1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
|
/* Loop manipulation code for GNU compiler.
Copyright (C) 2002-2018 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "cfganal.h"
#include "cfgloop.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "tree-ssa-loop-manip.h"
#include "dumpfile.h"
static void copy_loops_to (struct loop **, int,
struct loop *);
static void loop_redirect_edge (edge, basic_block);
static void remove_bbs (basic_block *, int);
static bool rpe_enum_p (const_basic_block, const void *);
static int find_path (edge, basic_block **);
static void fix_loop_placements (struct loop *, bool *);
static bool fix_bb_placement (basic_block);
static void fix_bb_placements (basic_block, bool *, bitmap);
/* Checks whether basic block BB is dominated by DATA. */
static bool
rpe_enum_p (const_basic_block bb, const void *data)
{
return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
}
/* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
static void
remove_bbs (basic_block *bbs, int nbbs)
{
int i;
for (i = 0; i < nbbs; i++)
delete_basic_block (bbs[i]);
}
/* Find path -- i.e. the basic blocks dominated by edge E and put them
into array BBS, that will be allocated large enough to contain them.
E->dest must have exactly one predecessor for this to work (it is
easy to achieve and we do not put it here because we do not want to
alter anything by this function). The number of basic blocks in the
path is returned. */
static int
find_path (edge e, basic_block **bbs)
{
gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
/* Find bbs in the path. */
*bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
n_basic_blocks_for_fn (cfun), e->dest);
}
/* Fix placement of basic block BB inside loop hierarchy --
Let L be a loop to that BB belongs. Then every successor of BB must either
1) belong to some superloop of loop L, or
2) be a header of loop K such that K->outer is superloop of L
Returns true if we had to move BB into other loop to enforce this condition,
false if the placement of BB was already correct (provided that placements
of its successors are correct). */
static bool
fix_bb_placement (basic_block bb)
{
edge e;
edge_iterator ei;
struct loop *loop = current_loops->tree_root, *act;
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
continue;
act = e->dest->loop_father;
if (act->header == e->dest)
act = loop_outer (act);
if (flow_loop_nested_p (loop, act))
loop = act;
}
if (loop == bb->loop_father)
return false;
remove_bb_from_loops (bb);
add_bb_to_loop (bb, loop);
return true;
}
/* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
of LOOP to that leads at least one exit edge of LOOP, and set it
as the immediate superloop of LOOP. Return true if the immediate superloop
of LOOP changed.
IRRED_INVALIDATED is set to true if a change in the loop structures might
invalidate the information about irreducible regions. */
static bool
fix_loop_placement (struct loop *loop, bool *irred_invalidated)
{
unsigned i;
edge e;
vec<edge> exits = get_loop_exit_edges (loop);
struct loop *father = current_loops->tree_root, *act;
bool ret = false;
FOR_EACH_VEC_ELT (exits, i, e)
{
act = find_common_loop (loop, e->dest->loop_father);
if (flow_loop_nested_p (father, act))
father = act;
}
if (father != loop_outer (loop))
{
for (act = loop_outer (loop); act != father; act = loop_outer (act))
act->num_nodes -= loop->num_nodes;
flow_loop_tree_node_remove (loop);
flow_loop_tree_node_add (father, loop);
/* The exit edges of LOOP no longer exits its original immediate
superloops; remove them from the appropriate exit lists. */
FOR_EACH_VEC_ELT (exits, i, e)
{
/* We may need to recompute irreducible loops. */
if (e->flags & EDGE_IRREDUCIBLE_LOOP)
*irred_invalidated = true;
rescan_loop_exit (e, false, false);
}
ret = true;
}
exits.release ();
return ret;
}
/* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
enforce condition stated in description of fix_bb_placement. We
start from basic block FROM that had some of its successors removed, so that
his placement no longer has to be correct, and iteratively fix placement of
its predecessors that may change if placement of FROM changed. Also fix
placement of subloops of FROM->loop_father, that might also be altered due
to this change; the condition for them is similar, except that instead of
successors we consider edges coming out of the loops.
If the changes may invalidate the information about irreducible regions,
IRRED_INVALIDATED is set to true.
If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
changed loop_father are collected there. */
static void
fix_bb_placements (basic_block from,
bool *irred_invalidated,
bitmap loop_closed_ssa_invalidated)
{
basic_block *queue, *qtop, *qbeg, *qend;
struct loop *base_loop, *target_loop;
edge e;
/* We pass through blocks back-reachable from FROM, testing whether some
of their successors moved to outer loop. It may be necessary to
iterate several times, but it is finite, as we stop unless we move
the basic block up the loop structure. The whole story is a bit
more complicated due to presence of subloops, those are moved using
fix_loop_placement. */
base_loop = from->loop_father;
/* If we are already in the outermost loop, the basic blocks cannot be moved
outside of it. If FROM is the header of the base loop, it cannot be moved
outside of it, either. In both cases, we can end now. */
if (base_loop == current_loops->tree_root
|| from == base_loop->header)
return;
auto_sbitmap in_queue (last_basic_block_for_fn (cfun));
bitmap_clear (in_queue);
bitmap_set_bit (in_queue, from->index);
/* Prevent us from going out of the base_loop. */
bitmap_set_bit (in_queue, base_loop->header->index);
queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
qtop = queue + base_loop->num_nodes + 1;
qbeg = queue;
qend = queue + 1;
*qbeg = from;
while (qbeg != qend)
{
edge_iterator ei;
from = *qbeg;
qbeg++;
if (qbeg == qtop)
qbeg = queue;
bitmap_clear_bit (in_queue, from->index);
if (from->loop_father->header == from)
{
/* Subloop header, maybe move the loop upward. */
if (!fix_loop_placement (from->loop_father, irred_invalidated))
continue;
target_loop = loop_outer (from->loop_father);
if (loop_closed_ssa_invalidated)
{
basic_block *bbs = get_loop_body (from->loop_father);
for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
free (bbs);
}
}
else
{
/* Ordinary basic block. */
if (!fix_bb_placement (from))
continue;
target_loop = from->loop_father;
if (loop_closed_ssa_invalidated)
bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
