECL, get_identifier (name), type);
DECL_ARTIFICIAL (decl) = 1;
if (!TYPE_NAME (type))
TYPE_NAME (type) = decl;
lang_hooks.decls.pushdecl (decl);
registered_builtin_types = tree_cons (0, type, registered_builtin_types);
}
/* Print an error message for invalid operands to arith operation
CODE with TYPE0 for operand 0, and TYPE1 for operand 1.
RICHLOC is a rich location for the message, containing either
three separate locations for each of the operator and operands
lhs op rhs
~~~ ^~ ~~~
(C FE), or one location ranging over all over them
lhs op rhs
~~~~^~~~~~
(C++ FE). */
void
binary_op_error (rich_location *richloc, enum tree_code code,
tree type0, tree type1)
{
const char *opname;
switch (code)
{
case PLUS_EXPR:
opname = "+"; break;
case MINUS_EXPR:
opname = "-"; break;
case MULT_EXPR:
opname = "*"; break;
case MAX_EXPR:
opname = "max"; break;
case MIN_EXPR:
opname = "min"; break;
case EQ_EXPR:
opname = "=="; break;
case NE_EXPR:
opname = "!="; break;
case LE_EXPR:
opname = "<="; break;
case GE_EXPR:
opname = ">="; break;
case LT_EXPR:
opname = "<"; break;
case GT_EXPR:
opname = ">"; break;
case LSHIFT_EXPR:
opname = "<<"; break;
case RSHIFT_EXPR:
opname = ">>"; break;
case TRUNC_MOD_EXPR:
case FLOOR_MOD_EXPR:
opname = "%"; break;
case TRUNC_DIV_EXPR:
case FLOOR_DIV_EXPR:
opname = "/"; break;
case BIT_AND_EXPR:
opname = "&"; break;
case BIT_IOR_EXPR:
opname = "|"; break;
case TRUTH_ANDIF_EXPR:
opname = "&&"; break;
case TRUTH_ORIF_EXPR:
opname = "||"; break;
case BIT_XOR_EXPR:
opname = "^"; break;
default:
gcc_unreachable ();
}
error_at (richloc,
"invalid operands to binary %s (have %qT and %qT)",
opname, type0, type1);
}
/* Given an expression as a tree, return its original type. Do this
by stripping any conversion that preserves the sign and precision. */
static tree
expr_original_type (tree expr)
{
STRIP_SIGN_NOPS (expr);
return TREE_TYPE (expr);
}
/* Subroutine of build_binary_op, used for comparison operations.
See if the operands have both been converted from subword integer types
and, if so, perhaps change them both back to their original type.
This function is also responsible for converting the two operands
to the proper common type for comparison.
The arguments of this function are all pointers to local variables
of build_binary_op: OP0_PTR is &OP0, OP1_PTR is &OP1,
RESTYPE_PTR is &RESULT_TYPE and RESCODE_PTR is &RESULTCODE.
LOC is the location of the comparison.
If this function returns non-NULL_TREE, it means that the comparison has
a constant value. What this function returns is an expression for
that value. */
tree
shorten_compare (location_t loc, tree *op0_ptr, tree *op1_ptr,
tree *restype_ptr, enum tree_code *rescode_ptr)
{
tree type;
tree op0 = *op0_ptr;
tree op1 = *op1_ptr;
int unsignedp0, unsignedp1;
int real1, real2;
tree primop0, primop1;
enum tree_code code = *rescode_ptr;
/* Throw away any conversions to wider types
already present in the operands. */
primop0 = c_common_get_narrower (op0, &unsignedp0);
primop1 = c_common_get_narrower (op1, &unsignedp1);
/* If primopN is first sign-extended from primopN's precision to opN's
precision, then zero-extended from opN's precision to
*restype_ptr precision, shortenings might be invalid. */
if (TYPE_PRECISION (TREE_TYPE (primop0)) < TYPE_PRECISION (TREE_TYPE (op0))
&& TYPE_PRECISION (TREE_TYPE (op0)) < TYPE_PRECISION (*restype_ptr)
&& !unsignedp0
&& TYPE_UNSIGNED (TREE_TYPE (op0)))
primop0 = op0;
if (TYPE_PRECISION (TREE_TYPE (primop1)) < TYPE_PRECISION (TREE_TYPE (op1))
&& TYPE_PRECISION (TREE_TYPE (op1)) < TYPE_PRECISION (*restype_ptr)
&& !unsignedp1
&& TYPE_UNSIGNED (TREE_TYPE (op1)))
primop1 = op1;
/* Handle the case that OP0 does not *contain* a conversion
but it *requires* conversion to FINAL_TYPE. */
if (op0 == primop0 && TREE_TYPE (op0) != *restype_ptr)
unsignedp0 = TYPE_UNSIGNED (TREE_TYPE (op0));
if (op1 == primop1 && TREE_TYPE (op1) != *restype_ptr)
unsignedp1 = TYPE_UNSIGNED (TREE_TYPE (op1));
/* If one of the operands must be floated, we cannot optimize. */
real1 = TREE_CODE (TREE_TYPE (primop0)) == REAL_TYPE;
real2 = TREE_CODE (TREE_TYPE (primop1)) == REAL_TYPE;
/* If first arg is constant, swap the args (changing operation
so value is preserved), for canonicalization. Don't do this if
the second arg is 0. */
if (TREE_CONSTANT (primop0)
&& !integer_zerop (primop1) && !real_zerop (primop1)
&& !fixed_zerop (primop1))
{
std::swap (primop0, primop1);
std::swap (op0, op1);
*op0_ptr = op0;
*op1_ptr = op1;
std::swap (unsignedp0, unsignedp1);
std::swap (real1, real2);
switch (code)
{
case LT_EXPR:
code = GT_EXPR;
break;
case GT_EXPR:
code = LT_EXPR;
break;
case LE_EXPR:
code = GE_EXPR;
break;
case GE_EXPR:
code = LE_EXPR;
break;
default:
break;
}
*rescode_ptr = code;
}
/* If comparing an integer against a constant more bits wide,
maybe we can deduce a value of 1 or 0 independent of the data.
Or else truncate the constant now
rather than extend the variable at run time.
This is only interesting if the constant is the wider arg.
Also, it is not safe if the constant is unsigned and the
variable arg is signed, since in this case the variable
would be sign-extended and then regarded as unsigned.
Our technique fails in this case because the lowest/highest
possible unsigned results don't follow naturally from the
lowest/highest possible values of the variable operand.
For just EQ_EXPR and NE_EXPR there is another technique that
could be used: see if the constant can be faithfully represented
in the other operand's type, by truncating it and reextending it
and see if that preserves the constant's value. */
if (!real1 && !real2
&& TREE_CODE (TREE_TYPE (primop0)) != FIXED_POINT_TYPE
&& TREE_CODE (primop1) == INTEGER_CST
&& TYPE_PRECISION (TREE_TYPE (primop0)) < TYPE_PRECISION (*restype_ptr))
{
int min_gt, max_gt, min_lt, max_lt;
tree maxval, minval;
/* 1 if comparison is nominally unsigned. */
int unsignedp = TYPE_UNSIGNED (*restype_ptr);
tree val;
type = c_common_signed_or_unsigned_type (unsignedp0,
TREE_TYPE (primop0));
maxval = TYPE_MAX_VALUE (type);
minval = TYPE_MIN_VALUE (type);
if (unsignedp && !unsignedp0)
*restype_ptr = c_common_signed_type (*restype_ptr);
if (TREE_TYPE (primop1) != *restype_ptr)
{
/* Convert primop1 to target type, but do not introduce
additional overflow. We know primop1 is an int_cst. */
primop1 = force_fit_type (*restype_ptr,
wi::to_wide
(primop1,
TYPE_PRECISION (*restype_ptr)),
0, TREE_OVERFLOW (primop1));
}
if (type != *restype_ptr)
{
minval = convert (*restype_ptr, minval);
maxval = convert (*restype_ptr, maxval);
}
min_gt = tree_int_cst_lt (primop1, minval);
max_gt = tree_int_cst_lt (primop1, maxval);
min_lt = tree_int_cst_lt (minval, primop1);
max_lt = tree_int_cst_lt (maxval, primop1);
val = 0;
/* This used to be a switch, but Genix compiler can't handle that. */
if (code == NE_EXPR)
{
if (max_lt || min_gt)
val = truthvalue_true_node;
}
else if (code == EQ_EXPR)
{
if (max_lt || min_gt)
val = truthvalue_false_node;
}
else if (code == LT_EXPR)
{
if (max_lt)
val = truthvalue_true_node;
if (!min_lt)
val = truthvalue_false_node;
}
else if (code == GT_EXPR)
{
if (min_gt)
val = truthvalue_true_node;
if (!max_gt)
val = truthvalue_false_node;
}
else if (code == LE_EXPR)
{
if (!max_gt)
val = truthvalue_true_node;
if (min_gt)
val = truthvalue_false_node;
}
else if (code == GE_EXPR)
{
if (!min_lt)
val = truthvalue_true_node;
if (max_lt)
val = truthvalue_false_node;
}
/* If primop0 was sign-extended and unsigned comparison specd,
we did a signed comparison above using the signed type bounds.
But the comparison we output must be unsigned.
Also, for inequalities, VAL is no good; but if the signed
comparison had *any* fixed result, it follows that the
unsigned comparison just tests the sign in reverse
(positive values are LE, negative ones GE).
So we can generate an unsigned comparison
against an extreme value of the signed type. */
if (unsignedp && !unsignedp0)
{
if (val != 0)
switch (code)
{
case LT_EXPR:
case GE_EXPR:
primop1 = TYPE_MIN_VALUE (type);
val = 0;
break;
case LE_EXPR:
case GT_EXPR:
primop1 = TYPE_MAX_VALUE (type);
val = 0;
break;
default:
break;
}
type = c_common_unsigned_type (type);
}
if (TREE_CODE (primop0) != INTEGER_CST
/* Don't warn if it's from a (non-system) macro. */
&& !(from_macro_expansion_at
(expansion_point_location_if_in_system_header
(EXPR_LOCATION (primop0)))))
{
if (val == truthvalue_false_node)
warning_at (loc, OPT_Wtype_limits,
"comparison is always false due to limited range of data type");
if (val == truthvalue_true_node)
warning_at (loc, OPT_Wtype_limits,
"comparison is always true due to limited range of data type");
}
if (val != 0)
{
/* Don't forget to evaluate PRIMOP0 if it has side effects. */
if (TREE_SIDE_EFFECTS (primop0))
return build2 (COMPOUND_EXPR, TREE_TYPE (val), primop0, val);
return val;
}
/* Value is not predetermined, but do the comparison
in the type of the operand that is not constant.
TYPE is already properly set. */
}
/* If either arg is decimal float and the other is float, find the
proper common type to use for comparison. */
else if (real1 && real2
&& DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (primop0)))
&& DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (primop1))))
type = common_type (TREE_TYPE (primop0), TREE_TYPE (primop1));
/* If either arg is decimal float and the other is float, fail. */
else if (real1 && real2
&& (DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (primop0)))
|| DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (primop1)))))
return NULL_TREE;
else if (real1 && real2
&& (TYPE_PRECISION (TREE_TYPE (primop0))
== TYPE_PRECISION (TREE_TYPE (primop1))))
type = TREE_TYPE (primop0);
/* If args' natural types are both narrower than nominal type
and both extend in the same manner, compare them
in the type of the wider arg.
Otherwise must actually extend both to the nominal
common type lest different ways of extending
alter the result.
(eg, (short)-1 == (unsigned short)-1 should be 0.) */
else if (unsignedp0 == unsignedp1 && real1 == real2
&& TYPE_PRECISION (TREE_TYPE (primop0)) < TYPE_PRECISION (*restype_ptr)
&& TYPE_PRECISION (TREE_TYPE (primop1)) < TYPE_PRECISION (*restype_ptr))
{
type = common_type (TREE_TYPE (primop0), TREE_TYPE (primop1));
type = c_common_signed_or_unsigned_type (unsignedp0
|| TYPE_UNSIGNED (*restype_ptr),
type);
/* Make sure shorter operand is extended the right way
to match the longer operand. */
primop0
= convert (c_common_signed_or_unsigned_type (unsignedp0,
TREE_TYPE (primop0)),
primop0);
primop1
= convert (c_common_signed_or_unsigned_type (unsignedp1,
TREE_TYPE (primop1)),
primop1);
}
else
{
/* Here we must do the comparison on the nominal type
using the args exactly as we received them. */
type = *restype_ptr;
primop0 = op0;
primop1 = op1;
if (!real1 && !real2 && integer_zerop (primop1)
&& TYPE_UNSIGNED (*restype_ptr))
{
tree value = NULL_TREE;
/* All unsigned values are >= 0, so we warn. However,
if OP0 is a constant that is >= 0, the signedness of
the comparison isn't an issue, so suppress the
warning. */
bool warn =
warn_type_limits && !in_system_header_at (loc)
&& !(TREE_CODE (primop0) == INTEGER_CST
&& !TREE_OVERFLOW (convert (c_common_signed_type (type),
primop0)))
/* Do not warn for enumeration types. */
&& (TREE_CODE (expr_original_type (primop0)) != ENUMERAL_TYPE);
switch (code)
{
case GE_EXPR:
if (warn)
warning_at (loc, OPT_Wtype_limits,
"comparison of unsigned expression >= 0 is always true");
value = truthvalue_true_node;
break;
case LT_EXPR:
if (warn)
warning_at (loc, OPT_Wtype_limits,
"comparison of unsigned expression < 0 is always false");
value = truthvalue_false_node;
break;
default:
break;
}
if (value != NULL_TREE)
{
/* Don't forget to evaluate PRIMOP0 if it has side effects. */
if (TREE_SIDE_EFFECTS (primop0))
return build2 (COMPOUND_EXPR, TREE_TYPE (value),
primop0, value);
return value;
}
}
}
*op0_ptr = convert (type, primop0);
*op1_ptr = convert (type, primop1);
*restype_ptr = truthvalue_type_node;
return NULL_TREE;
}
/* Return a tree for the sum or difference (RESULTCODE says which)
of pointer PTROP and integer INTOP. */
tree
pointer_int_sum (location_t loc, enum tree_code resultcode,
tree ptrop, tree intop, bool complain)
{
tree size_exp, ret;
/* The result is a pointer of the same type that is being added. */
tree result_type = TREE_TYPE (ptrop);
if (TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE)
{
if (complain && warn_pointer_arith)
pedwarn (loc, OPT_Wpointer_arith,
"pointer of type %<void *%> used in arithmetic");
else if (!complain)
return error_mark_node;
size_exp = integer_one_node;
}
else if (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE)
{
if (complain && warn_pointer_arith)
pedwarn (loc, OPT_Wpointer_arith,
"pointer to a function used in arithmetic");
else if (!complain)
return error_mark_node;
size_exp = integer_one_node;
}
else
size_exp = size_in_bytes_loc (loc, TREE_TYPE (result_type));
/* We are manipulating pointer values, so we don't need to warn
about relying on undefined signed overflow. We disable the
warning here because we use integer types so fold won't know that
they are really pointers. */
fold_defer_overflow_warnings ();
/* If what we are about to multiply by the size of the elements
contains a constant term, apply distributive law
and multiply that constant term separately.
This helps produce common subexpressions. */
if ((TREE_CODE (intop) == PLUS_EXPR || TREE_CODE (intop) == MINUS_EXPR)
&& !TREE_CONSTANT (intop)
&& TREE_CONSTANT (TREE_OPERAND (intop, 1))
&& TREE_CONSTANT (size_exp)
/* If the constant comes from pointer subtraction,
skip this optimization--it would cause an error. */
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (intop, 0))) == INTEGER_TYPE
/* If the constant is unsigned, and smaller than the pointer size,
then we must skip this optimization. This is because it could cause
an overflow error if the constant is negative but INTOP is not. */
&& (!TYPE_UNSIGNED (TREE_TYPE (intop))
|| (TYPE_PRECISION (TREE_TYPE (intop))
== TYPE_PRECISION (TREE_TYPE (ptrop)))))
{
enum tree_code subcode = resultcode;
tree int_type = TREE_TYPE (intop);
if (TREE_CODE (intop) == MINUS_EXPR)
subcode = (subcode == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR);
/* Convert both subexpression types to the type of intop,
because weird cases involving pointer arithmetic
can result in a sum or difference with different type args. */
ptrop = build_binary_op (EXPR_LOCATION (TREE_OPERAND (intop, 1)),
subcode, ptrop,
convert (int_type, TREE_OPERAND (intop, 1)),
true);
intop = convert (int_type, TREE_OPERAND (intop, 0));
}
/* Convert the integer argument to a type the same size as sizetype
so the multiply won't overflow spuriously. */
if (TYPE_PRECISION (TREE_TYPE (intop)) != TYPE_PRECISION (sizetype)
|| TYPE_UNSIGNED (TREE_TYPE (intop)) != TYPE_UNSIGNED (sizetype))
intop = convert (c_common_type_for_size (TYPE_PRECISION (sizetype),
TYPE_UNSIGNED (sizetype)), intop);
/* Replace the integer argument with a suitable product by the object size.
Do this multiplication as signed, then convert to the appropriate type
for the pointer operation and disregard an overflow that occurred only
because of the sign-extension change in the latter conversion. */
{
tree t = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (intop), intop,
convert (TREE_TYPE (intop), size_exp));
intop = convert (sizetype, t);
if (TREE_OVERFLOW_P (intop) && !TREE_OVERFLOW (t))
intop = wide_int_to_tree (TREE_TYPE (intop), wi::to_wide (intop));
}
/* Create the sum or difference. */
if (resultcode == MINUS_EXPR)
intop = fold_build1_loc (loc, NEGATE_EXPR, sizetype, intop);
ret = fold_build_pointer_plus_loc (loc, ptrop, intop);
fold_undefer_and_ignore_overflow_warnings ();
return ret;
}
/* Wrap a C_MAYBE_CONST_EXPR around an expression that is fully folded
and if NON_CONST is known not to be permitted in an evaluated part
of a constant expression. */
tree
c_wrap_maybe_const (tree expr, bool non_const)
{
bool nowarning = TREE_NO_WARNING (expr);
location_t loc = EXPR_LOCATION (expr);
/* This should never be called for C++. */
if (c_dialect_cxx ())
gcc_unreachable ();
/* The result of folding may have a NOP_EXPR to set TREE_NO_WARNING. */
STRIP_TYPE_NOPS (expr);
expr = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (expr), NULL, expr);
C_MAYBE_CONST_EXPR_NON_CONST (expr) = non_const;
if (nowarning)
TREE_NO_WARNING (expr) = 1;
protected_set_expr_location (expr, loc);
return expr;
}
/* Return whether EXPR is a declaration whose address can never be
NULL. */
bool
decl_with_nonnull_addr_p (const_tree expr)
{
return (DECL_P (expr)
&& (TREE_CODE (expr) == PARM_DECL
|| TREE_CODE (expr) == LABEL_DECL
|| !DECL_WEAK (expr)));
}
/* Prepare expr to be an argument of a TRUTH_NOT_EXPR,
or for an `if' or `while' statement or ?..: exp. It should already
have been validated to be of suitable type; otherwise, a bad
diagnostic may result.
The EXPR is located at LOCATION.
This preparation consists of taking the ordinary
representation of an expression expr and producing a valid tree
boolean expression describing whether expr is nonzero. We could
simply always do build_binary_op (NE_EXPR, expr, truthvalue_false_node, 1),
but we optimize comparisons, &&, ||, and !.
The resulting type should always be `truthvalue_type_node'. */
tree
c_common_truthvalue_conversion (location_t location, tree expr)
{
switch (TREE_CODE (expr))
{
case EQ_EXPR: case NE_EXPR: case UNEQ_EXPR: case LTGT_EXPR:
case LE_EXPR: case GE_EXPR: case LT_EXPR: case GT_EXPR:
case UNLE_EXPR: case UNGE_EXPR: case UNLT_EXPR: case UNGT_EXPR:
case ORDERED_EXPR: case UNORDERED_EXPR:
if (TREE_TYPE (expr) == truthvalue_type_node)
return expr;
expr = build2 (TREE_CODE (expr), truthvalue_type_node,
TREE_OPERAND (expr, 0), TREE_OPERAND (expr, 1));
goto ret;
case TRUTH_ANDIF_EXPR:
case TRUTH_ORIF_EXPR:
case TRUTH_AND_EXPR:
case TRUTH_OR_EXPR:
case TRUTH_XOR_EXPR:
if (TREE_TYPE (expr) == truthvalue_type_node)
return expr;
expr = build2 (TREE_CODE (expr), truthvalue_type_node,
c_common_truthvalue_conversion (location,
TREE_OPERAND (expr, 0)),
c_common_truthvalue_conversion (location,
TREE_OPERAND (expr, 1)));
goto ret;
case TRUTH_NOT_EXPR:
if (TREE_TYPE (expr) == truthvalue_type_node)
return expr;
expr = build1 (TREE_CODE (expr), truthvalue_type_node,
c_common_truthvalue_conversion (location,
TREE_OPERAND (expr, 0)));
goto ret;
case ERROR_MARK:
return expr;
case INTEGER_CST:
if (TREE_CODE (TREE_TYPE (expr)) == ENUMERAL_TYPE
&& !integer_zerop (expr)
&& !integer_onep (expr))
warning_at (location, OPT_Wint_in_bool_context,
"enum constant in boolean context");
return integer_zerop (expr) ? truthvalue_false_node
: truthvalue_true_node;
case REAL_CST:
return real_compare (NE_EXPR, &TREE_REAL_CST (expr), &dconst0)
? truthvalue_true_node
: truthvalue_false_node;
case FIXED_CST:
return fixed_compare (NE_EXPR, &TREE_FIXED_CST (expr),
&FCONST0 (TYPE_MODE (TREE_TYPE (expr))))
? truthvalue_true_node
: truthvalue_false_node;
case FUNCTION_DECL:
expr = build_unary_op (location, ADDR_EXPR, expr, false);
/* Fall through. */
case ADDR_EXPR:
{
tree inner = TREE_OPERAND (expr, 0);
if (decl_with_nonnull_addr_p (inner))
{
/* Common Ada/Pascal programmer's mistake. */
warning_at (location,
OPT_Waddress,
"the address of %qD will always evaluate as %<true%>",
inner);
return truthvalue_true_node;
}
break;
}
case COMPLEX_EXPR:
expr = build_binary_op (EXPR_LOCATION (expr),
(TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 1))
? TRUTH_OR_EXPR : TRUTH_ORIF_EXPR),
c_common_truthvalue_conversion (location,
TREE_OPERAND (expr, 0)),
c_common_truthvalue_conversion (location,
TREE_OPERAND (expr, 1)),
false);
goto ret;
case NEGATE_EXPR:
case ABS_EXPR:
case FLOAT_EXPR:
case EXCESS_PRECISION_EXPR:
/* These don't change whether an object is nonzero or zero. */
return c_common_truthvalue_conversion (location, TREE_OPERAND (expr, 0));
case LROTATE_EXPR:
case RROTATE_EXPR:
/* These don't change whether an object is zero or nonzero, but
we can't ignore them if their second arg has side-effects. */
if (TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 1)))
{
expr = build2 (COMPOUND_EXPR, truthvalue_type_node,
TREE_OPERAND (expr, 1),
c_common_truthvalue_conversion
(location, TREE_OPERAND (expr, 0)));
goto ret;
}
else
return c_common_truthvalue_conversion (location,
TREE_OPERAND (expr, 0));
case MULT_EXPR:
warning_at (EXPR_LOCATION (expr), OPT_Wint_in_bool_context,
"%<*%> in boolean context, suggest %<&&%> instead");
break;
case LSHIFT_EXPR:
/* We will only warn on signed shifts here, because the majority of
false positive warnings happen in code where unsigned arithmetic
was used in anticipation of a possible overflow.
