1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
|
/* Control flow optimization code for GNU compiler.
Copyright (C) 1987-2018 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This file contains optimizer of the control flow. The main entry point is
cleanup_cfg. Following optimizations are performed:
- Unreachable blocks removal
- Edge forwarding (edge to the forwarder block is forwarded to its
successor. Simplification of the branch instruction is performed by
underlying infrastructure so branch can be converted to simplejump or
eliminated).
- Cross jumping (tail merging)
- Conditional jump-around-simplejump simplification
- Basic block merging. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "cfghooks.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "insn-config.h"
#include "emit-rtl.h"
#include "cselib.h"
#include "params.h"
#include "tree-pass.h"
#include "cfgloop.h"
#include "cfgrtl.h"
#include "cfganal.h"
#include "cfgbuild.h"
#include "cfgcleanup.h"
#include "dce.h"
#include "dbgcnt.h"
#include "rtl-iter.h"
#define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
/* Set to true when we are running first pass of try_optimize_cfg loop. */
static bool first_pass;
/* Set to true if crossjumps occurred in the latest run of try_optimize_cfg. */
static bool crossjumps_occurred;
/* Set to true if we couldn't run an optimization due to stale liveness
information; we should run df_analyze to enable more opportunities. */
static bool block_was_dirty;
static bool try_crossjump_to_edge (int, edge, edge, enum replace_direction);
static bool try_crossjump_bb (int, basic_block);
static bool outgoing_edges_match (int, basic_block, basic_block);
static enum replace_direction old_insns_match_p (int, rtx_insn *, rtx_insn *);
static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
static bool try_optimize_cfg (int);
static bool try_simplify_condjump (basic_block);
static bool try_forward_edges (int, basic_block);
static edge thread_jump (edge, basic_block);
static bool mark_effect (rtx, bitmap);
static void notice_new_block (basic_block);
static void update_forwarder_flag (basic_block);
static void merge_memattrs (rtx, rtx);
/* Set flags for newly created block. */
static void
notice_new_block (basic_block bb)
{
if (!bb)
return;
if (forwarder_block_p (bb))
bb->flags |= BB_FORWARDER_BLOCK;
}
/* Recompute forwarder flag after block has been modified. */
static void
update_forwarder_flag (basic_block bb)
{
if (forwarder_block_p (bb))
bb->flags |= BB_FORWARDER_BLOCK;
else
bb->flags &= ~BB_FORWARDER_BLOCK;
}
/* Simplify a conditional jump around an unconditional jump.
Return true if something changed. */
static bool
try_simplify_condjump (basic_block cbranch_block)
{
basic_block jump_block, jump_dest_block, cbranch_dest_block;
edge cbranch_jump_edge, cbranch_fallthru_edge;
rtx_insn *cbranch_insn;
/* Verify that there are exactly two successors. */
if (EDGE_COUNT (cbranch_block->succs) != 2)
return false;
/* Verify that we've got a normal conditional branch at the end
of the block. */
cbranch_insn = BB_END (cbranch_block);
if (!any_condjump_p (cbranch_insn))
return false;
cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
/* The next block must not have multiple predecessors, must not
be the last block in the function, and must contain just the
unconditional jump. */
jump_block = cbranch_fallthru_edge->dest;
if (!single_pred_p (jump_block)
|| jump_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
|| !FORWARDER_BLOCK_P (jump_block))
return false;
jump_dest_block = single_succ (jump_block);
/* If we are partitioning hot/cold basic blocks, we don't want to
mess up unconditional or indirect jumps that cross between hot
and cold sections.
Basic block partitioning may result in some jumps that appear to
be optimizable (or blocks that appear to be mergeable), but which really
must be left untouched (they are required to make it safely across
partition boundaries). See the comments at the top of
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
if (BB_PARTITION (jump_block) != BB_PARTITION (jump_dest_block)
|| (cbranch_jump_edge->flags & EDGE_CROSSING))
return false;
/* The conditional branch must target the block after the
unconditional branch. */
cbranch_dest_block = cbranch_jump_edge->dest;
if (cbranch_dest_block == EXIT_BLOCK_PTR_FOR_FN (cfun)
|| jump_dest_block == EXIT_BLOCK_PTR_FOR_FN (cfun)
|| !can_fallthru (jump_block, cbranch_dest_block))
return false;
/* Invert the conditional branch. */
if (!invert_jump (as_a <rtx_jump_insn *> (cbranch_insn),
block_label (jump_dest_block), 0))
return false;
if (dump_file)
fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
/* Success. Update the CFG to match. Note that after this point
the edge variable names appear backwards; the redirection is done
this way to preserve edge profile data. */
cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
cbranch_dest_block);
cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
jump_dest_block);
cbranch_jump_edge->flags |= EDGE_FALLTHRU;
cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
update_br_prob_note (cbranch_block);
/* Delete the block with the unconditional jump, and clean up the mess. */
delete_basic_block (jump_block);
tidy_fallthru_edge (cbranch_jump_edge);
update_forwarder_flag (cbranch_block);
return true;
}
/* Attempt to prove that operation is NOOP using CSElib or mark the effect
on register. Used by jump threading. */
static bool
mark_effect (rtx exp, regset nonequal)
{
rtx dest;
switch (GET_CODE (exp))
{
/* In case we do clobber the register, mark it as equal, as we know the
value is dead so it don't have to match. */
case CLOBBER:
dest = XEXP (exp, 0);
if (REG_P (dest))
bitmap_clear_range (nonequal, REGNO (dest), REG_NREGS (dest));
return false;
case SET:
if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
return false;
dest = SET_DEST (exp);
if (dest == pc_rtx)
return false;
if (!REG_P (dest))
return true;
bitmap_set_range (nonequal, REGNO (dest), REG_NREGS (dest));
return false;
default:
return false;
}
}
/* Return true if X contains a register in NONEQUAL. */
static bool
mentions_nonequal_regs (const_rtx x, regset nonequal)
{
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, x, NONCONST)
{
const_rtx x = *iter;
if (REG_P (x))
{
unsigned int end_regno = END_REGNO (x);
for (unsigned int regno = REGNO (x); regno < end_regno; ++regno)
if (REGNO_REG_SET_P (nonequal, regno))
return true;
}
}
return false;
}
/* Attempt to prove that the basic block B will have no side effects and
always continues in the same edge if reached via E. Return the edge
if exist, NULL otherwise. */
static edge
thread_jump (edge e, basic_block b)
{
rtx set1, set2, cond1, cond2;
rtx_insn *insn;
enum rtx_code code1, code2, reversed_code2;
bool reverse1 = false;
unsigned i;
regset nonequal;
bool failed = false;
reg_set_iterator rsi;
if (b->flags & BB_NONTHREADABLE_BLOCK)
return NULL;
/* At the moment, we do handle only conditional jumps, but later we may
want to extend this code to tablejumps and others. */
if (EDGE_COUNT (e->src->succs) != 2)
return NULL;
if (EDGE_COUNT (b->succs) != 2)
{
b->flags |= BB_NONTHREADABLE_BLOCK;
return NULL;
}
/* Second branch must end with onlyjump, as we will eliminate the jump. */
if (!any_condjump_p (BB_END (e->src)))
return NULL;
if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
{
b->flags |= BB_NONTHREADABLE_BLOCK;
return NULL;
}
set1 = pc_set (BB_END (e->src));
set2 = pc_set (BB_END (b));
if (((e->flags & EDGE_FALLTHRU) != 0)
!= (XEXP (SET_SRC (set1), 1) == pc_rtx))
reverse1 = true;
cond1 = XEXP (SET_SRC (set1), 0);
cond2 = XEXP (SET_SRC (set2), 0);
if (reverse1)
code1 = reversed_comparison_code (cond1, BB_END (e->src));
else
code1 = GET_CODE (cond1);
code2 = GET_CODE (cond2);
reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
if (!comparison_dominates_p (code1, code2)
&& !comparison_dominates_p (code1, reversed_code2))
return NULL;
/* Ensure that the comparison operators are equivalent.
??? This is far too pessimistic. We should allow swapped operands,
different CCmodes, or for example comparisons for interval, that
dominate even when operands are not equivalent. */
if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
|| !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
return NULL;
/* Short circuit cases where block B contains some side effects, as we can't
safely bypass it. */
for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
insn = NEXT_INSN (insn))
if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
{
b->flags |= BB_NONTHREADABLE_BLOCK;
return NULL;
}
cselib_init (0);
/* First process all values computed in the source basic block. */
for (insn = NEXT_INSN (BB_HEAD (e->src));
insn != NEXT_INSN (BB_END (e->src));
insn = NEXT_INSN (insn))
if (INSN_P (insn))
cselib_process_insn (insn);
nonequal = BITMAP_ALLOC (NULL);
CLEAR_REG_SET (nonequal);
/* Now assume that we've continued by the edge E to B and continue
processing as if it were same basic block.
Our goal is to prove that whole block is an NOOP. */
for (insn = NEXT_INSN (BB_HEAD (b));
insn != NEXT_INSN (BB_END (b)) && !failed;
insn = NEXT_INSN (insn))
{
if (INSN_P (insn))
{
rtx pat = PATTERN (insn);
if (GET_CODE (pat) == PARALLEL)
{
for (i = 0; i < (unsigned)XVECLEN (pat, 0); i++)
failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
}
else
failed |= mark_effect (pat, nonequal);
}
cselib_process_insn (insn);
}
/* Later we should clear nonequal of dead registers. So far we don't
have life information in cfg_cleanup. */
if (failed)
{
b->flags |= BB_NONTHREADABLE_BLOCK;
goto failed_exit;
}
/* cond2 must not mention any register that is not equal to the
former block. */
if (mentions_nonequal_regs (cond2, nonequal))
goto failed_exit;
EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, rsi)
goto failed_exit;
BITMAP_FREE (nonequal);
cselib_finish ();
if ((comparison_dominates_p (code1, code2) != 0)
!= (XEXP (SET_SRC (set2), 1) == pc_rtx))
return BRANCH_EDGE (b);
else
return FALLTHRU_EDGE (b);
failed_exit:
BITMAP_FREE (nonequal);
cselib_finish ();
return NULL;
}
/* Attempt to forward edges leaving basic block B.
Return true if successful. */
static bool
try_forward_edges (int mode, basic_block b)
{
bool changed = false;
edge_iterator ei;
edge e, *threaded_edges = NULL;
for (ei = ei_start (b->succs); (e = ei_safe_edge (ei)); )
{
basic_block target, first;
location_t goto_locus;
int counter;
bool threaded = false;
int nthreaded_edges = 0;
bool may_thread = first_pass || (b->flags & BB_MODIFIED) != 0;
bool new_target_threaded = false;
/* Skip complex edges because we don't know how to update them.