}
FOR_EACH_EDGE (e, ei, from->succs)
{
if (e->flags & EDGE_IRREDUCIBLE_LOOP)
*irred_invalidated = true;
}
/* Something has changed, insert predecessors into queue. */
FOR_EACH_EDGE (e, ei, from->preds)
{
basic_block pred = e->src;
struct loop *nca;
if (e->flags & EDGE_IRREDUCIBLE_LOOP)
*irred_invalidated = true;
if (bitmap_bit_p (in_queue, pred->index))
continue;
/* If it is subloop, then it either was not moved, or
the path up the loop tree from base_loop do not contain
it. */
nca = find_common_loop (pred->loop_father, base_loop);
if (pred->loop_father != base_loop
&& (nca == base_loop
|| nca != pred->loop_father))
pred = pred->loop_father->header;
else if (!flow_loop_nested_p (target_loop, pred->loop_father))
{
/* If PRED is already higher in the loop hierarchy than the
TARGET_LOOP to that we moved FROM, the change of the position
of FROM does not affect the position of PRED, so there is no
point in processing it. */
continue;
}
if (bitmap_bit_p (in_queue, pred->index))
continue;
/* Schedule the basic block. */
*qend = pred;
qend++;
if (qend == qtop)
qend = queue;
bitmap_set_bit (in_queue, pred->index);
}
}
free (queue);
}
/* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
and update loop structures and dominators. Return true if we were able
to remove the path, false otherwise (and nothing is affected then). */
bool
remove_path (edge e, bool *irred_invalidated,
bitmap loop_closed_ssa_invalidated)
{
edge ae;
basic_block *rem_bbs, *bord_bbs, from, bb;
vec<basic_block> dom_bbs;
int i, nrem, n_bord_bbs;
bool local_irred_invalidated = false;
edge_iterator ei;
struct loop *l, *f;
if (! irred_invalidated)
irred_invalidated = &local_irred_invalidated;
if (!can_remove_branch_p (e))
return false;
/* Keep track of whether we need to update information about irreducible
regions. This is the case if the removed area is a part of the
irreducible region, or if the set of basic blocks that belong to a loop
that is inside an irreducible region is changed, or if such a loop is
removed. */
if (e->flags & EDGE_IRREDUCIBLE_LOOP)
*irred_invalidated = true;
/* We need to check whether basic blocks are dominated by the edge
e, but we only have basic block dominators. This is easy to
fix -- when e->dest has exactly one predecessor, this corresponds
to blocks dominated by e->dest, if not, split the edge. */
if (!single_pred_p (e->dest))
e = single_pred_edge (split_edge (e));
/* It may happen that by removing path we remove one or more loops
we belong to. In this case first unloop the loops, then proceed
normally. We may assume that e->dest is not a header of any loop,
as it now has exactly one predecessor. */
for (l = e->src->loop_father; loop_outer (l); l = f)
{
f = loop_outer (l);
if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
unloop (l, irred_invalidated, loop_closed_ssa_invalidated);
}
/* Identify the path. */
nrem = find_path (e, &rem_bbs);
n_bord_bbs = 0;
bord_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
auto_sbitmap seen (last_basic_block_for_fn (cfun));
bitmap_clear (seen);
/* Find "border" hexes -- i.e. those with predecessor in removed path. */
for (i = 0; i < nrem; i++)
bitmap_set_bit (seen, rem_bbs[i]->index);
if (!*irred_invalidated)
FOR_EACH_EDGE (ae, ei, e->src->succs)
if (ae != e && ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
&& !bitmap_bit_p (seen, ae->dest->index)
&& ae->flags & EDGE_IRREDUCIBLE_LOOP)
{
*irred_invalidated = true;
break;
}
for (i = 0; i < nrem; i++)
{
bb = rem_bbs[i];
FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
if (ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
&& !bitmap_bit_p (seen, ae->dest->index))
{
bitmap_set_bit (seen, ae->dest->index);
bord_bbs[n_bord_bbs++] = ae->dest;
if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
*irred_invalidated = true;
}
}
/* Remove the path. */
from = e->src;
remove_branch (e);
dom_bbs.create (0);
/* Cancel loops contained in the path. */
for (i = 0; i < nrem; i++)
if (rem_bbs[i]->loop_father->header == rem_bbs[i])
cancel_loop_tree (rem_bbs[i]->loop_father);
remove_bbs (rem_bbs, nrem);
free (rem_bbs);
/* Find blocks whose dominators may be affected. */
bitmap_clear (seen);
for (i = 0; i < n_bord_bbs; i++)
{
basic_block ldom;
bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
if (bitmap_bit_p (seen, bb->index))
continue;
bitmap_set_bit (seen, bb->index);
for (ldom = first_dom_son (CDI_DOMINATORS, bb);
ldom;
ldom = next_dom_son (CDI_DOMINATORS, ldom))
if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
dom_bbs.safe_push (ldom);
}
/* Recount dominators. */
iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
dom_bbs.release ();
free (bord_bbs);
/* Fix placements of basic blocks inside loops and the placement of
loops in the loop tree. */
fix_bb_placements (from, irred_invalidated, loop_closed_ssa_invalidated);
fix_loop_placements (from->loop_father, irred_invalidated);
if (local_irred_invalidated
&& loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
mark_irreducible_loops ();
return true;
}
/* Creates place for a new LOOP in loops structure of FN. */
void
place_new_loop (struct function *fn, struct loop *loop)
{
loop->num = number_of_loops (fn);
vec_safe_push (loops_for_fn (fn)->larray, loop);
}
/* Given LOOP structure with filled header and latch, find the body of the
corresponding loop and add it to loops tree. Insert the LOOP as a son of
outer. */
void
add_loop (struct loop *loop, struct loop *outer)
{
basic_block *bbs;
int i, n;
struct loop *subloop;
edge e;
edge_iterator ei;
/* Add it to loop structure. */
place_new_loop (cfun, loop);
flow_loop_tree_node_add (outer, loop);
/* Find its nodes. */
bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
for (i = 0; i < n; i++)
{
if (bbs[i]->loop_father == outer)
{
remove_bb_from_loops (bbs[i]);
add_bb_to_loop (bbs[i], loop);
continue;
}
loop->num_nodes++;
/* If we find a direct subloop of OUTER, move it to LOOP. */
subloop = bbs[i]->loop_father;
if (loop_outer (subloop) == outer
&& subloop->header == bbs[i])
{
flow_loop_tree_node_remove (subloop);
flow_loop_tree_node_add (loop, subloop);
}
}
/* Update the information about loop exit edges. */
for (i = 0; i < n; i++)
{
FOR_EACH_EDGE (e, ei, bbs[i]->succs)
{
rescan_loop_exit (e, false, false);
}
}
free (bbs);
}
/* Scale profile of loop by P. */
void
scale_loop_frequencies (struct loop *loop, profile_probability p)
{
basic_block *bbs;
bbs = get_loop_body (loop);
scale_bbs_frequencies (bbs, loop->num_nodes, p);
free (bbs);
}
/* Scale profile in LOOP by P.