Furthermore, if we see an unsigned type here we know that the
result of the shift is not subject to integer promotion rules. */
if (TREE_CODE (TREE_TYPE (expr)) == INTEGER_TYPE
&& !TYPE_UNSIGNED (TREE_TYPE (expr)))
warning_at (EXPR_LOCATION (expr), OPT_Wint_in_bool_context,
"%<<<%> in boolean context, did you mean %<<%> ?");
break;
case COND_EXPR:
if (warn_int_in_bool_context
&& !from_macro_definition_at (EXPR_LOCATION (expr)))
{
tree val1 = fold_for_warn (TREE_OPERAND (expr, 1));
tree val2 = fold_for_warn (TREE_OPERAND (expr, 2));
if (TREE_CODE (val1) == INTEGER_CST
&& TREE_CODE (val2) == INTEGER_CST
&& !integer_zerop (val1)
&& !integer_zerop (val2)
&& (!integer_onep (val1)
|| !integer_onep (val2)))
warning_at (EXPR_LOCATION (expr), OPT_Wint_in_bool_context,
"?: using integer constants in boolean context, "
"the expression will always evaluate to %<true%>");
else if ((TREE_CODE (val1) == INTEGER_CST
&& !integer_zerop (val1)
&& !integer_onep (val1))
|| (TREE_CODE (val2) == INTEGER_CST
&& !integer_zerop (val2)
&& !integer_onep (val2)))
warning_at (EXPR_LOCATION (expr), OPT_Wint_in_bool_context,
"?: using integer constants in boolean context");
}
/* Distribute the conversion into the arms of a COND_EXPR. */
if (c_dialect_cxx ())
/* Avoid premature folding. */
break;
else
{
int w = warn_int_in_bool_context;
warn_int_in_bool_context = 0;
/* Folding will happen later for C. */
expr = build3 (COND_EXPR, truthvalue_type_node,
TREE_OPERAND (expr, 0),
c_common_truthvalue_conversion (location,
TREE_OPERAND (expr, 1)),
c_common_truthvalue_conversion (location,
TREE_OPERAND (expr, 2)));
warn_int_in_bool_context = w;
goto ret;
}
CASE_CONVERT:
{
tree totype = TREE_TYPE (expr);
tree fromtype = TREE_TYPE (TREE_OPERAND (expr, 0));
if (POINTER_TYPE_P (totype)
&& !c_inhibit_evaluation_warnings
&& TREE_CODE (fromtype) == REFERENCE_TYPE)
{
tree inner = expr;
STRIP_NOPS (inner);
if (DECL_P (inner))
warning_at (location,
OPT_Waddress,
"the compiler can assume that the address of "
"%qD will always evaluate to %<true%>",
inner);
}
/* Don't cancel the effect of a CONVERT_EXPR from a REFERENCE_TYPE,
since that affects how `default_conversion' will behave. */
if (TREE_CODE (totype) == REFERENCE_TYPE
|| TREE_CODE (fromtype) == REFERENCE_TYPE)
break;
/* Don't strip a conversion from C++0x scoped enum, since they
don't implicitly convert to other types. */
if (TREE_CODE (fromtype) == ENUMERAL_TYPE
&& ENUM_IS_SCOPED (fromtype))
break;
/* If this isn't narrowing the argument, we can ignore it. */
if (TYPE_PRECISION (totype) >= TYPE_PRECISION (fromtype))
return c_common_truthvalue_conversion (location,
TREE_OPERAND (expr, 0));
}
break;
case MODIFY_EXPR:
if (!TREE_NO_WARNING (expr)
&& warn_parentheses)
{
warning_at (location, OPT_Wparentheses,
"suggest parentheses around assignment used as "
"truth value");
TREE_NO_WARNING (expr) = 1;
}
break;
default:
break;
}
if (TREE_CODE (TREE_TYPE (expr)) == COMPLEX_TYPE)
{
tree t = save_expr (expr);
expr = (build_binary_op
(EXPR_LOCATION (expr),
(TREE_SIDE_EFFECTS (expr)
? TRUTH_OR_EXPR : TRUTH_ORIF_EXPR),
c_common_truthvalue_conversion
(location,
build_unary_op (location, REALPART_EXPR, t, false)),
c_common_truthvalue_conversion
(location,
build_unary_op (location, IMAGPART_EXPR, t, false)),
false));
goto ret;
}
if (TREE_CODE (TREE_TYPE (expr)) == FIXED_POINT_TYPE)
{
tree fixed_zero_node = build_fixed (TREE_TYPE (expr),
FCONST0 (TYPE_MODE
(TREE_TYPE (expr))));
return build_binary_op (location, NE_EXPR, expr, fixed_zero_node, true);
}
else
return build_binary_op (location, NE_EXPR, expr, integer_zero_node, true);
ret:
protected_set_expr_location (expr, location);
return expr;
}
static void def_builtin_1 (enum built_in_function fncode,
const char *name,
enum built_in_class fnclass,
tree fntype, tree libtype,
bool both_p, bool fallback_p, bool nonansi_p,
tree fnattrs, bool implicit_p);
/* Apply the TYPE_QUALS to the new DECL. */
void
c_apply_type_quals_to_decl (int type_quals, tree decl)
{
tree type = TREE_TYPE (decl);
if (type == error_mark_node)
return;
if ((type_quals & TYPE_QUAL_CONST)
|| (type && TREE_CODE (type) == REFERENCE_TYPE))
/* We used to check TYPE_NEEDS_CONSTRUCTING here, but now a constexpr
constructor can produce constant init, so rely on cp_finish_decl to
clear TREE_READONLY if the variable has non-constant init. */
TREE_READONLY (decl) = 1;
if (type_quals & TYPE_QUAL_VOLATILE)
{
TREE_SIDE_EFFECTS (decl) = 1;
TREE_THIS_VOLATILE (decl) = 1;
}
if (type_quals & TYPE_QUAL_RESTRICT)
{
while (type && TREE_CODE (type) == ARRAY_TYPE)
/* Allow 'restrict' on arrays of pointers.
FIXME currently we just ignore it. */
type = TREE_TYPE (type);
if (!type
|| !POINTER_TYPE_P (type)
|| !C_TYPE_OBJECT_OR_INCOMPLETE_P (TREE_TYPE (type)))
error ("invalid use of %<restrict%>");
}
}
/* Return the typed-based alias set for T, which may be an expression
or a type. Return -1 if we don't do anything special. */
alias_set_type
c_common_get_alias_set (tree t)
{
/* For VLAs, use the alias set of the element type rather than the
default of alias set 0 for types compared structurally. */
if (TYPE_P (t) && TYPE_STRUCTURAL_EQUALITY_P (t))
{
if (TREE_CODE (t) == ARRAY_TYPE)
return get_alias_set (TREE_TYPE (t));
return -1;
}
/* That's all the expressions we handle specially. */
if (!TYPE_P (t))
return -1;
/* The C standard guarantees that any object may be accessed via an
lvalue that has character type. */
if (t == char_type_node
|| t == signed_char_type_node
|| t == unsigned_char_type_node)
return 0;
/* The C standard specifically allows aliasing between signed and
unsigned variants of the same type. We treat the signed
variant as canonical. */
if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
{
tree t1 = c_common_signed_type (t);
/* t1 == t can happen for boolean nodes which are always unsigned. */
if (t1 != t)
return get_alias_set (t1);
}
return -1;
}
/* Compute the value of 'sizeof (TYPE)' or '__alignof__ (TYPE)', where
the IS_SIZEOF parameter indicates which operator is being applied.
The COMPLAIN flag controls whether we should diagnose possibly
ill-formed constructs or not. LOC is the location of the SIZEOF or
TYPEOF operator. If MIN_ALIGNOF, the least alignment required for
a type in any context should be returned, rather than the normal
alignment for that type. */
tree
c_sizeof_or_alignof_type (location_t loc,
tree type, bool is_sizeof, bool min_alignof,
int complain)
{
const char *op_name;
tree value = NULL;
enum tree_code type_code = TREE_CODE (type);
op_name = is_sizeof ? "sizeof" : "__alignof__";
if (type_code == FUNCTION_TYPE)
{
if (is_sizeof)
{
if (complain && warn_pointer_arith)
pedwarn (loc, OPT_Wpointer_arith,
"invalid application of %<sizeof%> to a function type");
else if (!complain)
return error_mark_node;
value = size_one_node;
}
else
{
if (complain)
{
if (c_dialect_cxx ())
pedwarn (loc, OPT_Wpedantic, "ISO C++ does not permit "
"%<alignof%> applied to a function type");
else
pedwarn (loc, OPT_Wpedantic, "ISO C does not permit "
"%<_Alignof%> applied to a function type");
}
value = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
}
}
else if (type_code == VOID_TYPE || type_code == ERROR_MARK)
{
if (type_code == VOID_TYPE
&& complain && warn_pointer_arith)
pedwarn (loc, OPT_Wpointer_arith,
"invalid application of %qs to a void type", op_name);
else if (!complain)
return error_mark_node;
value = size_one_node;
}
else if (!COMPLETE_TYPE_P (type)
&& (!c_dialect_cxx () || is_sizeof || type_code != ARRAY_TYPE))
{
if (complain)
error_at (loc, "invalid application of %qs to incomplete type %qT",
op_name, type);
return error_mark_node;
}
else if (c_dialect_cxx () && type_code == ARRAY_TYPE
&& !COMPLETE_TYPE_P (TREE_TYPE (type)))
{
if (complain)
error_at (loc, "invalid application of %qs to array type %qT of "
"incomplete element type", op_name, type);
return error_mark_node;
}
else
{
if (is_sizeof)
/* Convert in case a char is more than one unit. */
value = size_binop_loc (loc, CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
size_int (TYPE_PRECISION (char_type_node)
/ BITS_PER_UNIT));
else if (min_alignof)
value = size_int (min_align_of_type (type));
else
value = size_int (TYPE_ALIGN_UNIT (type));
}
/* VALUE will have the middle-end integer type sizetype.
However, we should really return a value of type `size_t',
which is just a typedef for an ordinary integer type. */
value = fold_convert_loc (loc, size_type_node, value);
return value;
}
/* Implement the __alignof keyword: Return the minimum required
alignment of EXPR, measured in bytes. For VAR_DECLs,
FUNCTION_DECLs and FIELD_DECLs return DECL_ALIGN (which can be set
from an "aligned" __attribute__ specification). LOC is the
location of the ALIGNOF operator. */
tree
c_alignof_expr (location_t loc, tree expr)
{
tree t;
if (VAR_OR_FUNCTION_DECL_P (expr))
t = size_int (DECL_ALIGN_UNIT (expr));
else if (TREE_CODE (expr) == COMPONENT_REF
&& DECL_C_BIT_FIELD (TREE_OPERAND (expr, 1)))
{
error_at (loc, "%<__alignof%> applied to a bit-field");
t = size_one_node;
}
else if (TREE_CODE (expr) == COMPONENT_REF
&& TREE_CODE (TREE_OPERAND (expr, 1)) == FIELD_DECL)
t = size_int (DECL_ALIGN_UNIT (TREE_OPERAND (expr, 1)));
else if (INDIRECT_REF_P (expr))
{
tree t = TREE_OPERAND (expr, 0);
tree best = t;
int bestalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
while (CONVERT_EXPR_P (t)
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == POINTER_TYPE)
{
int thisalign;
t = TREE_OPERAND (t, 0);
thisalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
if (thisalign > bestalign)
best = t, bestalign = thisalign;
}
return c_alignof (loc, TREE_TYPE (TREE_TYPE (best)));
}
else
return c_alignof (loc, TREE_TYPE (expr));
return fold_convert_loc (loc, size_type_node, t);
}
/* Handle C and C++ default attributes. */
enum built_in_attribute
{
#define DEF_ATTR_NULL_TREE(ENUM) ENUM,
#define DEF_ATTR_INT(ENUM, VALUE) ENUM,
#define DEF_ATTR_STRING(ENUM, VALUE) ENUM,
#define DEF_ATTR_IDENT(ENUM, STRING) ENUM,
#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) ENUM,
#include "builtin-attrs.def"
#undef DEF_ATTR_NULL_TREE
#undef DEF_ATTR_INT
#undef DEF_ATTR_STRING
#undef DEF_ATTR_IDENT
#undef DEF_ATTR_TREE_LIST
ATTR_LAST
};
static GTY(()) tree built_in_attributes[(int) ATTR_LAST];
static void c_init_attributes (void);
enum c_builtin_type
{
#define DEF_PRIMITIVE_TYPE(NAME, VALUE) NAME,
#define DEF_FUNCTION_TYPE_0(NAME, RETURN) NAME,
#define DEF_FUNCTION_TYPE_1(NAME, RETURN, ARG1) NAME,
#define DEF_FUNCTION_TYPE_2(NAME, RETURN, ARG1, ARG2) NAME,
#define DEF_FUNCTION_TYPE_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
#define DEF_FUNCTION_TYPE_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
#define DEF_FUNCTION_TYPE_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) NAME,
#define DEF_FUNCTION_TYPE_6(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
ARG6) NAME,
#define DEF_FUNCTION_TYPE_7(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
ARG6, ARG7) NAME,
#define DEF_FUNCTION_TYPE_8(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
ARG6, ARG7, ARG8) NAME,
#define DEF_FUNCTION_TYPE_9(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
ARG6, ARG7, ARG8, ARG9) NAME,
#define DEF_FUNCTION_TYPE_10(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
ARG6, ARG7, ARG8, ARG9, ARG10) NAME,
#define DEF_FUNCTION_TYPE_11(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
ARG6, ARG7, ARG8, ARG9, ARG10, ARG11) NAME,
#define DEF_FUNCTION_TYPE_VAR_0(NAME, RETURN) NAME,
#define DEF_FUNCTION_TYPE_VAR_1(NAME, RETURN, ARG1) NAME,
#define DEF_FUNCTION_TYPE_VAR_2(NAME, RETURN, ARG1, ARG2) NAME,
#define DEF_FUNCTION_TYPE_VAR_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
#define DEF_FUNCTION_TYPE_VAR_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
#define DEF_FUNCTION_TYPE_VAR_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
NAME,
#define DEF_FUNCTION_TYPE_VAR_6(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
ARG6) NAME,
#define DEF_FUNCTION_TYPE_VAR_7(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
ARG6, ARG7) NAME,
#define DEF_POINTER_TYPE(NAME, TYPE) NAME,
#include "builtin-types.def"
#undef DEF_PRIMITIVE_TYPE
#undef DEF_FUNCTION_TYPE_0
#undef DEF_FUNCTION_TYPE_1
#undef DEF_FUNCTION_TYPE_2
#undef DEF_FUNCTION_TYPE_3
#undef DEF_FUNCTION_TYPE_4
#undef DEF_FUNCTION_TYPE_5
#undef DEF_FUNCTION_TYPE_6
#undef DEF_FUNCTION_TYPE_7
#undef DEF_FUNCTION_TYPE_8
#undef DEF_FUNCTION_TYPE_9
#undef DEF_FUNCTION_TYPE_10
#undef DEF_FUNCTION_TYPE_11
#undef DEF_FUNCTION_TYPE_VAR_0
#undef DEF_FUNCTION_TYPE_VAR_1
#undef DEF_FUNCTION_TYPE_VAR_2
#undef DEF_FUNCTION_TYPE_VAR_3
#undef DEF_FUNCTION_TYPE_VAR_4
#undef DEF_FUNCTION_TYPE_VAR_5
#undef DEF_FUNCTION_TYPE_VAR_6
#undef DEF_FUNCTION_TYPE_VAR_7
#undef DEF_POINTER_TYPE
BT_LAST
};
typedef enum c_builtin_type builtin_type;
/* A temporary array for c_common_nodes_and_builtins. Used in
communication with def_fn_type. */
static tree builtin_types[(int) BT_LAST + 1];
/* A helper function for c_common_nodes_and_builtins. Build function type
for DEF with return type RET and N arguments. If VAR is true, then the
function should be variadic after those N arguments.
Takes special care not to ICE if any of the types involved are
error_mark_node, which indicates that said type is not in fact available
(see builtin_type_for_size). In which case the function type as a whole
should be error_mark_node. */
static void
def_fn_type (builtin_type def, builtin_type ret, bool var, int n, ...)