Still handle fallthru edges, as we can succeed to forward fallthru
edge to the same place as the branch edge of conditional branch
and turn conditional branch to an unconditional branch. */
if (e->flags & EDGE_COMPLEX)
{
ei_next (&ei);
continue;
}
target = first = e->dest;
counter = NUM_FIXED_BLOCKS;
goto_locus = e->goto_locus;
while (counter < n_basic_blocks_for_fn (cfun))
{
basic_block new_target = NULL;
may_thread |= (target->flags & BB_MODIFIED) != 0;
if (FORWARDER_BLOCK_P (target)
&& single_succ (target) != EXIT_BLOCK_PTR_FOR_FN (cfun))
{
/* Bypass trivial infinite loops. */
new_target = single_succ (target);
if (target == new_target)
counter = n_basic_blocks_for_fn (cfun);
else if (!optimize)
{
/* When not optimizing, ensure that edges or forwarder
blocks with different locus are not optimized out. */
location_t new_locus = single_succ_edge (target)->goto_locus;
location_t locus = goto_locus;
if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION
&& LOCATION_LOCUS (locus) != UNKNOWN_LOCATION
&& new_locus != locus)
new_target = NULL;
else
{
if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION)
locus = new_locus;
rtx_insn *last = BB_END (target);
if (DEBUG_INSN_P (last))
last = prev_nondebug_insn (last);
if (last && INSN_P (last))
new_locus = INSN_LOCATION (last);
else
new_locus = UNKNOWN_LOCATION;
if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION
&& LOCATION_LOCUS (locus) != UNKNOWN_LOCATION
&& new_locus != locus)
new_target = NULL;
else
{
if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION)
locus = new_locus;
goto_locus = locus;
}
}
}
}
/* Allow to thread only over one edge at time to simplify updating
of probabilities. */
else if ((mode & CLEANUP_THREADING) && may_thread)
{
edge t = thread_jump (e, target);
if (t)
{
if (!threaded_edges)
threaded_edges = XNEWVEC (edge,
n_basic_blocks_for_fn (cfun));
else
{
int i;
/* Detect an infinite loop across blocks not
including the start block. */
for (i = 0; i < nthreaded_edges; ++i)
if (threaded_edges[i] == t)
break;
if (i < nthreaded_edges)
{
counter = n_basic_blocks_for_fn (cfun);
break;
}
}
/* Detect an infinite loop across the start block. */
if (t->dest == b)
break;
gcc_assert (nthreaded_edges
< (n_basic_blocks_for_fn (cfun)
- NUM_FIXED_BLOCKS));
threaded_edges[nthreaded_edges++] = t;
new_target = t->dest;
new_target_threaded = true;
}
}
if (!new_target)
break;
counter++;
/* Do not turn non-crossing jump to crossing. Depending on target
it may require different instruction pattern. */
if ((e->flags & EDGE_CROSSING)
|| BB_PARTITION (first) == BB_PARTITION (new_target))
{
target = new_target;
threaded |= new_target_threaded;
}
}
if (counter >= n_basic_blocks_for_fn (cfun))
{
if (dump_file)
fprintf (dump_file, "Infinite loop in BB %i.\n",
target->index);
}
else if (target == first)
; /* We didn't do anything. */
else
{
/* Save the values now, as the edge may get removed. */
profile_count edge_count = e->count ();
int n = 0;
e->goto_locus = goto_locus;
/* Don't force if target is exit block. */
if (threaded && target != EXIT_BLOCK_PTR_FOR_FN (cfun))
{
notice_new_block (redirect_edge_and_branch_force (e, target));
if (dump_file)
fprintf (dump_file, "Conditionals threaded.\n");
}
else if (!redirect_edge_and_branch (e, target))
{
if (dump_file)
fprintf (dump_file,
"Forwarding edge %i->%i to %i failed.\n",
b->index, e->dest->index, target->index);
ei_next (&ei);
continue;
}
/* We successfully forwarded the edge. Now update profile
data: for each edge we traversed in the chain, remove
the original edge's execution count. */
do
{
edge t;
if (!single_succ_p (first))
{
gcc_assert (n < nthreaded_edges);
t = threaded_edges [n++];
gcc_assert (t->src == first);
update_bb_profile_for_threading (first, edge_count, t);
update_br_prob_note (first);
}
else
{
first->count -= edge_count;
/* It is possible that as the result of
threading we've removed edge as it is
threaded to the fallthru edge. Avoid
getting out of sync. */
if (n < nthreaded_edges
&& first == threaded_edges [n]->src)
n++;
t = single_succ_edge (first);
}
first = t->dest;
}
while (first != target);
changed = true;
continue;
}
ei_next (&ei);
}
free (threaded_edges);
return changed;
}
/* Blocks A and B are to be merged into a single block. A has no incoming
fallthru edge, so it can be moved before B without adding or modifying
any jumps (aside from the jump from A to B). */
static void
merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
{
rtx_insn *barrier;
/* If we are partitioning hot/cold basic blocks, we don't want to
mess up unconditional or indirect jumps that cross between hot
and cold sections.
Basic block partitioning may result in some jumps that appear to
be optimizable (or blocks that appear to be mergeable), but which really
must be left untouched (they are required to make it safely across
partition boundaries). See the comments at the top of
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
if (BB_PARTITION (a) != BB_PARTITION (b))
return;
barrier = next_nonnote_insn (BB_END (a));
gcc_assert (BARRIER_P (barrier));
delete_insn (barrier);
/* Scramble the insn chain. */
if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
df_set_bb_dirty (a);
if (dump_file)
fprintf (dump_file, "Moved block %d before %d and merged.\n",
a->index, b->index);
/* Swap the records for the two blocks around. */
unlink_block (a);
link_block (a, b->prev_bb);
/* Now blocks A and B are contiguous. Merge them. */
merge_blocks (a, b);
}
/* Blocks A and B are to be merged into a single block. B has no outgoing
fallthru edge, so it can be moved after A without adding or modifying
any jumps (aside from the jump from A to B). */
static void
merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
{
rtx_insn *barrier, *real_b_end;
rtx_insn *label;
rtx_jump_table_data *table;
/* If we are partitioning hot/cold basic blocks, we don't want to
mess up unconditional or indirect jumps that cross between hot
and cold sections.
Basic block partitioning may result in some jumps that appear to
be optimizable (or blocks that appear to be mergeable), but which really
must be left untouched (they are required to make it safely across
partition boundaries). See the comments at the top of
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
if (BB_PARTITION (a) != BB_PARTITION (b))
return;
real_b_end = BB_END (b);
/* If there is a jump table following block B temporarily add the jump table
to block B so that it will also be moved to the correct location. */
if (tablejump_p (BB_END (b), &label, &table)
&& prev_active_insn (label) == BB_END (b))
{
BB_END (b) = table;
}
/* There had better have been a barrier there. Delete it. */
barrier = NEXT_INSN (BB_END (b));
if (barrier && BARRIER_P (barrier))
delete_insn (barrier);
/* Scramble the insn chain. */
reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
/* Restore the real end of b. */
BB_END (b) = real_b_end;
if (dump_file)
fprintf (dump_file, "Moved block %d after %d and merged.\n",
b->index, a->index);
/* Now blocks A and B are contiguous. Merge them. */
merge_blocks (a, b);
}
/* Attempt to merge basic blocks that are potentially non-adjacent.
Return NULL iff the attempt failed, otherwise return basic block
where cleanup_cfg should continue. Because the merging commonly
moves basic block away or introduces another optimization
possibility, return basic block just before B so cleanup_cfg don't
need to iterate.
It may be good idea to return basic block before C in the case
C has been moved after B and originally appeared earlier in the
insn sequence, but we have no information available about the
relative ordering of these two. Hopefully it is not too common. */
static basic_block
merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
{
basic_block next;
/* If we are partitioning hot/cold basic blocks, we don't want to
mess up unconditional or indirect jumps that cross between hot
and cold sections.
Basic block partitioning may result in some jumps that appear to
be optimizable (or blocks that appear to be mergeable), but which really
must be left untouched (they are required to make it safely across
partition boundaries). See the comments at the top of
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
if (BB_PARTITION (b) != BB_PARTITION (c))
return NULL;
/* If B has a fallthru edge to C, no need to move anything. */
if (e->flags & EDGE_FALLTHRU)
{
int b_index = b->index, c_index = c->index;
/* Protect the loop latches. */
if (current_loops && c->loop_father->latch == c)
return NULL;
merge_blocks (b, c);
update_forwarder_flag (b);
if (dump_file)
fprintf (dump_file, "Merged %d and %d without moving.\n",
b_index, c_index);
return b->prev_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? b : b->prev_bb;
}
/* Otherwise we will need to move code around. Do that only if expensive
transformations are allowed. */
else if (mode & CLEANUP_EXPENSIVE)
{
edge tmp_edge, b_fallthru_edge;
bool c_has_outgoing_fallthru;
bool b_has_incoming_fallthru;
/* Avoid overactive code motion, as the forwarder blocks should be
eliminated by edge redirection instead. One exception might have
been if B is a forwarder block and C has no fallthru edge, but
that should be cleaned up by bb-reorder instead. */
if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
return NULL;
/* We must make sure to not munge nesting of lexical blocks,
and loop notes. This is done by squeezing out all the notes
and leaving them there to lie. Not ideal, but functional. */
tmp_edge = find_fallthru_edge (c->succs);
c_has_outgoing_fallthru = (tmp_edge != NULL);
tmp_edge = find_fallthru_edge (b->preds);
b_has_incoming_fallthru = (tmp_edge != NULL);
b_fallthru_edge = tmp_edge;
next = b->prev_bb;
if (next == c)
next = next->prev_bb;
/* Otherwise, we're going to try to move C after B. If C does
not have an outgoing fallthru, then it can be moved
immediately after B without introducing or modifying jumps. */
if (! c_has_outgoing_fallthru)
{
merge_blocks_move_successor_nojumps (b, c);
return next == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? next->next_bb : next;
}
/* If B does not have an incoming fallthru, then it can be moved
immediately before C without introducing or modifying jumps.
C cannot be the first block, so we do not have to worry about
accessing a non-existent block. */
if (b_has_incoming_fallthru)
{
basic_block bb;
if (b_fallthru_edge->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
return NULL;
bb = force_nonfallthru (b_fallthru_edge);
if (bb)
notice_new_block (bb);
}
merge_blocks_move_predecessor_nojumps (b, c);
return next == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? next->next_bb : next;
}
return NULL;
}
/* Removes the memory attributes of MEM expression
if they are not equal. */
static void
merge_memattrs (rtx x, rtx y)
{
int i;
int j;
enum rtx_code code;
const char *fmt;
if (x == y)
return;
if (x == 0 || y == 0)
return;
code = GET_CODE (x);
if (code != GET_CODE (y))
return;
if (GET_MODE (x) != GET_MODE (y))
return;
if (code == MEM && !mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
{
if (! MEM_ATTRS (x))
MEM_ATTRS (y) = 0;
else if (! MEM_ATTRS (y))
MEM_ATTRS (x) = 0;
else
{
if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
{
set_mem_alias_set (x, 0);
set_mem_alias_set (y, 0);
}
if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
{
set_mem_expr (x, 0);
set_mem_expr (y, 0);
clear_mem_offset (x);
clear_mem_offset (y);
}
else if (MEM_OFFSET_KNOWN_P (x) != MEM_OFFSET_KNOWN_P (y)
|| (MEM_OFFSET_KNOWN_P (x)
&& maybe_ne (MEM_OFFSET (x), MEM_OFFSET (y))))
{
clear_mem_offset (x);
clear_mem_offset (y);
}
if (!MEM_SIZE_KNOWN_P (x))
clear_mem_size (y);
else if (!MEM_SIZE_KNOWN_P (y))
clear_mem_size (x);
else if (known_le (MEM_SIZE (x), MEM_SIZE (y)))
set_mem_size (x, MEM_SIZE (y));
else if (known_le (MEM_SIZE (y), MEM_SIZE (x)))
set_mem_size (y, MEM_SIZE (x));
else
{
/* The sizes aren't ordered, so we can't merge them. */
clear_mem_size (x);
clear_mem_size (y);
}
set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
set_mem_align (y, MEM_ALIGN (x));
}
}
if (code == MEM)
{
if (MEM_READONLY_P (x) != MEM_READONLY_P (y))
{
MEM_READONLY_P (x) = 0;
MEM_READONLY_P (y) = 0;
}
if (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y))
{
MEM_NOTRAP_P (x) = 0;
MEM_NOTRAP_P (y) = 0;
}
if (MEM_VOLATILE_P (x) != MEM_VOLATILE_P (y))
{
MEM_VOLATILE_P (x) = 1;
MEM_VOLATILE_P (y) = 1;
}
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
switch (fmt[i])
{
case 'E':
/* Two vectors must have the same length. */
if (XVECLEN (x, i) != XVECLEN (y, i))
return;
for (j = 0; j < XVECLEN (x, i); j++)
merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
break;
case 'e':
merge_memattrs (XEXP (x, i), XEXP (y, i));
}
}
return;
}
/* Checks if patterns P1 and P2 are equivalent, apart from the possibly
different single sets S1 and S2. */
static bool
equal_different_set_p (rtx p1, rtx s1, rtx p2, rtx s2)
{
int i;
rtx e1, e2;
if (p1 == s1 && p2 == s2)
return true;
if (GET_CODE (p1) != PARALLEL || GET_CODE (p2) != PARALLEL)
return false;
if (XVECLEN (p1, 0) != XVECLEN (p2, 0))
return false;
for (i = 0; i < XVECLEN (p1, 0); i++)
{
e1 = XVECEXP (p1, 0, i);
e2 = XVECEXP (p2, 0, i);
if (e1 == s1 && e2 == s2)
continue;
if (reload_completed
? rtx_renumbered_equal_p (e1, e2) : rtx_equal_p (e1, e2))
continue;
return false;
}
return true;
}
/* NOTE1 is the REG_EQUAL note, if any, attached to an insn
that is a single_set with a SET_SRC of SRC1. Similarly
for NOTE2/SRC2.