If ITERATION_BOUND is non-zero, scale even further if loop is predicted
to iterate too many times.
Before caling this function, preheader block profile should be already
scaled to final count. This is necessary because loop iterations are
determined by comparing header edge count to latch ege count and thus
they need to be scaled synchronously. */
void
scale_loop_profile (struct loop *loop, profile_probability p,
gcov_type iteration_bound)
{
edge e, preheader_e;
edge_iterator ei;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, ";; Scaling loop %i with scale ",
loop->num);
p.dump (dump_file);
fprintf (dump_file, " bounding iterations to %i\n",
(int)iteration_bound);
}
/* Scale the probabilities. */
scale_loop_frequencies (loop, p);
if (iteration_bound == 0)
return;
gcov_type iterations = expected_loop_iterations_unbounded (loop, NULL, true);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, ";; guessed iterations after scaling %i\n",
(int)iterations);
}
/* See if loop is predicted to iterate too many times. */
if (iterations <= iteration_bound)
return;
preheader_e = loop_preheader_edge (loop);
/* We could handle also loops without preheaders, but bounding is
currently used only by optimizers that have preheaders constructed. */
gcc_checking_assert (preheader_e);
profile_count count_in = preheader_e->count ();
if (count_in > profile_count::zero ()
&& loop->header->count.initialized_p ())
{
profile_count count_delta = profile_count::zero ();
e = single_exit (loop);
if (e)
{
edge other_e;
FOR_EACH_EDGE (other_e, ei, e->src->succs)
if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE))
&& e != other_e)
break;
/* Probability of exit must be 1/iterations. */
count_delta = e->count ();
e->probability = profile_probability::always ()
.apply_scale (1, iteration_bound);
other_e->probability = e->probability.invert ();
/* In code below we only handle the following two updates. */
if (other_e->dest != loop->header
&& other_e->dest != loop->latch
&& (dump_file && (dump_flags & TDF_DETAILS)))
{
fprintf (dump_file, ";; giving up on update of paths from "
"exit condition to latch\n");
}
}
else
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, ";; Loop has multiple exit edges; "
"giving up on exit condition update\n");
/* Roughly speaking we want to reduce the loop body profile by the
difference of loop iterations. We however can do better if
we look at the actual profile, if it is available. */
p = profile_probability::always ();
count_in = count_in.apply_scale (iteration_bound, 1);
p = count_in.probability_in (loop->header->count);
if (!(p > profile_probability::never ()))
p = profile_probability::very_unlikely ();
if (p == profile_probability::always ()
|| !p.initialized_p ())
return;
/* If latch exists, change its count, since we changed
probability of exit. Theoretically we should update everything from
source of exit edge to latch, but for vectorizer this is enough. */
if (loop->latch && loop->latch != e->src)
loop->latch->count += count_delta;
/* Scale the probabilities. */
scale_loop_frequencies (loop, p);
/* Change latch's count back. */
if (loop->latch && loop->latch != e->src)
loop->latch->count -= count_delta;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, ";; guessed iterations are now %i\n",
(int)expected_loop_iterations_unbounded (loop, NULL, true));
}
}
/* Recompute dominance information for basic blocks outside LOOP. */
static void
update_dominators_in_loop (struct loop *loop)
{
vec<basic_block> dom_bbs = vNULL;
basic_block *body;
unsigned i;
auto_sbitmap seen (last_basic_block_for_fn (cfun));
bitmap_clear (seen);
body = get_loop_body (loop);
for (i = 0; i < loop->num_nodes; i++)
bitmap_set_bit (seen, body[i]->index);
for (i = 0; i < loop->num_nodes; i++)
{
basic_block ldom;
for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
ldom;
ldom = next_dom_son (CDI_DOMINATORS, ldom))
if (!bitmap_bit_p (seen, ldom->index))
{
bitmap_set_bit (seen, ldom->index);
dom_bbs.safe_push (ldom);
}
}
iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
free (body);
dom_bbs.release ();
}
/* Creates an if region as shown above. CONDITION is used to create
the test for the if.