{
tree t;
tree *args = XALLOCAVEC (tree, n);
va_list list;
int i;
va_start (list, n);
for (i = 0; i < n; ++i)
{
builtin_type a = (builtin_type) va_arg (list, int);
t = builtin_types[a];
if (t == error_mark_node)
goto egress;
args[i] = t;
}
t = builtin_types[ret];
if (t == error_mark_node)
goto egress;
if (var)
t = build_varargs_function_type_array (t, n, args);
else
t = build_function_type_array (t, n, args);
egress:
builtin_types[def] = t;
va_end (list);
}
/* Build builtin functions common to both C and C++ language
frontends. */
static void
c_define_builtins (tree va_list_ref_type_node, tree va_list_arg_type_node)
{
#define DEF_PRIMITIVE_TYPE(ENUM, VALUE) \
builtin_types[ENUM] = VALUE;
#define DEF_FUNCTION_TYPE_0(ENUM, RETURN) \
def_fn_type (ENUM, RETURN, 0, 0);
#define DEF_FUNCTION_TYPE_1(ENUM, RETURN, ARG1) \
def_fn_type (ENUM, RETURN, 0, 1, ARG1);
#define DEF_FUNCTION_TYPE_2(ENUM, RETURN, ARG1, ARG2) \
def_fn_type (ENUM, RETURN, 0, 2, ARG1, ARG2);
#define DEF_FUNCTION_TYPE_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
def_fn_type (ENUM, RETURN, 0, 3, ARG1, ARG2, ARG3);
#define DEF_FUNCTION_TYPE_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \
def_fn_type (ENUM, RETURN, 0, 4, ARG1, ARG2, ARG3, ARG4);
#define DEF_FUNCTION_TYPE_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
def_fn_type (ENUM, RETURN, 0, 5, ARG1, ARG2, ARG3, ARG4, ARG5);
#define DEF_FUNCTION_TYPE_6(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
ARG6) \
def_fn_type (ENUM, RETURN, 0, 6, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6);
#define DEF_FUNCTION_TYPE_7(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
ARG6, ARG7) \
def_fn_type (ENUM, RETURN, 0, 7, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7);
#define DEF_FUNCTION_TYPE_8(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
ARG6, ARG7, ARG8) \
def_fn_type (ENUM, RETURN, 0, 8, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, \
ARG7, ARG8);
#define DEF_FUNCTION_TYPE_9(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
ARG6, ARG7, ARG8, ARG9) \
def_fn_type (ENUM, RETURN, 0, 9, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, \
ARG7, ARG8, ARG9);
#define DEF_FUNCTION_TYPE_10(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
ARG6, ARG7, ARG8, ARG9, ARG10) \
def_fn_type (ENUM, RETURN, 0, 10, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, \
ARG7, ARG8, ARG9, ARG10);
#define DEF_FUNCTION_TYPE_11(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
ARG6, ARG7, ARG8, ARG9, ARG10, ARG11) \
def_fn_type (ENUM, RETURN, 0, 11, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, \
ARG7, ARG8, ARG9, ARG10, ARG11);
#define DEF_FUNCTION_TYPE_VAR_0(ENUM, RETURN) \
def_fn_type (ENUM, RETURN, 1, 0);
#define DEF_FUNCTION_TYPE_VAR_1(ENUM, RETURN, ARG1) \
def_fn_type (ENUM, RETURN, 1, 1, ARG1);
#define DEF_FUNCTION_TYPE_VAR_2(ENUM, RETURN, ARG1, ARG2) \
def_fn_type (ENUM, RETURN, 1, 2, ARG1, ARG2);
#define DEF_FUNCTION_TYPE_VAR_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
def_fn_type (ENUM, RETURN, 1, 3, ARG1, ARG2, ARG3);
#define DEF_FUNCTION_TYPE_VAR_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \
def_fn_type (ENUM, RETURN, 1, 4, ARG1, ARG2, ARG3, ARG4);
#define DEF_FUNCTION_TYPE_VAR_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
def_fn_type (ENUM, RETURN, 1, 5, ARG1, ARG2, ARG3, ARG4, ARG5);
#define DEF_FUNCTION_TYPE_VAR_6(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
ARG6) \
def_fn_type (ENUM, RETURN, 1, 6, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6);
#define DEF_FUNCTION_TYPE_VAR_7(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
ARG6, ARG7) \
def_fn_type (ENUM, RETURN, 1, 7, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7);
#define DEF_POINTER_TYPE(ENUM, TYPE) \
builtin_types[(int) ENUM] = build_pointer_type (builtin_types[(int) TYPE]);
#include "builtin-types.def"
#undef DEF_PRIMITIVE_TYPE
#undef DEF_FUNCTION_TYPE_0
#undef DEF_FUNCTION_TYPE_1
#undef DEF_FUNCTION_TYPE_2
#undef DEF_FUNCTION_TYPE_3
#undef DEF_FUNCTION_TYPE_4
#undef DEF_FUNCTION_TYPE_5
#undef DEF_FUNCTION_TYPE_6
#undef DEF_FUNCTION_TYPE_7
#undef DEF_FUNCTION_TYPE_8
#undef DEF_FUNCTION_TYPE_9
#undef DEF_FUNCTION_TYPE_10
#undef DEF_FUNCTION_TYPE_11
#undef DEF_FUNCTION_TYPE_VAR_0
#undef DEF_FUNCTION_TYPE_VAR_1
#undef DEF_FUNCTION_TYPE_VAR_2
#undef DEF_FUNCTION_TYPE_VAR_3
#undef DEF_FUNCTION_TYPE_VAR_4
#undef DEF_FUNCTION_TYPE_VAR_5
#undef DEF_FUNCTION_TYPE_VAR_6
#undef DEF_FUNCTION_TYPE_VAR_7
#undef DEF_POINTER_TYPE
builtin_types[(int) BT_LAST] = NULL_TREE;
c_init_attributes ();
#define DEF_BUILTIN(ENUM, NAME, CLASS, TYPE, LIBTYPE, BOTH_P, FALLBACK_P, \
NONANSI_P, ATTRS, IMPLICIT, COND) \
if (NAME && COND) \
def_builtin_1 (ENUM, NAME, CLASS, \
builtin_types[(int) TYPE], \
builtin_types[(int) LIBTYPE], \
BOTH_P, FALLBACK_P, NONANSI_P, \
built_in_attributes[(int) ATTRS], IMPLICIT);
#include "builtins.def"
targetm.init_builtins ();
build_common_builtin_nodes ();
}
/* Like get_identifier, but avoid warnings about null arguments when
the argument may be NULL for targets where GCC lacks stdint.h type
information. */
static inline tree
c_get_ident (const char *id)
{
return get_identifier (id);
}
/* Build tree nodes and builtin functions common to both C and C++ language
frontends. */
void
c_common_nodes_and_builtins (void)
{
int char16_type_size;
int char32_type_size;
int wchar_type_size;
tree array_domain_type;
tree va_list_ref_type_node;
tree va_list_arg_type_node;
int i;
build_common_tree_nodes (flag_signed_char);
/* Define `int' and `char' first so that dbx will output them first. */
record_builtin_type (RID_INT, NULL, integer_type_node);
record_builtin_type (RID_CHAR, "char", char_type_node);
/* `signed' is the same as `int'. FIXME: the declarations of "signed",
"unsigned long", "long long unsigned" and "unsigned short" were in C++
but not C. Are the conditionals here needed? */
if (c_dialect_cxx ())
record_builtin_type (RID_SIGNED, NULL, integer_type_node);
record_builtin_type (RID_LONG, "long int", long_integer_type_node);
record_builtin_type (RID_UNSIGNED, "unsigned int", unsigned_type_node);
record_builtin_type (RID_MAX, "long unsigned int",
long_unsigned_type_node);
for (i = 0; i < NUM_INT_N_ENTS; i ++)
{
char name[25];
sprintf (name, "__int%d", int_n_data[i].bitsize);
record_builtin_type ((enum rid)(RID_FIRST_INT_N + i), name,
int_n_trees[i].signed_type);
sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
record_builtin_type (RID_MAX, name, int_n_trees[i].unsigned_type);
}
if (c_dialect_cxx ())
record_builtin_type (RID_MAX, "unsigned long", long_unsigned_type_node);
record_builtin_type (RID_MAX, "long long int",
long_long_integer_type_node);
record_builtin_type (RID_MAX, "long long unsigned int",
long_long_unsigned_type_node);
if (c_dialect_cxx ())
record_builtin_type (RID_MAX, "long long unsigned",
long_long_unsigned_type_node);
record_builtin_type (RID_SHORT, "short int", short_integer_type_node);
record_builtin_type (RID_MAX, "short unsigned int",
short_unsigned_type_node);
if (c_dialect_cxx ())
record_builtin_type (RID_MAX, "unsigned short",
short_unsigned_type_node);
/* Define both `signed char' and `unsigned char'. */
record_builtin_type (RID_MAX, "signed char", signed_char_type_node);
record_builtin_type (RID_MAX, "unsigned char", unsigned_char_type_node);
/* These are types that c_common_type_for_size and
c_common_type_for_mode use. */
lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
TYPE_DECL, NULL_TREE,
intQI_type_node));
lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
TYPE_DECL, NULL_TREE,
intHI_type_node));
lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
TYPE_DECL, NULL_TREE,
intSI_type_node));
lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
TYPE_DECL, NULL_TREE,
intDI_type_node));
#if HOST_BITS_PER_WIDE_INT >= 64
/* Note that this is different than the __int128 type that's part of
the generic __intN support. */
if (targetm.scalar_mode_supported_p (TImode))
lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
TYPE_DECL,
get_identifier ("__int128_t"),
intTI_type_node));
#endif
lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
TYPE_DECL, NULL_TREE,
unsigned_intQI_type_node));
lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
TYPE_DECL, NULL_TREE,
unsigned_intHI_type_node));
lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
TYPE_DECL, NULL_TREE,
unsigned_intSI_type_node));
lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
TYPE_DECL, NULL_TREE,
unsigned_intDI_type_node));
#if HOST_BITS_PER_WIDE_INT >= 64
if (targetm.scalar_mode_supported_p (TImode))
lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
TYPE_DECL,
get_identifier ("__uint128_t"),
unsigned_intTI_type_node));
#endif
/* Create the widest literal types. */
if (targetm.scalar_mode_supported_p (TImode))
{
widest_integer_literal_type_node = intTI_type_node;
widest_unsigned_literal_type_node = unsigned_intTI_type_node;
}
else
{
widest_integer_literal_type_node = intDI_type_node;
widest_unsigned_literal_type_node = unsigned_intDI_type_node;
}
signed_size_type_node = c_common_signed_type (size_type_node);
pid_type_node =
TREE_TYPE (identifier_global_value (get_identifier (PID_TYPE)));
record_builtin_type (RID_FLOAT, NULL, float_type_node);
record_builtin_type (RID_DOUBLE, NULL, double_type_node);
record_builtin_type (RID_MAX, "long double", long_double_type_node);
if (!c_dialect_cxx ())
for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
record_builtin_type ((enum rid) (RID_FLOATN_NX_FIRST + i), NULL,
FLOATN_NX_TYPE_NODE (i));
/* Only supported decimal floating point extension if the target
actually supports underlying modes. */
if (targetm.scalar_mode_supported_p (SDmode)
&& targetm.scalar_mode_supported_p (DDmode)
&& targetm.scalar_mode_supported_p (TDmode))
{
record_builtin_type (RID_DFLOAT32, NULL, dfloat32_type_node);
record_builtin_type (RID_DFLOAT64, NULL, dfloat64_type_node);
record_builtin_type (RID_DFLOAT128, NULL, dfloat128_type_node);
}
if (targetm.fixed_point_supported_p ())
{
record_builtin_type (RID_MAX, "short _Fract", short_fract_type_node);
record_builtin_type (RID_FRACT, NULL, fract_type_node);
record_builtin_type (RID_MAX, "long _Fract", long_fract_type_node);
record_builtin_type (RID_MAX, "long long _Fract",
long_long_fract_type_node);
record_builtin_type (RID_MAX, "unsigned short _Fract",
unsigned_short_fract_type_node);
record_builtin_type (RID_MAX, "unsigned _Fract",
unsigned_fract_type_node);
record_builtin_type (RID_MAX, "unsigned long _Fract",
unsigned_long_fract_type_node);
record_builtin_type (RID_MAX, "unsigned long long _Fract",
unsigned_long_long_fract_type_node);
record_builtin_type (RID_MAX, "_Sat short _Fract",
sat_short_fract_type_node);
record_builtin_type (RID_MAX, "_Sat _Fract", sat_fract_type_node);
record_builtin_type (RID_MAX, "_Sat long _Fract",
sat_long_fract_type_node);
record_builtin_type (RID_MAX, "_Sat long long _Fract",
sat_long_long_fract_type_node);
record_builtin_type (RID_MAX, "_Sat unsigned short _Fract",
sat_unsigned_short_fract_type_node);
record_builtin_type (RID_MAX, "_Sat unsigned _Fract",
sat_unsigned_fract_type_node);
record_builtin_type (RID_MAX, "_Sat unsigned long _Fract",
sat_unsigned_long_fract_type_node);
record_builtin_type (RID_MAX, "_Sat unsigned long long _Fract",
sat_unsigned_long_long_fract_type_node);
record_builtin_type (RID_MAX, "short _Accum", short_accum_type_node);
record_builtin_type (RID_ACCUM, NULL, accum_type_node);
record_builtin_type (RID_MAX, "long _Accum", long_accum_type_node);
record_builtin_type (RID_MAX, "long long _Accum",
long_long_accum_type_node);
record_builtin_type (RID_MAX, "unsigned short _Accum",
unsigned_short_accum_type_node);
record_builtin_type (RID_MAX, "unsigned _Accum",
unsigned_accum_type_node);
record_builtin_type (RID_MAX, "unsigned long _Accum",
unsigned_long_accum_type_node);
record_builtin_type (RID_MAX, "unsigned long long _Accum",
unsigned_long_long_accum_type_node);
record_builtin_type (RID_MAX, "_Sat short _Accum",
sat_short_accum_type_node);
record_builtin_type (RID_MAX, "_Sat _Accum", sat_accum_type_node);
record_builtin_type (RID_MAX, "_Sat long _Accum",
sat_long_accum_type_node);
record_builtin_type (RID_MAX, "_Sat long long _Accum",
sat_long_long_accum_type_node);
record_builtin_type (RID_MAX, "_Sat unsigned short _Accum",
sat_unsigned_short_accum_type_node);
record_builtin_type (RID_MAX, "_Sat unsigned _Accum",
sat_unsigned_accum_type_node);
record_builtin_type (RID_MAX, "_Sat unsigned long _Accum",
sat_unsigned_long_accum_type_node);
record_builtin_type (RID_MAX, "_Sat unsigned long long _Accum",
sat_unsigned_long_long_accum_type_node);
}
lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
TYPE_DECL,
get_identifier ("complex int"),
complex_integer_type_node));
lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
TYPE_DECL,
get_identifier ("complex float"),
complex_float_type_node));
lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
TYPE_DECL,
get_identifier ("complex double"),
complex_double_type_node));
lang_hooks.decls.pushdecl
(build_decl (UNKNOWN_LOCATION,
TYPE_DECL, get_identifier ("complex long double"),
complex_long_double_type_node));
if (!c_dialect_cxx ())
for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
if (COMPLEX_FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
{
char buf[30];
sprintf (buf, "complex _Float%d%s", floatn_nx_types[i].n,
floatn_nx_types[i].extended ? "x" : "");
lang_hooks.decls.pushdecl
(build_decl (UNKNOWN_LOCATION,
TYPE_DECL,
get_identifier (buf),
COMPLEX_FLOATN_NX_TYPE_NODE (i)));
}
if (c_dialect_cxx ())
{
/* For C++, make fileptr_type_node a distinct void * type until
FILE type is defined. Likewise for const struct tm*. */
for (unsigned i = 0;
i < sizeof (builtin_structptr_types)
/ sizeof (builtin_structptr_type);
++i)
builtin_structptr_types[i].node =
build_variant_type_copy (builtin_structptr_types[i].base);
}
record_builtin_type (RID_VOID, NULL, void_type_node);
/* Set the TYPE_NAME for any variants that were built before
record_builtin_type gave names to the built-in types. */
{
tree void_name = TYPE_NAME (void_type_node);
TYPE_NAME (void_type_node) = NULL_TREE;
TYPE_NAME (build_qualified_type (void_type_node, TYPE_QUAL_CONST))
= void_name;
TYPE_NAME (void_type_node) = void_name;
}
void_list_node = build_void_list_node ();
/* Make a type to be the domain of a few array types
whose domains don't really matter.
200 is small enough that it always fits in size_t
and large enough that it can hold most function names for the
initializations of __FUNCTION__ and __PRETTY_FUNCTION__. */
array_domain_type = build_index_type (size_int (200));
/* Make a type for arrays of characters.
With luck nothing will ever really depend on the length of this
array type. */
char_array_type_node
= build_array_type (char_type_node, array_domain_type);
string_type_node = build_pointer_type (char_type_node);
const_string_type_node
= build_pointer_type (build_qualified_type
(char_type_node, TYPE_QUAL_CONST));
/* This is special for C++ so functions can be overloaded. */
wchar_type_node = get_identifier (MODIFIED_WCHAR_TYPE);
wchar_type_node = TREE_TYPE (identifier_global_value (wchar_type_node));
wchar_type_size = TYPE_PRECISION (wchar_type_node);
underlying_wchar_type_node = wchar_type_node;
if (c_dialect_cxx ())
{
if (TYPE_UNSIGNED (wchar_type_node))
wchar_type_node = make_unsigned_type (wchar_type_size);
else
wchar_type_node = make_signed_type (wchar_type_size);
record_builtin_type (RID_WCHAR, "wchar_t", wchar_type_node);
}
/* This is for wide string constants. */
wchar_array_type_node
= build_array_type (wchar_type_node, array_domain_type);
/* Define 'char16_t'. */
char16_type_node = get_identifier (CHAR16_TYPE);
char16_type_node = TREE_TYPE (identifier_global_value (char16_type_node));
char16_type_size = TYPE_PRECISION (char16_type_node);
if (c_dialect_cxx ())
{
char16_type_node = make_unsigned_type (char16_type_size);
if (cxx_dialect >= cxx11)
record_builtin_type (RID_CHAR16, "char16_t", char16_type_node);
}
/* This is for UTF-16 string constants. */
char16_array_type_node
= build_array_type (char16_type_node, array_domain_type);
/* Define 'char32_t'. */
char32_type_node = get_identifier (CHAR32_TYPE);
char32_type_node = TREE_TYPE (identifier_global_value (char32_type_node));
char32_type_size = TYPE_PRECISION (char32_type_node);
if (c_dialect_cxx ())
{
char32_type_node = make_unsigned_type (char32_type_size);
if (cxx_dialect >= cxx11)
record_builtin_type (RID_CHAR32, "char32_t", char32_type_node);
}
/* This is for UTF-32 string constants. */
char32_array_type_node
= build_array_type (char32_type_node, array_domain_type);
wint_type_node =
TREE_TYPE (identifier_global_value (get_identifier (WINT_TYPE)));
intmax_type_node =
TREE_TYPE (identifier_global_value (get_identifier (INTMAX_TYPE)));
uintmax_type_node =
TREE_TYPE (identifier_global_value (get_identifier (UINTMAX_TYPE)));
if (SIG_ATOMIC_TYPE)
sig_atomic_type_node =
TREE_TYPE (identifier_global_value (c_get_ident (SIG_ATOMIC_TYPE)));
if (INT8_TYPE)
int8_type_node =
TREE_TYPE (identifier_global_value (c_get_ident (INT8_TYPE)));
if (INT16_TYPE)
int16_type_node =
TREE_TYPE (identifier_global_value (c_get_ident (INT16_TYPE)));
if (INT32_TYPE)
int32_type_node =
TREE_TYPE (identifier_global_value (c_get_ident (INT32_TYPE)));
if (INT64_TYPE)
int64_type_node =
TREE_TYPE (identifier_global_value (c_get_ident (INT64_TYPE)));
if (UINT8_TYPE)
uint8_type_node =
TREE_TYPE (identifier_global_value (c_get_ident (UINT8_TYPE)));
if (UINT16_TYPE)
c_uint16_type_node = uint16_type_node =
TREE_TYPE (identifier_global_value (c_get_ident (UINT16_TYPE)));
if (UINT32_TYPE)
c_uint32_type_node = uint32_type_node =
TREE_TYPE (identifier_global_value (c_get_ident (UINT32_TYPE)));
if (UINT64_TYPE)
c_uint64_type_node = uint64_type_node =
TREE_TYPE (identifier_global_value (c_get_ident (UINT64_TYPE)));
if (INT_LEAST8_TYPE)
int_least8_type_node =
TREE_TYPE (identifier_global_value (c_get_ident (INT_LEAST8_TYPE)));
if (INT_LEAST16_TYPE)
int_least16_type_node =
TREE_TYPE (identifier_global_value (c_get_ident (INT_LEAST16_TYPE)));
if (INT_LEAST32_TYPE)
int_least32_type_node =
TREE_TYPE (identifier_global_value (c_get_ident (INT_LEAST32_TYPE)));
if (INT_LEAST64_TYPE)
int_least64_type_node =
TREE_TYPE (identifier_global_value (c_get_ident (INT_LEAST64_TYPE)));
if (UINT_LEAST8_TYPE)
uint_least8_type_node =
TREE_TYPE (identifier_global_value (c_get_ident (UINT_LEAST8_TYPE)));
if (UINT_LEAST16_TYPE)
uint_least16_type_node =
TREE_TYPE (identifier_global_value (c_get_ident (UINT_LEAST16_TYPE)));
if (UINT_LEAST32_TYPE)
uint_least32_type_node =
TREE_TYPE (identifier_global_value (c_get_ident (UINT_LEAST32_TYPE)));
if (UINT_LEAST64_TYPE)
uint_least64_type_node =
TREE_TYPE (identifier_global_value (c_get_ident (UINT_LEAST64_TYPE)));
if (INT_FAST8_TYPE)
int_fast8_type_node =
TREE_TYPE (identifier_global_value (c_get_ident (INT_FAST8_TYPE)));
if (INT_FAST16_TYPE)
int_fast16_type_node =
TREE_TYPE (identifier_global_value (c_get_ident (INT_FAST16_TYPE)));
if (INT_FAST32_TYPE)
int_fast32_type_node =
TREE_TYPE (identifier_global_value (c_get_ident (INT_FAST32_TYPE)));
if (INT_FAST64_TYPE)
int_fast64_type_node =
TREE_TYPE (identifier_global_value (c_get_ident (INT_FAST64_TYPE)));
if (UINT_FAST8_TYPE)
uint_fast8_type_node =
TREE_TYPE (identifier_global_value (c_get_ident (UINT_FAST8_TYPE)));
if (UINT_FAST16_TYPE)
uint_fast16_type_node =
TREE_TYPE (identifier_global_value (c_get_ident (UINT_FAST16_TYPE)));
if (UINT_FAST32_TYPE)
uint_fast32_type_node =
TREE_TYPE (identifier_global_value (c_get_ident (UINT_FAST32_TYPE)));
if (UINT_FAST64_TYPE)
uint_fast64_type_node =
TREE_TYPE (identifier_global_value (c_get_ident (UINT_FAST64_TYPE)));
if (INTPTR_TYPE)
intptr_type_node =
TREE_TYPE (identifier_global_value (c_get_ident (INTPTR_TYPE)));
if (UINTPTR_TYPE)
uintptr_type_node =
TREE_TYPE (identifier_global_value (c_get_ident (UINTPTR_TYPE)));
default_function_type
= build_varargs_function_type_list (integer_type_node, NULL_TREE);
unsigned_ptrdiff_type_node = c_common_unsigned_type (ptrdiff_type_node);
lang_hooks.decls.pushdecl
(build_decl (UNKNOWN_LOCATION,
TYPE_DECL, get_identifier ("__builtin_va_list"),
va_list_type_node));
if (targetm.enum_va_list_p)
{
int l;
const char *pname;
tree ptype;
for (l = 0; targetm.enum_va_list_p (l, &pname, &ptype); ++l)
{
lang_hooks.decls.pushdecl
(build_decl (UNKNOWN_LOCATION,
TYPE_DECL, get_identifier (pname),
ptype));
}
}
if (TREE_CODE (va_list_type_node) == ARRAY_TYPE)
{
va_list_arg_type_node = va_list_ref_type_node =
build_pointer_type (TREE_TYPE (va_list_type_node));
}
else
{
va_list_arg_type_node = va_list_type_node;
va_list_ref_type_node = build_reference_type (va_list_type_node);
}
if (!flag_preprocess_only)
c_define_builtins (va_list_ref_type_node, va_list_arg_type_node);
main_identifier_node = get_identifier ("main");
/* Create the built-in __null node. It is important that this is
not shared. */
null_node = make_int_cst (1, 1);
TREE_TYPE (null_node) = c_common_type_for_size (POINTER_SIZE, 0);
/* Since builtin_types isn't gc'ed, don't export these nodes. */
memset (builtin_types, 0, sizeof (builtin_types));
}
/* The number of named compound-literals generated thus far. */
static GTY(()) int compound_literal_number;
/* Set DECL_NAME for DECL, a VAR_DECL for a compound-literal. */
void
set_compound_literal_name (tree decl)
{
char *name;
ASM_FORMAT_PRIVATE_NAME (name, "__compound_literal",
compound_literal_number);
compound_literal_number++;
DECL_NAME (decl) = get_identifier (name);
}
/* build_va_arg helper function. Return a VA_ARG_EXPR with location LOC, type
TYPE and operand OP. */
static tree
build_va_arg_1 (location_t loc, tree type, tree op)
{
tree expr = build1 (VA_ARG_EXPR, type, op);
SET_EXPR_LOCATION (expr, loc);
return expr;
}
/* Return a VA_ARG_EXPR corresponding to a source-level expression
va_arg (EXPR, TYPE) at source location LOC. */
tree
build_va_arg (location_t loc, tree expr, tree type)
{
tree va_type = TREE_TYPE (expr);
tree canon_va_type = (va_type == error_mark_node
? error_mark_node
: targetm.canonical_va_list_type (va_type));
if (va_type == error_mark_node
|| canon_va_type == NULL_TREE)
{
if (canon_va_type == NULL_TREE)
error_at (loc, "first argument to %<va_arg%> not of type %<va_list%>");
/* Let's handle things neutrallly, if expr:
- has undeclared type, or
- is not an va_list type. */
return build_va_arg_1 (loc, type, error_mark_node);
}
if (TREE_CODE (canon_va_type) != ARRAY_TYPE)
{
/* Case 1: Not an array type. */
/* Take the address, to get '&ap'. Note that &ap is not a va_list
type. */
mark_addressable (expr);
expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (expr)), expr);
return build_va_arg_1 (loc, type, expr);
}
/* Case 2: Array type.
Background:
For contrast, let's start with the simple case (case 1). If
canon_va_type is not an array type, but say a char *, then when
passing-by-value a va_list, the type of the va_list param decl is
the same as for another va_list decl (all ap's are char *):
f2_1 (char * ap)
D.1815 = VA_ARG (&ap, 0B, 1);
return D.1815;
f2 (int i)
char * ap.0;
char * ap;
__builtin_va_start (&ap, 0);
ap.0 = ap;
res = f2_1 (ap.0);
__builtin_va_end (&ap);
D.1812 = res;
return D.1812;
However, if canon_va_type is ARRAY_TYPE, then when passing-by-value a
va_list the type of the va_list param decl (case 2b, struct * ap) is not
the same as for another va_list decl (case 2a, struct ap[1]).
f2_1 (struct * ap)
D.1844 = VA_ARG (ap, 0B, 0);
return D.1844;
f2 (int i)
struct ap[1];
__builtin_va_start (&ap, 0);
res = f2_1 (&ap);
__builtin_va_end (&ap);
D.1841 = res;
return D.1841;
Case 2b is different because:
- on the callee side, the parm decl has declared type va_list, but
grokdeclarator changes the type of the parm decl to a pointer to the
array elem type.
- on the caller side, the pass-by-value uses &ap.
We unify these two cases (case 2a: va_list is array type,
case 2b: va_list is pointer to array elem type), by adding '&' for the
array type case, such that we have a pointer to array elem in both
cases. */
if (TREE_CODE (va_type) == ARRAY_TYPE)
{
/* Case 2a: va_list is array type. */
/* Take the address, to get '&ap'. Make sure it's a pointer to array
elem type. */
mark_addressable (expr);
expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (canon_va_type)),
expr);
/* Verify that &ap is still recognized as having va_list type. */
tree canon_expr_type
= targetm.canonical_va_list_type (TREE_TYPE (expr));
gcc_assert (canon_expr_type != NULL_TREE);
}
else
{
/* Case 2b: va_list is pointer to array elem type. */
gcc_assert (POINTER_TYPE_P (va_type));
/* Comparison as in std_canonical_va_list_type. */
gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (va_type))
== TYPE_MAIN_VARIANT (TREE_TYPE (canon_va_type)));
/* Don't take the address. We've already got '&ap'. */
;
}
return build_va_arg_1 (loc, type, expr);
}
/* Linked list of disabled built-in functions. */
struct disabled_builtin
{
const char *name;
struct disabled_builtin *next;
};
static disabled_builtin *disabled_builtins = NULL;
static bool builtin_function_disabled_p (const char *);
/* Disable a built-in function specified by -fno-builtin-NAME. If NAME
begins with "__builtin_", give an error. */
void
disable_builtin_function (const char *name)
{
if (strncmp (name, "__builtin_", strlen ("__builtin_")) == 0)
error ("cannot disable built-in function %qs", name);
else
{
disabled_builtin *new_disabled_builtin = XNEW (disabled_builtin);
new_disabled_builtin->name = name;
new_disabled_builtin->next = disabled_builtins;
disabled_builtins = new_disabled_builtin;
}
}
/* Return true if the built-in function NAME has been disabled, false
otherwise. */
static bool
builtin_function_disabled_p (const char *name)
{
disabled_builtin *p;
for (p = disabled_builtins; p != NULL; p = p->next)
{
if (strcmp (name, p->name) == 0)
return true;
}
return false;
}
/* Worker for DEF_BUILTIN.
Possibly define a builtin function with one or two names.