So effectively NOTE1/NOTE2 are an alternate form of
SRC1/SRC2 respectively.
Return nonzero if SRC1 or NOTE1 has the same constant
integer value as SRC2 or NOTE2. Else return zero. */
static int
values_equal_p (rtx note1, rtx note2, rtx src1, rtx src2)
{
if (note1
&& note2
&& CONST_INT_P (XEXP (note1, 0))
&& rtx_equal_p (XEXP (note1, 0), XEXP (note2, 0)))
return 1;
if (!note1
&& !note2
&& CONST_INT_P (src1)
&& CONST_INT_P (src2)
&& rtx_equal_p (src1, src2))
return 1;
if (note1
&& CONST_INT_P (src2)
&& rtx_equal_p (XEXP (note1, 0), src2))
return 1;
if (note2
&& CONST_INT_P (src1)
&& rtx_equal_p (XEXP (note2, 0), src1))
return 1;
return 0;
}
/* Examine register notes on I1 and I2 and return:
- dir_forward if I1 can be replaced by I2, or
- dir_backward if I2 can be replaced by I1, or
- dir_both if both are the case. */
static enum replace_direction
can_replace_by (rtx_insn *i1, rtx_insn *i2)
{
rtx s1, s2, d1, d2, src1, src2, note1, note2;
bool c1, c2;
/* Check for 2 sets. */
s1 = single_set (i1);
s2 = single_set (i2);
if (s1 == NULL_RTX || s2 == NULL_RTX)
return dir_none;
/* Check that the 2 sets set the same dest. */
d1 = SET_DEST (s1);
d2 = SET_DEST (s2);
if (!(reload_completed
? rtx_renumbered_equal_p (d1, d2) : rtx_equal_p (d1, d2)))
return dir_none;
/* Find identical req_equiv or reg_equal note, which implies that the 2 sets
set dest to the same value. */
note1 = find_reg_equal_equiv_note (i1);
note2 = find_reg_equal_equiv_note (i2);
src1 = SET_SRC (s1);
src2 = SET_SRC (s2);
if (!values_equal_p (note1, note2, src1, src2))
return dir_none;
if (!equal_different_set_p (PATTERN (i1), s1, PATTERN (i2), s2))
return dir_none;
/* Although the 2 sets set dest to the same value, we cannot replace
(set (dest) (const_int))
by
(set (dest) (reg))
because we don't know if the reg is live and has the same value at the
location of replacement. */
c1 = CONST_INT_P (src1);
c2 = CONST_INT_P (src2);
if (c1 && c2)
return dir_both;
else if (c2)
return dir_forward;
else if (c1)
return dir_backward;
return dir_none;
}
/* Merges directions A and B. */
static enum replace_direction
merge_dir (enum replace_direction a, enum replace_direction b)
{
/* Implements the following table:
|bo fw bw no
---+-----------
bo |bo fw bw no
fw |-- fw no no
bw |-- -- bw no
no |-- -- -- no. */
if (a == b)
return a;
if (a == dir_both)
return b;
if (b == dir_both)
return a;
return dir_none;
}
/* Array of flags indexed by reg note kind, true if the given
reg note is CFA related. */
static const bool reg_note_cfa_p[] = {
#undef REG_CFA_NOTE
#define DEF_REG_NOTE(NAME) false,
#define REG_CFA_NOTE(NAME) true,
#include "reg-notes.def"
#undef REG_CFA_NOTE
#undef DEF_REG_NOTE
false
};
/* Return true if I1 and I2 have identical CFA notes (the same order
and equivalent content). */
static bool
insns_have_identical_cfa_notes (rtx_insn *i1, rtx_insn *i2)
{
rtx n1, n2;
for (n1 = REG_NOTES (i1), n2 = REG_NOTES (i2); ;
n1 = XEXP (n1, 1), n2 = XEXP (n2, 1))
{
/* Skip over reg notes not related to CFI information. */
while (n1 && !reg_note_cfa_p[REG_NOTE_KIND (n1)])
n1 = XEXP (n1, 1);
while (n2 && !reg_note_cfa_p[REG_NOTE_KIND (n2)])
n2 = XEXP (n2, 1);
if (n1 == NULL_RTX && n2 == NULL_RTX)
return true;
if (n1 == NULL_RTX || n2 == NULL_RTX)
return false;
if (XEXP (n1, 0) == XEXP (n2, 0))
;
else if (XEXP (n1, 0) == NULL_RTX || XEXP (n2, 0) == NULL_RTX)
return false;
else if (!(reload_completed
? rtx_renumbered_equal_p (XEXP (n1, 0), XEXP (n2, 0))
: rtx_equal_p (XEXP (n1, 0), XEXP (n2, 0))))
return false;
}
}
/* Examine I1 and I2 and return:
- dir_forward if I1 can be replaced by I2, or
- dir_backward if I2 can be replaced by I1, or
- dir_both if both are the case. */
static enum replace_direction
old_insns_match_p (int mode ATTRIBUTE_UNUSED, rtx_insn *i1, rtx_insn *i2)
{
rtx p1, p2;
/* Verify that I1 and I2 are equivalent. */
if (GET_CODE (i1) != GET_CODE (i2))
return dir_none;
/* __builtin_unreachable() may lead to empty blocks (ending with
NOTE_INSN_BASIC_BLOCK). They may be crossjumped. */
if (NOTE_INSN_BASIC_BLOCK_P (i1) && NOTE_INSN_BASIC_BLOCK_P (i2))
return dir_both;
/* ??? Do not allow cross-jumping between different stack levels. */
p1 = find_reg_note (i1, REG_ARGS_SIZE, NULL);
p2 = find_reg_note (i2, REG_ARGS_SIZE, NULL);
if (p1 && p2)
{
p1 = XEXP (p1, 0);
p2 = XEXP (p2, 0);
if (!rtx_equal_p (p1, p2))
return dir_none;
/* ??? Worse, this adjustment had better be constant lest we
have differing incoming stack levels. */
if (!frame_pointer_needed
&& known_eq (find_args_size_adjust (i1), HOST_WIDE_INT_MIN))
return dir_none;
}
else if (p1 || p2)
return dir_none;
/* Do not allow cross-jumping between frame related insns and other
insns. */
if (RTX_FRAME_RELATED_P (i1) != RTX_FRAME_RELATED_P (i2))
return dir_none;
p1 = PATTERN (i1);
p2 = PATTERN (i2);
if (GET_CODE (p1) != GET_CODE (p2))
return dir_none;
/* If this is a CALL_INSN, compare register usage information.
If we don't check this on stack register machines, the two
CALL_INSNs might be merged leaving reg-stack.c with mismatching
numbers of stack registers in the same basic block.
If we don't check this on machines with delay slots, a delay slot may
be filled that clobbers a parameter expected by the subroutine.
??? We take the simple route for now and assume that if they're
equal, they were constructed identically.
Also check for identical exception regions. */
if (CALL_P (i1))
{
/* Ensure the same EH region. */
rtx n1 = find_reg_note (i1, REG_EH_REGION, 0);
rtx n2 = find_reg_note (i2, REG_EH_REGION, 0);
if (!n1 && n2)
return dir_none;
if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
return dir_none;
if (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
CALL_INSN_FUNCTION_USAGE (i2))
|| SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2))
return dir_none;
/* For address sanitizer, never crossjump __asan_report_* builtins,
otherwise errors might be reported on incorrect lines. */
if (flag_sanitize & SANITIZE_ADDRESS)
{
rtx call = get_call_rtx_from (i1);
if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
{
rtx symbol = XEXP (XEXP (call, 0), 0);
if (SYMBOL_REF_DECL (symbol)
&& TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
{
if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
== BUILT_IN_NORMAL)
&& DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
>= BUILT_IN_ASAN_REPORT_LOAD1
&& DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
<= BUILT_IN_ASAN_STOREN)
return dir_none;
}
}
}
}
/* If both i1 and i2 are frame related, verify all the CFA notes
in the same order and with the same content. */
if (RTX_FRAME_RELATED_P (i1) && !insns_have_identical_cfa_notes (i1, i2))
return dir_none;
#ifdef STACK_REGS
/* If cross_jump_death_matters is not 0, the insn's mode
indicates whether or not the insn contains any stack-like
regs. */
if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
{
/* If register stack conversion has already been done, then
death notes must also be compared before it is certain that
the two instruction streams match. */
rtx note;
HARD_REG_SET i1_regset, i2_regset;
CLEAR_HARD_REG_SET (i1_regset);
CLEAR_HARD_REG_SET (i2_regset);
for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
if (!hard_reg_set_equal_p (i1_regset, i2_regset))
return dir_none;
}
#endif
if (reload_completed
? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
return dir_both;
return can_replace_by (i1, i2);
}
/* When comparing insns I1 and I2 in flow_find_cross_jump or
flow_find_head_matching_sequence, ensure the notes match. */
static void
merge_notes (rtx_insn *i1, rtx_insn *i2)
{
/* If the merged insns have different REG_EQUAL notes, then
remove them. */
rtx equiv1 = find_reg_equal_equiv_note (i1);
rtx equiv2 = find_reg_equal_equiv_note (i2);
if (equiv1 && !equiv2)
remove_note (i1, equiv1);
else if (!equiv1 && equiv2)
remove_note (i2, equiv2);
else if (equiv1 && equiv2
&& !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
{
remove_note (i1, equiv1);
remove_note (i2, equiv2);
}
}
/* Walks from I1 in BB1 backward till the next non-debug insn, and returns the
resulting insn in I1, and the corresponding bb in BB1. At the head of a
bb, if there is a predecessor bb that reaches this bb via fallthru, and
FOLLOW_FALLTHRU, walks further in the predecessor bb and registers this in
DID_FALLTHRU. Otherwise, stops at the head of the bb. */
static void
walk_to_nondebug_insn (rtx_insn **i1, basic_block *bb1, bool follow_fallthru,
bool *did_fallthru)
{
edge fallthru;
*did_fallthru = false;
/* Ignore notes. */
while (!NONDEBUG_INSN_P (*i1))
{
if (*i1 != BB_HEAD (*bb1))
{
*i1 = PREV_INSN (*i1);
continue;
}
if (!follow_fallthru)
return;
fallthru = find_fallthru_edge ((*bb1)->preds);
if (!fallthru || fallthru->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
|| !single_succ_p (fallthru->src))
return;
*bb1 = fallthru->src;
*i1 = BB_END (*bb1);
*did_fallthru = true;
}
}
/* Look through the insns at the end of BB1 and BB2 and find the longest
sequence that are either equivalent, or allow forward or backward
replacement. Store the first insns for that sequence in *F1 and *F2 and
return the sequence length.