|
| ------------- -------------
| | pred_bb | | pred_bb |
| ------------- -------------
| | |
| | | ENTRY_EDGE
| | ENTRY_EDGE V
| | ====> -------------
| | | cond_bb |
| | | CONDITION |
| | -------------
| V / \
| ------------- e_false / \ e_true
| | succ_bb | V V
| ------------- ----------- -----------
| | false_bb | | true_bb |
| ----------- -----------
| \ /
| \ /
| V V
| -------------
| | join_bb |
| -------------
| | exit_edge (result)
| V
| -----------
| | succ_bb |
| -----------
|
*/
edge
create_empty_if_region_on_edge (edge entry_edge, tree condition)
{
basic_block cond_bb, true_bb, false_bb, join_bb;
edge e_true, e_false, exit_edge;
gcond *cond_stmt;
tree simple_cond;
gimple_stmt_iterator gsi;
cond_bb = split_edge (entry_edge);
/* Insert condition in cond_bb. */
gsi = gsi_last_bb (cond_bb);
simple_cond =
force_gimple_operand_gsi (&gsi, condition, true, NULL,
false, GSI_NEW_STMT);
cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
gsi = gsi_last_bb (cond_bb);
gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
join_bb = split_edge (single_succ_edge (cond_bb));
e_true = single_succ_edge (cond_bb);
true_bb = split_edge (e_true);
e_false = make_edge (cond_bb, join_bb, 0);
false_bb = split_edge (e_false);
e_true->flags &= ~EDGE_FALLTHRU;
e_true->flags |= EDGE_TRUE_VALUE;
e_false->flags &= ~EDGE_FALLTHRU;
e_false->flags |= EDGE_FALSE_VALUE;
set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
exit_edge = single_succ_edge (join_bb);
if (single_pred_p (exit_edge->dest))
set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
return exit_edge;
}
/* create_empty_loop_on_edge
|
| - pred_bb - ------ pred_bb ------
| | | | iv0 = initial_value |
| -----|----- ---------|-----------
| | ______ | entry_edge
| | entry_edge / | |
| | ====> | -V---V- loop_header -------------
| V | | iv_before = phi (iv0, iv_after) |
| - succ_bb - | ---|-----------------------------
| | | | |
| ----------- | ---V--- loop_body ---------------
| | | iv_after = iv_before + stride |
| | | if (iv_before < upper_bound) |
| | ---|--------------\--------------
| | | \ exit_e
| | V \
| | - loop_latch - V- succ_bb -
| | | | | |
| | /------------- -----------
| \ ___ /
Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
that is used before the increment of IV. IV_BEFORE should be used for
adding code to the body that uses the IV. OUTER is the outer loop in
which the new loop should be inserted.
Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
inserted on the loop entry edge. This implies that this function
should be used only when the UPPER_BOUND expression is a loop
invariant. */
struct loop *
create_empty_loop_on_edge (edge entry_edge,
tree initial_value,
tree stride, tree upper_bound,
tree iv,
tree *iv_before,
tree *iv_after,
struct loop *outer)
{
basic_block loop_header, loop_latch, succ_bb, pred_bb;
struct loop *loop;
gimple_stmt_iterator gsi;
gimple_seq stmts;
gcond *cond_expr;
tree exit_test;
edge exit_e;
gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
/* Create header, latch and wire up the loop. */
pred_bb = entry_edge->src;
loop_header = split_edge (entry_edge);
loop_latch = split_edge (single_succ_edge (loop_header));
succ_bb = single_succ (loop_latch);
make_edge (loop_header, succ_bb, 0);
redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
/* Set immediate dominator information. */
set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
/* Initialize a loop structure and put it in a loop hierarchy. */
loop = alloc_loop ();
loop->header = loop_header;
loop->latch = loop_latch;
add_loop (loop, outer);
/* TODO: Fix counts. */
scale_loop_frequencies (loop, profile_probability::even ());
/* Update dominators. */
update_dominators_in_loop (loop);
/* Modify edge flags. */
exit_e = single_exit (loop);
exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
/* Construct IV code in loop. */
initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
if (stmts)
{
gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
gsi_commit_edge_inserts ();
}
upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
if (stmts)
{
gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
gsi_commit_edge_inserts ();
}
gsi = gsi_last_bb (loop_header);
create_iv (initial_value, stride, iv, loop, &gsi, false,
iv_before, iv_after);
/* Insert loop exit condition. */
cond_expr = gimple_build_cond
(LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
exit_test = gimple_cond_lhs (cond_expr);
exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
false, GSI_NEW_STMT);
gimple_cond_set_lhs (cond_expr, exit_test);
gsi = gsi_last_bb (exit_e->src);
gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
split_block_after_labels (loop_header);
return loop;
}
/* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
latch to header and update loop tree and dominators
accordingly. Everything between them plus LATCH_EDGE destination must
be dominated by HEADER_EDGE destination, and back-reachable from
LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
Returns the newly created loop. Frequencies and counts in the new loop
are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */
struct loop *
loopify (edge latch_edge, edge header_edge,
basic_block switch_bb, edge true_edge, edge false_edge,
bool redirect_all_edges, profile_probability true_scale,
profile_probability false_scale)
{
basic_block succ_bb = latch_edge->dest;
basic_block pred_bb = header_edge->src;
struct loop *loop = alloc_loop ();
struct loop *outer = loop_outer (succ_bb->loop_father);
profile_count cnt;
loop->header = header_edge->dest;
loop->latch = latch_edge->src;
cnt = header_edge->count ();
/* Redirect edges. */
loop_redirect_edge (latch_edge, loop->header);
loop_redirect_edge (true_edge, succ_bb);
/* During loop versioning, one of the switch_bb edge is already properly
set. Do not redirect it again unless redirect_all_edges is true. */
if (redirect_all_edges)
{
loop_redirect_edge (header_edge, switch_bb);
loop_redirect_edge (false_edge, loop->header);
/* Update dominators. */
set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
}
set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
/* Compute new loop. */
add_loop (loop, outer);
/* Add switch_bb to appropriate loop. */
if (switch_bb->loop_father)
remove_bb_from_loops (switch_bb);
add_bb_to_loop (switch_bb, outer);
/* Fix counts. */
if (redirect_all_edges)
{
switch_bb->count = cnt;
}
scale_loop_frequencies (loop, false_scale);
scale_loop_frequencies (succ_bb->loop_father, true_scale);
update_dominators_in_loop (loop);
return loop;
}
/* Remove the latch edge of a LOOP and update loops to indicate that
the LOOP was removed. After this function, original loop latch will
have no successor, which caller is expected to fix somehow.