Does not declare a non-__builtin_ function if flag_no_builtin, or if
nonansi_p and flag_no_nonansi_builtin. */
static void
def_builtin_1 (enum built_in_function fncode,
const char *name,
enum built_in_class fnclass,
tree fntype, tree libtype,
bool both_p, bool fallback_p, bool nonansi_p,
tree fnattrs, bool implicit_p)
{
tree decl;
const char *libname;
if (fntype == error_mark_node)
return;
gcc_assert ((!both_p && !fallback_p)
|| !strncmp (name, "__builtin_",
strlen ("__builtin_")));
libname = name + strlen ("__builtin_");
decl = add_builtin_function (name, fntype, fncode, fnclass,
(fallback_p ? libname : NULL),
fnattrs);
set_builtin_decl (fncode, decl, implicit_p);
if (both_p
&& !flag_no_builtin && !builtin_function_disabled_p (libname)
&& !(nonansi_p && flag_no_nonansi_builtin))
add_builtin_function (libname, libtype, fncode, fnclass,
NULL, fnattrs);
}
/* Nonzero if the type T promotes to int. This is (nearly) the
integral promotions defined in ISO C99 6.3.1.1/2. */
bool
c_promoting_integer_type_p (const_tree t)
{
switch (TREE_CODE (t))
{
case INTEGER_TYPE:
return (TYPE_MAIN_VARIANT (t) == char_type_node
|| TYPE_MAIN_VARIANT (t) == signed_char_type_node
|| TYPE_MAIN_VARIANT (t) == unsigned_char_type_node
|| TYPE_MAIN_VARIANT (t) == short_integer_type_node
|| TYPE_MAIN_VARIANT (t) == short_unsigned_type_node
|| TYPE_PRECISION (t) < TYPE_PRECISION (integer_type_node));
case ENUMERAL_TYPE:
/* ??? Technically all enumerations not larger than an int
promote to an int. But this is used along code paths
that only want to notice a size change. */
return TYPE_PRECISION (t) < TYPE_PRECISION (integer_type_node);
case BOOLEAN_TYPE:
return true;
default:
return false;
}
}
/* Return 1 if PARMS specifies a fixed number of parameters
and none of their types is affected by default promotions. */
bool
self_promoting_args_p (const_tree parms)
{
const_tree t;
for (t = parms; t; t = TREE_CHAIN (t))
{
tree type = TREE_VALUE (t);
if (type == error_mark_node)
continue;
if (TREE_CHAIN (t) == NULL_TREE && type != void_type_node)
return false;
if (type == NULL_TREE)
return false;
if (TYPE_MAIN_VARIANT (type) == float_type_node)
return false;
if (c_promoting_integer_type_p (type))
return false;
}
return true;
}
/* Recursively remove any '*' or '&' operator from TYPE. */
tree
strip_pointer_operator (tree t)
{
while (POINTER_TYPE_P (t))
t = TREE_TYPE (t);
return t;
}
/* Recursively remove pointer or array type from TYPE. */
tree
strip_pointer_or_array_types (tree t)
{
while (TREE_CODE (t) == ARRAY_TYPE || POINTER_TYPE_P (t))
t = TREE_TYPE (t);
return t;
}
/* Used to compare case labels. K1 and K2 are actually tree nodes
representing case labels, or NULL_TREE for a `default' label.
Returns -1 if K1 is ordered before K2, -1 if K1 is ordered after
K2, and 0 if K1 and K2 are equal. */
int
case_compare (splay_tree_key k1, splay_tree_key k2)
{
/* Consider a NULL key (such as arises with a `default' label) to be
smaller than anything else. */
if (!k1)
return k2 ? -1 : 0;
else if (!k2)
return k1 ? 1 : 0;
return tree_int_cst_compare ((tree) k1, (tree) k2);
}
/* Process a case label, located at LOC, for the range LOW_VALUE
... HIGH_VALUE. If LOW_VALUE and HIGH_VALUE are both NULL_TREE
then this case label is actually a `default' label. If only
HIGH_VALUE is NULL_TREE, then case label was declared using the
usual C/C++ syntax, rather than the GNU case range extension.
CASES is a tree containing all the case ranges processed so far;
COND is the condition for the switch-statement itself.
OUTSIDE_RANGE_P says whether there was a case value that doesn't
fit into the range of the ORIG_TYPE. Returns the CASE_LABEL_EXPR
created, or ERROR_MARK_NODE if no CASE_LABEL_EXPR is created. */
tree
c_add_case_label (location_t loc, splay_tree cases, tree cond, tree orig_type,
tree low_value, tree high_value, bool *outside_range_p)
{
tree type;
tree label;
tree case_label;
splay_tree_node node;
/* Create the LABEL_DECL itself. */
label = create_artificial_label (loc);
/* If there was an error processing the switch condition, bail now
before we get more confused. */
if (!cond || cond == error_mark_node)
goto error_out;
if ((low_value && TREE_TYPE (low_value)
&& POINTER_TYPE_P (TREE_TYPE (low_value)))
|| (high_value && TREE_TYPE (high_value)
&& POINTER_TYPE_P (TREE_TYPE (high_value))))
{
error_at (loc, "pointers are not permitted as case values");
goto error_out;
}
/* Case ranges are a GNU extension. */
if (high_value)
pedwarn (loc, OPT_Wpedantic,
"range expressions in switch statements are non-standard");
type = TREE_TYPE (cond);
if (low_value)
{
low_value = check_case_value (loc, low_value);
low_value = convert_and_check (loc, type, low_value);
if (low_value == error_mark_node)
goto error_out;
}
if (high_value)
{
high_value = check_case_value (loc, high_value);
high_value = convert_and_check (loc, type, high_value);
if (high_value == error_mark_node)
goto error_out;
}
if (low_value && high_value)
{
/* If the LOW_VALUE and HIGH_VALUE are the same, then this isn't
really a case range, even though it was written that way.
Remove the HIGH_VALUE to simplify later processing. */
if (tree_int_cst_equal (low_value, high_value))
high_value = NULL_TREE;
else if (!tree_int_cst_lt (low_value, high_value))
warning_at (loc, 0, "empty range specified");
}
/* See if the case is in range of the type of the original testing
expression. If both low_value and high_value are out of range,
don't insert the case label and return NULL_TREE. */
if (low_value
&& !check_case_bounds (loc, type, orig_type,
&low_value, high_value ? &high_value : NULL,
outside_range_p))
return NULL_TREE;
/* Look up the LOW_VALUE in the table of case labels we already
have. */
node = splay_tree_lookup (cases, (splay_tree_key) low_value);
/* If there was not an exact match, check for overlapping ranges.
There's no need to do this if there's no LOW_VALUE or HIGH_VALUE;
that's a `default' label and the only overlap is an exact match. */
if (!node && (low_value || high_value))
{
splay_tree_node low_bound;
splay_tree_node high_bound;
/* Even though there wasn't an exact match, there might be an
overlap between this case range and another case range.
Since we've (inductively) not allowed any overlapping case
ranges, we simply need to find the greatest low case label
that is smaller that LOW_VALUE, and the smallest low case
label that is greater than LOW_VALUE. If there is an overlap
it will occur in one of these two ranges. */
low_bound = splay_tree_predecessor (cases,
(splay_tree_key) low_value);
high_bound = splay_tree_successor (cases,
(splay_tree_key) low_value);
/* Check to see if the LOW_BOUND overlaps. It is smaller than
the LOW_VALUE, so there is no need to check unless the
LOW_BOUND is in fact itself a case range. */
if (low_bound
&& CASE_HIGH ((tree) low_bound->value)
&& tree_int_cst_compare (CASE_HIGH ((tree) low_bound->value),
low_value) >= 0)
node = low_bound;
/* Check to see if the HIGH_BOUND overlaps. The low end of that
range is bigger than the low end of the current range, so we
are only interested if the current range is a real range, and
not an ordinary case label. */
else if (high_bound
&& high_value
&& (tree_int_cst_compare ((tree) high_bound->key,
high_value)
<= 0))
node = high_bound;
}
/* If there was an overlap, issue an error. */
if (node)
{
tree duplicate = CASE_LABEL ((tree) node->value);
if (high_value)
{
error_at (loc, "duplicate (or overlapping) case value");
inform (DECL_SOURCE_LOCATION (duplicate),
"this is the first entry overlapping that value");
}
else if (low_value)
{
error_at (loc, "duplicate case value") ;
inform (DECL_SOURCE_LOCATION (duplicate), "previously used here");
}
else
{
error_at (loc, "multiple default labels in one switch");
inform (DECL_SOURCE_LOCATION (duplicate),
"this is the first default label");
}
goto error_out;
}
/* Add a CASE_LABEL to the statement-tree. */
case_label = add_stmt (build_case_label (low_value, high_value, label));
/* Register this case label in the splay tree. */
splay_tree_insert (cases,
(splay_tree_key) low_value,
(splay_tree_value) case_label);
return case_label;
error_out:
/* Add a label so that the back-end doesn't think that the beginning of
the switch is unreachable. Note that we do not add a case label, as
that just leads to duplicates and thence to failure later on. */
if (!cases->root)
{
tree t = create_artificial_label (loc);
add_stmt (build_stmt (loc, LABEL_EXPR, t));
}
return error_mark_node;
}
/* Subroutine of c_switch_covers_all_cases_p, called via
splay_tree_foreach. Return 1 if it doesn't cover all the cases.
ARGS[0] is initially NULL and after the first iteration is the
so far highest case label. ARGS[1] is the minimum of SWITCH_COND's
type. */
static int
c_switch_covers_all_cases_p_1 (splay_tree_node node, void *data)
{
tree label = (tree) node->value;
tree *args = (tree *) data;
/* If there is a default case, we shouldn't have called this. */
gcc_assert (CASE_LOW (label));
if (args[0] == NULL_TREE)
{
if (wi::to_widest (args[1]) < wi::to_widest (CASE_LOW (label)))
return 1;
}
else if (wi::add (wi::to_widest (args[0]), 1)
!= wi::to_widest (CASE_LOW (label)))
return 1;
if (CASE_HIGH (label))
args[0] = CASE_HIGH (label);
else
args[0] = CASE_LOW (label);
return 0;
}
/* Return true if switch with CASES and switch condition with type
covers all possible values in the case labels. */
bool
c_switch_covers_all_cases_p (splay_tree cases, tree type)
{
/* If there is default:, this is always the case. */
splay_tree_node default_node
= splay_tree_lookup (cases, (splay_tree_key) NULL);
if (default_node)
return true;
if (!INTEGRAL_TYPE_P (type))
return false;
tree args[2] = { NULL_TREE, TYPE_MIN_VALUE (type) };
if (splay_tree_foreach (cases, c_switch_covers_all_cases_p_1, args))
return false;
/* If there are no cases at all, or if the highest case label
is smaller than TYPE_MAX_VALUE, return false. */
if (args[0] == NULL_TREE
|| wi::to_widest (args[0]) < wi::to_widest (TYPE_MAX_VALUE (type)))
return false;
return true;
}
/* Finish an expression taking the address of LABEL (an
IDENTIFIER_NODE). Returns an expression for the address.
LOC is the location for the expression returned. */
tree
finish_label_address_expr (tree label, location_t loc)
{
tree result;
pedwarn (input_location, OPT_Wpedantic, "taking the address of a label is non-standard");
if (label == error_mark_node)
return error_mark_node;
label = lookup_label (label);
if (label == NULL_TREE)
result = null_pointer_node;
else
{
TREE_USED (label) = 1;
result = build1 (ADDR_EXPR, ptr_type_node, label);
/* The current function is not necessarily uninlinable.
Computed gotos are incompatible with inlining, but the value
here could be used only in a diagnostic, for example. */
protected_set_expr_location (result, loc);
}
return result;
}
/* Given a boolean expression ARG, return a tree representing an increment
or decrement (as indicated by CODE) of ARG. The front end must check for
invalid cases (e.g., decrement in C++). */
tree
boolean_increment (enum tree_code code, tree arg)
{
tree val;
tree true_res = build_int_cst (TREE_TYPE (arg), 1);
arg = stabilize_reference (arg);
switch (code)
{
case PREINCREMENT_EXPR:
val = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg, true_res);
break;
case POSTINCREMENT_EXPR:
val = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg, true_res);
arg = save_expr (arg);
val = build2 (COMPOUND_EXPR, TREE_TYPE (arg), val, arg);
val = build2 (COMPOUND_EXPR, TREE_TYPE (arg), arg, val);
break;
case PREDECREMENT_EXPR:
val = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg,
invert_truthvalue_loc (input_location, arg));
break;
case POSTDECREMENT_EXPR:
val = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg,
invert_truthvalue_loc (input_location, arg));
arg = save_expr (arg);
val = build2 (COMPOUND_EXPR, TREE_TYPE (arg), val, arg);
val = build2 (COMPOUND_EXPR, TREE_TYPE (arg), arg, val);
break;
default:
gcc_unreachable ();
}
TREE_SIDE_EFFECTS (val) = 1;
return val;
}
/* Built-in macros for stddef.h and stdint.h, that require macros
defined in this file. */
void
c_stddef_cpp_builtins(void)
{
builtin_define_with_value ("__SIZE_TYPE__", SIZE_TYPE, 0);
builtin_define_with_value ("__PTRDIFF_TYPE__", PTRDIFF_TYPE, 0);
builtin_define_with_value ("__WCHAR_TYPE__", MODIFIED_WCHAR_TYPE, 0);
builtin_define_with_value ("__WINT_TYPE__", WINT_TYPE, 0);
builtin_define_with_value ("__INTMAX_TYPE__", INTMAX_TYPE, 0);
builtin_define_with_value ("__UINTMAX_TYPE__", UINTMAX_TYPE, 0);
builtin_define_with_value ("__CHAR16_TYPE__", CHAR16_TYPE, 0);
builtin_define_with_value ("__CHAR32_TYPE__", CHAR32_TYPE, 0);
if (SIG_ATOMIC_TYPE)
builtin_define_with_value ("__SIG_ATOMIC_TYPE__", SIG_ATOMIC_TYPE, 0);
if (INT8_TYPE)
builtin_define_with_value ("__INT8_TYPE__", INT8_TYPE, 0);
if (INT16_TYPE)
builtin_define_with_value ("__INT16_TYPE__", INT16_TYPE, 0);
if (INT32_TYPE)
builtin_define_with_value ("__INT32_TYPE__", INT32_TYPE, 0);
if (INT64_TYPE)
builtin_define_with_value ("__INT64_TYPE__", INT64_TYPE, 0);
if (UINT8_TYPE)
builtin_define_with_value ("__UINT8_TYPE__", UINT8_TYPE, 0);
if (UINT16_TYPE)
builtin_define_with_value ("__UINT16_TYPE__", UINT16_TYPE, 0);
if (UINT32_TYPE)
builtin_define_with_value ("__UINT32_TYPE__", UINT32_TYPE, 0);
if (UINT64_TYPE)
builtin_define_with_value ("__UINT64_TYPE__", UINT64_TYPE, 0);
if (INT_LEAST8_TYPE)
builtin_define_with_value ("__INT_LEAST8_TYPE__", INT_LEAST8_TYPE, 0);
if (INT_LEAST16_TYPE)
builtin_define_with_value ("__INT_LEAST16_TYPE__", INT_LEAST16_TYPE, 0);
if (INT_LEAST32_TYPE)
builtin_define_with_value ("__INT_LEAST32_TYPE__", INT_LEAST32_TYPE, 0);
if (INT_LEAST64_TYPE)
builtin_define_with_value ("__INT_LEAST64_TYPE__", INT_LEAST64_TYPE, 0);
if (UINT_LEAST8_TYPE)
builtin_define_with_value ("__UINT_LEAST8_TYPE__", UINT_LEAST8_TYPE, 0);
if (UINT_LEAST16_TYPE)
builtin_define_with_value ("__UINT_LEAST16_TYPE__", UINT_LEAST16_TYPE, 0);
if (UINT_LEAST32_TYPE)
builtin_define_with_value ("__UINT_LEAST32_TYPE__", UINT_LEAST32_TYPE, 0);
if (UINT_LEAST64_TYPE)
builtin_define_with_value ("__UINT_LEAST64_TYPE__", UINT_LEAST64_TYPE, 0);
if (INT_FAST8_TYPE)
builtin_define_with_value ("__INT_FAST8_TYPE__", INT_FAST8_TYPE, 0);
if (INT_FAST16_TYPE)
builtin_define_with_value ("__INT_FAST16_TYPE__", INT_FAST16_TYPE, 0);
if (INT_FAST32_TYPE)
builtin_define_with_value ("__INT_FAST32_TYPE__", INT_FAST32_TYPE, 0);
if (INT_FAST64_TYPE)
builtin_define_with_value ("__INT_FAST64_TYPE__", INT_FAST64_TYPE, 0);
if (UINT_FAST8_TYPE)
builtin_define_with_value ("__UINT_FAST8_TYPE__", UINT_FAST8_TYPE, 0);
if (UINT_FAST16_TYPE)
builtin_define_with_value ("__UINT_FAST16_TYPE__", UINT_FAST16_TYPE, 0);
if (UINT_FAST32_TYPE)
builtin_define_with_value ("__UINT_FAST32_TYPE__", UINT_FAST32_TYPE, 0);
if (UINT_FAST64_TYPE)
builtin_define_with_value ("__UINT_FAST64_TYPE__", UINT_FAST64_TYPE, 0);
if (INTPTR_TYPE)
builtin_define_with_value ("__INTPTR_TYPE__", INTPTR_TYPE, 0);
if (UINTPTR_TYPE)
builtin_define_with_value ("__UINTPTR_TYPE__", UINTPTR_TYPE, 0);
}
static void
c_init_attributes (void)
{
/* Fill in the built_in_attributes array. */
#define DEF_ATTR_NULL_TREE(ENUM) \
built_in_attributes[(int) ENUM] = NULL_TREE;
#define DEF_ATTR_INT(ENUM, VALUE) \
built_in_attributes[(int) ENUM] = build_int_cst (integer_type_node, VALUE);
#define DEF_ATTR_STRING(ENUM, VALUE) \
built_in_attributes[(int) ENUM] = build_string (strlen (VALUE), VALUE);
#define DEF_ATTR_IDENT(ENUM, STRING) \
built_in_attributes[(int) ENUM] = get_identifier (STRING);
#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) \
built_in_attributes[(int) ENUM] \
= tree_cons (built_in_attributes[(int) PURPOSE], \
built_in_attributes[(int) VALUE], \
built_in_attributes[(int) CHAIN]);
#include "builtin-attrs.def"
#undef DEF_ATTR_NULL_TREE
#undef DEF_ATTR_INT
#undef DEF_ATTR_IDENT
#undef DEF_ATTR_TREE_LIST
}
/* Check whether ALIGN is a valid user-specified alignment. If so,
return its base-2 log; if not, output an error and return -1. If
ALLOW_ZERO then 0 is valid and should result in a return of -1 with
no error. */
int
check_user_alignment (const_tree align, bool allow_zero)
{
int i;
if (error_operand_p (align))
return -1;
if (TREE_CODE (align) != INTEGER_CST
|| !INTEGRAL_TYPE_P (TREE_TYPE (align)))
{
error ("requested alignment is not an integer constant");
return -1;
}
else if (allow_zero && integer_zerop (align))
return -1;
else if (tree_int_cst_sgn (align) == -1
|| (i = tree_log2 (align)) == -1)
{
error ("requested alignment is not a positive power of 2");
return -1;
}
else if (i >= HOST_BITS_PER_INT - LOG2_BITS_PER_UNIT)
{
error ("requested alignment is too large");
return -1;
}
return i;
}
/* Determine the ELF symbol visibility for DECL, which is either a
variable or a function. It is an error to use this function if a
definition of DECL is not available in this translation unit.
Returns true if the final visibility has been determined by this
function; false if the caller is free to make additional
modifications. */
bool
c_determine_visibility (tree decl)
{
gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
/* If the user explicitly specified the visibility with an
attribute, honor that. DECL_VISIBILITY will have been set during
the processing of the attribute. We check for an explicit
attribute, rather than just checking DECL_VISIBILITY_SPECIFIED,
to distinguish the use of an attribute from the use of a "#pragma
GCC visibility push(...)"; in the latter case we still want other
considerations to be able to overrule the #pragma. */
if (lookup_attribute ("visibility", DECL_ATTRIBUTES (decl))
|| (TARGET_DLLIMPORT_DECL_ATTRIBUTES
&& (lookup_attribute ("dllimport", DECL_ATTRIBUTES (decl))
|| lookup_attribute ("dllexport", DECL_ATTRIBUTES (decl)))))
return true;
/* Set default visibility to whatever the user supplied with
visibility_specified depending on #pragma GCC visibility. */
if (!DECL_VISIBILITY_SPECIFIED (decl))
{
if (visibility_options.inpragma
|| DECL_VISIBILITY (decl) != default_visibility)
{
DECL_VISIBILITY (decl) = default_visibility;
DECL_VISIBILITY_SPECIFIED (decl) = visibility_options.inpragma;
/* If visibility changed and DECL already has DECL_RTL, ensure
symbol flags are updated. */
if (((VAR_P (decl) && TREE_STATIC (decl))
|| TREE_CODE (decl) == FUNCTION_DECL)
&& DECL_RTL_SET_P (decl))
make_decl_rtl (decl);
}
}
return false;
}
/* Data to communicate through check_function_arguments_recurse between
check_function_nonnull and check_nonnull_arg. */
struct nonnull_arg_ctx
{
location_t loc;
bool warned_p;
};
/* Check the argument list of a function call for null in argument slots
that are marked as requiring a non-null pointer argument. The NARGS
arguments are passed in the array ARGARRAY. Return true if we have
warned. */
static bool
check_function_nonnull (location_t loc, tree attrs, int nargs, tree *argarray)
{
tree a;
int i;
attrs = lookup_attribute ("nonnull", attrs);
if (attrs == NULL_TREE)
return false;
a = attrs;
/* See if any of the nonnull attributes has no arguments. If so,
then every pointer argument is checked (in which case the check
for pointer type is done in check_nonnull_arg). */
if (TREE_VALUE (a) != NULL_TREE)
do
a = lookup_attribute ("nonnull", TREE_CHAIN (a));
while (a != NULL_TREE && TREE_VALUE (a) != NULL_TREE);
struct nonnull_arg_ctx ctx = { loc, false };
if (a != NULL_TREE)
for (i = 0; i < nargs; i++)
check_function_arguments_recurse (check_nonnull_arg, &ctx, argarray[i],
i + 1);
else
{
/* Walk the argument list. If we encounter an argument number we
should check for non-null, do it. */
for (i = 0; i < nargs; i++)
{
for (a = attrs; ; a = TREE_CHAIN (a))
{
a = lookup_attribute ("nonnull", a);
if (a == NULL_TREE || nonnull_check_p (TREE_VALUE (a), i + 1))
break;
}
if (a != NULL_TREE)
check_function_arguments_recurse (check_nonnull_arg, &ctx,
argarray[i], i + 1);
}
}
return ctx.warned_p;
}
/* Check that the Nth argument of a function call (counting backwards
from the end) is a (pointer)0. The NARGS arguments are passed in the
array ARGARRAY. */
static void
check_function_sentinel (const_tree fntype, int nargs, tree *argarray)
{
tree attr = lookup_attribute ("sentinel", TYPE_ATTRIBUTES (fntype));
if (attr)
{
int len = 0;
int pos = 0;
tree sentinel;
function_args_iterator iter;
tree t;
/* Skip over the named arguments. */
FOREACH_FUNCTION_ARGS (fntype, t, iter)
{
if (len == nargs)
break;
len++;
}
if (TREE_VALUE (attr))
{
tree p = TREE_VALUE (TREE_VALUE (attr));
pos = TREE_INT_CST_LOW (p);
}
/* The sentinel must be one of the varargs, i.e.
in position >= the number of fixed arguments. */
if ((nargs - 1 - pos) < len)
{
warning (OPT_Wformat_,
"not enough variable arguments to fit a sentinel");
return;
}
/* Validate the sentinel. */
sentinel = argarray[nargs - 1 - pos];
if ((!POINTER_TYPE_P (TREE_TYPE (sentinel))
|| !integer_zerop (sentinel))
/* Although __null (in C++) is only an integer we allow it
nevertheless, as we are guaranteed that it's exactly
as wide as a pointer, and we don't want to force
users to cast the NULL they have written there.