DIR_P indicates the allowed replacement direction on function entry, and
the actual replacement direction on function exit. If NULL, only equivalent
sequences are allowed.
To simplify callers of this function, if the blocks match exactly,
store the head of the blocks in *F1 and *F2. */
int
flow_find_cross_jump (basic_block bb1, basic_block bb2, rtx_insn **f1,
rtx_insn **f2, enum replace_direction *dir_p)
{
rtx_insn *i1, *i2, *last1, *last2, *afterlast1, *afterlast2;
int ninsns = 0;
enum replace_direction dir, last_dir, afterlast_dir;
bool follow_fallthru, did_fallthru;
if (dir_p)
dir = *dir_p;
else
dir = dir_both;
afterlast_dir = dir;
last_dir = afterlast_dir;
/* Skip simple jumps at the end of the blocks. Complex jumps still
need to be compared for equivalence, which we'll do below. */
i1 = BB_END (bb1);
last1 = afterlast1 = last2 = afterlast2 = NULL;
if (onlyjump_p (i1)
|| (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
{
last1 = i1;
i1 = PREV_INSN (i1);
}
i2 = BB_END (bb2);
if (onlyjump_p (i2)
|| (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
{
last2 = i2;
/* Count everything except for unconditional jump as insn.
Don't count any jumps if dir_p is NULL. */
if (!simplejump_p (i2) && !returnjump_p (i2) && last1 && dir_p)
ninsns++;
i2 = PREV_INSN (i2);
}
while (true)
{
/* In the following example, we can replace all jumps to C by jumps to A.
This removes 4 duplicate insns.
[bb A] insn1 [bb C] insn1
insn2 insn2
[bb B] insn3 insn3
insn4 insn4
jump_insn jump_insn
We could also replace all jumps to A by jumps to C, but that leaves B
alive, and removes only 2 duplicate insns. In a subsequent crossjump
step, all jumps to B would be replaced with jumps to the middle of C,
achieving the same result with more effort.
So we allow only the first possibility, which means that we don't allow
fallthru in the block that's being replaced. */
follow_fallthru = dir_p && dir != dir_forward;
walk_to_nondebug_insn (&i1, &bb1, follow_fallthru, &did_fallthru);
if (did_fallthru)
dir = dir_backward;
follow_fallthru = dir_p && dir != dir_backward;
walk_to_nondebug_insn (&i2, &bb2, follow_fallthru, &did_fallthru);
if (did_fallthru)
dir = dir_forward;
if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
break;
/* Do not turn corssing edge to non-crossing or vice versa after
reload. */
if (BB_PARTITION (BLOCK_FOR_INSN (i1))
!= BB_PARTITION (BLOCK_FOR_INSN (i2))
&& reload_completed)
break;
dir = merge_dir (dir, old_insns_match_p (0, i1, i2));
if (dir == dir_none || (!dir_p && dir != dir_both))
break;
merge_memattrs (i1, i2);
/* Don't begin a cross-jump with a NOTE insn. */
if (INSN_P (i1))
{
merge_notes (i1, i2);
afterlast1 = last1, afterlast2 = last2;
last1 = i1, last2 = i2;
afterlast_dir = last_dir;
last_dir = dir;
if (active_insn_p (i1))
ninsns++;
}
i1 = PREV_INSN (i1);
i2 = PREV_INSN (i2);
}
/* Don't allow the insn after a compare to be shared by
cross-jumping unless the compare is also shared. */
if (HAVE_cc0 && ninsns && reg_mentioned_p (cc0_rtx, last1)
&& ! sets_cc0_p (last1))
last1 = afterlast1, last2 = afterlast2, last_dir = afterlast_dir, ninsns--;
/* Include preceding notes and labels in the cross-jump. One,
this may bring us to the head of the blocks as requested above.
Two, it keeps line number notes as matched as may be. */
if (ninsns)
{
bb1 = BLOCK_FOR_INSN (last1);
while (last1 != BB_HEAD (bb1) && !NONDEBUG_INSN_P (PREV_INSN (last1)))
last1 = PREV_INSN (last1);
if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
last1 = PREV_INSN (last1);
bb2 = BLOCK_FOR_INSN (last2);
while (last2 != BB_HEAD (bb2) && !NONDEBUG_INSN_P (PREV_INSN (last2)))
last2 = PREV_INSN (last2);
if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
last2 = PREV_INSN (last2);
*f1 = last1;
*f2 = last2;
}
if (dir_p)
*dir_p = last_dir;
return ninsns;
}
/* Like flow_find_cross_jump, except start looking for a matching sequence from
the head of the two blocks. Do not include jumps at the end.
If STOP_AFTER is nonzero, stop after finding that many matching
instructions. If STOP_AFTER is zero, count all INSN_P insns, if it is
non-zero, only count active insns. */
int
flow_find_head_matching_sequence (basic_block bb1, basic_block bb2, rtx_insn **f1,
rtx_insn **f2, int stop_after)
{
rtx_insn *i1, *i2, *last1, *last2, *beforelast1, *beforelast2;
int ninsns = 0;
edge e;
edge_iterator ei;
int nehedges1 = 0, nehedges2 = 0;
FOR_EACH_EDGE (e, ei, bb1->succs)
if (e->flags & EDGE_EH)
nehedges1++;
FOR_EACH_EDGE (e, ei, bb2->succs)
if (e->flags & EDGE_EH)
nehedges2++;
i1 = BB_HEAD (bb1);
i2 = BB_HEAD (bb2);
last1 = beforelast1 = last2 = beforelast2 = NULL;
while (true)
{
/* Ignore notes, except NOTE_INSN_EPILOGUE_BEG. */
while (!NONDEBUG_INSN_P (i1) && i1 != BB_END (bb1))
{
if (NOTE_P (i1) && NOTE_KIND (i1) == NOTE_INSN_EPILOGUE_BEG)
break;
i1 = NEXT_INSN (i1);
}
while (!NONDEBUG_INSN_P (i2) && i2 != BB_END (bb2))
{
if (NOTE_P (i2) && NOTE_KIND (i2) == NOTE_INSN_EPILOGUE_BEG)
break;
i2 = NEXT_INSN (i2);
}
if ((i1 == BB_END (bb1) && !NONDEBUG_INSN_P (i1))
|| (i2 == BB_END (bb2) && !NONDEBUG_INSN_P (i2)))
break;
if (NOTE_P (i1) || NOTE_P (i2)
|| JUMP_P (i1) || JUMP_P (i2))
break;
/* A sanity check to make sure we're not merging insns with different
effects on EH. If only one of them ends a basic block, it shouldn't
have an EH edge; if both end a basic block, there should be the same
number of EH edges. */
if ((i1 == BB_END (bb1) && i2 != BB_END (bb2)
&& nehedges1 > 0)
|| (i2 == BB_END (bb2) && i1 != BB_END (bb1)
&& nehedges2 > 0)
|| (i1 == BB_END (bb1) && i2 == BB_END (bb2)
&& nehedges1 != nehedges2))
break;
if (old_insns_match_p (0, i1, i2) != dir_both)
break;
merge_memattrs (i1, i2);
/* Don't begin a cross-jump with a NOTE insn. */
if (INSN_P (i1))
{
merge_notes (i1, i2);
beforelast1 = last1, beforelast2 = last2;
last1 = i1, last2 = i2;
if (!stop_after || active_insn_p (i1))
ninsns++;
}
if (i1 == BB_END (bb1) || i2 == BB_END (bb2)
|| (stop_after > 0 && ninsns == stop_after))
break;
i1 = NEXT_INSN (i1);
i2 = NEXT_INSN (i2);
}
/* Don't allow a compare to be shared by cross-jumping unless the insn
after the compare is also shared. */
if (HAVE_cc0 && ninsns && reg_mentioned_p (cc0_rtx, last1)
&& sets_cc0_p (last1))
last1 = beforelast1, last2 = beforelast2, ninsns--;
if (ninsns)
{
*f1 = last1;
*f2 = last2;
}
return ninsns;
}
/* Return true iff outgoing edges of BB1 and BB2 match, together with
the branch instruction. This means that if we commonize the control
flow before end of the basic block, the semantic remains unchanged.
We may assume that there exists one edge with a common destination. */
static bool
outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
{
int nehedges1 = 0, nehedges2 = 0;
edge fallthru1 = 0, fallthru2 = 0;
edge e1, e2;
edge_iterator ei;
/* If we performed shrink-wrapping, edges to the exit block can
only be distinguished for JUMP_INSNs. The two paths may differ in
whether they went through the prologue. Sibcalls are fine, we know
that we either didn't need or inserted an epilogue before them. */
if (crtl->shrink_wrapped
&& single_succ_p (bb1)
&& single_succ (bb1) == EXIT_BLOCK_PTR_FOR_FN (cfun)
&& (!JUMP_P (BB_END (bb1))
/* Punt if the only successor is a fake edge to exit, the jump
must be some weird one. */
|| (single_succ_edge (bb1)->flags & EDGE_FAKE) != 0)
&& !(CALL_P (BB_END (bb1)) && SIBLING_CALL_P (BB_END (bb1))))
return false;
/* If BB1 has only one successor, we may be looking at either an
unconditional jump, or a fake edge to exit. */
if (single_succ_p (bb1)
&& (single_succ_edge (bb1)->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
&& (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
return (single_succ_p (bb2)
&& (single_succ_edge (bb2)->flags
& (EDGE_COMPLEX | EDGE_FAKE)) == 0
&& (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
/* Match conditional jumps - this may get tricky when fallthru and branch
edges are crossed. */
if (EDGE_COUNT (bb1->succs) == 2
&& any_condjump_p (BB_END (bb1))
&& onlyjump_p (BB_END (bb1)))
{
edge b1, f1, b2, f2;
bool reverse, match;
rtx set1, set2, cond1, cond2;
enum rtx_code code1, code2;
if (EDGE_COUNT (bb2->succs) != 2
|| !any_condjump_p (BB_END (bb2))
|| !onlyjump_p (BB_END (bb2)))
return false;
b1 = BRANCH_EDGE (bb1);
b2 = BRANCH_EDGE (bb2);
f1 = FALLTHRU_EDGE (bb1);
f2 = FALLTHRU_EDGE (bb2);
/* Get around possible forwarders on fallthru edges. Other cases
should be optimized out already. */
if (FORWARDER_BLOCK_P (f1->dest))
f1 = single_succ_edge (f1->dest);
if (FORWARDER_BLOCK_P (f2->dest))
f2 = single_succ_edge (f2->dest);
/* To simplify use of this function, return false if there are
unneeded forwarder blocks. These will get eliminated later
during cleanup_cfg. */
if (FORWARDER_BLOCK_P (f1->dest)
|| FORWARDER_BLOCK_P (f2->dest)
|| FORWARDER_BLOCK_P (b1->dest)
|| FORWARDER_BLOCK_P (b2->dest))
return false;
if (f1->dest == f2->dest && b1->dest == b2->dest)
reverse = false;
else if (f1->dest == b2->dest && b1->dest == f2->dest)
reverse = true;
else
return false;
set1 = pc_set (BB_END (bb1));
set2 = pc_set (BB_END (bb2));
if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
!= (XEXP (SET_SRC (set2), 1) == pc_rtx))
reverse = !reverse;
cond1 = XEXP (SET_SRC (set1), 0);
cond2 = XEXP (SET_SRC (set2), 0);
code1 = GET_CODE (cond1);
if (reverse)
code2 = reversed_comparison_code (cond2, BB_END (bb2));
else
code2 = GET_CODE (cond2);
if (code2 == UNKNOWN)
return false;
/* Verify codes and operands match. */
match = ((code1 == code2
&& rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
&& rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
|| (code1 == swap_condition (code2)
&& rtx_renumbered_equal_p (XEXP (cond1, 1),
XEXP (cond2, 0))
&& rtx_renumbered_equal_p (XEXP (cond1, 0),
XEXP (cond2, 1))));
/* If we return true, we will join the blocks. Which means that
we will only have one branch prediction bit to work with. Thus
we require the existing branches to have probabilities that are
roughly similar. */
if (match
&& optimize_bb_for_speed_p (bb1)
&& optimize_bb_for_speed_p (bb2))
{
profile_probability prob2;
if (b1->dest == b2->dest)
prob2 = b2->probability;
else
/* Do not use f2 probability as f2 may be forwarded. */
prob2 = b2->probability.invert ();
/* Fail if the difference in probabilities is greater than 50%.