If this may cause the information about irreducible regions to become
invalid, IRRED_INVALIDATED is set to true.
LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
basic blocks that had non-trivial update on their loop_father.*/
void
unloop (struct loop *loop, bool *irred_invalidated,
bitmap loop_closed_ssa_invalidated)
{
basic_block *body;
struct loop *ploop;
unsigned i, n;
basic_block latch = loop->latch;
bool dummy = false;
if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
*irred_invalidated = true;
/* This is relatively straightforward. The dominators are unchanged, as
loop header dominates loop latch, so the only thing we have to care of
is the placement of loops and basic blocks inside the loop tree. We
move them all to the loop->outer, and then let fix_bb_placements do
its work. */
body = get_loop_body (loop);
n = loop->num_nodes;
for (i = 0; i < n; i++)
if (body[i]->loop_father == loop)
{
remove_bb_from_loops (body[i]);
add_bb_to_loop (body[i], loop_outer (loop));
}
free (body);
while (loop->inner)
{
ploop = loop->inner;
flow_loop_tree_node_remove (ploop);
flow_loop_tree_node_add (loop_outer (loop), ploop);
}
/* Remove the loop and free its data. */
delete_loop (loop);
remove_edge (single_succ_edge (latch));
/* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
there is an irreducible region inside the cancelled loop, the flags will
be still correct. */
fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
}
/* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
condition stated in description of fix_loop_placement holds for them.
It is used in case when we removed some edges coming out of LOOP, which
may cause the right placement of LOOP inside loop tree to change.
IRRED_INVALIDATED is set to true if a change in the loop structures might
invalidate the information about irreducible regions. */
static void
fix_loop_placements (struct loop *loop, bool *irred_invalidated)
{
struct loop *outer;
while (loop_outer (loop))
{
outer = loop_outer (loop);
if (!fix_loop_placement (loop, irred_invalidated))
break;
/* Changing the placement of a loop in the loop tree may alter the
validity of condition 2) of the description of fix_bb_placement
for its preheader, because the successor is the header and belongs
to the loop. So call fix_bb_placements to fix up the placement
of the preheader and (possibly) of its predecessors. */
fix_bb_placements (loop_preheader_edge (loop)->src,
irred_invalidated, NULL);
loop = outer;
}
}
/* Duplicate loop bounds and other information we store about
the loop into its duplicate. */
void
copy_loop_info (struct loop *loop, struct loop *target)
{
gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
target->any_upper_bound = loop->any_upper_bound;
target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
target->any_likely_upper_bound = loop->any_likely_upper_bound;
target->nb_iterations_likely_upper_bound
= loop->nb_iterations_likely_upper_bound;
target->any_estimate = loop->any_estimate;
target->nb_iterations_estimate = loop->nb_iterations_estimate;
target->estimate_state = loop->estimate_state;
target->constraints = loop->constraints;
target->warned_aggressive_loop_optimizations
|= loop->warned_aggressive_loop_optimizations;
target->in_oacc_kernels_region = loop->in_oacc_kernels_region;
}
/* Copies copy of LOOP as subloop of TARGET loop, placing newly
created loop into loops structure. If AFTER is non-null
the new loop is added at AFTER->next, otherwise in front of TARGETs
sibling list. */
struct loop *
duplicate_loop (struct loop *loop, struct loop *target, struct loop *after)
{
struct loop *cloop;
cloop = alloc_loop ();
place_new_loop (cfun, cloop);
copy_loop_info (loop, cloop);
/* Mark the new loop as copy of LOOP. */
set_loop_copy (loop, cloop);
/* Add it to target. */
flow_loop_tree_node_add (target, cloop, after);
return cloop;
}
/* Copies structure of subloops of LOOP into TARGET loop, placing
newly created loops into loop tree at the end of TARGETs sibling
list in the original order. */
void
duplicate_subloops (struct loop *loop, struct loop *target)
{
struct loop *aloop, *cloop, *tail;
for (tail = target->inner; tail && tail->next; tail = tail->next)
;
for (aloop = loop->inner; aloop; aloop = aloop->next)
{
cloop = duplicate_loop (aloop, target, tail);
tail = cloop;
gcc_assert(!tail->next);
duplicate_subloops (aloop, cloop);
}
}
/* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
into TARGET loop, placing newly created loops into loop tree adding
them to TARGETs sibling list at the end in order. */
static void
copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
{
struct loop *aloop, *tail;
int i;
for (tail = target->inner; tail && tail->next; tail = tail->next)
;
for (i = 0; i < n; i++)
{
aloop = duplicate_loop (copied_loops[i], target, tail);
tail = aloop;
gcc_assert(!tail->next);
duplicate_subloops (copied_loops[i], aloop);
}
}
/* Redirects edge E to basic block DEST. */
static void
loop_redirect_edge (edge e, basic_block dest)
{
if (e->dest == dest)
return;
redirect_edge_and_branch_force (e, dest);
}
/* Check whether LOOP's body can be duplicated. */
bool
can_duplicate_loop_p (const struct loop *loop)
{
int ret;
basic_block *bbs = get_loop_body (loop);
ret = can_copy_bbs_p (bbs, loop->num_nodes);
free (bbs);
return ret;
}
/* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
loop structure and dominators (order of inner subloops is retained).