We warn with -Wstrict-null-sentinel, though. */
&& (warn_strict_null_sentinel || null_node != sentinel))
warning (OPT_Wformat_, "missing sentinel in function call");
}
}
/* Check that the same argument isn't passed to two or more
restrict-qualified formal and issue a -Wrestrict warning
if it is. Return true if a warning has been issued. */
static bool
check_function_restrict (const_tree fndecl, const_tree fntype,
int nargs, tree *argarray)
{
int i;
tree parms = TYPE_ARG_TYPES (fntype);
if (fndecl
&& TREE_CODE (fndecl) == FUNCTION_DECL)
{
/* Avoid diagnosing calls built-ins with a zero size/bound
here. They are checked in more detail elsewhere. */
if (DECL_BUILT_IN (fndecl)
&& DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
&& nargs == 3
&& TREE_CODE (argarray[2]) == INTEGER_CST
&& integer_zerop (argarray[2]))
return false;
if (DECL_ARGUMENTS (fndecl))
parms = DECL_ARGUMENTS (fndecl);
}
for (i = 0; i < nargs; i++)
TREE_VISITED (argarray[i]) = 0;
bool warned = false;
for (i = 0; i < nargs && parms && parms != void_list_node; i++)
{
tree type;
if (TREE_CODE (parms) == PARM_DECL)
{
type = TREE_TYPE (parms);
parms = DECL_CHAIN (parms);
}
else
{
type = TREE_VALUE (parms);
parms = TREE_CHAIN (parms);
}
if (POINTER_TYPE_P (type)
&& TYPE_RESTRICT (type)
&& !TYPE_READONLY (TREE_TYPE (type)))
warned |= warn_for_restrict (i, argarray, nargs);
}
for (i = 0; i < nargs; i++)
TREE_VISITED (argarray[i]) = 0;
return warned;
}
/* Helper for check_function_nonnull; given a list of operands which
must be non-null in ARGS, determine if operand PARAM_NUM should be
checked. */
static bool
nonnull_check_p (tree args, unsigned HOST_WIDE_INT param_num)
{
unsigned HOST_WIDE_INT arg_num = 0;
for (; args; args = TREE_CHAIN (args))
{
bool found = get_nonnull_operand (TREE_VALUE (args), &arg_num);
gcc_assert (found);
if (arg_num == param_num)
return true;
}
return false;
}
/* Check that the function argument PARAM (which is operand number
PARAM_NUM) is non-null. This is called by check_function_nonnull
via check_function_arguments_recurse. */
static void
check_nonnull_arg (void *ctx, tree param, unsigned HOST_WIDE_INT param_num)
{
struct nonnull_arg_ctx *pctx = (struct nonnull_arg_ctx *) ctx;
/* Just skip checking the argument if it's not a pointer. This can
happen if the "nonnull" attribute was given without an operand
list (which means to check every pointer argument). */
if (TREE_CODE (TREE_TYPE (param)) != POINTER_TYPE)
return;
/* Diagnose the simple cases of null arguments. */
if (integer_zerop (fold_for_warn (param)))
{
warning_at (pctx->loc, OPT_Wnonnull, "null argument where non-null "
"required (argument %lu)", (unsigned long) param_num);
pctx->warned_p = true;
}
}
/* Helper for nonnull attribute handling; fetch the operand number
from the attribute argument list. */
bool
get_nonnull_operand (tree arg_num_expr, unsigned HOST_WIDE_INT *valp)
{
/* Verify the arg number is a small constant. */
if (tree_fits_uhwi_p (arg_num_expr))
{
*valp = tree_to_uhwi (arg_num_expr);
return true;
}
else
return false;
}
/* Arguments being collected for optimization. */
typedef const char *const_char_p; /* For DEF_VEC_P. */
static GTY(()) vec<const_char_p, va_gc> *optimize_args;
/* Inner function to convert a TREE_LIST to argv string to parse the optimize
options in ARGS. ATTR_P is true if this is for attribute(optimize), and
false for #pragma GCC optimize. */
bool
parse_optimize_options (tree args, bool attr_p)
{
bool ret = true;
unsigned opt_argc;
unsigned i;
const char **opt_argv;
struct cl_decoded_option *decoded_options;
unsigned int decoded_options_count;
tree ap;
/* Build up argv vector. Just in case the string is stored away, use garbage
collected strings. */
vec_safe_truncate (optimize_args, 0);
vec_safe_push (optimize_args, (const char *) NULL);
for (ap = args; ap != NULL_TREE; ap = TREE_CHAIN (ap))
{
tree value = TREE_VALUE (ap);
if (TREE_CODE (value) == INTEGER_CST)
{
char buffer[20];
sprintf (buffer, "-O%ld", (long) TREE_INT_CST_LOW (value));
vec_safe_push (optimize_args, ggc_strdup (buffer));
}
else if (TREE_CODE (value) == STRING_CST)
{
/* Split string into multiple substrings. */
size_t len = TREE_STRING_LENGTH (value);
char *p = ASTRDUP (TREE_STRING_POINTER (value));
char *end = p + len;
char *comma;
char *next_p = p;
while (next_p != NULL)
{
size_t len2;
char *q, *r;
p = next_p;
comma = strchr (p, ',');
if (comma)
{
len2 = comma - p;
*comma = '\0';
next_p = comma+1;
}
else
{
len2 = end - p;
next_p = NULL;
}
r = q = (char *) ggc_alloc_atomic (len2 + 3);
/* If the user supplied -Oxxx or -fxxx, only allow -Oxxx or -fxxx
options. */
if (*p == '-' && p[1] != 'O' && p[1] != 'f')
{
ret = false;
if (attr_p)
warning (OPT_Wattributes,
"bad option %qs to attribute %<optimize%>", p);
else
warning (OPT_Wpragmas,
"bad option %qs to pragma %<optimize%>", p);
continue;
}
if (*p != '-')
{
*r++ = '-';
/* Assume that Ox is -Ox, a numeric value is -Ox, a s by
itself is -Os, and any other switch begins with a -f. */
if ((*p >= '0' && *p <= '9')
|| (p[0] == 's' && p[1] == '\0'))
*r++ = 'O';
else if (*p != 'O')
*r++ = 'f';
}
memcpy (r, p, len2);
r[len2] = '\0';
vec_safe_push (optimize_args, (const char *) q);
}
}
}
opt_argc = optimize_args->length ();
opt_argv = (const char **) alloca (sizeof (char *) * (opt_argc + 1));
for (i = 1; i < opt_argc; i++)
opt_argv[i] = (*optimize_args)[i];
/* Now parse the options. */
decode_cmdline_options_to_array_default_mask (opt_argc, opt_argv,
&decoded_options,
&decoded_options_count);
/* Drop non-Optimization options. */
unsigned j = 1;
for (i = 1; i < decoded_options_count; ++i)
{
if (! (cl_options[decoded_options[i].opt_index].flags & CL_OPTIMIZATION))
{
ret = false;
if (attr_p)
warning (OPT_Wattributes,
"bad option %qs to attribute %<optimize%>",
decoded_options[i].orig_option_with_args_text);
else
warning (OPT_Wpragmas,
"bad option %qs to pragma %<optimize%>",
decoded_options[i].orig_option_with_args_text);
continue;
}
if (i != j)
decoded_options[j] = decoded_options[i];
j++;
}
decoded_options_count = j;
/* And apply them. */
decode_options (&global_options, &global_options_set,
decoded_options, decoded_options_count,
input_location, global_dc, NULL);
targetm.override_options_after_change();
optimize_args->truncate (0);
return ret;
}
/* Check whether ATTR is a valid attribute fallthrough. */
bool
attribute_fallthrough_p (tree attr)
{
if (attr == error_mark_node)
return false;
tree t = lookup_attribute ("fallthrough", attr);
if (t == NULL_TREE)
return false;
/* This attribute shall appear at most once in each attribute-list. */
if (lookup_attribute ("fallthrough", TREE_CHAIN (t)))
warning (OPT_Wattributes, "%<fallthrough%> attribute specified multiple "
"times");
/* No attribute-argument-clause shall be present. */
else if (TREE_VALUE (t) != NULL_TREE)
warning (OPT_Wattributes, "%<fallthrough%> attribute specified with "
"a parameter");
/* Warn if other attributes are found. */
for (t = attr; t != NULL_TREE; t = TREE_CHAIN (t))
{
tree name = get_attribute_name (t);
if (!is_attribute_p ("fallthrough", name))
warning (OPT_Wattributes, "%qE attribute ignored", name);
}
return true;
}
/* Check for valid arguments being passed to a function with FNTYPE.
There are NARGS arguments in the array ARGARRAY. LOC should be used
for diagnostics. Return true if either -Wnonnull or -Wrestrict has
been issued. */
bool
check_function_arguments (location_t loc, const_tree fndecl, const_tree fntype,
int nargs, tree *argarray, vec<location_t> *arglocs)
{
bool warned_p = false;
/* Check for null being passed in a pointer argument that must be
non-null. We also need to do this if format checking is enabled. */
if (warn_nonnull)
warned_p = check_function_nonnull (loc, TYPE_ATTRIBUTES (fntype),
nargs, argarray);
/* Check for errors in format strings. */
if (warn_format || warn_suggest_attribute_format)
check_function_format (TYPE_ATTRIBUTES (fntype), nargs, argarray, arglocs);
if (warn_format)
check_function_sentinel (fntype, nargs, argarray);
if (warn_restrict)
warned_p |= check_function_restrict (fndecl, fntype, nargs, argarray);
return warned_p;
}
/* Generic argument checking recursion routine. PARAM is the argument to
be checked. PARAM_NUM is the number of the argument. CALLBACK is invoked
once the argument is resolved. CTX is context for the callback. */
void
check_function_arguments_recurse (void (*callback)
(void *, tree, unsigned HOST_WIDE_INT),
void *ctx, tree param,
unsigned HOST_WIDE_INT param_num)
{
if (CONVERT_EXPR_P (param)
&& (TYPE_PRECISION (TREE_TYPE (param))
== TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (param, 0)))))
{
/* Strip coercion. */
check_function_arguments_recurse (callback, ctx,
TREE_OPERAND (param, 0), param_num);
return;
}
if (TREE_CODE (param) == CALL_EXPR)
{
tree type = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (param)));
tree attrs;
bool found_format_arg = false;
/* See if this is a call to a known internationalization function
that modifies a format arg. Such a function may have multiple
format_arg attributes (for example, ngettext). */
for (attrs = TYPE_ATTRIBUTES (type);
attrs;
attrs = TREE_CHAIN (attrs))
if (is_attribute_p ("format_arg", TREE_PURPOSE (attrs)))
{
tree inner_arg;
tree format_num_expr;
int format_num;
int i;
call_expr_arg_iterator iter;
/* Extract the argument number, which was previously checked
to be valid. */
format_num_expr = TREE_VALUE (TREE_VALUE (attrs));
format_num = tree_to_uhwi (format_num_expr);
for (inner_arg = first_call_expr_arg (param, &iter), i = 1;
inner_arg != NULL_TREE;
inner_arg = next_call_expr_arg (&iter), i++)
if (i == format_num)
{
check_function_arguments_recurse (callback, ctx,
inner_arg, param_num);
found_format_arg = true;
break;
}
}
/* If we found a format_arg attribute and did a recursive check,
we are done with checking this argument. Otherwise, we continue
and this will be considered a non-literal. */
if (found_format_arg)
return;
}
if (TREE_CODE (param) == COND_EXPR)
{
/* Simplify to avoid warning for an impossible case. */
param = fold_for_warn (param);
if (TREE_CODE (param) == COND_EXPR)
{
/* Check both halves of the conditional expression. */
check_function_arguments_recurse (callback, ctx,
TREE_OPERAND (param, 1),
param_num);
check_function_arguments_recurse (callback, ctx,
TREE_OPERAND (param, 2),
param_num);
return;
}
}
(*callback) (ctx, param, param_num);
}
/* Checks for a builtin function FNDECL that the number of arguments
NARGS against the required number REQUIRED and issues an error if
there is a mismatch. Returns true if the number of arguments is
correct, otherwise false. LOC is the location of FNDECL. */
static bool
builtin_function_validate_nargs (location_t loc, tree fndecl, int nargs,
int required)
{
if (nargs < required)
{
error_at (loc, "too few arguments to function %qE", fndecl);
return false;
}
else if (nargs > required)
{
error_at (loc, "too many arguments to function %qE", fndecl);
return false;
}
return true;
}
/* Helper macro for check_builtin_function_arguments. */
#define ARG_LOCATION(N) \
(arg_loc.is_empty () \
? EXPR_LOC_OR_LOC (args[(N)], input_location) \
: expansion_point_location (arg_loc[(N)]))
/* Verifies the NARGS arguments ARGS to the builtin function FNDECL.
Returns false if there was an error, otherwise true. LOC is the
location of the function; ARG_LOC is a vector of locations of the
arguments. */
bool
check_builtin_function_arguments (location_t loc, vec<location_t> arg_loc,
tree fndecl, int nargs, tree *args)
{
if (!DECL_BUILT_IN (fndecl)
|| DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
return true;
switch (DECL_FUNCTION_CODE (fndecl))
{
case BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX:
if (!tree_fits_uhwi_p (args[2]))
{
error_at (ARG_LOCATION (2),
"third argument to function %qE must be a constant integer",
fndecl);
return false;
}
/* fall through */
case BUILT_IN_ALLOCA_WITH_ALIGN:
{
/* Get the requested alignment (in bits) if it's a constant
integer expression. */
unsigned HOST_WIDE_INT align
= tree_fits_uhwi_p (args[1]) ? tree_to_uhwi (args[1]) : 0;
/* Determine if the requested alignment is a power of 2. */
if ((align & (align - 1)))
align = 0;
/* The maximum alignment in bits corresponding to the same
maximum in bytes enforced in check_user_alignment(). */
unsigned maxalign = (UINT_MAX >> 1) + 1;
/* Reject invalid alignments. */
if (align < BITS_PER_UNIT || maxalign < align)
{
error_at (ARG_LOCATION (1),
"second argument to function %qE must be a constant "
"integer power of 2 between %qi and %qu bits",
fndecl, BITS_PER_UNIT, maxalign);
return false;
}
return true;
}
case BUILT_IN_CONSTANT_P:
return builtin_function_validate_nargs (loc, fndecl, nargs, 1);
case BUILT_IN_ISFINITE:
case BUILT_IN_ISINF:
case BUILT_IN_ISINF_SIGN:
case BUILT_IN_ISNAN:
case BUILT_IN_ISNORMAL:
case BUILT_IN_SIGNBIT:
if (builtin_function_validate_nargs (loc, fndecl, nargs, 1))
{
if (TREE_CODE (TREE_TYPE (args[0])) != REAL_TYPE)
{
error_at (ARG_LOCATION (0), "non-floating-point argument in "
"call to function %qE", fndecl);
return false;
}
return true;
}
return false;
case BUILT_IN_ISGREATER:
case BUILT_IN_ISGREATEREQUAL:
case BUILT_IN_ISLESS:
case BUILT_IN_ISLESSEQUAL:
case BUILT_IN_ISLESSGREATER:
case BUILT_IN_ISUNORDERED:
if (builtin_function_validate_nargs (loc, fndecl, nargs, 2))
{
enum tree_code code0, code1;
code0 = TREE_CODE (TREE_TYPE (args[0]));
code1 = TREE_CODE (TREE_TYPE (args[1]));
if (!((code0 == REAL_TYPE && code1 == REAL_TYPE)
|| (code0 == REAL_TYPE && code1 == INTEGER_TYPE)
|| (code0 == INTEGER_TYPE && code1 == REAL_TYPE)))
{
error_at (loc, "non-floating-point arguments in call to "
"function %qE", fndecl);
return false;
}
return true;
}
return false;
case BUILT_IN_FPCLASSIFY:
if (builtin_function_validate_nargs (loc, fndecl, nargs, 6))
{
for (unsigned int i = 0; i < 5; i++)
if (TREE_CODE (args[i]) != INTEGER_CST)
{
error_at (ARG_LOCATION (i), "non-const integer argument %u in "
"call to function %qE", i + 1, fndecl);
return false;
}
if (TREE_CODE (TREE_TYPE (args[5])) != REAL_TYPE)
{
error_at (ARG_LOCATION (5), "non-floating-point argument in "
"call to function %qE", fndecl);
return false;
}
return true;
}
return false;
case BUILT_IN_ASSUME_ALIGNED:
if (builtin_function_validate_nargs (loc, fndecl, nargs, 2 + (nargs > 2)))
{
if (nargs >= 3 && TREE_CODE (TREE_TYPE (args[2])) != INTEGER_TYPE)
{
error_at (ARG_LOCATION (2), "non-integer argument 3 in call to "
"function %qE", fndecl);
return false;
}
return true;
}
return false;
case BUILT_IN_ADD_OVERFLOW:
case BUILT_IN_SUB_OVERFLOW:
case BUILT_IN_MUL_OVERFLOW:
if (builtin_function_validate_nargs (loc, fndecl, nargs, 3))
{
unsigned i;
for (i = 0; i < 2; i++)
if (!INTEGRAL_TYPE_P (TREE_TYPE (args[i])))
{
error_at (ARG_LOCATION (i), "argument %u in call to function "
"%qE does not have integral type", i + 1, fndecl);
return false;
}
if (TREE_CODE (TREE_TYPE (args[2])) != POINTER_TYPE
|| !INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (args[2]))))
{
error_at (ARG_LOCATION (2), "argument 3 in call to function %qE "
"does not have pointer to integral type", fndecl);
return false;
}
else if (TREE_CODE (TREE_TYPE (TREE_TYPE (args[2]))) == ENUMERAL_TYPE)
{
error_at (ARG_LOCATION (2), "argument 3 in call to function %qE "
"has pointer to enumerated type", fndecl);
return false;
}
else if (TREE_CODE (TREE_TYPE (TREE_TYPE (args[2]))) == BOOLEAN_TYPE)
{
error_at (ARG_LOCATION (2), "argument 3 in call to function %qE "
"has pointer to boolean type", fndecl);
return false;
}
return true;
}
return false;
case BUILT_IN_ADD_OVERFLOW_P:
case BUILT_IN_SUB_OVERFLOW_P:
case BUILT_IN_MUL_OVERFLOW_P:
if (builtin_function_validate_nargs (loc, fndecl, nargs, 3))
{
unsigned i;
for (i = 0; i < 3; i++)
if (!INTEGRAL_TYPE_P (TREE_TYPE (args[i])))
{
error_at (ARG_LOCATION (i), "argument %u in call to function "
"%qE does not have integral type", i + 1, fndecl);
return false;
}
if (TREE_CODE (TREE_TYPE (args[2])) == ENUMERAL_TYPE)
{
error_at (ARG_LOCATION (2), "argument 3 in call to function "
"%qE has enumerated type", fndecl);
return false;
}
else if (TREE_CODE (TREE_TYPE (args[2])) == BOOLEAN_TYPE)
{
error_at (ARG_LOCATION (2), "argument 3 in call to function "
"%qE has boolean type", fndecl);
return false;
}
return true;
}
return false;
default:
return true;
}
}
/* Subroutine of c_parse_error.
Return the result of concatenating LHS and RHS. RHS is really
a string literal, its first character is indicated by RHS_START and
RHS_SIZE is its length (including the terminating NUL character).