This rules out two well-predicted branches with opposite
outcomes. */
if (b1->probability.differs_lot_from_p (prob2))
{
if (dump_file)
{
fprintf (dump_file,
"Outcomes of branch in bb %i and %i differ too"
" much (", bb1->index, bb2->index);
b1->probability.dump (dump_file);
prob2.dump (dump_file);
fprintf (dump_file, ")\n");
}
return false;
}
}
if (dump_file && match)
fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
bb1->index, bb2->index);
return match;
}
/* Generic case - we are seeing a computed jump, table jump or trapping
instruction. */
/* Check whether there are tablejumps in the end of BB1 and BB2.
Return true if they are identical. */
{
rtx_insn *label1, *label2;
rtx_jump_table_data *table1, *table2;
if (tablejump_p (BB_END (bb1), &label1, &table1)
&& tablejump_p (BB_END (bb2), &label2, &table2)
&& GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
{
/* The labels should never be the same rtx. If they really are same
the jump tables are same too. So disable crossjumping of blocks BB1
and BB2 because when deleting the common insns in the end of BB1
by delete_basic_block () the jump table would be deleted too. */
/* If LABEL2 is referenced in BB1->END do not do anything
because we would loose information when replacing
LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
{
/* Set IDENTICAL to true when the tables are identical. */
bool identical = false;
rtx p1, p2;
p1 = PATTERN (table1);
p2 = PATTERN (table2);
if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
{
identical = true;
}
else if (GET_CODE (p1) == ADDR_DIFF_VEC
&& (XVECLEN (p1, 1) == XVECLEN (p2, 1))
&& rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
&& rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
{
int i;
identical = true;
for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
identical = false;
}
if (identical)
{
bool match;
/* Temporarily replace references to LABEL1 with LABEL2
in BB1->END so that we could compare the instructions. */
replace_label_in_insn (BB_END (bb1), label1, label2, false);
match = (old_insns_match_p (mode, BB_END (bb1), BB_END (bb2))
== dir_both);
if (dump_file && match)
fprintf (dump_file,
"Tablejumps in bb %i and %i match.\n",
bb1->index, bb2->index);
/* Set the original label in BB1->END because when deleting
a block whose end is a tablejump, the tablejump referenced
from the instruction is deleted too. */
replace_label_in_insn (BB_END (bb1), label2, label1, false);
return match;
}
}
return false;
}
}
/* Find the last non-debug non-note instruction in each bb, except
stop when we see the NOTE_INSN_BASIC_BLOCK, as old_insns_match_p
handles that case specially. old_insns_match_p does not handle
other types of instruction notes. */
rtx_insn *last1 = BB_END (bb1);
rtx_insn *last2 = BB_END (bb2);
while (!NOTE_INSN_BASIC_BLOCK_P (last1) &&
(DEBUG_INSN_P (last1) || NOTE_P (last1)))
last1 = PREV_INSN (last1);
while (!NOTE_INSN_BASIC_BLOCK_P (last2) &&
(DEBUG_INSN_P (last2) || NOTE_P (last2)))
last2 = PREV_INSN (last2);
gcc_assert (last1 && last2);
/* First ensure that the instructions match. There may be many outgoing
edges so this test is generally cheaper. */
if (old_insns_match_p (mode, last1, last2) != dir_both)
return false;
/* Search the outgoing edges, ensure that the counts do match, find possible
fallthru and exception handling edges since these needs more
validation. */
if (EDGE_COUNT (bb1->succs) != EDGE_COUNT (bb2->succs))
return false;
bool nonfakeedges = false;
FOR_EACH_EDGE (e1, ei, bb1->succs)
{
e2 = EDGE_SUCC (bb2, ei.index);
if ((e1->flags & EDGE_FAKE) == 0)
nonfakeedges = true;
if (e1->flags & EDGE_EH)
nehedges1++;
if (e2->flags & EDGE_EH)
nehedges2++;
if (e1->flags & EDGE_FALLTHRU)
fallthru1 = e1;
if (e2->flags & EDGE_FALLTHRU)
fallthru2 = e2;
}
/* If number of edges of various types does not match, fail. */
if (nehedges1 != nehedges2
|| (fallthru1 != 0) != (fallthru2 != 0))
return false;
/* If !ACCUMULATE_OUTGOING_ARGS, bb1 (and bb2) have no successors
and the last real insn doesn't have REG_ARGS_SIZE note, don't
attempt to optimize, as the two basic blocks might have different
REG_ARGS_SIZE depths. For noreturn calls and unconditional
traps there should be REG_ARG_SIZE notes, they could be missing
for __builtin_unreachable () uses though. */
if (!nonfakeedges
&& !ACCUMULATE_OUTGOING_ARGS
&& (!INSN_P (last1)
|| !find_reg_note (last1, REG_ARGS_SIZE, NULL)))
return false;
/* fallthru edges must be forwarded to the same destination. */
if (fallthru1)
{
basic_block d1 = (forwarder_block_p (fallthru1->dest)
? single_succ (fallthru1->dest): fallthru1->dest);
basic_block d2 = (forwarder_block_p (fallthru2->dest)
? single_succ (fallthru2->dest): fallthru2->dest);
if (d1 != d2)
return false;
}
/* Ensure the same EH region. */
{
rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
if (!n1 && n2)
return false;
if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
return false;
}
/* The same checks as in try_crossjump_to_edge. It is required for RTL
version of sequence abstraction. */
FOR_EACH_EDGE (e1, ei, bb2->succs)
{
edge e2;
edge_iterator ei;
basic_block d1 = e1->dest;
if (FORWARDER_BLOCK_P (d1))
d1 = EDGE_SUCC (d1, 0)->dest;
FOR_EACH_EDGE (e2, ei, bb1->succs)
{
basic_block d2 = e2->dest;
if (FORWARDER_BLOCK_P (d2))
d2 = EDGE_SUCC (d2, 0)->dest;
if (d1 == d2)
break;
}
if (!e2)
return false;
}
return true;
}
/* Returns true if BB basic block has a preserve label. */
static bool
block_has_preserve_label (basic_block bb)
{
return (bb
&& block_label (bb)
&& LABEL_PRESERVE_P (block_label (bb)));
}
/* E1 and E2 are edges with the same destination block. Search their
predecessors for common code. If found, redirect control flow from
(maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC (dir_forward),
or the other way around (dir_backward). DIR specifies the allowed
replacement direction. */
static bool
try_crossjump_to_edge (int mode, edge e1, edge e2,
enum replace_direction dir)
{
int nmatch;
basic_block src1 = e1->src, src2 = e2->src;
basic_block redirect_to, redirect_from, to_remove;
basic_block osrc1, osrc2, redirect_edges_to, tmp;
rtx_insn *newpos1, *newpos2;
edge s;
edge_iterator ei;
newpos1 = newpos2 = NULL;
/* Search backward through forwarder blocks. We don't need to worry
about multiple entry or chained forwarders, as they will be optimized
away. We do this to look past the unconditional jump following a
conditional jump that is required due to the current CFG shape. */
if (single_pred_p (src1)
&& FORWARDER_BLOCK_P (src1))
e1 = single_pred_edge (src1), src1 = e1->src;
if (single_pred_p (src2)
&& FORWARDER_BLOCK_P (src2))
e2 = single_pred_edge (src2), src2 = e2->src;
/* Nothing to do if we reach ENTRY, or a common source block. */
if (src1 == ENTRY_BLOCK_PTR_FOR_FN (cfun) || src2
== ENTRY_BLOCK_PTR_FOR_FN (cfun))
return false;
if (src1 == src2)
return false;
/* Seeing more than 1 forwarder blocks would confuse us later... */
if (FORWARDER_BLOCK_P (e1->dest)
&& FORWARDER_BLOCK_P (single_succ (e1->dest)))
return false;
if (FORWARDER_BLOCK_P (e2->dest)
&& FORWARDER_BLOCK_P (single_succ (e2->dest)))
return false;
/* Likewise with dead code (possibly newly created by the other optimizations
of cfg_cleanup). */
if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
return false;
/* Do not turn corssing edge to non-crossing or vice versa after reload. */
if (BB_PARTITION (src1) != BB_PARTITION (src2)
&& reload_completed)
return false;
/* Look for the common insn sequence, part the first ... */
if (!outgoing_edges_match (mode, src1, src2))
return false;
/* ... and part the second. */
nmatch = flow_find_cross_jump (src1, src2, &newpos1, &newpos2, &dir);
osrc1 = src1;
osrc2 = src2;
if (newpos1 != NULL_RTX)
src1 = BLOCK_FOR_INSN (newpos1);
if (newpos2 != NULL_RTX)
src2 = BLOCK_FOR_INSN (newpos2);
/* Check that SRC1 and SRC2 have preds again. They may have changed
above due to the call to flow_find_cross_jump. */
if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
return false;
if (dir == dir_backward)
{
std::swap (osrc1, osrc2);
std::swap (src1, src2);
std::swap (e1, e2);
std::swap (newpos1, newpos2);
}
/* Don't proceed with the crossjump unless we found a sufficient number
of matching instructions or the 'from' block was totally matched
(such that its predecessors will hopefully be redirected and the
block removed). */
if ((nmatch < PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS))
&& (newpos1 != BB_HEAD (src1)))
return false;
/* Avoid deleting preserve label when redirecting ABNORMAL edges. */
if (block_has_preserve_label (e1->dest)
&& (e1->flags & EDGE_ABNORMAL))
return false;
/* Here we know that the insns in the end of SRC1 which are common with SRC2
will be deleted.