E's destination must be LOOP header for this to work, i.e. it must be entry
or latch edge of this loop; these are unique, as the loops must have
preheaders for this function to work correctly (in case E is latch, the
function unrolls the loop, if E is entry edge, it peels the loop). Store
edges created by copying ORIG edge from copies corresponding to set bits in
WONT_EXIT bitmap (bit 0 corresponds to original LOOP body, the other copies
are numbered in order given by control flow through them) into TO_REMOVE
array. Returns false if duplication is
impossible. */
bool
duplicate_loop_to_header_edge (struct loop *loop, edge e,
unsigned int ndupl, sbitmap wont_exit,
edge orig, vec<edge> *to_remove,
int flags)
{
struct loop *target, *aloop;
struct loop **orig_loops;
unsigned n_orig_loops;
basic_block header = loop->header, latch = loop->latch;
basic_block *new_bbs, *bbs, *first_active;
basic_block new_bb, bb, first_active_latch = NULL;
edge ae, latch_edge;
edge spec_edges[2], new_spec_edges[2];
const int SE_LATCH = 0;
const int SE_ORIG = 1;
unsigned i, j, n;
int is_latch = (latch == e->src);
profile_probability *scale_step = NULL;
profile_probability scale_main = profile_probability::always ();
profile_probability scale_act = profile_probability::always ();
profile_count after_exit_num = profile_count::zero (),
after_exit_den = profile_count::zero ();
bool scale_after_exit = false;
int add_irreducible_flag;
basic_block place_after;
bitmap bbs_to_scale = NULL;
bitmap_iterator bi;
gcc_assert (e->dest == loop->header);
gcc_assert (ndupl > 0);
if (orig)
{
/* Orig must be edge out of the loop. */
gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
}
n = loop->num_nodes;
bbs = get_loop_body_in_dom_order (loop);
gcc_assert (bbs[0] == loop->header);
gcc_assert (bbs[n - 1] == loop->latch);
/* Check whether duplication is possible. */
if (!can_copy_bbs_p (bbs, loop->num_nodes))
{
free (bbs);
return false;
}
new_bbs = XNEWVEC (basic_block, loop->num_nodes);
/* In case we are doing loop peeling and the loop is in the middle of
irreducible region, the peeled copies will be inside it too. */
add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
gcc_assert (!is_latch || !add_irreducible_flag);
/* Find edge from latch. */
latch_edge = loop_latch_edge (loop);
if (flags & DLTHE_FLAG_UPDATE_FREQ)
{
/* Calculate coefficients by that we have to scale counts
of duplicated loop bodies. */
profile_count count_in = header->count;
profile_count count_le = latch_edge->count ();
profile_count count_out_orig = orig ? orig->count () : count_in - count_le;
profile_probability prob_pass_thru = count_le.probability_in (count_in);
profile_probability prob_pass_wont_exit =
(count_le + count_out_orig).probability_in (count_in);
if (orig && orig->probability.initialized_p ()
&& !(orig->probability == profile_probability::always ()))
{
/* The blocks that are dominated by a removed exit edge ORIG have
frequencies scaled by this. */
if (orig->count ().initialized_p ())
{
after_exit_num = orig->src->count;
after_exit_den = after_exit_num - orig->count ();
scale_after_exit = true;
}
bbs_to_scale = BITMAP_ALLOC (NULL);
for (i = 0; i < n; i++)
{
if (bbs[i] != orig->src
&& dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
bitmap_set_bit (bbs_to_scale, i);
}
}
scale_step = XNEWVEC (profile_probability, ndupl);
for (i = 1; i <= ndupl; i++)
scale_step[i - 1] = bitmap_bit_p (wont_exit, i)
? prob_pass_wont_exit
: prob_pass_thru;
/* Complete peeling is special as the probability of exit in last
copy becomes 1. */
if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
{
profile_count wanted_count = e->count ();
gcc_assert (!is_latch);
/* First copy has count of incoming edge. Each subsequent
count should be reduced by prob_pass_wont_exit. Caller
should've managed the flags so all except for original loop
has won't exist set. */
scale_act = wanted_count.probability_in (count_in);
/* Now simulate the duplication adjustments and compute header
frequency of the last copy. */
for (i = 0; i < ndupl; i++)
wanted_count = wanted_count.apply_probability (scale_step [i]);
scale_main = wanted_count.probability_in (count_in);
}
/* Here we insert loop bodies inside the loop itself (for loop unrolling).
First iteration will be original loop followed by duplicated bodies.
It is necessary to scale down the original so we get right overall
number of iterations. */
else if (is_latch)
{
profile_probability prob_pass_main = bitmap_bit_p (wont_exit, 0)
? prob_pass_wont_exit
: prob_pass_thru;
profile_probability p = prob_pass_main;
profile_count scale_main_den = count_in;
for (i = 0; i < ndupl; i++)
{
scale_main_den += count_in.apply_probability (p);
p = p * scale_step[i];
}
/* If original loop is executed COUNT_IN times, the unrolled
loop will account SCALE_MAIN_DEN times. */
scale_main = count_in.probability_in (scale_main_den);
scale_act = scale_main * prob_pass_main;
}
else
{
profile_count preheader_count = e->count ();
for (i = 0; i < ndupl; i++)
scale_main = scale_main * scale_step[i];
scale_act = preheader_count.probability_in (count_in);
}
}
/* Loop the new bbs will belong to. */
target = e->src->loop_father;
/* Original loops. */
n_orig_loops = 0;
for (aloop = loop->inner; aloop; aloop = aloop->next)
n_orig_loops++;
orig_loops = XNEWVEC (struct loop *, n_orig_loops);
for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
orig_loops[i] = aloop;
set_loop_copy (loop, target);
first_active = XNEWVEC (basic_block, n);
if (is_latch)
{
memcpy (first_active, bbs, n * sizeof (basic_block));
first_active_latch = latch;
}
spec_edges[SE_ORIG] = orig;
spec_edges[SE_LATCH] = latch_edge;
place_after = e->src;
for (j = 0; j < ndupl; j++)
{
/* Copy loops. */
copy_loops_to (orig_loops, n_orig_loops, target);
/* Copy bbs. */
copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
place_after, true);
place_after = new_spec_edges[SE_LATCH]->src;
if (flags & DLTHE_RECORD_COPY_NUMBER)