The caller is responsible for deleting the returned pointer. */
static char *
catenate_strings (const char *lhs, const char *rhs_start, int rhs_size)
{
const size_t lhs_size = strlen (lhs);
char *result = XNEWVEC (char, lhs_size + rhs_size);
memcpy (result, lhs, lhs_size);
memcpy (result + lhs_size, rhs_start, rhs_size);
return result;
}
/* Issue the error given by GMSGID at RICHLOC, indicating that it occurred
before TOKEN, which had the associated VALUE. */
void
c_parse_error (const char *gmsgid, enum cpp_ttype token_type,
tree value, unsigned char token_flags,
rich_location *richloc)
{
#define catenate_messages(M1, M2) catenate_strings ((M1), (M2), sizeof (M2))
char *message = NULL;
if (token_type == CPP_EOF)
message = catenate_messages (gmsgid, " at end of input");
else if (token_type == CPP_CHAR
|| token_type == CPP_WCHAR
|| token_type == CPP_CHAR16
|| token_type == CPP_CHAR32
|| token_type == CPP_UTF8CHAR)
{
unsigned int val = TREE_INT_CST_LOW (value);
const char *prefix;
switch (token_type)
{
default:
prefix = "";
break;
case CPP_WCHAR:
prefix = "L";
break;
case CPP_CHAR16:
prefix = "u";
break;
case CPP_CHAR32:
prefix = "U";
break;
case CPP_UTF8CHAR:
prefix = "u8";
break;
}
if (val <= UCHAR_MAX && ISGRAPH (val))
message = catenate_messages (gmsgid, " before %s'%c'");
else
message = catenate_messages (gmsgid, " before %s'\\x%x'");
error_at (richloc, message, prefix, val);
free (message);
message = NULL;
}
else if (token_type == CPP_CHAR_USERDEF
|| token_type == CPP_WCHAR_USERDEF
|| token_type == CPP_CHAR16_USERDEF
|| token_type == CPP_CHAR32_USERDEF
|| token_type == CPP_UTF8CHAR_USERDEF)
message = catenate_messages (gmsgid,
" before user-defined character literal");
else if (token_type == CPP_STRING_USERDEF
|| token_type == CPP_WSTRING_USERDEF
|| token_type == CPP_STRING16_USERDEF
|| token_type == CPP_STRING32_USERDEF
|| token_type == CPP_UTF8STRING_USERDEF)
message = catenate_messages (gmsgid, " before user-defined string literal");
else if (token_type == CPP_STRING
|| token_type == CPP_WSTRING
|| token_type == CPP_STRING16
|| token_type == CPP_STRING32
|| token_type == CPP_UTF8STRING)
message = catenate_messages (gmsgid, " before string constant");
else if (token_type == CPP_NUMBER)
message = catenate_messages (gmsgid, " before numeric constant");
else if (token_type == CPP_NAME)
{
message = catenate_messages (gmsgid, " before %qE");
error_at (richloc, message, value);
free (message);
message = NULL;
}
else if (token_type == CPP_PRAGMA)
message = catenate_messages (gmsgid, " before %<#pragma%>");
else if (token_type == CPP_PRAGMA_EOL)
message = catenate_messages (gmsgid, " before end of line");
else if (token_type == CPP_DECLTYPE)
message = catenate_messages (gmsgid, " before %<decltype%>");
else if (token_type < N_TTYPES)
{
message = catenate_messages (gmsgid, " before %qs token");
error_at (richloc, message, cpp_type2name (token_type, token_flags));
free (message);
message = NULL;
}
else
error_at (richloc, gmsgid);
if (message)
{
error_at (richloc, message);
free (message);
}
#undef catenate_messages
}
/* Return the gcc option code associated with the reason for a cpp
message, or 0 if none. */
static int
c_option_controlling_cpp_error (int reason)
{
const struct cpp_reason_option_codes_t *entry;
for (entry = cpp_reason_option_codes; entry->reason != CPP_W_NONE; entry++)
{
if (entry->reason == reason)
return entry->option_code;
}
return 0;
}
/* Callback from cpp_error for PFILE to print diagnostics from the
preprocessor. The diagnostic is of type LEVEL, with REASON set
to the reason code if LEVEL is represents a warning, at location
RICHLOC unless this is after lexing and the compiler's location
should be used instead; MSG is the translated message and AP
the arguments. Returns true if a diagnostic was emitted, false
otherwise. */
bool
c_cpp_error (cpp_reader *pfile ATTRIBUTE_UNUSED, int level, int reason,
rich_location *richloc,
const char *msg, va_list *ap)
{
diagnostic_info diagnostic;
diagnostic_t dlevel;
bool save_warn_system_headers = global_dc->dc_warn_system_headers;
bool ret;
switch (level)
{
case CPP_DL_WARNING_SYSHDR:
if (flag_no_output)
return false;
global_dc->dc_warn_system_headers = 1;
/* Fall through. */
case CPP_DL_WARNING:
if (flag_no_output)
return false;
dlevel = DK_WARNING;
break;
case CPP_DL_PEDWARN:
if (flag_no_output && !flag_pedantic_errors)
return false;
dlevel = DK_PEDWARN;
break;
case CPP_DL_ERROR:
dlevel = DK_ERROR;
break;
case CPP_DL_ICE:
dlevel = DK_ICE;
break;
case CPP_DL_NOTE:
dlevel = DK_NOTE;
break;
case CPP_DL_FATAL:
dlevel = DK_FATAL;
break;
default:
gcc_unreachable ();
}
if (done_lexing)
richloc->set_range (line_table, 0, input_location, true);
diagnostic_set_info_translated (&diagnostic, msg, ap,
richloc, dlevel);
diagnostic_override_option_index (&diagnostic,
c_option_controlling_cpp_error (reason));
ret = diagnostic_report_diagnostic (global_dc, &diagnostic);
if (level == CPP_DL_WARNING_SYSHDR)
global_dc->dc_warn_system_headers = save_warn_system_headers;
return ret;
}
/* Convert a character from the host to the target execution character
set. cpplib handles this, mostly. */
HOST_WIDE_INT
c_common_to_target_charset (HOST_WIDE_INT c)
{
/* Character constants in GCC proper are sign-extended under -fsigned-char,
zero-extended under -fno-signed-char. cpplib insists that characters
and character constants are always unsigned. Hence we must convert
back and forth. */
cppchar_t uc = ((cppchar_t)c) & ((((cppchar_t)1) << CHAR_BIT)-1);
uc = cpp_host_to_exec_charset (parse_in, uc);
if (flag_signed_char)
return ((HOST_WIDE_INT)uc) << (HOST_BITS_PER_WIDE_INT - CHAR_TYPE_SIZE)
>> (HOST_BITS_PER_WIDE_INT - CHAR_TYPE_SIZE);
else
return uc;
}
/* Fold an offsetof-like expression. EXPR is a nested sequence of component
references with an INDIRECT_REF of a constant at the bottom; much like the
traditional rendering of offsetof as a macro. TYPE is the desired type of
the whole expression. Return the folded result. */
tree
fold_offsetof (tree expr, tree type, enum tree_code ctx)
{
tree base, off, t;
tree_code code = TREE_CODE (expr);
switch (code)
{
case ERROR_MARK:
return expr;
case VAR_DECL:
error ("cannot apply %<offsetof%> to static data member %qD", expr);
return error_mark_node;
case CALL_EXPR:
case TARGET_EXPR:
error ("cannot apply %<offsetof%> when %<operator[]%> is overloaded");
return error_mark_node;
case NOP_EXPR:
case INDIRECT_REF:
if (!TREE_CONSTANT (TREE_OPERAND (expr, 0)))
{
error ("cannot apply %<offsetof%> to a non constant address");
return error_mark_node;
}
return convert (type, TREE_OPERAND (expr, 0));
case COMPONENT_REF:
base = fold_offsetof (TREE_OPERAND (expr, 0), type, code);
if (base == error_mark_node)
return base;
t = TREE_OPERAND (expr, 1);
if (DECL_C_BIT_FIELD (t))
{
error ("attempt to take address of bit-field structure "
"member %qD", t);
return error_mark_node;
}
off = size_binop_loc (input_location, PLUS_EXPR, DECL_FIELD_OFFSET (t),
size_int (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (t))
/ BITS_PER_UNIT));
break;
case ARRAY_REF:
base = fold_offsetof (TREE_OPERAND (expr, 0), type, code);
if (base == error_mark_node)
return base;
t = TREE_OPERAND (expr, 1);
/* Check if the offset goes beyond the upper bound of the array. */
if (TREE_CODE (t) == INTEGER_CST && tree_int_cst_sgn (t) >= 0)
{
tree upbound = array_ref_up_bound (expr);
if (upbound != NULL_TREE
&& TREE_CODE (upbound) == INTEGER_CST
&& !tree_int_cst_equal (upbound,
TYPE_MAX_VALUE (TREE_TYPE (upbound))))
{
if (ctx != ARRAY_REF && ctx != COMPONENT_REF)
upbound = size_binop (PLUS_EXPR, upbound,
build_int_cst (TREE_TYPE (upbound), 1));
if (tree_int_cst_lt (upbound, t))
{
tree v;
for (v = TREE_OPERAND (expr, 0);
TREE_CODE (v) == COMPONENT_REF;
v = TREE_OPERAND (v, 0))
if (TREE_CODE (TREE_TYPE (TREE_OPERAND (v, 0)))
== RECORD_TYPE)
{
tree fld_chain = DECL_CHAIN (TREE_OPERAND (v, 1));
for (; fld_chain; fld_chain = DECL_CHAIN (fld_chain))
if (TREE_CODE (fld_chain) == FIELD_DECL)
break;
if (fld_chain)
break;
}
/* Don't warn if the array might be considered a poor
man's flexible array member with a very permissive
definition thereof. */
if (TREE_CODE (v) == ARRAY_REF
|| TREE_CODE (v) == COMPONENT_REF)
warning (OPT_Warray_bounds,
"index %E denotes an offset "
"greater than size of %qT",
t, TREE_TYPE (TREE_OPERAND (expr, 0)));
}
}
}
t = convert (sizetype, t);
off = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (TREE_TYPE (expr)), t);
break;
case COMPOUND_EXPR:
/* Handle static members of volatile structs. */
t = TREE_OPERAND (expr, 1);
gcc_checking_assert (VAR_P (get_base_address (t)));
return fold_offsetof (t, type);
default:
gcc_unreachable ();
}
if (!POINTER_TYPE_P (type))
return size_binop (PLUS_EXPR, base, convert (type, off));
return fold_build_pointer_plus (base, off);
}
/* *PTYPE is an incomplete array. Complete it with a domain based on
INITIAL_VALUE. If INITIAL_VALUE is not present, use 1 if DO_DEFAULT
is true. Return 0 if successful, 1 if INITIAL_VALUE can't be deciphered,
2 if INITIAL_VALUE was NULL, and 3 if INITIAL_VALUE was empty. */
int
complete_array_type (tree *ptype, tree initial_value, bool do_default)
{
tree maxindex, type, main_type, elt, unqual_elt;
int failure = 0, quals;
bool overflow_p = false;
maxindex = size_zero_node;
if (initial_value)
{
if (TREE_CODE (initial_value) == STRING_CST)
{
int eltsize
= int_size_in_bytes (TREE_TYPE (TREE_TYPE (initial_value)));
maxindex = size_int (TREE_STRING_LENGTH (initial_value)/eltsize - 1);
}
else if (TREE_CODE (initial_value) == CONSTRUCTOR)
{
vec<constructor_elt, va_gc> *v = CONSTRUCTOR_ELTS (initial_value);
if (vec_safe_is_empty (v))
{
if (pedantic)
failure = 3;
maxindex = ssize_int (-1);
}
else
{
tree curindex;
unsigned HOST_WIDE_INT cnt;
constructor_elt *ce;
bool fold_p = false;
if ((*v)[0].index)
maxindex = (*v)[0].index, fold_p = true;
curindex = maxindex;
for (cnt = 1; vec_safe_iterate (v, cnt, &ce); cnt++)
{
bool curfold_p = false;
if (ce->index)
curindex = ce->index, curfold_p = true;
else
{
if (fold_p)
{
/* Since we treat size types now as ordinary
unsigned types, we need an explicit overflow
check. */
tree orig = curindex;
curindex = fold_convert (sizetype, curindex);
overflow_p |= tree_int_cst_lt (curindex, orig);
}
curindex = size_binop (PLUS_EXPR, curindex,
size_one_node);
}
if (tree_int_cst_lt (maxindex, curindex))
maxindex = curindex, fold_p = curfold_p;
}
if (fold_p)
{
tree orig = maxindex;
maxindex = fold_convert (sizetype, maxindex);
overflow_p |= tree_int_cst_lt (maxindex, orig);
}
}
}
else
{
/* Make an error message unless that happened already. */
if (initial_value != error_mark_node)
failure = 1;
}
}
else
{
failure = 2;
if (!do_default)
return failure;
}
type = *ptype;
elt = TREE_TYPE (type);
quals = TYPE_QUALS (strip_array_types (elt));
if (quals == 0)
unqual_elt = elt;
else
unqual_elt = c_build_qualified_type (elt, KEEP_QUAL_ADDR_SPACE (quals));
/* Using build_distinct_type_copy and modifying things afterward instead
of using build_array_type to create a new type preserves all of the
TYPE_LANG_FLAG_? bits that the front end may have set. */
main_type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
TREE_TYPE (main_type) = unqual_elt;
TYPE_DOMAIN (main_type)
= build_range_type (TREE_TYPE (maxindex),
build_int_cst (TREE_TYPE (maxindex), 0), maxindex);
TYPE_TYPELESS_STORAGE (main_type) = TYPE_TYPELESS_STORAGE (type);
layout_type (main_type);
/* Make sure we have the canonical MAIN_TYPE. */
hashval_t hashcode = type_hash_canon_hash (main_type);
main_type = type_hash_canon (hashcode, main_type);
/* Fix the canonical type. */
if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (main_type))
|| TYPE_STRUCTURAL_EQUALITY_P (TYPE_DOMAIN (main_type)))
SET_TYPE_STRUCTURAL_EQUALITY (main_type);
else if (TYPE_CANONICAL (TREE_TYPE (main_type)) != TREE_TYPE (main_type)
|| (TYPE_CANONICAL (TYPE_DOMAIN (main_type))
!= TYPE_DOMAIN (main_type)))
TYPE_CANONICAL (main_type)
= build_array_type (TYPE_CANONICAL (TREE_TYPE (main_type)),
TYPE_CANONICAL (TYPE_DOMAIN (main_type)),
TYPE_TYPELESS_STORAGE (main_type));
else
TYPE_CANONICAL (main_type) = main_type;
if (quals == 0)
type = main_type;
else
type = c_build_qualified_type (main_type, quals);
if (COMPLETE_TYPE_P (type)
&& TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST
&& (overflow_p || TREE_OVERFLOW (TYPE_SIZE_UNIT (type))))
{
error ("size of array is too large");
/* If we proceed with the array type as it is, we'll eventually
crash in tree_to_[su]hwi(). */
type = error_mark_node;
}
*ptype = type;
return failure;
}
/* Like c_mark_addressable but don't check register qualifier. */
void
c_common_mark_addressable_vec (tree t)
{
if (TREE_CODE (t) == C_MAYBE_CONST_EXPR)
t = C_MAYBE_CONST_EXPR_EXPR (t);
while (handled_component_p (t))
t = TREE_OPERAND (t, 0);
if (!VAR_P (t)
&& TREE_CODE (t) != PARM_DECL
&& TREE_CODE (t) != COMPOUND_LITERAL_EXPR)
return;
if (!VAR_P (t) || !DECL_HARD_REGISTER (t))
TREE_ADDRESSABLE (t) = 1;
}
/* Used to help initialize the builtin-types.def table. When a type of
the correct size doesn't exist, use error_mark_node instead of NULL.
The later results in segfaults even when a decl using the type doesn't
get invoked. */
tree
builtin_type_for_size (int size, bool unsignedp)
{
tree type = c_common_type_for_size (size, unsignedp);
return type ? type : error_mark_node;
}
/* A helper function for resolve_overloaded_builtin in resolving the
overloaded __sync_ builtins. Returns a positive power of 2 if the
first operand of PARAMS is a pointer to a supported data type.
Returns 0 if an error is encountered.
FETCH is true when FUNCTION is one of the _FETCH_OP_ or _OP_FETCH_
built-ins. */
static int
sync_resolve_size (tree function, vec<tree, va_gc> *params, bool fetch)
{
/* Type of the argument. */
tree argtype;
/* Type the argument points to. */
tree type;
int size;
if (vec_safe_is_empty (params))
{
error ("too few arguments to function %qE", function);
return 0;
}
argtype = type = TREE_TYPE ((*params)[0]);
if (TREE_CODE (type) == ARRAY_TYPE && c_dialect_cxx ())
{
/* Force array-to-pointer decay for C++. */
(*params)[0] = default_conversion ((*params)[0]);
type = TREE_TYPE ((*params)[0]);
}
if (TREE_CODE (type) != POINTER_TYPE)
goto incompatible;
type = TREE_TYPE (type);
if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
goto incompatible;
if (!COMPLETE_TYPE_P (type))
goto incompatible;
if (fetch && TREE_CODE (type) == BOOLEAN_TYPE)
goto incompatible;
size = tree_to_uhwi (TYPE_SIZE_UNIT (type));
if (size == 1 || size == 2 || size == 4 || size == 8 || size == 16)
return size;
incompatible:
/* Issue the diagnostic only if the argument is valid, otherwise
it would be redundant at best and could be misleading. */
if (argtype != error_mark_node)
error ("operand type %qT is incompatible with argument %d of %qE",
argtype, 1, function);
return 0;
}
/* A helper function for resolve_overloaded_builtin. Adds casts to
PARAMS to make arguments match up with those of FUNCTION. Drops
the variadic arguments at the end. Returns false if some error
was encountered; true on success. */
static bool
sync_resolve_params (location_t loc, tree orig_function, tree function,
vec<tree, va_gc> *params, bool orig_format)
{
function_args_iterator iter;
tree ptype;
unsigned int parmnum;
function_args_iter_init (&iter, TREE_TYPE (function));
/* We've declared the implementation functions to use "volatile void *"
as the pointer parameter, so we shouldn't get any complaints from the
call to check_function_arguments what ever type the user used. */
function_args_iter_next (&iter);
ptype = TREE_TYPE (TREE_TYPE ((*params)[0]));
ptype = TYPE_MAIN_VARIANT (ptype);
/* For the rest of the values, we need to cast these to FTYPE, so that we
don't get warnings for passing pointer types, etc. */
parmnum = 0;
while (1)
{
tree val, arg_type;
arg_type = function_args_iter_cond (&iter);
/* XXX void_type_node belies the abstraction. */
if (arg_type == void_type_node)
break;
++parmnum;
if (params->length () <= parmnum)
{
error_at (loc, "too few arguments to function %qE", orig_function);
return false;
}
/* Only convert parameters if arg_type is unsigned integer type with
new format sync routines, i.e. don't attempt to convert pointer
arguments (e.g. EXPECTED argument of __atomic_compare_exchange_n),
bool arguments (e.g. WEAK argument) or signed int arguments (memmodel
kinds). */
if (TREE_CODE (arg_type) == INTEGER_TYPE && TYPE_UNSIGNED (arg_type))
{
/* Ideally for the first conversion we'd use convert_for_assignment
so that we get warnings for anything that doesn't match the pointer
type. This isn't portable across the C and C++ front ends atm. */
val = (*params)[parmnum];
val = convert (ptype, val);
val = convert (arg_type, val);
(*params)[parmnum] = val;
}
function_args_iter_next (&iter);
}
/* __atomic routines are not variadic. */
if (!orig_format && params->length () != parmnum + 1)
{
error_at (loc, "too many arguments to function %qE", orig_function);
return false;
}
/* The definition of these primitives is variadic, with the remaining
being "an optional list of variables protected by the memory barrier".
No clue what that's supposed to mean, precisely, but we consider all
call-clobbered variables to be protected so we're safe. */
params->truncate (parmnum + 1);
return true;
}
/* A helper function for resolve_overloaded_builtin. Adds a cast to
RESULT to make it match the type of the first pointer argument in
PARAMS. */
static tree
sync_resolve_return (tree first_param, tree result, bool orig_format)
{
tree ptype = TREE_TYPE (TREE_TYPE (first_param));
tree rtype = TREE_TYPE (result);
ptype = TYPE_MAIN_VARIANT (ptype);
/* New format doesn't require casting unless the types are the same size. */
if (orig_format || tree_int_cst_equal (TYPE_SIZE (ptype), TYPE_SIZE (rtype)))
return convert (ptype, result);
else
return result;
}
/* This function verifies the PARAMS to generic atomic FUNCTION.
It returns the size if all the parameters are the same size, otherwise
0 is returned if the parameters are invalid. */
static int
get_atomic_generic_size (location_t loc, tree function,
vec<tree, va_gc> *params)
{
unsigned int n_param;
unsigned int n_model;
unsigned int x;
int size_0;
tree type_0;
/* Determine the parameter makeup. */
switch (DECL_FUNCTION_CODE (function))
{
case BUILT_IN_ATOMIC_EXCHANGE:
n_param = 4;
n_model = 1;
break;
case BUILT_IN_ATOMIC_LOAD:
case BUILT_IN_ATOMIC_STORE:
n_param = 3;
n_model = 1;
break;
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
n_param = 6;
n_model = 2;
break;
default:
gcc_unreachable ();
}
if (vec_safe_length (params) != n_param)
{
error_at (loc, "incorrect number of arguments to function %qE", function);
return 0;
}
/* Get type of first parameter, and determine its size. */
type_0 = TREE_TYPE ((*params)[0]);
if (TREE_CODE (type_0) == ARRAY_TYPE && c_dialect_cxx ())
{
/* Force array-to-pointer decay for C++. */
(*params)[0] = default_conversion ((*params)[0]);
type_0 = TREE_TYPE ((*params)[0]);
}
if (TREE_CODE (type_0) != POINTER_TYPE || VOID_TYPE_P (TREE_TYPE (type_0)))
{
error_at (loc, "argument 1 of %qE must be a non-void pointer type",
function);
return 0;
}
/* Types must be compile time constant sizes. */
if (TREE_CODE ((TYPE_SIZE_UNIT (TREE_TYPE (type_0)))) != INTEGER_CST)
{
error_at (loc,
"argument 1 of %qE must be a pointer to a constant size type",
function);
return 0;
}
size_0 = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (type_0)));
/* Zero size objects are not allowed. */
if (size_0 == 0)
{
error_at (loc,
"argument 1 of %qE must be a pointer to a nonzero size object",
function);
return 0;
}
/* Check each other parameter is a pointer and the same size. */
for (x = 0; x < n_param - n_model; x++)
{
int size;
tree type = TREE_TYPE ((*params)[x]);
/* __atomic_compare_exchange has a bool in the 4th position, skip it. */
if (n_param == 6 && x == 3)
continue;
if (TREE_CODE (type) == ARRAY_TYPE && c_dialect_cxx ())
{
/* Force array-to-pointer decay for C++. */
(*params)[x] = default_conversion ((*params)[x]);
type = TREE_TYPE ((*params)[x]);
}
if (!POINTER_TYPE_P (type))
{
error_at (loc, "argument %d of %qE must be a pointer type", x + 1,
function);
return 0;
}
else if (TYPE_SIZE_UNIT (TREE_TYPE (type))
&& TREE_CODE ((TYPE_SIZE_UNIT (TREE_TYPE (type))))
!= INTEGER_CST)
{
error_at (loc, "argument %d of %qE must be a pointer to a constant "
"size type", x + 1, function);
return 0;
}
else if (FUNCTION_POINTER_TYPE_P (type))
{
error_at (loc, "argument %d of %qE must not be a pointer to a "
"function", x + 1, function);
return 0;
}
tree type_size = TYPE_SIZE_UNIT (TREE_TYPE (type));
size = type_size ? tree_to_uhwi (type_size) : 0;
if (size != size_0)
{
error_at (loc, "size mismatch in argument %d of %qE", x + 1,
function);
return 0;
}
}
/* Check memory model parameters for validity. */
for (x = n_param - n_model ; x < n_param; x++)
{
tree p = (*params)[x];
if (!INTEGRAL_TYPE_P (TREE_TYPE (p)))
{
error_at (loc, "non-integer memory model argument %d of %qE", x + 1,
function);
return 0;
}
p = fold_for_warn (p);
if (TREE_CODE (p) == INTEGER_CST)
{
/* memmodel_base masks the low 16 bits, thus ignore any bits above
it by using TREE_INT_CST_LOW instead of tree_to_*hwi. Those high
bits will be checked later during expansion in target specific
way. */
if (memmodel_base (TREE_INT_CST_LOW (p)) >= MEMMODEL_LAST)
warning_at (loc, OPT_Winvalid_memory_model,
"invalid memory model argument %d of %qE", x + 1,
function);
}
}
return size_0;
}
/* This will take an __atomic_ generic FUNCTION call, and add a size parameter N
at the beginning of the parameter list PARAMS representing the size of the
objects. This is to match the library ABI requirement. LOC is the location
of the function call.
The new function is returned if it needed rebuilding, otherwise NULL_TREE is
returned to allow the external call to be constructed. */
static tree
add_atomic_size_parameter (unsigned n, location_t loc, tree function,
vec<tree, va_gc> *params)
{
tree size_node;
/* Insert a SIZE_T parameter as the first param. If there isn't
enough space, allocate a new vector and recursively re-build with that. */
if (!params->space (1))
{
unsigned int z, len;
vec<tree, va_gc> *v;
tree f;
len = params->length ();
vec_alloc (v, len + 1);
v->quick_push (build_int_cst (size_type_node, n));
for (z = 0; z < len; z++)
v->quick_push ((*params)[z]);
f = build_function_call_vec (loc, vNULL, function, v, NULL);
vec_free (v);
return f;
}
/* Add the size parameter and leave as a function call for processing. */
size_node = build_int_cst (size_type_node, n);
params->quick_insert (0, size_node);
return NULL_TREE;
}
/* Return whether atomic operations for naturally aligned N-byte
arguments are supported, whether inline or through libatomic. */
static bool
atomic_size_supported_p (int n)
{
switch (n)
{
case 1:
case 2:
case 4:
case 8:
return true;
case 16:
return targetm.scalar_mode_supported_p (TImode);
default:
return false;
}
}
/* This will process an __atomic_exchange function call, determine whether it
needs to be mapped to the _N variation, or turned into a library call.
LOC is the location of the builtin call.
FUNCTION is the DECL that has been invoked;
PARAMS is the argument list for the call. The return value is non-null
TRUE is returned if it is translated into the proper format for a call to the
external library, and NEW_RETURN is set the tree for that function.