If we have tablejumps in the end of SRC1 and SRC2
they have been already compared for equivalence in outgoing_edges_match ()
so replace the references to TABLE1 by references to TABLE2. */
{
rtx_insn *label1, *label2;
rtx_jump_table_data *table1, *table2;
if (tablejump_p (BB_END (osrc1), &label1, &table1)
&& tablejump_p (BB_END (osrc2), &label2, &table2)
&& label1 != label2)
{
rtx_insn *insn;
/* Replace references to LABEL1 with LABEL2. */
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
/* Do not replace the label in SRC1->END because when deleting
a block whose end is a tablejump, the tablejump referenced
from the instruction is deleted too. */
if (insn != BB_END (osrc1))
replace_label_in_insn (insn, label1, label2, true);
}
}
}
/* Avoid splitting if possible. We must always split when SRC2 has
EH predecessor edges, or we may end up with basic blocks with both
normal and EH predecessor edges. */
if (newpos2 == BB_HEAD (src2)
&& !(EDGE_PRED (src2, 0)->flags & EDGE_EH))
redirect_to = src2;
else
{
if (newpos2 == BB_HEAD (src2))
{
/* Skip possible basic block header. */
if (LABEL_P (newpos2))
newpos2 = NEXT_INSN (newpos2);
while (DEBUG_INSN_P (newpos2))
newpos2 = NEXT_INSN (newpos2);
if (NOTE_P (newpos2))
newpos2 = NEXT_INSN (newpos2);
while (DEBUG_INSN_P (newpos2))
newpos2 = NEXT_INSN (newpos2);
}
if (dump_file)
fprintf (dump_file, "Splitting bb %i before %i insns\n",
src2->index, nmatch);
redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
}
if (dump_file)
fprintf (dump_file,
"Cross jumping from bb %i to bb %i; %i common insns\n",
src1->index, src2->index, nmatch);
/* We may have some registers visible through the block. */
df_set_bb_dirty (redirect_to);
if (osrc2 == src2)
redirect_edges_to = redirect_to;
else
redirect_edges_to = osrc2;
/* Recompute the counts of destinations of outgoing edges. */
FOR_EACH_EDGE (s, ei, redirect_edges_to->succs)
{
edge s2;
edge_iterator ei;
basic_block d = s->dest;
if (FORWARDER_BLOCK_P (d))
d = single_succ (d);
FOR_EACH_EDGE (s2, ei, src1->succs)
{
basic_block d2 = s2->dest;
if (FORWARDER_BLOCK_P (d2))
d2 = single_succ (d2);
if (d == d2)
break;
}
/* Take care to update possible forwarder blocks. We verified
that there is no more than one in the chain, so we can't run
into infinite loop. */
if (FORWARDER_BLOCK_P (s->dest))
s->dest->count += s->count ();
if (FORWARDER_BLOCK_P (s2->dest))
s2->dest->count -= s->count ();
s->probability = s->probability.combine_with_count
(redirect_edges_to->count,
s2->probability, src1->count);
}
/* Adjust count for the block. An earlier jump
threading pass may have left the profile in an inconsistent
state (see update_bb_profile_for_threading) so we must be
prepared for overflows. */
tmp = redirect_to;
do
{
tmp->count += src1->count;
if (tmp == redirect_edges_to)
break;
tmp = find_fallthru_edge (tmp->succs)->dest;
}
while (true);
update_br_prob_note (redirect_edges_to);
/* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
/* Skip possible basic block header. */
if (LABEL_P (newpos1))
newpos1 = NEXT_INSN (newpos1);
while (DEBUG_INSN_P (newpos1))
newpos1 = NEXT_INSN (newpos1);
if (NOTE_INSN_BASIC_BLOCK_P (newpos1))
newpos1 = NEXT_INSN (newpos1);
while (DEBUG_INSN_P (newpos1))
newpos1 = NEXT_INSN (newpos1);
redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
to_remove = single_succ (redirect_from);
redirect_edge_and_branch_force (single_succ_edge (redirect_from), redirect_to);
delete_basic_block (to_remove);
update_forwarder_flag (redirect_from);
if (redirect_to != src2)
update_forwarder_flag (src2);
return true;
}
/* Search the predecessors of BB for common insn sequences. When found,
share code between them by redirecting control flow. Return true if
any changes made. */
static bool
try_crossjump_bb (int mode, basic_block bb)
{
edge e, e2, fallthru;
bool changed;
unsigned max, ix, ix2;
/* Nothing to do if there is not at least two incoming edges. */
if (EDGE_COUNT (bb->preds) < 2)
return false;
/* Don't crossjump if this block ends in a computed jump,
unless we are optimizing for size. */
if (optimize_bb_for_size_p (bb)
&& bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
&& computed_jump_p (BB_END (bb)))
return false;
/* If we are partitioning hot/cold basic blocks, we don't want to
mess up unconditional or indirect jumps that cross between hot
and cold sections.
Basic block partitioning may result in some jumps that appear to
be optimizable (or blocks that appear to be mergeable), but which really
must be left untouched (they are required to make it safely across
partition boundaries). See the comments at the top of
bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
if (BB_PARTITION (EDGE_PRED (bb, 0)->src) !=
BB_PARTITION (EDGE_PRED (bb, 1)->src)
|| (EDGE_PRED (bb, 0)->flags & EDGE_CROSSING))
return false;
/* It is always cheapest to redirect a block that ends in a branch to
a block that falls through into BB, as that adds no branches to the
program. We'll try that combination first. */
fallthru = NULL;
max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
if (EDGE_COUNT (bb->preds) > max)
return false;
fallthru = find_fallthru_edge (bb->preds);
changed = false;
for (ix = 0; ix < EDGE_COUNT (bb->preds);)
{
e = EDGE_PRED (bb, ix);
ix++;
/* As noted above, first try with the fallthru predecessor (or, a
fallthru predecessor if we are in cfglayout mode). */
if (fallthru)
{
/* Don't combine the fallthru edge into anything else.
If there is a match, we'll do it the other way around. */
if (e == fallthru)
continue;
/* If nothing changed since the last attempt, there is nothing
we can do. */
if (!first_pass
&& !((e->src->flags & BB_MODIFIED)
|| (fallthru->src->flags & BB_MODIFIED)))
continue;
if (try_crossjump_to_edge (mode, e, fallthru, dir_forward))
{
changed = true;
ix = 0;
continue;
}
}
/* Non-obvious work limiting check: Recognize that we're going
to call try_crossjump_bb on every basic block. So if we have
two blocks with lots of outgoing edges (a switch) and they
share lots of common destinations, then we would do the
cross-jump check once for each common destination.
Now, if the blocks actually are cross-jump candidates, then
all of their destinations will be shared. Which means that
we only need check them for cross-jump candidacy once. We
can eliminate redundant checks of crossjump(A,B) by arbitrarily
choosing to do the check from the block for which the edge
in question is the first successor of A. */
if (EDGE_SUCC (e->src, 0) != e)
continue;
for (ix2 = 0; ix2 < EDGE_COUNT (bb->preds); ix2++)
{
e2 = EDGE_PRED (bb, ix2);
if (e2 == e)
continue;
/* We've already checked the fallthru edge above. */
if (e2 == fallthru)
continue;
/* The "first successor" check above only prevents multiple
checks of crossjump(A,B). In order to prevent redundant
checks of crossjump(B,A), require that A be the block
with the lowest index. */
if (e->src->index > e2->src->index)
continue;
/* If nothing changed since the last attempt, there is nothing
we can do. */
if (!first_pass
&& !((e->src->flags & BB_MODIFIED)
|| (e2->src->flags & BB_MODIFIED)))
continue;
/* Both e and e2 are not fallthru edges, so we can crossjump in either
direction. */
if (try_crossjump_to_edge (mode, e, e2, dir_both))
{
changed = true;
ix = 0;
break;
}
}
}
if (changed)
crossjumps_occurred = true;
return changed;
}
/* Search the successors of BB for common insn sequences. When found,
share code between them by moving it across the basic block
boundary. Return true if any changes made. */
static bool
try_head_merge_bb (basic_block bb)
{
basic_block final_dest_bb = NULL;
int max_match = INT_MAX;
edge e0;
rtx_insn **headptr, **currptr, **nextptr;
bool changed, moveall;
unsigned ix;
rtx_insn *e0_last_head;
rtx cond;
rtx_insn *move_before;
unsigned nedges = EDGE_COUNT (bb->succs);
rtx_insn *jump = BB_END (bb);
regset live, live_union;
/* Nothing to do if there is not at least two outgoing edges. */
if (nedges < 2)
return false;
/* Don't crossjump if this block ends in a computed jump,
unless we are optimizing for size. */
if (optimize_bb_for_size_p (bb)
&& bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
&& computed_jump_p (BB_END (bb)))
return false;
cond = get_condition (jump, &move_before, true, false);
if (cond == NULL_RTX)
{
if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, jump))
move_before = prev_nonnote_nondebug_insn (jump);
else
move_before = jump;
}
for (ix = 0; ix < nedges; ix++)
if (EDGE_SUCC (bb, ix)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
return false;
for (ix = 0; ix < nedges; ix++)
{
edge e = EDGE_SUCC (bb, ix);
basic_block other_bb = e->dest;
if (df_get_bb_dirty (other_bb))
{
block_was_dirty = true;
return false;
}
if (e->flags & EDGE_ABNORMAL)
return false;
/* Normally, all destination blocks must only be reachable from this
block, i.e. they must have one incoming edge.
There is one special case we can handle, that of multiple consecutive
jumps where the first jumps to one of the targets of the second jump.
This happens frequently in switch statements for default labels.
The structure is as follows:
FINAL_DEST_BB
....
if (cond) jump A;
fall through
BB
jump with targets A, B, C, D...