for (i = 0; i < n; i++)
{
gcc_assert (!new_bbs[i]->aux);
new_bbs[i]->aux = (void *)(size_t)(j + 1);
}
/* Note whether the blocks and edges belong to an irreducible loop. */
if (add_irreducible_flag)
{
for (i = 0; i < n; i++)
new_bbs[i]->flags |= BB_DUPLICATED;
for (i = 0; i < n; i++)
{
edge_iterator ei;
new_bb = new_bbs[i];
if (new_bb->loop_father == target)
new_bb->flags |= BB_IRREDUCIBLE_LOOP;
FOR_EACH_EDGE (ae, ei, new_bb->succs)
if ((ae->dest->flags & BB_DUPLICATED)
&& (ae->src->loop_father == target
|| ae->dest->loop_father == target))
ae->flags |= EDGE_IRREDUCIBLE_LOOP;
}
for (i = 0; i < n; i++)
new_bbs[i]->flags &= ~BB_DUPLICATED;
}
/* Redirect the special edges. */
if (is_latch)
{
redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
loop->header);
set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
latch = loop->latch = new_bbs[n - 1];
e = latch_edge = new_spec_edges[SE_LATCH];
}
else
{
redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
loop->header);
redirect_edge_and_branch_force (e, new_bbs[0]);
set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
e = new_spec_edges[SE_LATCH];
}
/* Record exit edge in this copy. */
if (orig && bitmap_bit_p (wont_exit, j + 1))
{
if (to_remove)
to_remove->safe_push (new_spec_edges[SE_ORIG]);
force_edge_cold (new_spec_edges[SE_ORIG], true);
/* Scale the frequencies of the blocks dominated by the exit. */
if (bbs_to_scale && scale_after_exit)
{
EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
scale_bbs_frequencies_profile_count (new_bbs + i, 1, after_exit_num,
after_exit_den);
}
}
/* Record the first copy in the control flow order if it is not
the original loop (i.e. in case of peeling). */
if (!first_active_latch)
{
memcpy (first_active, new_bbs, n * sizeof (basic_block));
first_active_latch = new_bbs[n - 1];
}
/* Set counts and frequencies. */
if (flags & DLTHE_FLAG_UPDATE_FREQ)
{
scale_bbs_frequencies (new_bbs, n, scale_act);
scale_act = scale_act * scale_step[j];
}
}
free (new_bbs);
free (orig_loops);
/* Record the exit edge in the original loop body, and update the frequencies. */
if (orig && bitmap_bit_p (wont_exit, 0))
{
if (to_remove)
to_remove->safe_push (orig);
force_edge_cold (orig, true);
/* Scale the frequencies of the blocks dominated by the exit. */
if (bbs_to_scale && scale_after_exit)
{
EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
scale_bbs_frequencies_profile_count (bbs + i, 1, after_exit_num,
after_exit_den);
}
}
/* Update the original loop. */
if (!is_latch)
set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
if (flags & DLTHE_FLAG_UPDATE_FREQ)
{
scale_bbs_frequencies (bbs, n, scale_main);
free (scale_step);
}
/* Update dominators of outer blocks if affected. */
for (i = 0; i < n; i++)
{
basic_block dominated, dom_bb;
vec<basic_block> dom_bbs;
unsigned j;
bb = bbs[i];
bb->aux = 0;
dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
FOR_EACH_VEC_ELT (dom_bbs, j, dominated)
{
if (flow_bb_inside_loop_p (loop, dominated))
continue;
dom_bb = nearest_common_dominator (
CDI_DOMINATORS, first_active[i], first_active_latch);
set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
}
dom_bbs.release ();
}
free (first_active);
free (bbs);
BITMAP_FREE (bbs_to_scale);
return true;
}
/* A callback for make_forwarder block, to redirect all edges except for
MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
whether to redirect it. */
edge mfb_kj_edge;
bool
mfb_keep_just (edge e)
{
return e != mfb_kj_edge;
}
/* True when a candidate preheader BLOCK has predecessors from LOOP. */
static bool
has_preds_from_loop (basic_block block, struct loop *loop)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, block->preds)
if (e->src->loop_father == loop)
return true;
return false;
}
/* Creates a pre-header for a LOOP. Returns newly created block. Unless
CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
entry; otherwise we also force preheader block to have only one successor.
When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
to be a fallthru predecessor to the loop header and to have only
predecessors from outside of the loop.
The function also updates dominators. */
basic_block
create_preheader (struct loop *loop, int flags)
{
edge e;
basic_block dummy;
int nentry = 0;
bool irred = false;
bool latch_edge_was_fallthru;
edge one_succ_pred = NULL, single_entry = NULL;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, loop->header->preds)
{
if (e->src == loop->latch)
continue;
irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
nentry++;
single_entry = e;
if (single_succ_p (e->src))
one_succ_pred = e;
}
gcc_assert (nentry);
if (nentry == 1)
{
bool need_forwarder_block = false;
/* We do not allow entry block to be the loop preheader, since we
cannot emit code there. */
if (single_entry->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
need_forwarder_block = true;
else
{
/* If we want simple preheaders, also force the preheader to have
just a single successor. */
if ((flags & CP_SIMPLE_PREHEADERS)
&& !single_succ_p (single_entry->src))
need_forwarder_block = true;
/* If we want fallthru preheaders, also create forwarder block when
preheader ends with a jump or has predecessors from loop. */
else if ((flags & CP_FALLTHRU_PREHEADERS)
&& (JUMP_P (BB_END (single_entry->src))
|| has_preds_from_loop (single_entry->src, loop)))
need_forwarder_block = true;
}
if (! need_forwarder_block)
return NULL;
}
mfb_kj_edge = loop_latch_edge (loop);
latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
if (nentry == 1
&& ((flags & CP_FALLTHRU_PREHEADERS) == 0
|| (single_entry->flags & EDGE_CROSSING) == 0))
dummy = split_edge (single_entry);
else
{
edge fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
dummy = fallthru->src;
loop->header = fallthru->dest;
}
/* Try to be clever in placing the newly created preheader. The idea is to
avoid breaking any "fallthruness" relationship between blocks.