FALSE is returned if processing for the _N variation is required, and
NEW_RETURN is set to the return value the result is copied into. */
static bool
resolve_overloaded_atomic_exchange (location_t loc, tree function,
vec<tree, va_gc> *params, tree *new_return)
{
tree p0, p1, p2, p3;
tree I_type, I_type_ptr;
int n = get_atomic_generic_size (loc, function, params);
/* Size of 0 is an error condition. */
if (n == 0)
{
*new_return = error_mark_node;
return true;
}
/* If not a lock-free size, change to the library generic format. */
if (!atomic_size_supported_p (n))
{
*new_return = add_atomic_size_parameter (n, loc, function, params);
return true;
}
/* Otherwise there is a lockfree match, transform the call from:
void fn(T* mem, T* desired, T* return, model)
into
*return = (T) (fn (In* mem, (In) *desired, model)) */
p0 = (*params)[0];
p1 = (*params)[1];
p2 = (*params)[2];
p3 = (*params)[3];
/* Create pointer to appropriate size. */
I_type = builtin_type_for_size (BITS_PER_UNIT * n, 1);
I_type_ptr = build_pointer_type (I_type);
/* Convert object pointer to required type. */
p0 = build1 (VIEW_CONVERT_EXPR, I_type_ptr, p0);
(*params)[0] = p0;
/* Convert new value to required type, and dereference it. */
p1 = build_indirect_ref (loc, p1, RO_UNARY_STAR);
p1 = build1 (VIEW_CONVERT_EXPR, I_type, p1);
(*params)[1] = p1;
/* Move memory model to the 3rd position, and end param list. */
(*params)[2] = p3;
params->truncate (3);
/* Convert return pointer and dereference it for later assignment. */
*new_return = build_indirect_ref (loc, p2, RO_UNARY_STAR);
return false;
}
/* This will process an __atomic_compare_exchange function call, determine
whether it needs to be mapped to the _N variation, or turned into a lib call.
LOC is the location of the builtin call.
FUNCTION is the DECL that has been invoked;
PARAMS is the argument list for the call. The return value is non-null
TRUE is returned if it is translated into the proper format for a call to the
external library, and NEW_RETURN is set the tree for that function.
FALSE is returned if processing for the _N variation is required. */
static bool
resolve_overloaded_atomic_compare_exchange (location_t loc, tree function,
vec<tree, va_gc> *params,
tree *new_return)
{
tree p0, p1, p2;
tree I_type, I_type_ptr;
int n = get_atomic_generic_size (loc, function, params);
/* Size of 0 is an error condition. */
if (n == 0)
{
*new_return = error_mark_node;
return true;
}
/* If not a lock-free size, change to the library generic format. */
if (!atomic_size_supported_p (n))
{
/* The library generic format does not have the weak parameter, so
remove it from the param list. Since a parameter has been removed,
we can be sure that there is room for the SIZE_T parameter, meaning
there will not be a recursive rebuilding of the parameter list, so
there is no danger this will be done twice. */
if (n > 0)
{
(*params)[3] = (*params)[4];
(*params)[4] = (*params)[5];
params->truncate (5);
}
*new_return = add_atomic_size_parameter (n, loc, function, params);
return true;
}
/* Otherwise, there is a match, so the call needs to be transformed from:
bool fn(T* mem, T* desired, T* return, weak, success, failure)
into
bool fn ((In *)mem, (In *)expected, (In) *desired, weak, succ, fail) */
p0 = (*params)[0];
p1 = (*params)[1];
p2 = (*params)[2];
/* Create pointer to appropriate size. */
I_type = builtin_type_for_size (BITS_PER_UNIT * n, 1);
I_type_ptr = build_pointer_type (I_type);
/* Convert object pointer to required type. */
p0 = build1 (VIEW_CONVERT_EXPR, I_type_ptr, p0);
(*params)[0] = p0;
/* Convert expected pointer to required type. */
p1 = build1 (VIEW_CONVERT_EXPR, I_type_ptr, p1);
(*params)[1] = p1;
/* Convert desired value to required type, and dereference it. */
p2 = build_indirect_ref (loc, p2, RO_UNARY_STAR);
p2 = build1 (VIEW_CONVERT_EXPR, I_type, p2);
(*params)[2] = p2;
/* The rest of the parameters are fine. NULL means no special return value
processing.*/
*new_return = NULL;
return false;
}
/* This will process an __atomic_load function call, determine whether it
needs to be mapped to the _N variation, or turned into a library call.
LOC is the location of the builtin call.
FUNCTION is the DECL that has been invoked;
PARAMS is the argument list for the call. The return value is non-null
TRUE is returned if it is translated into the proper format for a call to the
external library, and NEW_RETURN is set the tree for that function.
FALSE is returned if processing for the _N variation is required, and
NEW_RETURN is set to the return value the result is copied into. */
static bool
resolve_overloaded_atomic_load (location_t loc, tree function,
vec<tree, va_gc> *params, tree *new_return)
{
tree p0, p1, p2;
tree I_type, I_type_ptr;
int n = get_atomic_generic_size (loc, function, params);
/* Size of 0 is an error condition. */
if (n == 0)
{
*new_return = error_mark_node;
return true;
}
/* If not a lock-free size, change to the library generic format. */
if (!atomic_size_supported_p (n))
{
*new_return = add_atomic_size_parameter (n, loc, function, params);
return true;
}
/* Otherwise, there is a match, so the call needs to be transformed from:
void fn(T* mem, T* return, model)
into
*return = (T) (fn ((In *) mem, model)) */
p0 = (*params)[0];
p1 = (*params)[1];
p2 = (*params)[2];
/* Create pointer to appropriate size. */
I_type = builtin_type_for_size (BITS_PER_UNIT * n, 1);
I_type_ptr = build_pointer_type (I_type);
/* Convert object pointer to required type. */
p0 = build1 (VIEW_CONVERT_EXPR, I_type_ptr, p0);
(*params)[0] = p0;
/* Move memory model to the 2nd position, and end param list. */
(*params)[1] = p2;
params->truncate (2);
/* Convert return pointer and dereference it for later assignment. */
*new_return = build_indirect_ref (loc, p1, RO_UNARY_STAR);
return false;
}
/* This will process an __atomic_store function call, determine whether it
needs to be mapped to the _N variation, or turned into a library call.
LOC is the location of the builtin call.
FUNCTION is the DECL that has been invoked;
PARAMS is the argument list for the call. The return value is non-null
TRUE is returned if it is translated into the proper format for a call to the
external library, and NEW_RETURN is set the tree for that function.
FALSE is returned if processing for the _N variation is required, and
NEW_RETURN is set to the return value the result is copied into. */
static bool
resolve_overloaded_atomic_store (location_t loc, tree function,
vec<tree, va_gc> *params, tree *new_return)
{
tree p0, p1;
tree I_type, I_type_ptr;
int n = get_atomic_generic_size (loc, function, params);
/* Size of 0 is an error condition. */
if (n == 0)
{
*new_return = error_mark_node;
return true;
}
/* If not a lock-free size, change to the library generic format. */
if (!atomic_size_supported_p (n))
{
*new_return = add_atomic_size_parameter (n, loc, function, params);
return true;
}
/* Otherwise, there is a match, so the call needs to be transformed from:
void fn(T* mem, T* value, model)
into
fn ((In *) mem, (In) *value, model) */
p0 = (*params)[0];
p1 = (*params)[1];
/* Create pointer to appropriate size. */
I_type = builtin_type_for_size (BITS_PER_UNIT * n, 1);
I_type_ptr = build_pointer_type (I_type);
/* Convert object pointer to required type. */
p0 = build1 (VIEW_CONVERT_EXPR, I_type_ptr, p0);
(*params)[0] = p0;
/* Convert new value to required type, and dereference it. */
p1 = build_indirect_ref (loc, p1, RO_UNARY_STAR);
p1 = build1 (VIEW_CONVERT_EXPR, I_type, p1);
(*params)[1] = p1;
/* The memory model is in the right spot already. Return is void. */
*new_return = NULL_TREE;
return false;
}
/* Some builtin functions are placeholders for other expressions. This
function should be called immediately after parsing the call expression
before surrounding code has committed to the type of the expression.
LOC is the location of the builtin call.
FUNCTION is the DECL that has been invoked; it is known to be a builtin.
PARAMS is the argument list for the call. The return value is non-null
when expansion is complete, and null if normal processing should
continue. */
tree
resolve_overloaded_builtin (location_t loc, tree function,
vec<tree, va_gc> *params)
{
enum built_in_function orig_code = DECL_FUNCTION_CODE (function);
/* Is function one of the _FETCH_OP_ or _OP_FETCH_ built-ins?
Those are not valid to call with a pointer to _Bool (or C++ bool)
and so must be rejected. */
bool fetch_op = true;
bool orig_format = true;
tree new_return = NULL_TREE;
switch (DECL_BUILT_IN_CLASS (function))
{
case BUILT_IN_NORMAL:
break;
case BUILT_IN_MD:
if (targetm.resolve_overloaded_builtin)
return targetm.resolve_overloaded_builtin (loc, function, params);
else
return NULL_TREE;
default:
return NULL_TREE;
}
/* Handle BUILT_IN_NORMAL here. */
switch (orig_code)
{
case BUILT_IN_ATOMIC_EXCHANGE:
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
case BUILT_IN_ATOMIC_LOAD:
case BUILT_IN_ATOMIC_STORE:
{
/* Handle these 4 together so that they can fall through to the next
case if the call is transformed to an _N variant. */
switch (orig_code)
{
case BUILT_IN_ATOMIC_EXCHANGE:
{
if (resolve_overloaded_atomic_exchange (loc, function, params,
&new_return))
return new_return;
/* Change to the _N variant. */
orig_code = BUILT_IN_ATOMIC_EXCHANGE_N;
break;
}
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
{
if (resolve_overloaded_atomic_compare_exchange (loc, function,
params,
&new_return))
return new_return;
/* Change to the _N variant. */
orig_code = BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N;
break;
}
case BUILT_IN_ATOMIC_LOAD:
{
if (resolve_overloaded_atomic_load (loc, function, params,
&new_return))
return new_return;
/* Change to the _N variant. */
orig_code = BUILT_IN_ATOMIC_LOAD_N;
break;
}
case BUILT_IN_ATOMIC_STORE:
{
if (resolve_overloaded_atomic_store (loc, function, params,
&new_return))
return new_return;
/* Change to the _N variant. */
orig_code = BUILT_IN_ATOMIC_STORE_N;
break;
}
default:
gcc_unreachable ();
}
}
/* FALLTHRU */
case BUILT_IN_ATOMIC_EXCHANGE_N:
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
case BUILT_IN_ATOMIC_LOAD_N:
case BUILT_IN_ATOMIC_STORE_N:
fetch_op = false;
/* FALLTHRU */
case BUILT_IN_ATOMIC_ADD_FETCH_N:
case BUILT_IN_ATOMIC_SUB_FETCH_N:
case BUILT_IN_ATOMIC_AND_FETCH_N:
case BUILT_IN_ATOMIC_NAND_FETCH_N:
case BUILT_IN_ATOMIC_XOR_FETCH_N:
case BUILT_IN_ATOMIC_OR_FETCH_N:
case BUILT_IN_ATOMIC_FETCH_ADD_N:
case BUILT_IN_ATOMIC_FETCH_SUB_N:
case BUILT_IN_ATOMIC_FETCH_AND_N:
case BUILT_IN_ATOMIC_FETCH_NAND_N:
case BUILT_IN_ATOMIC_FETCH_XOR_N:
case BUILT_IN_ATOMIC_FETCH_OR_N:
orig_format = false;
/* FALLTHRU */
case BUILT_IN_SYNC_FETCH_AND_ADD_N:
case BUILT_IN_SYNC_FETCH_AND_SUB_N:
case BUILT_IN_SYNC_FETCH_AND_OR_N:
case BUILT_IN_SYNC_FETCH_AND_AND_N:
case BUILT_IN_SYNC_FETCH_AND_XOR_N:
case BUILT_IN_SYNC_FETCH_AND_NAND_N:
case BUILT_IN_SYNC_ADD_AND_FETCH_N:
case BUILT_IN_SYNC_SUB_AND_FETCH_N:
case BUILT_IN_SYNC_OR_AND_FETCH_N:
case BUILT_IN_SYNC_AND_AND_FETCH_N:
case BUILT_IN_SYNC_XOR_AND_FETCH_N:
case BUILT_IN_SYNC_NAND_AND_FETCH_N:
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_N:
case BUILT_IN_SYNC_LOCK_TEST_AND_SET_N:
case BUILT_IN_SYNC_LOCK_RELEASE_N:
{
/* The following are not _FETCH_OPs and must be accepted with
pointers to _Bool (or C++ bool). */
if (fetch_op)
fetch_op =
(orig_code != BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N
&& orig_code != BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_N
&& orig_code != BUILT_IN_SYNC_LOCK_TEST_AND_SET_N
&& orig_code != BUILT_IN_SYNC_LOCK_RELEASE_N);
int n = sync_resolve_size (function, params, fetch_op);
tree new_function, first_param, result;
enum built_in_function fncode;
if (n == 0)
return error_mark_node;
fncode = (enum built_in_function)((int)orig_code + exact_log2 (n) + 1);
new_function = builtin_decl_explicit (fncode);
if (!sync_resolve_params (loc, function, new_function, params,
orig_format))
return error_mark_node;
first_param = (*params)[0];
result = build_function_call_vec (loc, vNULL, new_function, params,
NULL);
if (result == error_mark_node)
return result;
if (orig_code != BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N
&& orig_code != BUILT_IN_SYNC_LOCK_RELEASE_N
&& orig_code != BUILT_IN_ATOMIC_STORE_N
&& orig_code != BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N)
result = sync_resolve_return (first_param, result, orig_format);
if (fetch_op)
/* Prevent -Wunused-value warning. */
TREE_USED (result) = true;
/* If new_return is set, assign function to that expr and cast the
result to void since the generic interface returned void. */
if (new_return)
{
/* Cast function result from I{1,2,4,8,16} to the required type. */
result = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (new_return), result);
result = build2 (MODIFY_EXPR, TREE_TYPE (new_return), new_return,
result);
TREE_SIDE_EFFECTS (result) = 1;
protected_set_expr_location (result, loc);
result = convert (void_type_node, result);
}
return result;
}
default:
return NULL_TREE;
}
}
/* vector_types_compatible_elements_p is used in type checks of vectors
values used as operands of binary operators. Where it returns true, and
the other checks of the caller succeed (being vector types in he first
place, and matching number of elements), we can just treat the types
as essentially the same.
Contrast with vector_targets_convertible_p, which is used for vector
pointer types, and vector_types_convertible_p, which will allow
language-specific matches under the control of flag_lax_vector_conversions,
and might still require a conversion. */
/* True if vector types T1 and T2 can be inputs to the same binary
operator without conversion.
We don't check the overall vector size here because some of our callers
want to give different error messages when the vectors are compatible
except for the element count. */
bool
vector_types_compatible_elements_p (tree t1, tree t2)
{
bool opaque = TYPE_VECTOR_OPAQUE (t1) || TYPE_VECTOR_OPAQUE (t2);
t1 = TREE_TYPE (t1);
t2 = TREE_TYPE (t2);
enum tree_code c1 = TREE_CODE (t1), c2 = TREE_CODE (t2);
gcc_assert ((c1 == INTEGER_TYPE || c1 == REAL_TYPE || c1 == FIXED_POINT_TYPE)
&& (c2 == INTEGER_TYPE || c2 == REAL_TYPE
|| c2 == FIXED_POINT_TYPE));
t1 = c_common_signed_type (t1);
t2 = c_common_signed_type (t2);
/* Equality works here because c_common_signed_type uses
TYPE_MAIN_VARIANT. */
if (t1 == t2)
return true;
if (opaque && c1 == c2
&& (c1 == INTEGER_TYPE || c1 == REAL_TYPE)
&& TYPE_PRECISION (t1) == TYPE_PRECISION (t2))
return true;
return false;
}
/* Check for missing format attributes on function pointers. LTYPE is
the new type or left-hand side type. RTYPE is the old type or
right-hand side type. Returns TRUE if LTYPE is missing the desired
attribute. */
bool
check_missing_format_attribute (tree ltype, tree rtype)
{
tree const ttr = TREE_TYPE (rtype), ttl = TREE_TYPE (ltype);
tree ra;
for (ra = TYPE_ATTRIBUTES (ttr); ra; ra = TREE_CHAIN (ra))
if (is_attribute_p ("format", TREE_PURPOSE (ra)))
break;
if (ra)
{
tree la;
for (la = TYPE_ATTRIBUTES (ttl); la; la = TREE_CHAIN (la))
if (is_attribute_p ("format", TREE_PURPOSE (la)))
break;
return !la;
}
else
return false;
}
/* Setup a TYPE_DECL node as a typedef representation.
X is a TYPE_DECL for a typedef statement. Create a brand new
..._TYPE node (which will be just a variant of the existing
..._TYPE node with identical properties) and then install X
as the TYPE_NAME of this brand new (duplicate) ..._TYPE node.
The whole point here is to end up with a situation where each
and every ..._TYPE node the compiler creates will be uniquely
associated with AT MOST one node representing a typedef name.
This way, even though the compiler substitutes corresponding
..._TYPE nodes for TYPE_DECL (i.e. "typedef name") nodes very
early on, later parts of the compiler can always do the reverse
translation and get back the corresponding typedef name. For
example, given:
typedef struct S MY_TYPE;
MY_TYPE object;
Later parts of the compiler might only know that `object' was of
type `struct S' if it were not for code just below. With this
code however, later parts of the compiler see something like:
struct S' == struct S
typedef struct S' MY_TYPE;
struct S' object;
And they can then deduce (from the node for type struct S') that
the original object declaration was:
MY_TYPE object;
Being able to do this is important for proper support of protoize,
and also for generating precise symbolic debugging information
which takes full account of the programmer's (typedef) vocabulary.
Obviously, we don't want to generate a duplicate ..._TYPE node if
the TYPE_DECL node that we are now processing really represents a
standard built-in type. */
void
set_underlying_type (tree x)
{
if (x == error_mark_node)
return;
if (DECL_IS_BUILTIN (x) && TREE_CODE (TREE_TYPE (x)) != ARRAY_TYPE)
{
if (TYPE_NAME (TREE_TYPE (x)) == 0)
TYPE_NAME (TREE_TYPE (x)) = x;
}
else if (TREE_TYPE (x) != error_mark_node
&& DECL_ORIGINAL_TYPE (x) == NULL_TREE)
{
tree tt = TREE_TYPE (x);
DECL_ORIGINAL_TYPE (x) = tt;
tt = build_variant_type_copy (tt);
TYPE_STUB_DECL (tt) = TYPE_STUB_DECL (DECL_ORIGINAL_TYPE (x));
TYPE_NAME (tt) = x;
/* Mark the type as used only when its type decl is decorated
with attribute unused. */
if (lookup_attribute ("unused", DECL_ATTRIBUTES (x)))
TREE_USED (tt) = 1;
TREE_TYPE (x) = tt;
}
}
/* Record the types used by the current global variable declaration
being parsed, so that we can decide later to emit their debug info.
Those types are in types_used_by_cur_var_decl, and we are going to
store them in the types_used_by_vars_hash hash table.
DECL is the declaration of the global variable that has been parsed. */
void
record_types_used_by_current_var_decl (tree decl)
{
gcc_assert (decl && DECL_P (decl) && TREE_STATIC (decl));
while (types_used_by_cur_var_decl && !types_used_by_cur_var_decl->is_empty ())
{
tree type = types_used_by_cur_var_decl->pop ();
types_used_by_var_decl_insert (type, decl);
}
}
/* The C and C++ parsers both use vectors to hold function arguments.
For efficiency, we keep a cache of unused vectors. This is the
cache. */
typedef vec<tree, va_gc> *tree_gc_vec;
static GTY((deletable)) vec<tree_gc_vec, va_gc> *tree_vector_cache;
/* Return a new vector from the cache. If the cache is empty,
allocate a new vector. These vectors are GC'ed, so it is OK if the
pointer is not released.. */
vec<tree, va_gc> *
make_tree_vector (void)
{
if (tree_vector_cache && !tree_vector_cache->is_empty ())
return tree_vector_cache->pop ();
else
{
/* Passing 0 to vec::alloc returns NULL, and our callers require
that we always return a non-NULL value. The vector code uses
4 when growing a NULL vector, so we do too. */
vec<tree, va_gc> *v;
vec_alloc (v, 4);
return v;
}
}
/* Release a vector of trees back to the cache. */
void
release_tree_vector (vec<tree, va_gc> *vec)
{
if (vec != NULL)
{
vec->truncate (0);
vec_safe_push (tree_vector_cache, vec);
}
}
/* Get a new tree vector holding a single tree. */
vec<tree, va_gc> *
make_tree_vector_single (tree t)
{
vec<tree, va_gc> *ret = make_tree_vector ();
ret->quick_push (t);
return ret;
}
/* Get a new tree vector of the TREE_VALUEs of a TREE_LIST chain. */
vec<tree, va_gc> *
make_tree_vector_from_list (tree list)
{
vec<tree, va_gc> *ret = make_tree_vector ();
for (; list; list = TREE_CHAIN (list))
vec_safe_push (ret, TREE_VALUE (list));
return ret;
}
/* Get a new tree vector of the values of a CONSTRUCTOR. */
vec<tree, va_gc> *
make_tree_vector_from_ctor (tree ctor)
{
vec<tree,va_gc> *ret = make_tree_vector ();
vec_safe_reserve (ret, CONSTRUCTOR_NELTS (ctor));
for (unsigned i = 0; i < CONSTRUCTOR_NELTS (ctor); ++i)
ret->quick_push (CONSTRUCTOR_ELT (ctor, i)->value);
return ret;
}
/* Get a new tree vector which is a copy of an existing one. */
vec<tree, va_gc> *
make_tree_vector_copy (const vec<tree, va_gc> *orig)
{
vec<tree, va_gc> *ret;
unsigned int ix;
tree t;
ret = make_tree_vector ();
vec_safe_reserve (ret, vec_safe_length (orig));
FOR_EACH_VEC_SAFE_ELT (orig, ix, t)
ret->quick_push (t);
return ret;
}
/* Return true if KEYWORD starts a type specifier. */
bool
keyword_begins_type_specifier (enum rid keyword)
{
switch (keyword)
{
case RID_AUTO_TYPE:
case RID_INT:
case RID_CHAR:
case RID_FLOAT:
case RID_DOUBLE:
case RID_VOID:
case RID_UNSIGNED:
case RID_LONG:
case RID_SHORT:
case RID_SIGNED:
CASE_RID_FLOATN_NX:
case RID_DFLOAT32:
case RID_DFLOAT64:
case RID_DFLOAT128:
case RID_FRACT:
case RID_ACCUM:
case RID_BOOL:
case RID_WCHAR:
case RID_CHAR16:
case RID_CHAR32:
case RID_SAT:
case RID_COMPLEX:
case RID_TYPEOF:
case RID_STRUCT:
case RID_CLASS:
case RID_UNION:
case RID_ENUM:
return true;
default:
if (keyword >= RID_FIRST_INT_N
&& keyword < RID_FIRST_INT_N + NUM_INT_N_ENTS
&& int_n_enabled_p[keyword-RID_FIRST_INT_N])
return true;
return false;
}
}
/* Return true if KEYWORD names a type qualifier. */
bool
keyword_is_type_qualifier (enum rid keyword)
{
switch (keyword)
{
case RID_CONST:
case RID_VOLATILE:
case RID_RESTRICT:
case RID_ATOMIC:
return true;
default:
return false;
}
}
/* Return true if KEYWORD names a storage class specifier.