A
has two incoming edges, from FINAL_DEST_BB and BB
In this case, we can try to move the insns through BB and into
FINAL_DEST_BB. */
if (EDGE_COUNT (other_bb->preds) != 1)
{
edge incoming_edge, incoming_bb_other_edge;
edge_iterator ei;
if (final_dest_bb != NULL
|| EDGE_COUNT (other_bb->preds) != 2)
return false;
/* We must be able to move the insns across the whole block. */
move_before = BB_HEAD (bb);
while (!NONDEBUG_INSN_P (move_before))
move_before = NEXT_INSN (move_before);
if (EDGE_COUNT (bb->preds) != 1)
return false;
incoming_edge = EDGE_PRED (bb, 0);
final_dest_bb = incoming_edge->src;
if (EDGE_COUNT (final_dest_bb->succs) != 2)
return false;
FOR_EACH_EDGE (incoming_bb_other_edge, ei, final_dest_bb->succs)
if (incoming_bb_other_edge != incoming_edge)
break;
if (incoming_bb_other_edge->dest != other_bb)
return false;
}
}
e0 = EDGE_SUCC (bb, 0);
e0_last_head = NULL;
changed = false;
for (ix = 1; ix < nedges; ix++)
{
edge e = EDGE_SUCC (bb, ix);
rtx_insn *e0_last, *e_last;
int nmatch;
nmatch = flow_find_head_matching_sequence (e0->dest, e->dest,
&e0_last, &e_last, 0);
if (nmatch == 0)
return false;
if (nmatch < max_match)
{
max_match = nmatch;
e0_last_head = e0_last;
}
}
/* If we matched an entire block, we probably have to avoid moving the
last insn. */
if (max_match > 0
&& e0_last_head == BB_END (e0->dest)
&& (find_reg_note (e0_last_head, REG_EH_REGION, 0)
|| control_flow_insn_p (e0_last_head)))
{
max_match--;
if (max_match == 0)
return false;
e0_last_head = prev_real_nondebug_insn (e0_last_head);
}
if (max_match == 0)
return false;
/* We must find a union of the live registers at each of the end points. */
live = BITMAP_ALLOC (NULL);
live_union = BITMAP_ALLOC (NULL);
currptr = XNEWVEC (rtx_insn *, nedges);
headptr = XNEWVEC (rtx_insn *, nedges);
nextptr = XNEWVEC (rtx_insn *, nedges);
for (ix = 0; ix < nedges; ix++)
{
int j;
basic_block merge_bb = EDGE_SUCC (bb, ix)->dest;
rtx_insn *head = BB_HEAD (merge_bb);
while (!NONDEBUG_INSN_P (head))
head = NEXT_INSN (head);
headptr[ix] = head;
currptr[ix] = head;
/* Compute the end point and live information */
for (j = 1; j < max_match; j++)
do
head = NEXT_INSN (head);
while (!NONDEBUG_INSN_P (head));
simulate_backwards_to_point (merge_bb, live, head);
IOR_REG_SET (live_union, live);
}
/* If we're moving across two blocks, verify the validity of the
first move, then adjust the target and let the loop below deal
with the final move. */
if (final_dest_bb != NULL)
{
rtx_insn *move_upto;
moveall = can_move_insns_across (currptr[0], e0_last_head, move_before,
jump, e0->dest, live_union,
NULL, &move_upto);
if (!moveall)
{
if (move_upto == NULL_RTX)
goto out;
while (e0_last_head != move_upto)
{
df_simulate_one_insn_backwards (e0->dest, e0_last_head,
live_union);
e0_last_head = PREV_INSN (e0_last_head);
}
}
if (e0_last_head == NULL_RTX)
goto out;
jump = BB_END (final_dest_bb);
cond = get_condition (jump, &move_before, true, false);
if (cond == NULL_RTX)
{
if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, jump))
move_before = prev_nonnote_nondebug_insn (jump);
else
move_before = jump;
}
}
do
{
rtx_insn *move_upto;
moveall = can_move_insns_across (currptr[0], e0_last_head,
move_before, jump, e0->dest, live_union,
NULL, &move_upto);
if (!moveall && move_upto == NULL_RTX)
{
if (jump == move_before)
break;
/* Try again, using a different insertion point. */
move_before = jump;
/* Don't try moving before a cc0 user, as that may invalidate
the cc0. */
if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, jump))
break;
continue;
}
if (final_dest_bb && !moveall)
/* We haven't checked whether a partial move would be OK for the first
move, so we have to fail this case. */
break;
changed = true;
for (;;)
{
if (currptr[0] == move_upto)
break;
for (ix = 0; ix < nedges; ix++)
{
rtx_insn *curr = currptr[ix];
do
curr = NEXT_INSN (curr);
while (!NONDEBUG_INSN_P (curr));
currptr[ix] = curr;
}
}
/* If we can't currently move all of the identical insns, remember
each insn after the range that we'll merge. */
if (!moveall)
for (ix = 0; ix < nedges; ix++)
{
rtx_insn *curr = currptr[ix];
do
curr = NEXT_INSN (curr);
while (!NONDEBUG_INSN_P (curr));
nextptr[ix] = curr;
}
reorder_insns (headptr[0], currptr[0], PREV_INSN (move_before));
df_set_bb_dirty (EDGE_SUCC (bb, 0)->dest);
if (final_dest_bb != NULL)
df_set_bb_dirty (final_dest_bb);
df_set_bb_dirty (bb);
for (ix = 1; ix < nedges; ix++)
{
df_set_bb_dirty (EDGE_SUCC (bb, ix)->dest);
delete_insn_chain (headptr[ix], currptr[ix], false);
}
if (!moveall)
{
if (jump == move_before)
break;
/* For the unmerged insns, try a different insertion point. */
move_before = jump;
/* Don't try moving before a cc0 user, as that may invalidate
the cc0. */
if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, jump))
break;
for (ix = 0; ix < nedges; ix++)
currptr[ix] = headptr[ix] = nextptr[ix];
}
}
while (!moveall);
out:
free (currptr);
free (headptr);
free (nextptr);
crossjumps_occurred |= changed;
return changed;
}
/* Return true if BB contains just bb note, or bb note followed
by only DEBUG_INSNs. */
static bool
trivially_empty_bb_p (basic_block bb)
{
rtx_insn *insn = BB_END (bb);
while (1)
{
if (insn == BB_HEAD (bb))
return true;
if (!DEBUG_INSN_P (insn))
return false;
insn = PREV_INSN (insn);
}
}
/* Return true if BB contains just a return and possibly a USE of the
return value. Fill in *RET and *USE with the return and use insns
if any found, otherwise NULL. All CLOBBERs are ignored. */
static bool
bb_is_just_return (basic_block bb, rtx_insn **ret, rtx_insn **use)
{
*ret = *use = NULL;
rtx_insn *insn;
if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
return false;
FOR_BB_INSNS (bb, insn)
if (NONDEBUG_INSN_P (insn))
{
rtx pat = PATTERN (insn);
if (!*ret && ANY_RETURN_P (pat))
*ret = insn;
else if (!*ret && !*use && GET_CODE (pat) == USE
&& REG_P (XEXP (pat, 0))
&& REG_FUNCTION_VALUE_P (XEXP (pat, 0)))
*use = insn;
else if (GET_CODE (pat) != CLOBBER)
return false;
}
return !!*ret;
}
/* Do simple CFG optimizations - basic block merging, simplifying of jump
instructions etc. Return nonzero if changes were made. */
static bool
try_optimize_cfg (int mode)
{
bool changed_overall = false;
bool changed;
int iterations = 0;
basic_block bb, b, next;
if (mode & (CLEANUP_CROSSJUMP | CLEANUP_THREADING))
clear_bb_flags ();
crossjumps_occurred = false;
FOR_EACH_BB_FN (bb, cfun)
update_forwarder_flag (bb);
if (! targetm.cannot_modify_jumps_p ())
{
first_pass = true;
/* Attempt to merge blocks as made possible by edge removal. If
a block has only one successor, and the successor has only
one predecessor, they may be combined. */
do
{
block_was_dirty = false;
changed = false;
iterations++;
if (dump_file)
fprintf (dump_file,
"\n\ntry_optimize_cfg iteration %i\n\n",
iterations);
for (b = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; b
!= EXIT_BLOCK_PTR_FOR_FN (cfun);)
{
basic_block c;
edge s;
bool changed_here = false;
/* Delete trivially dead basic blocks. This is either
blocks with no predecessors, or empty blocks with no
successors. However if the empty block with no
successors is the successor of the ENTRY_BLOCK, it is
kept. This ensures that the ENTRY_BLOCK will have a
successor which is a precondition for many RTL
passes. Empty blocks may result from expanding
__builtin_unreachable (). */
if (EDGE_COUNT (b->preds) == 0
|| (EDGE_COUNT (b->succs) == 0
&& trivially_empty_bb_p (b)
&& single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->dest
!= b))
{
c = b->prev_bb;
if (EDGE_COUNT (b->preds) > 0)
{
edge e;
edge_iterator ei;
if (current_ir_type () == IR_RTL_CFGLAYOUT)
{
if (BB_FOOTER (b)
&& BARRIER_P (BB_FOOTER (b)))
FOR_EACH_EDGE (e, ei, b->preds)
if ((e->flags & EDGE_FALLTHRU)
&& BB_FOOTER (e->src) == NULL)
{
if (BB_FOOTER (b))
{
BB_FOOTER (e->src) = BB_FOOTER (b);
BB_FOOTER (b) = NULL;
}
else
{
start_sequence ();
BB_FOOTER (e->src) = emit_barrier ();
end_sequence ();
}
}
}
else
{
rtx_insn *last = get_last_bb_insn (b);
if (last && BARRIER_P (last))
FOR_EACH_EDGE (e, ei, b->preds)
if ((e->flags & EDGE_FALLTHRU))
emit_barrier_after (BB_END (e->src));
}
}
delete_basic_block (b);
changed = true;
/* Avoid trying to remove the exit block. */
b = (c == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? c->next_bb : c);
continue;
}
/* Remove code labels no longer used. */
if (single_pred_p (b)
&& (single_pred_edge (b)->flags & EDGE_FALLTHRU)
&& !(single_pred_edge (b)->flags & EDGE_COMPLEX)
&& LABEL_P (BB_HEAD (b))
&& !LABEL_PRESERVE_P (BB_HEAD (b))
/* If the previous block ends with a branch to this
block, we can't delete the label. Normally this
is a condjump that is yet to be simplified, but
if CASE_DROPS_THRU, this can be a tablejump with
some element going to the same place as the
default (fallthru). */
&& (single_pred (b) == ENTRY_BLOCK_PTR_FOR_FN (cfun)
|| !JUMP_P (BB_END (single_pred (b)))
|| ! label_is_jump_target_p (BB_HEAD (b),
BB_END (single_pred (b)))))
{
delete_insn (BB_HEAD (b));
if (dump_file)
fprintf (dump_file, "Deleted label in block %i.\n",
b->index);
}
/* If we fall through an empty block, we can remove it. */
if (!(mode & (CLEANUP_CFGLAYOUT | CLEANUP_NO_INSN_DEL))
&& single_pred_p (b)
&& (single_pred_edge (b)->flags & EDGE_FALLTHRU)
&& !LABEL_P (BB_HEAD (b))
&& FORWARDER_BLOCK_P (b)
/* Note that forwarder_block_p true ensures that
there is a successor for this block. */
&& (single_succ_edge (b)->flags & EDGE_FALLTHRU)
&& n_basic_blocks_for_fn (cfun) > NUM_FIXED_BLOCKS + 1)
{
if (dump_file)
fprintf (dump_file,
"Deleting fallthru block %i.\n",
b->index);
c = ((b->prev_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
? b->next_bb : b->prev_bb);
redirect_edge_succ_nodup (single_pred_edge (b),
single_succ (b));
delete_basic_block (b);
changed = true;
b = c;
continue;
}
/* Merge B with its single successor, if any. */
if (single_succ_p (b)
&& (s = single_succ_edge (b))
&& !(s->flags & EDGE_COMPLEX)
&& (c = s->dest) != EXIT_BLOCK_PTR_FOR_FN (cfun)
&& single_pred_p (c)
&& b != c)
{
/* When not in cfg_layout mode use code aware of reordering
INSN. This code possibly creates new basic blocks so it
does not fit merge_blocks interface and is kept here in
hope that it will become useless once more of compiler
is transformed to use cfg_layout mode. */
if ((mode & CLEANUP_CFGLAYOUT)
&& can_merge_blocks_p (b, c))
{
merge_blocks (b, c);
update_forwarder_flag (b);
changed_here = true;
}
else if (!(mode & CLEANUP_CFGLAYOUT)
/* If the jump insn has side effects,
we can't kill the edge. */
&& (!JUMP_P (BB_END (b))
|| (reload_completed
? simplejump_p (BB_END (b))
: (onlyjump_p (BB_END (b))
&& !tablejump_p (BB_END (b),
NULL, NULL))))
&& (next = merge_blocks_move (s, b, c, mode)))
{
b = next;
changed_here = true;
}
}
/* Try to change a branch to a return to just that return. */
rtx_insn *ret, *use;
if (single_succ_p (b)
&& onlyjump_p (BB_END (b))
&& bb_is_just_return (single_succ (b), &ret, &use))
{
if (redirect_jump (as_a <rtx_jump_insn *> (BB_END (b)),
PATTERN (ret), 0))
{
if (use)