The preheader was created just before the header and all incoming edges
to the header were redirected to the preheader, except the latch edge.
So the only problematic case is when this latch edge was a fallthru
edge: it is not anymore after the preheader creation so we have broken
the fallthruness. We're therefore going to look for a better place. */
if (latch_edge_was_fallthru)
{
if (one_succ_pred)
e = one_succ_pred;
else
e = EDGE_PRED (dummy, 0);
move_block_after (dummy, e->src);
}
if (irred)
{
dummy->flags |= BB_IRREDUCIBLE_LOOP;
single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
}
if (dump_file)
fprintf (dump_file, "Created preheader block for loop %i\n",
loop->num);
if (flags & CP_FALLTHRU_PREHEADERS)
gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
&& !JUMP_P (BB_END (dummy)));
return dummy;
}
/* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
void
create_preheaders (int flags)
{
struct loop *loop;
if (!current_loops)
return;
FOR_EACH_LOOP (loop, 0)
create_preheader (loop, flags);
loops_state_set (LOOPS_HAVE_PREHEADERS);
}
/* Forces all loop latches to have only single successor. */
void
force_single_succ_latches (void)
{
struct loop *loop;
edge e;
FOR_EACH_LOOP (loop, 0)
{
if (loop->latch != loop->header && single_succ_p (loop->latch))
continue;
e = find_edge (loop->latch, loop->header);
gcc_checking_assert (e != NULL);
split_edge (e);
}
loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
}
/* This function is called from loop_version. It splits the entry edge
of the loop we want to version, adds the versioning condition, and
adjust the edges to the two versions of the loop appropriately.
e is an incoming edge. Returns the basic block containing the
condition.
--- edge e ---- > [second_head]
Split it and insert new conditional expression and adjust edges.
--- edge e ---> [cond expr] ---> [first_head]
|
+---------> [second_head]
THEN_PROB is the probability of then branch of the condition.
ELSE_PROB is the probability of else branch. Note that they may be both
REG_BR_PROB_BASE when condition is IFN_LOOP_VECTORIZED or
IFN_LOOP_DIST_ALIAS. */
static basic_block
lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
edge e, void *cond_expr,
profile_probability then_prob,
profile_probability else_prob)
{
basic_block new_head = NULL;
edge e1;
gcc_assert (e->dest == second_head);
/* Split edge 'e'. This will create a new basic block, where we can
insert conditional expr. */
new_head = split_edge (e);
lv_add_condition_to_bb (first_head, second_head, new_head,
cond_expr);
/* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
e = single_succ_edge (new_head);
e1 = make_edge (new_head, first_head,
current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
e1->probability = then_prob;
e->probability = else_prob;
set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
/* Adjust loop header phi nodes. */
lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
return new_head;
}
/* Main entry point for Loop Versioning transformation.
This transformation given a condition and a loop, creates
-if (condition) { loop_copy1 } else { loop_copy2 },
where loop_copy1 is the loop transformed in one way, and loop_copy2
is the loop transformed in another way (or unchanged). COND_EXPR
may be a run time test for things that were not resolved by static
analysis (overlapping ranges (anti-aliasing), alignment, etc.).
If non-NULL, CONDITION_BB is set to the basic block containing the
condition.
THEN_PROB is the probability of the then edge of the if. THEN_SCALE
is the ratio by that the frequencies in the original loop should
be scaled. ELSE_SCALE is the ratio by that the frequencies in the
new loop should be scaled.
If PLACE_AFTER is true, we place the new loop after LOOP in the
instruction stream, otherwise it is placed before LOOP. */
struct loop *
loop_version (struct loop *loop,
void *cond_expr, basic_block *condition_bb,
profile_probability then_prob, profile_probability else_prob,
profile_probability then_scale, profile_probability else_scale,
bool place_after)
{
basic_block first_head, second_head;
edge entry, latch_edge, true_edge, false_edge;
int irred_flag;
struct loop *nloop;
basic_block cond_bb;
/* Record entry and latch edges for the loop */
entry = loop_preheader_edge (loop);
irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
/* Note down head of loop as first_head. */
first_head = entry->dest;
/* Duplicate loop. */
if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
NULL, NULL, NULL, 0))
{
entry->flags |= irred_flag;
return NULL;
}
/* After duplication entry edge now points to new loop head block.
Note down new head as second_head. */
second_head = entry->dest;
/* Split loop entry edge and insert new block with cond expr. */
cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
entry, cond_expr, then_prob, else_prob);
if (condition_bb)
*condition_bb = cond_bb;
if (!cond_bb)
{
entry->flags |= irred_flag;
return NULL;
}
latch_edge = single_succ_edge (get_bb_copy (loop->latch));
extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
nloop = loopify (latch_edge,
single_pred_edge (get_bb_copy (loop->header)),
cond_bb, true_edge, false_edge,
false /* Do not redirect all edges. */,
then_scale, else_scale);
copy_loop_info (loop, nloop);
/* loopify redirected latch_edge. Update its PENDING_STMTS. */
lv_flush_pending_stmts (latch_edge);
/* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
lv_flush_pending_stmts (false_edge);
/* Adjust irreducible flag. */
if (irred_flag)
{
cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
}
if (place_after)
{
basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
unsigned i;
after = loop->latch;
for (i = 0; i < nloop->num_nodes; i++)
{
move_block_after (bbs[i], after);
after = bbs[i];
}
free (bbs);
}
/* At this point condition_bb is loop preheader with two successors,
first_head and second_head. Make sure that loop preheader has only
one successor. */
split_edge (loop_preheader_edge (loop));
split_edge (loop_preheader_edge (nloop));
return nloop;
}
|