RID_TYPEDEF is not included in this list despite `typedef' being
listed in C99 6.7.1.1. 6.7.1.3 indicates that `typedef' is listed as
such for syntactic convenience only. */
bool
keyword_is_storage_class_specifier (enum rid keyword)
{
switch (keyword)
{
case RID_STATIC:
case RID_EXTERN:
case RID_REGISTER:
case RID_AUTO:
case RID_MUTABLE:
case RID_THREAD:
return true;
default:
return false;
}
}
/* Return true if KEYWORD names a function-specifier [dcl.fct.spec]. */
static bool
keyword_is_function_specifier (enum rid keyword)
{
switch (keyword)
{
case RID_INLINE:
case RID_NORETURN:
case RID_VIRTUAL:
case RID_EXPLICIT:
return true;
default:
return false;
}
}
/* Return true if KEYWORD names a decl-specifier [dcl.spec] or a
declaration-specifier (C99 6.7). */
bool
keyword_is_decl_specifier (enum rid keyword)
{
if (keyword_is_storage_class_specifier (keyword)
|| keyword_is_type_qualifier (keyword)
|| keyword_is_function_specifier (keyword))
return true;
switch (keyword)
{
case RID_TYPEDEF:
case RID_FRIEND:
case RID_CONSTEXPR:
return true;
default:
return false;
}
}
/* Initialize language-specific-bits of tree_contains_struct. */
void
c_common_init_ts (void)
{
MARK_TS_TYPED (C_MAYBE_CONST_EXPR);
MARK_TS_TYPED (EXCESS_PRECISION_EXPR);
}
/* Build a user-defined numeric literal out of an integer constant type VALUE
with identifier SUFFIX. */
tree
build_userdef_literal (tree suffix_id, tree value,
enum overflow_type overflow, tree num_string)
{
tree literal = make_node (USERDEF_LITERAL);
USERDEF_LITERAL_SUFFIX_ID (literal) = suffix_id;
USERDEF_LITERAL_VALUE (literal) = value;
USERDEF_LITERAL_OVERFLOW (literal) = overflow;
USERDEF_LITERAL_NUM_STRING (literal) = num_string;
return literal;
}
/* For vector[index], convert the vector to an array of the underlying type.
Return true if the resulting ARRAY_REF should not be an lvalue. */
bool
convert_vector_to_array_for_subscript (location_t loc,
tree *vecp, tree index)
{
bool ret = false;
if (VECTOR_TYPE_P (TREE_TYPE (*vecp)))
{
tree type = TREE_TYPE (*vecp);
ret = !lvalue_p (*vecp);
if (TREE_CODE (index) == INTEGER_CST)
if (!tree_fits_uhwi_p (index)
|| maybe_ge (tree_to_uhwi (index), TYPE_VECTOR_SUBPARTS (type)))
warning_at (loc, OPT_Warray_bounds, "index value is out of bound");
/* We are building an ARRAY_REF so mark the vector as addressable
to not run into the gimplifiers premature setting of DECL_GIMPLE_REG_P
for function parameters. */
c_common_mark_addressable_vec (*vecp);
*vecp = build1 (VIEW_CONVERT_EXPR,
build_array_type_nelts (TREE_TYPE (type),
TYPE_VECTOR_SUBPARTS (type)),
*vecp);
}
return ret;
}
/* Determine which of the operands, if any, is a scalar that needs to be
converted to a vector, for the range of operations. */
enum stv_conv
scalar_to_vector (location_t loc, enum tree_code code, tree op0, tree op1,
bool complain)
{
tree type0 = TREE_TYPE (op0);
tree type1 = TREE_TYPE (op1);
bool integer_only_op = false;
enum stv_conv ret = stv_firstarg;
gcc_assert (VECTOR_TYPE_P (type0) || VECTOR_TYPE_P (type1));
switch (code)
{
/* Most GENERIC binary expressions require homogeneous arguments.
LSHIFT_EXPR and RSHIFT_EXPR are exceptions and accept a first
argument that is a vector and a second one that is a scalar, so
we never return stv_secondarg for them. */
case RSHIFT_EXPR:
case LSHIFT_EXPR:
if (TREE_CODE (type0) == INTEGER_TYPE
&& TREE_CODE (TREE_TYPE (type1)) == INTEGER_TYPE)
{
if (unsafe_conversion_p (loc, TREE_TYPE (type1), op0,
NULL_TREE, false))
{
if (complain)
error_at (loc, "conversion of scalar %qT to vector %qT "
"involves truncation", type0, type1);
return stv_error;
}
else
return stv_firstarg;
}
break;
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
case BIT_AND_EXPR:
integer_only_op = true;
/* fall through */
case VEC_COND_EXPR:
case PLUS_EXPR:
case MINUS_EXPR:
case MULT_EXPR:
case TRUNC_DIV_EXPR:
case CEIL_DIV_EXPR:
case FLOOR_DIV_EXPR:
case ROUND_DIV_EXPR:
case EXACT_DIV_EXPR:
case TRUNC_MOD_EXPR:
case FLOOR_MOD_EXPR:
case RDIV_EXPR:
case EQ_EXPR:
case NE_EXPR:
case LE_EXPR:
case GE_EXPR:
case LT_EXPR:
case GT_EXPR:
/* What about UNLT_EXPR? */
if (VECTOR_TYPE_P (type0))
{
ret = stv_secondarg;
std::swap (type0, type1);
std::swap (op0, op1);
}
if (TREE_CODE (type0) == INTEGER_TYPE
&& TREE_CODE (TREE_TYPE (type1)) == INTEGER_TYPE)
{
if (unsafe_conversion_p (loc, TREE_TYPE (type1), op0,
NULL_TREE, false))
{
if (complain)
error_at (loc, "conversion of scalar %qT to vector %qT "
"involves truncation", type0, type1);
return stv_error;
}
return ret;
}
else if (!integer_only_op
/* Allow integer --> real conversion if safe. */
&& (TREE_CODE (type0) == REAL_TYPE
|| TREE_CODE (type0) == INTEGER_TYPE)
&& SCALAR_FLOAT_TYPE_P (TREE_TYPE (type1)))
{
if (unsafe_conversion_p (loc, TREE_TYPE (type1), op0,
NULL_TREE, false))
{
if (complain)
error_at (loc, "conversion of scalar %qT to vector %qT "
"involves truncation", type0, type1);
return stv_error;
}
return ret;
}
default:
break;
}
return stv_nothing;
}
/* Return the alignment of std::max_align_t.
[support.types.layout] The type max_align_t is a POD type whose alignment
requirement is at least as great as that of every scalar type, and whose
alignment requirement is supported in every context. */
unsigned
max_align_t_align ()
{
unsigned int max_align = MAX (TYPE_ALIGN (long_long_integer_type_node),
TYPE_ALIGN (long_double_type_node));
if (float128_type_node != NULL_TREE)
max_align = MAX (max_align, TYPE_ALIGN (float128_type_node));
return max_align;
}
/* Return true iff ALIGN is an integral constant that is a fundamental
alignment, as defined by [basic.align] in the c++-11
specifications.
That is:
[A fundamental alignment is represented by an alignment less than or
equal to the greatest alignment supported by the implementation
in all contexts, which is equal to alignof(max_align_t)]. */
bool
cxx_fundamental_alignment_p (unsigned align)
{
return (align <= max_align_t_align ());
}
/* Return true if T is a pointer to a zero-sized aggregate. */
bool
pointer_to_zero_sized_aggr_p (tree t)
{
if (!POINTER_TYPE_P (t))
return false;
t = TREE_TYPE (t);
return (TYPE_SIZE (t) && integer_zerop (TYPE_SIZE (t)));
}
/* For an EXPR of a FUNCTION_TYPE that references a GCC built-in function
with no library fallback or for an ADDR_EXPR whose operand is such type
issues an error pointing to the location LOC.
Returns true when the expression has been diagnosed and false
otherwise. */
bool
reject_gcc_builtin (const_tree expr, location_t loc /* = UNKNOWN_LOCATION */)
{
if (TREE_CODE (expr) == ADDR_EXPR)
expr = TREE_OPERAND (expr, 0);
STRIP_ANY_LOCATION_WRAPPER (expr);
if (TREE_TYPE (expr)
&& TREE_CODE (TREE_TYPE (expr)) == FUNCTION_TYPE
&& TREE_CODE (expr) == FUNCTION_DECL
/* The intersection of DECL_BUILT_IN and DECL_IS_BUILTIN avoids
false positives for user-declared built-ins such as abs or
strlen, and for C++ operators new and delete.
The c_decl_implicit() test avoids false positives for implicitly
declared built-ins with library fallbacks (such as abs). */
&& DECL_BUILT_IN (expr)
&& DECL_IS_BUILTIN (expr)
&& !c_decl_implicit (expr)
&& !DECL_ASSEMBLER_NAME_SET_P (expr))
{
if (loc == UNKNOWN_LOCATION)
loc = EXPR_LOC_OR_LOC (expr, input_location);
/* Reject arguments that are built-in functions with
no library fallback. */
error_at (loc, "built-in function %qE must be directly called", expr);
return true;
}
return false;
}
/* Check if array size calculations overflow or if the array covers more
than half of the address space. Return true if the size of the array
is valid, false otherwise. TYPE is the type of the array and NAME is
the name of the array, or NULL_TREE for unnamed arrays. */
bool
valid_array_size_p (location_t loc, tree type, tree name)
{
if (type != error_mark_node
&& COMPLETE_TYPE_P (type)
&& TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST
&& !valid_constant_size_p (TYPE_SIZE_UNIT (type)))
{
if (name)
error_at (loc, "size of array %qE is too large", name);
else
error_at (loc, "size of unnamed array is too large");
return false;
}
return true;
}
/* Read SOURCE_DATE_EPOCH from environment to have a deterministic
timestamp to replace embedded current dates to get reproducible
results. Returns -1 if SOURCE_DATE_EPOCH is not defined. */
time_t
cb_get_source_date_epoch (cpp_reader *pfile ATTRIBUTE_UNUSED)
{
char *source_date_epoch;
int64_t epoch;
char *endptr;
source_date_epoch = getenv ("SOURCE_DATE_EPOCH");
if (!source_date_epoch)
return (time_t) -1;
errno = 0;
#if defined(INT64_T_IS_LONG)
epoch = strtol (source_date_epoch, &endptr, 10);
#else
epoch = strtoll (source_date_epoch, &endptr, 10);
#endif
if (errno != 0 || endptr == source_date_epoch || *endptr != '\0'
|| epoch < 0 || epoch > MAX_SOURCE_DATE_EPOCH)
{
error_at (input_location, "environment variable SOURCE_DATE_EPOCH must "
"expand to a non-negative integer less than or equal to %wd",
MAX_SOURCE_DATE_EPOCH);
return (time_t) -1;
}
return (time_t) epoch;
}
/* Callback for libcpp for offering spelling suggestions for misspelled
directives. GOAL is an unrecognized string; CANDIDATES is a
NULL-terminated array of candidate strings. Return the closest
match to GOAL within CANDIDATES, or NULL if none are good
suggestions. */
const char *
cb_get_suggestion (cpp_reader *, const char *goal,
const char *const *candidates)
{
best_match<const char *, const char *> bm (goal);
while (*candidates)
bm.consider (*candidates++);
return bm.get_best_meaningful_candidate ();
}
/* Return the latice point which is the wider of the two FLT_EVAL_METHOD
modes X, Y. This isn't just >, as the FLT_EVAL_METHOD values added
by C TS 18661-3 for interchange types that are computed in their
native precision are larger than the C11 values for evaluating in the
precision of float/double/long double. If either mode is
FLT_EVAL_METHOD_UNPREDICTABLE, return that. */
enum flt_eval_method
excess_precision_mode_join (enum flt_eval_method x,
enum flt_eval_method y)
{
if (x == FLT_EVAL_METHOD_UNPREDICTABLE
|| y == FLT_EVAL_METHOD_UNPREDICTABLE)
return FLT_EVAL_METHOD_UNPREDICTABLE;
/* GCC only supports one interchange type right now, _Float16. If
we're evaluating _Float16 in 16-bit precision, then flt_eval_method
will be FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16. */
if (x == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
return y;
if (y == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
return x;
/* Other values for flt_eval_method are directly comparable, and we want
the maximum. */
return MAX (x, y);
}
/* Return the value that should be set for FLT_EVAL_METHOD in the
context of ISO/IEC TS 18861-3.
This relates to the effective excess precision seen by the user,
which is the join point of the precision the target requests for
-fexcess-precision={standard,fast} and the implicit excess precision
the target uses. */
static enum flt_eval_method
c_ts18661_flt_eval_method (void)
{
enum flt_eval_method implicit
= targetm.c.excess_precision (EXCESS_PRECISION_TYPE_IMPLICIT);
enum excess_precision_type flag_type
= (flag_excess_precision_cmdline == EXCESS_PRECISION_STANDARD
? EXCESS_PRECISION_TYPE_STANDARD
: EXCESS_PRECISION_TYPE_FAST);
enum flt_eval_method requested
= targetm.c.excess_precision (flag_type);
return excess_precision_mode_join (implicit, requested);
}
/* As c_cpp_ts18661_flt_eval_method, but clamps the expected values to
those that were permitted by C11. That is to say, eliminates
FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16. */
static enum flt_eval_method
c_c11_flt_eval_method (void)
{
return excess_precision_mode_join (c_ts18661_flt_eval_method (),
FLT_EVAL_METHOD_PROMOTE_TO_FLOAT);
}
/* Return the value that should be set for FLT_EVAL_METHOD.
MAYBE_C11_ONLY_P is TRUE if we should check
FLAG_PERMITTED_EVAL_METHODS as to whether we should limit the possible
values we can return to those from C99/C11, and FALSE otherwise.
See the comments on c_ts18661_flt_eval_method for what value we choose
to set here. */
int
c_flt_eval_method (bool maybe_c11_only_p)
{
if (maybe_c11_only_p
&& flag_permitted_flt_eval_methods
== PERMITTED_FLT_EVAL_METHODS_C11)
return c_c11_flt_eval_method ();
else
return c_ts18661_flt_eval_method ();
}
/* An enum for get_missing_token_insertion_kind for describing the best
place to insert a missing token, if there is one. */
enum missing_token_insertion_kind
{
MTIK_IMPOSSIBLE,
MTIK_INSERT_BEFORE_NEXT,
MTIK_INSERT_AFTER_PREV
};
/* Given a missing token of TYPE, determine if it is reasonable to
emit a fix-it hint suggesting the insertion of the token, and,
if so, where the token should be inserted relative to other tokens.
It only makes sense to do this for values of TYPE that are symbols.
Some symbols should go before the next token, e.g. in:
if flag)
we want to insert the missing '(' immediately before "flag",
giving:
if (flag)
rather than:
if( flag)
These use MTIK_INSERT_BEFORE_NEXT.
Other symbols should go after the previous token, e.g. in:
if (flag
do_something ();
we want to insert the missing ')' immediately after the "flag",
giving:
if (flag)
do_something ();
rather than:
if (flag
)do_something ();
These use MTIK_INSERT_AFTER_PREV. */
static enum missing_token_insertion_kind
get_missing_token_insertion_kind (enum cpp_ttype type)
{
switch (type)
{
/* Insert missing "opening" brackets immediately
before the next token. */
case CPP_OPEN_SQUARE:
case CPP_OPEN_PAREN:
return MTIK_INSERT_BEFORE_NEXT;
/* Insert other missing symbols immediately after
the previous token. */
case CPP_CLOSE_PAREN:
case CPP_CLOSE_SQUARE:
case CPP_SEMICOLON:
case CPP_COMMA:
case CPP_COLON:
return MTIK_INSERT_AFTER_PREV;
/* Other kinds of token don't get fix-it hints. */
default:
return MTIK_IMPOSSIBLE;
}
}
/* Given RICHLOC, a location for a diagnostic describing a missing token
of kind TOKEN_TYPE, potentially add a fix-it hint suggesting the
insertion of the token.
The location of the attempted fix-it hint depends on TOKEN_TYPE:
it will either be:
(a) immediately after PREV_TOKEN_LOC, or
(b) immediately before the primary location within RICHLOC (taken to
be that of the token following where the token was expected).
If we manage to add a fix-it hint, then the location of the
fix-it hint is likely to be more useful as the primary location
of the diagnostic than that of the following token, so we swap
these locations.
For example, given this bogus code:
123456789012345678901234567890
1 | int missing_semicolon (void)
2 | {
3 | return 42
4 | }
we will emit:
"expected ';' before '}'"
RICHLOC's primary location is at the closing brace, so before "swapping"
we would emit the error at line 4 column 1:
123456789012345678901234567890
3 | return 42 |< fix-it hint emitted for this line
| ; |
4 | } |< "expected ';' before '}'" emitted at this line
| ^ |
It's more useful for the location of the diagnostic to be at the
fix-it hint, so we swap the locations, so the primary location
is at the fix-it hint, with the old primary location inserted
as a secondary location, giving this, with the error at line 3
column 12:
123456789012345678901234567890
3 | return 42 |< "expected ';' before '}'" emitted at this line,
| ^ | with fix-it hint
4 | ; |
| } |< secondary range emitted here
| ~ |. */
void
maybe_suggest_missing_token_insertion (rich_location *richloc,
enum cpp_ttype token_type,
location_t prev_token_loc)
{
gcc_assert (richloc);
enum missing_token_insertion_kind mtik
= get_missing_token_insertion_kind (token_type);
switch (mtik)
{
default:
gcc_unreachable ();
break;
case MTIK_IMPOSSIBLE:
return;
case MTIK_INSERT_BEFORE_NEXT:
/* Attempt to add the fix-it hint before the primary location
of RICHLOC. */
richloc->add_fixit_insert_before (cpp_type2name (token_type, 0));
break;
case MTIK_INSERT_AFTER_PREV:
/* Attempt to add the fix-it hint after PREV_TOKEN_LOC. */
richloc->add_fixit_insert_after (prev_token_loc,
cpp_type2name (token_type, 0));
break;
}
/* If we were successful, use the fix-it hint's location as the
primary location within RICHLOC, adding the old primary location
back as a secondary location. */
if (!richloc->seen_impossible_fixit_p ())
{
fixit_hint *hint = richloc->get_last_fixit_hint ();
location_t hint_loc = hint->get_start_loc ();
location_t old_loc = richloc->get_loc ();
richloc->set_range (line_table, 0, hint_loc, true);
richloc->add_range (old_loc, false);
}
}
#if CHECKING_P
namespace selftest {
/* Verify that fold_for_warn on error_mark_node is safe. */
static void
test_fold_for_warn ()
{
ASSERT_EQ (error_mark_node, fold_for_warn (error_mark_node));
}
/* Run all of the selftests within this file. */
static void
c_common_c_tests ()
{
test_fold_for_warn ();
}
/* Run all of the tests within c-family. */
void
c_family_tests (void)
{
c_common_c_tests ();
c_format_c_tests ();
c_pretty_print_c_tests ();
c_spellcheck_cc_tests ();
}
} // namespace selftest
#endif /* #if CHECKING_P */
/* Attempt to locate a suitable location within FILE for a
#include directive to be inserted before. FILE should
be a string from libcpp (pointer equality is used).
LOC is the location of the relevant diagnostic.
Attempt to return the location within FILE immediately
after the last #include within that file, or the start of
that file if it has no #include directives.
Return UNKNOWN_LOCATION if no suitable location is found,
or if an error occurs. */
static location_t
try_to_locate_new_include_insertion_point (const char *file, location_t loc)
{
/* Locate the last ordinary map within FILE that ended with a #include. */
const line_map_ordinary *last_include_ord_map = NULL;
/* ...and the next ordinary map within FILE after that one. */
const line_map_ordinary *last_ord_map_after_include = NULL;
/* ...and the first ordinary map within FILE. */
const line_map_ordinary *first_ord_map_in_file = NULL;
/* Get ordinary map containing LOC (or its expansion). */
const line_map_ordinary *ord_map_for_loc = NULL;
loc = linemap_resolve_location (line_table, loc, LRK_MACRO_EXPANSION_POINT,
&ord_map_for_loc);
gcc_assert (ord_map_for_loc);
for (unsigned int i = 0; i < LINEMAPS_ORDINARY_USED (line_table); i++)
{
const line_map_ordinary *ord_map
= LINEMAPS_ORDINARY_MAP_AT (line_table, i);
const line_map_ordinary *from = INCLUDED_FROM (line_table, ord_map);
if (from)
if (from->to_file == file)
{
last_include_ord_map = from;
last_ord_map_after_include = NULL;
}
if (ord_map->to_file == file)
{
if (!first_ord_map_in_file)
first_ord_map_in_file = ord_map;
if (last_include_ord_map && !last_ord_map_after_include)
last_ord_map_after_include = ord_map;
}
/* Stop searching when reaching the ord_map containing LOC,
as it makes no sense to provide fix-it hints that appear
after the diagnostic in question. */
if (ord_map == ord_map_for_loc)
break;
}
/* Determine where to insert the #include. */
const line_map_ordinary *ord_map_for_insertion;
/* We want the next ordmap in the file after the last one that's a
#include, but failing that, the start of the file. */
if (last_ord_map_after_include)
ord_map_for_insertion = last_ord_map_after_include;
else
ord_map_for_insertion = first_ord_map_in_file;
if (!ord_map_for_insertion)
return UNKNOWN_LOCATION;
/* The "start_location" is column 0, meaning "the whole line".
rich_location and edit_context can't cope with this, so use
column 1 instead. */
location_t col_0 = ord_map_for_insertion->start_location;
return linemap_position_for_loc_and_offset (line_table, col_0, 1);
}
/* A map from filenames to sets of headers added to them, for
ensuring idempotency within maybe_add_include_fixit. */
/* The values within the map. We need string comparison as there's
no guarantee that two different diagnostics that are recommending
adding e.g. "<stdio.h>" are using the same buffer. */
typedef hash_set <const char *, nofree_string_hash> per_file_includes_t;
/* The map itself. We don't need string comparison for the filename keys,
as they come from libcpp. */
typedef hash_map <const char *, per_file_includes_t *> added_includes_t;
static added_includes_t *added_includes;
/* Attempt to add a fix-it hint to RICHLOC, adding "#include HEADER\n"
in a suitable location within the file of RICHLOC's primary
location.
This function is idempotent: a header will be added at most once to
any given file. */
void
maybe_add_include_fixit (rich_location *richloc, const char *header)
{
location_t loc = richloc->get_loc ();
const char *file = LOCATION_FILE (loc);
if (!file)
return;
/* Idempotency: don't add the same header more than once to a given file. */
if (!added_includes)
added_includes = new added_includes_t ();
per_file_includes_t *&set = added_includes->get_or_insert (file);
if (set)
if (set->contains (header))
/* ...then we've already added HEADER to that file. */
return;
if (!set)
set = new per_file_includes_t ();
set->add (header);
/* Attempt to locate a suitable place for the new directive. */
location_t include_insert_loc
= try_to_locate_new_include_insertion_point (file, loc);
if (include_insert_loc == UNKNOWN_LOCATION)
return;
char *text = xasprintf ("#include %s\n", header);
richloc->add_fixit_insert_before (include_insert_loc, text);
free (text);
}
#include "gt-c-family-c-common.h"
|