emit_insn_before (copy_insn (PATTERN (use)),
BB_END (b));
if (dump_file)
fprintf (dump_file, "Changed jump %d->%d to return.\n",
b->index, single_succ (b)->index);
redirect_edge_succ (single_succ_edge (b),
EXIT_BLOCK_PTR_FOR_FN (cfun));
single_succ_edge (b)->flags &= ~EDGE_CROSSING;
changed_here = true;
}
}
/* Try to change a conditional branch to a return to the
respective conditional return. */
if (EDGE_COUNT (b->succs) == 2
&& any_condjump_p (BB_END (b))
&& bb_is_just_return (BRANCH_EDGE (b)->dest, &ret, &use))
{
if (redirect_jump (as_a <rtx_jump_insn *> (BB_END (b)),
PATTERN (ret), 0))
{
if (use)
emit_insn_before (copy_insn (PATTERN (use)),
BB_END (b));
if (dump_file)
fprintf (dump_file, "Changed conditional jump %d->%d "
"to conditional return.\n",
b->index, BRANCH_EDGE (b)->dest->index);
redirect_edge_succ (BRANCH_EDGE (b),
EXIT_BLOCK_PTR_FOR_FN (cfun));
BRANCH_EDGE (b)->flags &= ~EDGE_CROSSING;
changed_here = true;
}
}
/* Try to flip a conditional branch that falls through to
a return so that it becomes a conditional return and a
new jump to the original branch target. */
if (EDGE_COUNT (b->succs) == 2
&& BRANCH_EDGE (b)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
&& any_condjump_p (BB_END (b))
&& bb_is_just_return (FALLTHRU_EDGE (b)->dest, &ret, &use))
{
if (invert_jump (as_a <rtx_jump_insn *> (BB_END (b)),
JUMP_LABEL (BB_END (b)), 0))
{
basic_block new_ft = BRANCH_EDGE (b)->dest;
if (redirect_jump (as_a <rtx_jump_insn *> (BB_END (b)),
PATTERN (ret), 0))
{
if (use)
emit_insn_before (copy_insn (PATTERN (use)),
BB_END (b));
if (dump_file)
fprintf (dump_file, "Changed conditional jump "
"%d->%d to conditional return, adding "
"fall-through jump.\n",
b->index, BRANCH_EDGE (b)->dest->index);
redirect_edge_succ (BRANCH_EDGE (b),
EXIT_BLOCK_PTR_FOR_FN (cfun));
BRANCH_EDGE (b)->flags &= ~EDGE_CROSSING;
std::swap (BRANCH_EDGE (b)->probability,
FALLTHRU_EDGE (b)->probability);
update_br_prob_note (b);
basic_block jb = force_nonfallthru (FALLTHRU_EDGE (b));
notice_new_block (jb);
if (!redirect_jump (as_a <rtx_jump_insn *> (BB_END (jb)),
block_label (new_ft), 0))
gcc_unreachable ();
redirect_edge_succ (single_succ_edge (jb), new_ft);
changed_here = true;
}
else
{
/* Invert the jump back to what it was. This should
never fail. */
if (!invert_jump (as_a <rtx_jump_insn *> (BB_END (b)),
JUMP_LABEL (BB_END (b)), 0))
gcc_unreachable ();
}
}
}
/* Simplify branch over branch. */
if ((mode & CLEANUP_EXPENSIVE)
&& !(mode & CLEANUP_CFGLAYOUT)
&& try_simplify_condjump (b))
changed_here = true;
/* If B has a single outgoing edge, but uses a
non-trivial jump instruction without side-effects, we
can either delete the jump entirely, or replace it
with a simple unconditional jump. */
if (single_succ_p (b)
&& single_succ (b) != EXIT_BLOCK_PTR_FOR_FN (cfun)
&& onlyjump_p (BB_END (b))
&& !CROSSING_JUMP_P (BB_END (b))
&& try_redirect_by_replacing_jump (single_succ_edge (b),
single_succ (b),
(mode & CLEANUP_CFGLAYOUT) != 0))
{
update_forwarder_flag (b);
changed_here = true;
}
/* Simplify branch to branch. */
if (try_forward_edges (mode, b))
{
update_forwarder_flag (b);
changed_here = true;
}
/* Look for shared code between blocks. */
if ((mode & CLEANUP_CROSSJUMP)
&& try_crossjump_bb (mode, b))
changed_here = true;
if ((mode & CLEANUP_CROSSJUMP)
/* This can lengthen register lifetimes. Do it only after
reload. */
&& reload_completed
&& try_head_merge_bb (b))
changed_here = true;
/* Don't get confused by the index shift caused by
deleting blocks. */
if (!changed_here)
b = b->next_bb;
else
changed = true;
}
if ((mode & CLEANUP_CROSSJUMP)
&& try_crossjump_bb (mode, EXIT_BLOCK_PTR_FOR_FN (cfun)))
changed = true;
if (block_was_dirty)
{
/* This should only be set by head-merging. */
gcc_assert (mode & CLEANUP_CROSSJUMP);
df_analyze ();
}
if (changed)
{
/* Edge forwarding in particular can cause hot blocks previously
reached by both hot and cold blocks to become dominated only
by cold blocks. This will cause the verification below to fail,
and lead to now cold code in the hot section. This is not easy
to detect and fix during edge forwarding, and in some cases
is only visible after newly unreachable blocks are deleted,
which will be done in fixup_partitions. */
if ((mode & CLEANUP_NO_PARTITIONING) == 0)
{
fixup_partitions ();
checking_verify_flow_info ();
}
}
changed_overall |= changed;
first_pass = false;
}
while (changed);
}
FOR_ALL_BB_FN (b, cfun)
b->flags &= ~(BB_FORWARDER_BLOCK | BB_NONTHREADABLE_BLOCK);
return changed_overall;
}
/* Delete all unreachable basic blocks. */
bool
delete_unreachable_blocks (void)
{
bool changed = false;
basic_block b, prev_bb;
find_unreachable_blocks ();
/* When we're in GIMPLE mode and there may be debug bind insns, we
should delete blocks in reverse dominator order, so as to get a
chance to substitute all released DEFs into debug bind stmts. If
we don't have dominators information, walking blocks backward
gets us a better chance of retaining most debug information than
otherwise. */
if (MAY_HAVE_DEBUG_BIND_INSNS && current_ir_type () == IR_GIMPLE
&& dom_info_available_p (CDI_DOMINATORS))
{
for (b = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
b != ENTRY_BLOCK_PTR_FOR_FN (cfun); b = prev_bb)
{
prev_bb = b->prev_bb;
if (!(b->flags & BB_REACHABLE))
{
/* Speed up the removal of blocks that don't dominate
others. Walking backwards, this should be the common
case. */
if (!first_dom_son (CDI_DOMINATORS, b))
delete_basic_block (b);
else
{
vec<basic_block> h
= get_all_dominated_blocks (CDI_DOMINATORS, b);
while (h.length ())
{
b = h.pop ();
prev_bb = b->prev_bb;
gcc_assert (!(b->flags & BB_REACHABLE));
delete_basic_block (b);
}
h.release ();
}
changed = true;
}
}
}
else
{
for (b = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
b != ENTRY_BLOCK_PTR_FOR_FN (cfun); b = prev_bb)
{
prev_bb = b->prev_bb;
if (!(b->flags & BB_REACHABLE))
{
delete_basic_block (b);
changed = true;
}
}
}
if (changed)
tidy_fallthru_edges ();
return changed;
}
/* Delete any jump tables never referenced. We can't delete them at the
time of removing tablejump insn as they are referenced by the preceding
insns computing the destination, so we delay deleting and garbagecollect
them once life information is computed. */
void
delete_dead_jumptables (void)
{
basic_block bb;
/* A dead jump table does not belong to any basic block. Scan insns
between two adjacent basic blocks. */
FOR_EACH_BB_FN (bb, cfun)
{
rtx_insn *insn, *next;
for (insn = NEXT_INSN (BB_END (bb));
insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
insn = next)
{
next = NEXT_INSN (insn);
if (LABEL_P (insn)
&& LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
&& JUMP_TABLE_DATA_P (next))
{
rtx_insn *label = insn, *jump = next;
if (dump_file)
fprintf (dump_file, "Dead jumptable %i removed\n",
INSN_UID (insn));
next = NEXT_INSN (next);
delete_insn (jump);
delete_insn (label);
}
}
}
}
/* Tidy the CFG by deleting unreachable code and whatnot. */
bool
cleanup_cfg (int mode)
{
bool changed = false;
/* Set the cfglayout mode flag here. We could update all the callers
but that is just inconvenient, especially given that we eventually
want to have cfglayout mode as the default. */
if (current_ir_type () == IR_RTL_CFGLAYOUT)
mode |= CLEANUP_CFGLAYOUT;
timevar_push (TV_CLEANUP_CFG);
if (delete_unreachable_blocks ())
{
changed = true;
/* We've possibly created trivially dead code. Cleanup it right
now to introduce more opportunities for try_optimize_cfg. */
if (!(mode & (CLEANUP_NO_INSN_DEL))
&& !reload_completed)
delete_trivially_dead_insns (get_insns (), max_reg_num ());
}
compact_blocks ();
/* To tail-merge blocks ending in the same noreturn function (e.g.
a call to abort) we have to insert fake edges to exit. Do this
here once. The fake edges do not interfere with any other CFG
cleanups. */
if (mode & CLEANUP_CROSSJUMP)
add_noreturn_fake_exit_edges ();
if (!dbg_cnt (cfg_cleanup))
return changed;
while (try_optimize_cfg (mode))
{
delete_unreachable_blocks (), changed = true;
if (!(mode & CLEANUP_NO_INSN_DEL))
{
/* Try to remove some trivially dead insns when doing an expensive
cleanup. But delete_trivially_dead_insns doesn't work after
reload (it only handles pseudos) and run_fast_dce is too costly
to run in every iteration.
For effective cross jumping, we really want to run a fast DCE to
clean up any dead conditions, or they get in the way of performing
useful tail merges.
Other transformations in cleanup_cfg are not so sensitive to dead
code, so delete_trivially_dead_insns or even doing nothing at all
is good enough. */
if ((mode & CLEANUP_EXPENSIVE) && !reload_completed
&& !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
break;
if ((mode & CLEANUP_CROSSJUMP) && crossjumps_occurred)
run_fast_dce ();
}
else
break;
}
if (mode & CLEANUP_CROSSJUMP)
remove_fake_exit_edges ();
/* Don't call delete_dead_jumptables in cfglayout mode, because
that function assumes that jump tables are in the insns stream.
But we also don't _have_ to delete dead jumptables in cfglayout
mode because we shouldn't even be looking at things that are
not in a basic block. Dead jumptables are cleaned up when
going out of cfglayout mode. */
if (!(mode & CLEANUP_CFGLAYOUT))
delete_dead_jumptables ();
/* ??? We probably do this way too often. */
if (current_loops
&& (changed
|| (mode & CLEANUP_CFG_CHANGED)))
{
timevar_push (TV_REPAIR_LOOPS);
/* The above doesn't preserve dominance info if available. */
gcc_assert (!dom_info_available_p (CDI_DOMINATORS));
calculate_dominance_info (CDI_DOMINATORS);
fix_loop_structure (NULL);
free_dominance_info (CDI_DOMINATORS);
timevar_pop (TV_REPAIR_LOOPS);
}
timevar_pop (TV_CLEANUP_CFG);
return changed;
}
namespace {
const pass_data pass_data_jump =
{
RTL_PASS, /* type */
"jump", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_JUMP, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_jump : public rtl_opt_pass
{
public:
pass_jump (gcc::context *ctxt)
: rtl_opt_pass (pass_data_jump, ctxt)
{}
/* opt_pass methods: */
virtual unsigned int execute (function *);
}; // class pass_jump
unsigned int
pass_jump::execute (function *)
{
delete_trivially_dead_insns (get_insns (), max_reg_num ());
if (dump_file)
dump_flow_info (dump_file, dump_flags);
cleanup_cfg ((optimize ? CLEANUP_EXPENSIVE : 0)
| (flag_thread_jumps ? CLEANUP_THREADING : 0));
return 0;
}
} // anon namespace
rtl_opt_pass *
make_pass_jump (gcc::context *ctxt)
{
return new pass_jump (ctxt);
}
namespace {
const pass_data pass_data_jump2 =
{
RTL_PASS, /* type */
"jump2", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_JUMP, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_jump2 : public rtl_opt_pass
{
public:
pass_jump2 (gcc::context *ctxt)
: rtl_opt_pass (pass_data_jump2, ctxt)
{}
/* opt_pass methods: */
virtual unsigned int execute (function *)
{
cleanup_cfg (flag_crossjumping ? CLEANUP_CROSSJUMP : 0);
return 0;
}
}; // class pass_jump2
} // anon namespace
rtl_opt_pass *
make_pass_jump2 (gcc::context *ctxt)
{
return new pass_jump2 (ctxt);
}
|